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Abstract

The Kalray MPPA2-256 processor integrates 256 processing cores and
32 management cores on a chip. Theses cores are grouped into clusters,
and clusters are connected by a high-performance network on chip (NoC).
This NoC provides some hardware mechanisms (egress traffic limiters)
that can be configured to offer bounded latencies.

This paper presents how network calculus can be used to bound these
latencies while computing the routes of data flows, using linear program-
ming. Then, its shows how other approaches can also be used and adapted
to analyze this NoC. Their performances are then compared on three case
studies: two small coming from previous studies, and one realistic with
128 or 256 flows.

On theses cases studies, it shows that modeling the shaping introduced
by links is of major importance to get accurate bounds. And when packets
are of constant size, the Total Flow Analysis gives, on average, bounds
20%-25% smaller than all other methods.

Contents

1 Introduction 3

2 Description of the NoC 3

1



3 Deterministic Network Calculus 5
3.1 Mathematical background and notations . . . . . . . . . . . . . . 5
3.2 Modeling reality within network calculus . . . . . . . . . . . . . . 6
3.3 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Analyse principles . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5.1 Local analysis . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5.2 Global analysis . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Cyclic dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 State of the art 13

5 Notations on topology 16

6 Explicit linear solution 18
6.1 Arrival curve at queue input, and shaping of incoming link . . . 18
6.2 Flow arrival curve . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Link Arbiter Service Curves . . . . . . . . . . . . . . . . . . . . . 20
6.4 End-to-End Latency Bound . . . . . . . . . . . . . . . . . . . . . 21

7 Adaptation of generic algorithms to the MPPA NoC 22
7.1 Total Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 Single Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Constant packet size . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Comparing strategies 28
8.1 First Example: 4 nodes . . . . . . . . . . . . . . . . . . . . . . . 29

8.1.1 First experiment, original values . . . . . . . . . . . . . . 29
8.1.2 Second experiment, splitting flows . . . . . . . . . . . . . 30
8.1.3 Third experiment, large frame size . . . . . . . . . . . . . 32

8.2 Second Example: 7 nodes . . . . . . . . . . . . . . . . . . . . . . 33
8.2.1 First experiment, original parameters . . . . . . . . . . . 33
8.2.2 Second experiment, realistic load . . . . . . . . . . . . . . 34
8.2.3 Third experiment, loaded configuration . . . . . . . . . . 36
8.2.4 Fourth experiment, loaded configuration, doubling num-

ber of flows . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2.5 Fifth experiment, loaded configuration, large number of

flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.3 Third example, full MPPA NoC . . . . . . . . . . . . . . . . . . . 39

8.3.1 First experiment: 128 flows . . . . . . . . . . . . . . . . . 39
8.3.2 Second experiment: 256 flows . . . . . . . . . . . . . . . . 41

8.4 Conclusions on case studies . . . . . . . . . . . . . . . . . . . . . 43

9 Conclusion 46

2



1 Introduction

While embedded systems require more and more computing power, also re-
quiring low power and strong integration, multicore-based systems appear as
a promising solution. Nevertheless, to ensure critical real-time functions, such
platforms must provide guaranteed real-time performances. And as in any dis-
tributed platforms, offering bounded latency is a key point of real-time perfor-
mances.

The Kalray MPPA c© processor has been designed to offer both high and
guaranteed performances. In particular, its network on chip (NoC) provides
some hardware mechanisms (egress traffic limiters) that can be configured to
offer bounded latencies. But since the computation of the exact values of laten-
cies can be too complex [11], one have to rely on latency bounds.

Whereas it exists a large literature on the computation on such bounds for
NoCs, there are not so many that deal with real architectures (Section 4).

This paper then first presents the Kalray MPPA NoC: the egress flow limiters
(the traffic shapers) and the router architecture, in Section 2.

Getting the best capacity of such a platform requires some efficient method
to compute bounds on latency. This paper presents and compare several of
them, all based on network calculus (presented in Section 3). The first one,
called “explicit linear”, presented in Section 6, transforms the network calculus
equations into a Mixed-Integer Linear Problem (MILP), that allows computing
such bounds while computing the routes of data flows. Then, Section 7 shows
how generic network calculus algorithms (Total Flow Analysis – TFA, Single
Flow Analysis – SFA) can be adapted to analyze this system, and how the
common case where all packets have the same size can be modeled.

Last, all these approaches are compared in Section 8 on three case studies:
two small ones than have been already presented in the previous studies [28],[3].
It allows to compare the new approaches to already published results. Moreover,
they are small enough to allow a fine interpretation of the results. The last case
study is more realistic: each of the 32 clusters sends 4 or 8 data flows. Section 8.4
gives some insight on the mathematical reasons of performance differences.

2 Description of the NoC

The MPPA2-256 processor [54] integrates 256 processing cores and 32 man-
agement cores on a chip, all implementing the same VLIW core architecture.
The MPPA2-256 architecture is clustered with 16 compute clusters and 2 I/O
clusters, where each cluster is built around a multi-banked local static memory
shared by 16+1 (compute cluster) or 4+4 (I/O cluster) processing + man-
agement cores. The clusters communicate through a NoC, with one node per
compute cluster and 8 nodes per I/O cluster.

The MPPA2 NoC is a direct network based on a 2D-torus topology extended
with extra links connected to the otherwise unused ports of the NoC nodes on
the I/O clusters (see Fig. 1).
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Figure 1: MPPA2 NoC topology unfolded (I/O nodes are labeled N0..N3,
E0..E3, S0..S3, W0..W3).

The MPPA2 NoC implements wormhole switching with source routing and
without virtual channels. With wormhole switching, a packet is decomposed
into flits (OF 32-bits on the MPPA2 NoC), which travel in a pipelined fashion
across the network elements, with buffering and flow control applied at the flit
level. The packet follows a route determined by a bit string in the header. The
packet size is between 2 and 71 flits.

The motivation for implementing wormhole switching with source routing
and without virtual channels is the reduction of hardware dedicated to the net-
work elements and interfaces. However, once a buffer is full, the flow control
mechanism of wormhole switching asks to the previous router to store flits in-
stead of forwarding them. This back pressure mechanism can goes back up to
the source. It can also lead to a global deadlock of the network.

Each MPPA2 NoC node is composed of a cluster interface and a router
(Fig. 3). They are eight traffic limiters in the cluster interface. Each one
implements a token-bucket traffic shaper with configurable burst b and rate r.
The burst parameter must be large enough to allow to send one full packet at
link speed (one flit per cycle) before being limited by the budget (as illustrated
in Figure 2 – the exact relation between r, b and the packet size will be given in
eq. (21)). Each router is connected to its four neighbors and to the local cluster
(respectively called North, West, South, West and Local). Each output port
has four (or five) queues, to store waiting flits. They are arbitrated using a per
packet round-robin algorithm.

Whereas the back pressure mechanism of the wormhole switching can lead
to complex interactions between flows, and even deadlocks, one may avoid its
activation by avoiding the buffer filling. This can be done by 1) defining a static
set of data flows, 2) allocating to each flow a traffic limiter and a route, with
and adequate configurations of the traffic limiters.
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Figure 3: Structure of a MPPA2 NoC router.

The network calculus, presented in the next section, will be used to compute
such configuration.

3 Deterministic Network Calculus

The Network Calculus theory has been designed to compute upper bounds on
delay and memory usage in networks [26].

Here is presented a short recall of the network calculus theory, to present
the main results and set the notations. All results presented in this section can
be found in [24],[41], except when a specific reference is given.

3.1 Mathematical background and notations

The network calculus mainly uses functions from time domain, R`, to data
amount R`, so, let F denote the set of such functions, and FÒ the subset of

non-decreasing functions: FÒ def
“ tf P F @t, d P R` : fpt` dq ě fptqu.

Since one may need to project functions in F or FÒ, let define rf s
` def
“

maxpf, 0q, fÒ : R` Ñ R, fÒptq
def
“ sup0ďsďt fpsq, and rf s

`

Ò

def
“ prf s

`
qÒ.
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The composition operator is denoted ˝: pf ˝ gqpxq “ fpgpxqq. The ceiling is
denoted r.s and the flooring t.u: r1.5s “ 2, t1.5u “ 1.

The network calculus relies on the (min,+) dioid, and on its convolution ˚
and deconvolution m defined as

pf ˚ gqptq
def
“ inf

0ďsďt
tfpt´ sq ` gpsqu , (1)

pf m gqptq
def
“ sup

0ďu
tfpt` uq ´ gpuqu . (2)

Some functions, plotted in Figure 4, are commonly used: the delay function
δT ptq “ 0 if t ď T , 8 otherwise, the token-bucket function γr,bptq “ prt `

bq ^ δ0ptq, the rate-latency function βR,T ptq “ R rt´ T s
`

, the test function
1tąDuptq “ 1 if t ą D, 0 otherwise, the pure rate λR “ βR,0, and the stair-case

νh,P ptq “ h
P

t
P

T

, where r¨s is the ceiling function.

3.2 Modeling reality within network calculus

In network calculus, a flow is modeled by its cumulative curve, a function A P
FÒ, left-continuous1, with Ap0q “ 0. The semantics of such a function is that
Aptq represents the total amount of data sent by the flow up to time t.

A server is a relation S between cumulative curves, such that for any arrival
A, it exists a departure D such that pA,Dq P S. Moreover, for any pA,Dq P S,
D ď A, meaning that the departure of a bit of data always occurs after its

arrival. One may also denote by A
S
ÝÑ D the relation pA,Dq P S.

The delay and backlog associated to a server are defined from the arrival and
departure cumulative curves. The delay at time t is defined as hDevpA,D, tq,

1For a discussion on continuity in network calculus, see [16] or [9, § 1.3].
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and the backlog at time t is vDevpA,D, tq,

hDevpA,D, tq
def
“ inf

 

d P R` Aptq ď Dpt` dq
(

, (3)

vDevpA,D, tq
def
“ Aptq ´Dptq. (4)

The semantics of the backlog is quite obvious. The one of the delay deserves
an explanation: the delay associated to the bit arrived at time t is the duration
required for the accumulated departure curve to reach the same amount of data.

The worst delay (resp. backlog) associated to the pair pA,Dq is the supre-
mum of the delay (resp. backlog) for all time t.

hDevpA,Dq
def
“ sup

tPR`
hDevpA,D, tq, (5)

vDevpA,Dq
def
“ sup

tPR`
vDevpA,D, tq. (6)

Of course, in general, a server is shared by several flows, but as will be
presented further, one main work-flow in network calculus consists in reducing
a server shared by several flows into an “equivalent” server crossed by a single
flow.

A n-server S is a relation that associates to each vector of arrival cumu-
lative curves pA1, . . . , Anq at least one vector of departure cumulative curves
pD1, . . . , Dnq such that @i P r1, ns : Di ď Ai.

Given a n-server, its aggregate server SΣ is defined as A
SΣ
ÝÝÑ D if is exists

pA1, . . . , Anq
S
ÝÑ pD1, . . . , Dnq such that A “

řn
i“1Ai, D “

řn
i“1Di. And

for any i P r1, ns, its residual server Si is defined by Ai
Si
ÝÑ Di if it exists

pA1, . . . , Anq
S
ÝÑ pD1, . . . , Dnq.
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3.3 Contracts

The exact behavior of a data flow or a server is commonly unknown at design
time, or too complex. Then, the performance analysis is made using contracts:
maximal load generated by a flow, and minimal capacity of a server.

A cumulative curve A is said to have a function α P F as maximal arrival
curve if

@t, d P R` : Apt` dq ´Aptq ď αpdq. (7)

This condition is equivalent to A ď A ˚ α. The adjective “maximal” is of-
ten omitted since even if it exists a notion of minimal arrival curve, it is not
commonly used, and in particular it is not used in this article.

It exists two contracts on the minimal capacity of a server: a simple minimal
service and a strict minimal service.

Given a server S, it offers a simple minimal service of curve β P F if

@A
S
ÝÑ D : D ě A ˚ β. (8)

This server offers a strict minimal service of curve β P F if

@A
S
ÝÑ D,@t, d ě 0,@x P rt, t`dq, Apxq ą Dpxq ùñ Dpt`dq´Dptq ě βpdq.

(9)

An interval rt, t`dq such that @x P rt, t`dq : Apxq ą Dpxq is called a backlogged
interval or backlogged period.

If a server offers a strict minimal service of curve β, it also offers a simple
minimal service of curve β [41],[10].
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The maximal capacity of a server is also of interest: given an arrival/departure

pair A
S
ÝÑ D, the upper bounds on the delay and backlog of the flow in the server

S are influenced by the minimal performance of the server, but the shape of the
departure cumulative curves is influenced by the maximal capacity of the server,
as will be shown in Thm. 1.

Let σ P F , a server S is a σ-shaper if @A
S
ÝÑ D, D has σ as arrival curve.

3.4 Main results

If the contracts on the arrival and the server are known, one can compute upper
bounds on the delay, backlog, and also compute the contract on the departure
(its allows to propagate the computation).

Theorem 1 (Network calculus bounds). Let S be a server, and A
S
ÝÑ D two

arrival and departure cumulative curves. Then if S offers a minimal service of
curve β, and S is a σ-shaper, and A has α as arrival curve, then

hDevpA,Dq ď hDevpα, βq, (10)

vDevpA,Dq ď vDevpα, βq, (11)

and D has α1 as arrival curve, with

α1 “ pαm βq ^ σ. (12)

This theorem computes local bounds, but when considering a sequence of
servers, a tighter bound can be computed.

Theorem 2 (Pay burst only once). Let S1,S2 be two servers offering respec-
tively a minimal simple service of curve β1, β2, and let A a cumulative curve

crossing both in sequence ( i.e. A
S1
ÝÑ B

S2
ÝÑ C). Then, the sequence S1,S2 is a

server offering a minimal simple service of curve β1 ˚ β2.

This result is interesting since it gives lower bounds than the sum of local
delays2.

Theorem 3 (Blind multiplexing). Let S be a n-server such that SΣ offers a
minimal strict service of curve β. Then, if each arrival Aj has αj as arrival
curve, for any i P r1, ns, the residual server Si offers the minimal simple service
of curve

βblind
i “

«

β ´
ÿ

j‰i

αj

ff`

Ò

. (13)

The result was in [41, Thm. 6.2.1] without the non-decreasing closure that
has been added in [7]. It is also known as “arbitrary multiplexing” since it can
be applied on any service policy.

2i.e. hDevpα, β1 ˚ β2q ď hDevpα, β1q ` hDevpα1, β2q with α1 “ αm β1

9



Theorem 4 (FIFO multiplexing). Let S be a n-server such that SΣ offers a
minimal simple service of curve β. Then, if each arrival Aj has αj as arrival
curve, for any i P r1, ns, the residual server Si offers the minimal simple service
of curves

βg-FIFO
i “ δd with d “ hDev

˜

n
ÿ

j“1

αj , β

¸

, (14)

βθ´FIFO
i “

«

β ´
ÿ

j‰i

αj ˚ δθ

ff`

^ δθ,@θ P R`. (15)

In fact, they are two results for the FIFO policy. One may either compute
the delay of the aggregate server, d, or choose one θ for each flow and use
βθ´FIFO
i . In this case, the challenge is the choice of the θ value (that will be

discussed in Sections 4 and 7.2). Proofs can be found in [9][Thm. 7.4,Thm. 7.5].

Proposition 1 (Burstiness increase due to FIFO, general case). Let S be a
n-server such that SΣ offers a minimal simple service of curve βR,T . Assume
that the flow of interest Ai has arrival curve γri,bi , and that the aggregate flow
A‰i “

ř

j‰iAj has a sub-additive arrival curve α‰i, with r‰i its long term rate.
Then, if ri ` r‰i ă R, then departure flow Di has arrival curve γri,b1i with

b1i “ bi ` ri

ˆ

T `
B

R

˙

, B “ sup
uě0

tα‰ipuq ` riu´Ruu .

The previous proposition is the re-writing of Thm. 6.4.1 from [41].

Corollary 1 (FIFO and token-bucket arrival curves). Let S be a n-server such
that SΣ offers a minimal simple service of curve βR,T . Assume that each arrival
Aj has γrj ,bj as arrival curve, with

řn
j“1 rj ă R then for any i P r1, ns, the

residual server Si offers the simple minimal service of curve βRi,Ti
with Ri “

R´
ř

j‰i rj, Ti “ T `
ř

j‰i bj

R , and the departure Di has arrival curve γri,b1i with
b1i “ bi ` riTi.

The previous corollary is the re-writing of Cor. 6.2.3 from [41].

Theorem 5 (Residual service of RR). Let S be a n-server shared by n flows,

denoted by pA1, . . . , Anq
S
ÝÑ pD1, . . . , Dnq, applying a round robin policy. For

any i P r1, ns, let lmax
i and lmin

i , some upper and lower packet sizes for the flow
i.

If SΣ offers a strict service of curves β, then the residual server Si offers
the residual strict service of curves

βRR
i “

´

λ1 ˚ νlmin
i ,lmin

i `Lmax
‰i

¯

˝
`

β ´ Lmax
‰i

˘

, (16)

βRR-lin
i “

lmin
i

lmin
i ` Lmax

‰i

“

β ´ Lmax
‰i

‰`
(17)
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with Lmax
‰i “

ř

j‰i l
max
j . If βptq “ Rt, then βRR-lin

i “ βRRR
i ,TRR

i
with

RRR
i “ R

lmin
i

lmin
i ` Lmax

‰i

, TRR
i “

Lmax
‰i

R
. (18)

This theorem gives three expressions of residual services, but in fact there
is only one, since βRR-lin

i is just a linear lower bound of βRR
i , and βRRR

i ,TRR
i

the expression of βRR-lin
i when the aggregate service is a constant rate. Their

relation is illustrated on Figure 9. The proof can be found in [9, Thm. 8.6].

3.5 Analyse principles

3.5.1 Local analysis

When an output port implements a round robin policy between queues, and
each input queue is shared by several flows, it exists several ways to compute
the delay associated to each flow. Consider Figure 10, and assume we are
interested by the flow A1. From the initial configuration (on the middle left),
with strict service of curve β123, one may compute a residual server, S1, with
service β1, considering arbitrary multiplexing (Thm. 3). But one also may first

11
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reduce the system to a FIFO one, S12, with simple service β12, using either
Thm. 3 or Thm. 5. Then, one may either use a tool dedicated to FIFO network,
or use Thm. 4 or Cor. 1.

Since the expressions of the residual curves are different for each theorem,
the choice of one or the other will give a different residual curve, and then
different bounds on the delay. They all are corrects, but some are smaller.

For example, when going from S to S12, if A3 use less then half of the
bandwidth, it may be better to use Thm. 3.

3.5.2 Global analysis

There exist several ways to bound the end-to-end delay of a given flow. Let F j

denotes the set of flows crossing a server qj .
The simplest one, the Total Flow Analysis (TFA) [56], computes one bound

dj for each server, and for a given flow, does the sum of all servers its crosses
dTFA
i “

ř

fiPF j dj . It will be presented in details in Section 7.1. In the topology

of Figure 11, TFA will compute one delay di for each server Si, and the delay
for the flow f4 (of cumulative curves A4, B4, C4) will be bounded by d3 ` d4.

The most famous one, the Single Flow Analysis (SFA) computes, for a given
flow fi, for each crossed server βj , a residual service βji . Then, using the Pay
Burst Only Once principle (Thm. 2), one gets an end-to-end service βSFA

i “

˚fiPF j βji that allows computing dSFA “ hDevpαi, β
SFA
i q a bound on the end-

to-end delay. In the topology of Figure 11, to bound the delay of f4, SFA will
compute β3

4 (resp. β3
4), a residual service for the flow f4 in the server S3 (resp.

β4
4), and the delay will be bounded by hDevpα2, β

3
3 ˚ β

4
3q.

In both SFA and TFA, the computation of the residual service depends on
the scheduling policy. And none of the algorithm specifies how to compute the
arrival curves of the interfering flows (the arrival curves of B2 and B3).

SFA is often considered as better than TFA3. But most of the studies have
considered only blind multiplexing. As will be shown in this study, when con-
sidering FIFO policy, the results could be different. The reason may be that
there is no well known strategy to get a “good” residual service for FIFO.

A complete different approach has been developed in [11]: assuming that
all arrival (resp. service) curves are piece-wise linear concave (resp. convex)

3“In network calculus, the Total Flow Analysis (TFA) had been abandoned since it is
inferior to other methods.” [6, §7]
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functions, instead of computing a residual service, all network behaviors are
encoded as one mixed-integer linear program.

3.6 Cyclic dependencies

Last, let us illustrate why cyclic dependencies are still an open problem in
network calculus.

Consider the topology of Figure 12, and first assume a blind policy. To
compute the delay of the flow A1 in S1, one may use Thm. 3, but then, the
arrival curve of B2 is required. And to compute this arrival curve, one may use
Thm. 1 and 3, but the arrival curve of B1 is required.

The same apply if S1 and S2 apply a FIFO policy. An overview of handling
of cyclic dependencies can be found in [9, § 12].

But if S1 or S2 uses a round robin policy, alternating service of packets for
flows A and B, the problem does not occur anymore since the computation of
the residual service does not require the arrival curve of the competing flows.

4 State of the art

They have been several studies designed to compute upper bounds on the worst
case traversal time (WCTT) of a NoC by a data flow. Nevertheless, very few
address the Karlay MPPA NoC architecture.

An overview of the state of the art of NoC performance evaluation (up to
2013) can be found in [40].

Most NoCs use a wormhole switching mechanisms: a packet is decomposed
as a sequence of flits (typically of 64 or 128 bits), and the flits are forwarded in a
cut-through way once the routing decision has been made, based on the header
of the packet. This mechanism allows a router to forward the head of a packet
before the reception of the full packet. A credit-based mechanism ensures that
no buffer overflows: if a destination buffer is full, the switch stops forwarding
flits. This can lead to a local buffer filling and then the previous switch must
also stop to send flits, and so on, up to the source. This mechanism is called
back-pressure.

In a real-time environment, the back-pressure mechanism may create large
latencies and is quite hard to analyze. Then, in case of real-time constraints,
one often try to avoid back-pressure activation.
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TDMA access upon wormhole switching One solution to avoid the back-
pressure activation is to build a global time-based schedule (Time Division Mul-
tiple Access, TDMA), where times slots are reserved to data flows, in a way such
that no contention occurs in the buffers [23],[50],[51].

Wormhole switching, virtual channels and static priorities The use of
virtual channels allows reducing the number of conflicts in buffer use and so the
number of activations of the back-pressure mechanism.

For example, an active community considers NoC with wormhole switch-
ing, in each routers, preemption at the flit level and static priorities scheduling
between virtual channels. Moreover, it is often assumed that the number of vir-
tual channel is not less than the maximum number of contentions in each port
[57],[48],[22],[59]. Note that with such assumptions, the back-pressure mecha-
nisms of the wormhole switching is never used.

Wormhole with back-pressure A few papers have addressed the problem
of wormhole switching with back-pressure activation.

The recursive calculus has been designed to compute bounds on the SpaceWire
technology, a wormhole-based technology [29],[30]. The recursive calculus is one
of the rare method that takes into account the back-pressure mechanism of the
wormhole switching. It has been adapted to the Karlay MPPA NoC in [3] and
compared with a network-calculus based approach [27] on an example, that
will also be considered in this article (cf. Section 8.2). This recursive calculus
approach has been enhanced in [1] to take into account the pipeline effect of
the cut-through forwarding in the wormhole switching, considering a NoC with
input-queuing and round-robin arbitration.

The Compositional Performance Analysis (CPA, [38]) is a theory that, like
network calculus, uses functions to bounds the flow shape, but, unlike network
calculus, uses a buzy-period based analysis to compute the per node latency. In
[58], the authors develop a CPA-based method to compute the latency bounds
on a wormhole NoC, with back-pressure activation and taking into account the
input flow shapes.

The trajectory approach, originally developed for Ethernet networks [47],[45],
has been adapted to NoC, considering a system with input queuing, FIFO ar-
bitration and back-pressure activation in [49].

One study in network calculus takes into account the back-pressure, and it
is presented in the next section.

Network calculus Since the back-pressure is activated once a buffer is full,
one way to avoid its activation consists in statically ensuring that it will never
occur, by adequate configuration of traffic limiters. To do so, one may use the
network calculus theory [41],[24], that is devoted to the computation on upper
bounds on buffer occupancy and delay.

From the network calculus point of view, when the back-pressure mechanism
is disabled, the NoC of the Karlay MPPA is simply a network using a round
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robin arbiter and cut-through forwarding. So, we are going to present first pure
network-calculus studies on Weighted Round Robin (WRR), FIFO policy and
thereafter application of network calculus to NoC.

A network-calculus model of the WRR policy has been presented in [35],[36],
without any proof and implicitly considering that all packets have the same size.
It gives, for each class, a residual service. The same assumptions are done in
[46], that also gives a residual service. Theses works has been generalized in [9,
Thm. 8.6] considering an upper and lower bound on packet size for each flow.
This last result is the one presented as Theorem 5 in Section 3.

One may also analyze a WRR arbiter using the “arbitrary multiplexing”
(cf. Theorem 3), since a WRR arbiter is also a work-conserving arbiter. One
difference between both is that the WRR residual service offers to one queue
depends only on the weights and the packet sizes, but is independent from the
traffic of the flows using the others queues, whereas the arbitrary multiplexing
result does not consider the weights, only the maximal packet size and the flow
traffics.

Both theorems on WRR transform the network into another one using only
FIFO policy. They have been several works done on FIFO policy in the network
calculus domain. The simplest approach, used for example in [32],[19], computes
the end-to-end delay of a flow by doing the sum of the local delays. But, as
recalled in Theorem 2, network calculus allows to compute smaller end-to-end
bounds, using the Pay burst only once principle. Nevertheless, in the case of the
FIFO policy, the application of this principle requires the choice of some real
parameter θ ě 0 (cf. Theorem 4) per crossed server. The choice of a good set
of parameters was the core work of the DEBORAH tool [5],[44],[43],[42]. Since
this work only considers token-bucket flows and latency-rate servers, some others
works have been done on more general classes of curves [25],[18]. Surprisingly, all
these works compute either optimal delay or arrival curve, without any explicit
expression of the θ parameters.

A new approach, LP, have been developed in [11]: instead of locally com-
puting a residual service, the basic equations of network calculus are encoded
as a mixed-integer linear program. Initially developed for arbitrary multiplex-
ing, it has been adapted to FIFO multiplexing, and its had been shown that it
outperforms the DEBORAH results, but with a higher computation complexity
[12],[13].

Considering the studies on NoC using network calculus, one may first cite
[52], where the authors assume a NoC with FIFO policy and infinite buffers.
The paper is mainly an adaption of [43] to the NoC context.

The same authors address a realistic configuration in [53]: each router has
only one queue per input port (input queuing), the switching fabric uses a
weighted round-robin to serve this input queues, and wormhole switching is
used to avoid buffer overflow. The network-calculus model takes into account
the limited sizes of the queues and the use of the back-pressure mechanism.
The back-pressure mechanism is also modeled in [60], but the authors seem not
aware of the previous work of [53] and the equation (5) in [60] different than
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the equations (4.1) and (4.2) in [53].
Weighted round-robin policy is also assumed in [39]. It considers a NoC

where in each port, the number of virtual channels is not less than the number
of flows, and that VCs are served with a per-packet round-robin policy. It also
assumes that the flows are regulated at the source by a token-bucket shaper.
Then, it optimizes the token-bucket parameters in order to minimize the buffer
use while “satisfying acceptable communication performances”.

This model (round-robin arbitration and token-bucket shaping at the source)
is quite close to the Karlay MPPA architecture, but the Karlay MPPA does not
apply a round-robin per flow but per queue.

The Karlay MPPA is explicitly targeted in [37], avoiding back-pressure by
adequate traffic limiter configuration, but per flow round-robin is assumed.

In [27], a first network calculus model of the Karlay MPPA model was pre-
sented, assuming constant packet size.

Last, computing routing and resource allocation under delay constraint have
been also studied in [33],[34]

5 Notations on topology

Before presenting the different methods used to compute upper bounds for flows
on the MPPA NoC, let us introduce some notations shared by all methods.

These notations will be illustrated on a small example. In Figure 13, a flow
f1 goes from N1 to N3, crossing routers R1, R2, R3; another flow f2 goes from
N2 to N3, crossing routers R2, R3. In router R1, the flow f1 is set in the queue
“From Local” of the output port “To West”. In router R2, it is set into the
queue “From East” of the output port “To West”. And in router R3, it uses
the queue “From East” of the output port “To Local”.

A hierarchical model would define routers, with ports and queues as at-
tributes of a router. Our network calculus model considers a flat set of all ports
in the NoC,

 

p1, . . . , pnp
(

, and also a flat set of all queues
 

q1, . . . , qnq
(

. Fig-
ure 5 reports a subset of the queues involved in example of Figure 13: only
queues “From Local” and “From West” have been drawn, and only the used
ports. For example, the output port “To East” of the router R1 is p1, and its
queue “From Local” is q1.

The relation between queues and ports is done by a function p such that
ppqiq “ pk if qi is an input queue of the port pj . In the example, ppq1q “

ppq2q “ p1, ppq3q “ ppq4q “ p2, etc.
The set of flow is

 

f1, . . . , fnf

(

. A flow has a static path between one source
and one destination4, lmin

i (resp. lmax
i ) denotes the minimal (resp. maximal)

size of a packet of flow fi. The routing of a flow is denoted queue per queue:

qj
fi
ÝÑ qk if the flow f i goes from the queue qj to the queue qk.
For a flow fi, Qi is the (ordered) sequence of queues it crosses, i.e. since the

flow f1 follows the path q1 f1
ÝÑ q4 f1

ÝÑ q6, then Q1 “ q1q4q6.

4The MPPA NoC has multicast capabilities, not considered here to keep notations simple.
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q1, . . . , qnq
(

set of queues
 

p1, . . . , pnp
(

set of ports
ppqiq “ pk qi is an input queue of pj

 

f1, . . . , fnf

(

set of flows
lmin
i , lmax

i minimal and maximal packet size of fi

qj
fi
ÝÑ qk f i goes from qj to qk

Qi route of flow fi, as a sequence of queues
F j set of flows crossing qj

Aji cumulative curve of fi entering qj

Dj
i cumulative curve of fi leaving ppqjq

αji arrival curve of Aji
9αji arrival curve of Dj

i

Table 1: Notations related to topology

Figure 13: Small example to illustrate notations

For a queue qj , F j denotes the set of flows crossing this queue. Of course,
if a queue qj is in the path of flow fi, then fi is in the set of flows crossing
this queue, i.e. qj P Qi ðñ fi P F

j . In the example, F 1 “ F 4 “ tf1u,
F 2 “ F 5 “ H, F 3 “ tf2u, and F 6 “ tf1, f2u.

The cumulative curve of the flow fi entering the queue qj is denoted Aji .

The cumulative curve leaving the output port ppqjq is denoted Dj
i .

For a given algorithm5, αji (resp. 9αji ) denotes the arrival curve of the cu-

mulative curve Aji (resp. Dj
i ). Of course, qj

fi
ÝÑ qk implies Dj

i “ Aki and

9αji “ αki .
The translation into network calculus just renames ports and queues, as

5Different algorithms can compute different arrival curve for the same cumulative curve.

q1

q2
p1

q3

q4
p2

q5

q6
p3

f1
f2

A3
2

D3
2 “ A6

2

D6
2

Figure 14: Partial translation of example of Figure 13
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illustrated in Figure 5 (only queues “From Local” and “From West” have been
drawn). The output port “To East” of the router R1 is p1, and its queue “From
Local” is q1.

6 Explicit linear solution

The delay experienced by a flow crossing a NoC depends of course of the NoC
capacity, but also of the route from the source to the destination and the char-
acteristics of the flows sharing some buffer or links along this route. Computing
the route of a given set of flows such that each flow respects its deadline, such
that the routing does not create cyclic dependency, and such that the global con-
figuration makes the best use of the NoC capacity while ensuring some fairness
between flow is an optimization problem.

To allow the resolution of the problem using efficient tools, it has been chosen
to express the problem as a Mixed-Integer Linear Problem (MILP). It requires,
among other things, to express the evaluates of delays and backlogs as a linear
problem.

This section will present only the part related to delays, and the reader may
refer to [28] for details on routing and fairness.

This approach is called “explicit” since the network calculus results presented
in Section 3, involving specific operators (deviations, convolutions, etc.) are
particularized in the specific case of affine arrival and service curves, and explicit
analytic expressions are derived.

Since the rate of a flow is not modified along the NoC traversal, only the
burstiness of the flows are the variable of the linear problem.

In this linear formulation, the arrival curve associated to each flow fi at
the input of a queue qj P Qi is a token-bucket αji “ γri,bji

, where ri is its rate

(constant along the path) and bji its burstiness in front of queue qj .

6.1 Arrival curve at queue input, and shaping of incoming
link

Queue qj receives the aggregates of flows F j passing through it, so its arrival
curve is of leaky-bucket type γrj ,bj with

rj “
ÿ

fiPF j

ri, bj “
ÿ

fiPF j

bji . (19)

But this aggregate flow comes from a link of peak rate r. Then, it also have λr
as arrival curve. Combining both, it yields the arrival curve λr ^ γrj ,bj : t ÞÑ
minprt, bj ` rjtq, which is a special case of the standard T-SPEC arrival curve
αptq “ minpM`pt, rt`bq1ttą0u used in IntServ [31]. Note the intersection of the

two lines pt`M and rt`b has coordinate pM´br´p ,
Mr´pb
r´p q and that αptq “M`pt

if t P
´

0, M´br´p

ı

and αptq “ rt` b if t ě M´b
r´p (cf Figure 15).
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r

M´b
r´p

Mr´pb
r´p

Figure 15: T-SPEC flow caracteristic curve

Assume that this queue qj receives from the link arbiter a rate-latency ser-
vice curve βRj ,T j (the computation of these parameters Rj , T j will be done in
Section 6.3) with Rj ď r and Rj ě rj . The bound on delay for queue qj is
the maximum horizontal deviation between the arrival curve and the service
curve dj

def
“ hDevpγr,bj , βT j ,Rj q. Application of the T-SPEC arrival curve on

such service curve yields [41]

dj “ T j `
bjpr ´Rjq

Rjpr ´ rjq
. (20)

6.2 Flow arrival curve

At ingress, whole packets are atomically injected at rate r. Call θ the date when
injection ends. We have rθ “ lmax

i and lmax
i ď bi ` riθ, so

@fi P F : bi ě bmin
i

def
“ lmax

i

r ´ ri
r

. (21)

We now express the values rji and bji for all flows fi P F
j for an active queue

qj . If qj is the first active queue traversed by the flow, then bji “ bi. Else, let
qk be predecessor of qj in the sequence of active queues traversed by flow fi

(i.e. qk
fi
ÝÑ qj), with βRk,Tk its (residual) service curve. When flow fi traverses

queue qk, its burstiness increases differently whether it is alone or aggregated
with other flows in qk.

If the flow is alone in queue qk, we apply the classic result of the effects of a
rate-latency service curve βR,T on a flow constrained by an affine arrival curve
γr,b. The result is another affine arrival curve γr,b`rT [41], so

bji “ bki ` riT
k. (22)

Else, we apply Prop. 1. Let introduce rj‰i “ rj ´ ri, b
j
‰i “ bj ´ bji , i.e.

rj‰i “
ÿ

flPF j ,l‰i

rl, bj‰i “
ÿ

flPF j ,l‰i

bjl . (23)
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The competing flows have arrival curve α‰iptq “ minprt, rj‰it` b
j
‰iq1tą0 (the rt

term comes from link shaping at qk egress). Since this function is sub-additive
and ri ` r‰i “

ř

lPF i rl ă R, the proposition can be applied.
The α‰i function is a T-SPEC function, it is equal to the first term if u ď

b‰i

r´rj
‰i

and to the second otherwise. Then

sup
uě0

α2puq ` riu´R
j (24)

“

¨

˚

˚

˝

sup
0ďuď

b‰i

r´r
j
‰i

pr ` ri ´R
jqu

˛

‹

‹

‚

_

¨

˚

˚

˝

sup
uě

b‰i

r´r
j
‰i

prj‰i ` ri ´Rqu` b‰i

˛

‹

‹

‚

(25)

“ b‰i
r ` ri ´R

j

r ´ rj‰i
. (26)

Application of Prop. 1 leads to

bji “ bki ` ri

˜

T j `
bj‰ipr ` ri ´R

jq

Rjpr ´ rj‰iq

¸

. (27)

Note that the use of Cor. 1 would lead to bki ` ri

ˆ

T j `
bj
‰i

Rj

˙

that does not

capture the benefit of the shaping r at input.

6.3 Link Arbiter Service Curves

On the MPPA2 NoC, the output link arbiters operate in round-robin on turn
queues at the packet granularity, while each queue contains flows aggregated in
FIFO. As the packets presented to a link arbiter are not processed in FIFO order,
previous work (e.g. [14]) would have to assume blind multiplexing between all
flows and fail to exploit FIFO aggregation. This is addressed in [28] by exposing
the service offered to each queue of a link arbiter: either, the rate and latency
ensured by round-robin packet scheduling; or, the residual service guaranteed by
blind multiplexing across queues when the round-robin service does not apply.
Then, aggregation need only be considered withing the scope of single queues
so is FIFO.

The service curve offered by a link arbiter to each of its queues is abstracted
as a rate-latency function βj “ βRj ,T j . The first approach to derive this curve
is to consider the behavior of the round-robin arbiter, assuming that each flow
fi has its packet sizes bounded by a minimum lmin

i and a maximum lmax
i . Let

lmin
F j

def
“ minfiPF j lmin

i and lmax
F j

def
“ maxfiPF j lmax

i be respectively the minimum
and maximum packet sizes for qj (with convention that maxH “ 0 to encode
the fact that a queue crossed by no flow has no influence on the round robin

arbiter). Let Q‰j
def
“

 

qk ppqkq “ ppqjq, k ‰ j
(

be the set of queues sharing the
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same arbiter that qj . The general round-robin service curve βj “ βRj ,T j for qj

is

Rj “
rlmin
F j

lmin
F j `

ř

kPQ‰j lmax
Fk

, T j “

ř

kPQ‰j lmax
Fk

r
. (28)

The second approach to derive a service curve for queue qj is to consider
that the round-robin arbiter serves packets at peak rate r according to a blind
multiplexing strategy across the queues. Application of Thm. 3 yields the blind
multiplexing service curve βj “ βRj ,T j for qj

Rj “ r ´
ÿ

kPQ‰j

rk, T j “

ř

kPQ‰j bk

r ´
ř

kPQ‰j rk
. (29)

The blind multiplexing service curve must be used whenever the sum of flow
rates inside qj exceeds Rj in Eq. (28). Else, we select the formula that evaluates
to the lowest T j .

6.4 End-to-End Latency Bound

For computing an upper bound on the end-to-end latency of any particular flow
fi, we proceed in three steps. First, compute the left-over (or residual) service
curve βji of each active queue qj traversed by fi. Second, find the equivalent
service curve β˚i offered by the NoC to flow fi through the convolution of the left-

over service curves βji . Last, find the end-to-end latency bound by computing
d˚i the delay between αi the arrival curve of flow fi and β˚i . Adding d˚i to the
constant delays of flow fi such as the traversal of non-active queues and other
logic and wiring pipeline yields the upper bound. This approach is similar in
principle to the Separated Flow Analysis (SFA) [14], even though the latter is
formulated in the setting of aggregation under blind multiplexing, while we use
FIFO multiplexing.

For the first step, we have two cases to consider at each active queue qj .
Either fi is the only flow traversing qj , and βji “ βRj ,T j from equations (28)
or (29). Or, fi is aggregated in qj with other flows in F j . Packets from the
flow aggregate F j are served in FIFO order, so we may apply Corollary 1. This
yields the left-over service curve βji “ βRj

i ,T
j
i

for an active queue qj traversed

by fi:

Rji “ Rj ´ rj‰iF
j , T ji “ T j `

bj‰i
Rj

. (30)

For the second step, we compute the convolution β˚i “ ˚qjPQi
βji of the

left-over service curves βji . Thanks to the properties of rate-latency curves [41],
β˚i is a rate-latency curve whose rate R˚i is the minimum of the rates and the

latency T˚i is the sum of the latencies of the left-over service curves βji :

R˚i “ min
jPQi

Rji , T˚i “
ÿ

jPQi

T ji . (31)
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For the last step, we compute the delay d˚i between αi the arrival curve of
flow fi at ingress and β˚i . This flow is injected at rate ri and burstiness bi,
however it is subject to link shaping at rate r as it enters the network. As a
result, αi “ minprt, bi ` ritq1tą0 and we may apply Eq. (20):

d˚i “ T˚i `
bipr ´R

˚
i q

R˚i pr ´ riq
. (32)

7 Adaptation of generic algorithms to the MPPA
NoC

Section 6 has presented a modeling of the MPPA NoC that allows both to com-
pute the route of the application flows using linear constraints while respecting
deadline and buffer constraints (even if in this article, the focus is done only on
the delay evaluation).

One may wonder if other algorithms may compute better bounds.
This section presents first how the Total Flow Analysis (TFA) and Single

Flow Analysis (SFA), initially defined for tandem topology with blind mul-
tiplexing, can be adapted to the case of the MPPA NoC, and especially to its
hierarchical FIFO/RR scheduling (sections 7.1 and 7.2). Thereafter, is discusses
how the specific case of constant packet size can help the analysis.

7.1 Total Flow Analysis

This section presents how the Total Flow Analysis (TFA), presented in Sec-
tion 3.5.2, is used and has been adapted to the specific case of the MPPA NoC.

The basic idea is of TFA is, given a queue qj , to consider Aj “
ř

fiPF j A
j
i the

total input flow, to compute αj an arrival curve for Aj , and given βj a service
curve of the queue, to compute dj “ hDevpαj , βjq a delay bound of the queue.
Since the queue applies a FIFO policy between its flows, this delay bound is
also a bound for each flow, and the end-to-end delay of a flow can be bounded
by the sum of the dj of the crossed queues qj : dTFA

i “
ř

fiPF j dj .

This algorithm requires to compute αj and βj .
The computation of αj relies on the iterative transformation of arrival curve6.

Let αji be an arrival curve for the flow Aji . Then, the corresponding departure

flow Dj
i has arrival curve 9αji “

´

αji m δdj
¯

^ δ0 (cf. eq. (12) and eq. (14)).

Then, the computation of αj relies on the identification of all queues qk

sending flits to the queue qj . Let Ij
def
“

!

qk Dfi : qk
fi
ÝÑ qj

)

be this set. Note

that if a flow fi goes from a queue qk to a queue qj , then Aji “ Dk
i . Then αj

can be computed as the sum of all individual arrival curves 9αki . But all these
flows also pass through a link with peak rate r. This shaping implies that λr is

6A discussion on how the original input curves are computed is postponed to Section 7.3.
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another arrival curve for Aj , leading to

αj “ λr ^
ÿ

qkPIj

ÿ

fiPFkXF j

9αki . (33)

The computation of βj can be done using either the residual service of the
round-robin policy (Thm. 5), or the blind multiplexing (Thm. 3). The com-
putation of the blind multiplexing requires to compute the arrival curve of the
competing flows7. It can be of interest when a queue shares the output link
with lightly loaded queues. But the TFA algorithm is not forced to choose
between both, it can compute both residual services, βjBlind, βjRR and then set

dj “ hDevpαj , βjBlindq ^ hDevpαj , βjRRq.

7.2 Single Flow Analysis

Whereas the Single Flow Analysis (SFA) is well defined for a tandem network
with blind scheduling policy, its application to the NoC MPPA requires several
adaptations, and some trade-offs, presented in this section.

The basic idea of SFA is, given a flow fi to compute βSFA
i “ ˚qjPQi

βji , where

βji is a residual service for the flow fi in queue qj . From a single flow point of
view, the MPPA applies a hierarchical scheduling FIFO/RR: the bandwidth is
shared between the queues using a RR scheduling and this left-over service is
shared by the flows using a FIFO policy.

Then, one may consider several ways to compute the residual service βji :
either consider this hierarchical scheduling as a black box, and use the blind
multiplexing result (Thm. 3), or first consider the residual service offered to the
queue βj (using either round robin residual service or blind multiplexing, as
discussed in Section 7.1 on TFA) and secondly deduce the residual service left
by the FIFO policy (using either eq. (15) or eq. (14) or the Cor. 1). Combining
all possibilities leads to 7 different expressions, as presented in Figure 16.

In fact, not all are of interest.
Considering only blind multiplexing (βj,Blind

i ) is always worst than modeling
the RR arbiter per a blind policy and thereafter modeling the FIFO policy

inside the queue (residual services β
j,Blind/*-FIFO
i ). The reason is that modeling

a FIFO policy per a blind multiplexing is a pessimistic modeling.
Considering the global delay (g-FIFO residual service) would lead to the

same result than TFA (presented in Section 7.1), and is not considered neither.
The same, Corollary 1 can be applied only to affine modeling, and would

lead to quite the same results than the explicit linear solution (presented in
Section 6) and is not considered neither.

So, either β
j,RR/θ-FIFO
i or β

j,Blind/θ-FIFO
i has to be considered.

Notice that every value of θ P R` leads to a possible residual service, so each

β
j,RR/θ-FIFO
i and β

j,Blind/θ-FIFO
i represents an infinite number of service curves.

7This can be done using eq. 33. If Cj is the set of queues sharing the same output port than

qj , α´j “
ř

kPCj αk is an arrival curve for all the competing flows, and βj
Blind “

“

β ´ α´j
‰`

Ò

the blind residual service.
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β

βj,Blind
i

Thm. 3

βj,RRThm. 5
βj,RR/g-FIFO

eq. (14)

β
j,RR/θ-FIFO
i

eq. (15)

β
j,RR/β-FIFO
i

Cor. 1

βj,Blind

Thm. 3 β
j,Blind/g-FIFO
ieq. (14)

β
j,Blind/θ-FIFO
i

eq. (15)

β
j,Blind/β-FIFO
i

Cor. 1

Figure 16: Different ways to compute a residual service

We postpone the discussion on the choice of θ and start by discussion the choice

between β
j,RR/θ-FIFO
i and β

j,Blind/θ-FIFO
i .

One may want to compute both βj,RR and βj,Blind and do the maximum of
both service curves. But it is not true in general: it is true that that if a server
offers two minimal strict service of curves β, β1, it offers a minimal strict service
curve max tβ, β1u, but the results does not hold for minimal simple service [9,
§ 5.2.3]. One also may want to compute both for each server, and compute
a residual service for all possible combination. But, for a path of length n, it
will results in 2n service curves. The strategy used in this paper consists in
computing both βj,RR and βj,Blind, and then to choose the one with the smaller
TFA delay.

Let now discuss the choice of the θ parameter. The expression of the residual
service is recalled here

βθ-FIFO
i “ rβ ´ α‰j ˚ δθs

`
^ δθ, (34)

with α‰i “
ř

j‰i α. To the best of our knowledge, there is no general result on
the best, neither any good, θ parameter. The works presented in the state of
the art consider only affine or piece-wise linear concave/convex functions, and
do not give any explicit expression of this θ parameter.

Nevertheless, one may notice that setting θ “ 0 is equivalent to consider a
blind multiplexing, i.e. the worst possible scheduling among all others for the
flow of interest8.

The choice of the parameter is a trade-off: let θ, θ1 be two parameters, with
θ ă θ1, how to compare βθ-FIFO

i and βθ
1-FIFO
i ? The convolution by a delay is

just a time shift: for any θ P R`, pf ˚ δθqptq “ fprt´ θs
`
q. Then, on the one

hand, θ ă θ1 implies α‰j ˚ δθ ą α‰j ˚ δθ1 , i.e. a larger parameter decreases the
impact of competing flows, leading to β ´ α‰j ˚ δθ ă β ´ α‰j ˚ δθ1 . On the

other hand, θ ă θ1 ùñ δθ ą δθ1 . Then, in general, βθ-FIFO
i and βθ

1-FIFO
i and

incomparable (cf. Figure 17).
One may nevertheless restrict the range of the parameter. First, notice

that βθ-FIFO ď δθ, then any θ greater than hDevp
řn
i“1 αi, βq, will be smaller

8To be exact, with θ “ 0, the θ-FIFO residual service can be worst than the blind multi-
plexing since there is no non-decreasing closure.
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Figure 17: Residual FIFO service with to θ, θ1 parameters, α‰i “
ř

j‰i αj

than the one obtained with the g-FIFO solution. So any θ ą hDevp
řn
i“1 αi, βq

will give a worst delay than the TFA approach. Second, it is common to have a
service curve nul up to some value. Let Tβ “ inf tt βptq ą 0u (for a rate-latency
function βR,T , this is the latency term, i.e. TβR,T

“ T ). Then, for any θ ă Tβ ,

β ^ δθ “ β, leading to βθ-FIFO “ rβ ´ α‰j ˚ δθs
`

. So, considering θ ă θ1 ă Tβ ,

βθ-FIFO ă βθ
1-FIFO, meaning that values of θ P r0, Tβs have no interest. Then,

only values θ P rTβ , hDevp
řn
i“1 αi, βqs are of interest.

To sum up, the value 0 reduces FIFO to blind multiplexing, the values in
r0, Tβq are worst than Tβ and the value hDevp

řn
i“1 αi, βq gives the same result

than TFA. So, in this study, the value θ “ Tβ will be considered. The definition
of a strategy computing a better parameter is out of the scope of this study.

Last, the SFA does not specify how are computed the arrival curves of the
competing flows: in each node, for any j ‰ i, one may compute αj using TFA,
or considering a new SFA problem for this flow (up to this node), or compute
both and take the minimum, etc.

To ease comparison with TFA, the arrival curves of the competing flows will
be the one computed with TFA.

7.3 Constant packet size

Both TFA and SFA, presented in the previous section, can be seen as black
boxes transforming some input arrival and service curves into delay bounds.

This section discusses these input curves.
The traffic limiters at the NoC egress ensure that each flow respects a (con-

figurable) token-bucket shape. Considering also the limited link throughput lead
to a T-SPEC arrival curves, as presented in section 6.1 (cf. Figure 2). It belongs
to the class of concave piecewise-linear function (CPL). Conversely, the residual
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Figure 18: Effect of constant packet size on arrival curve, Thm. 6, with α “
γ1{2,1{2 ^ λ1, l “ 1

service of a round robin arbiter given by eq. 18 is also a convex piecewise-linear
function (CxPL). And the residual service of a blind multiplexing is also a CxPL
function if the arrival curves are CPL and the aggregate service is CxPL.

Using such concave/convex piecewise-linear functions in network calculus is
called a linear, or affine or fluid model.

In a previous work [17], the explicit linear method and the TFA approach
with affine curves has been compared on one example (that will be reused in
Section 8.2).

But such model can not capture accurately the impact of packetization.
Indeed, a flow is made of packets, and in the MPPA NoC (and in the absence
of back-pressure activation), when a packet starts is emission, it is sent up to
completion at link speed. Modeling this effect allows more accurate arrival and
service curve, leading to better (i.e. smaller) bounds. This is true at arbiter
output, and this behavior is captured by eq. 16. But this is also true at traffic
limiters output and this is captured by Theorem 6 when all packets in a flow
have the same size.

Indeed, the traffic limiter in the DMA engine, presented in section 2, ensures
by design that the output flow will respect a token-bucket arrival curve γr,b. But
the DMA engine also sendS only full packets, i.e. the first flit of a packet is
sent only if there will be enough credit to send the full packet without any
interruption. When a data flow always send packets of the same size, it means
that not all values of the arrival token-bucket arrival curves can be reached by
a real sequence of packets.

Theorem 6. Consider a data flow A made only of packets of fixed length l, such
that when a packet starts it emission, it is emitted up to completion at a constant
rate R. Then if α is a maximal arrival curve for A, also is α1 “ l

X

α
l

\

m λR.

The cumulative curve of such a flow is an alternation of flat segments (no
output of data) and segments of slope R, eight l and length l

R .
Note that this result can be applied for any arrival curve, whereas in the

context of the MPPA NoC, it will be used only for functions of the form α “
λR ^ γr,b (as in Figure 18).
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Proof. Let t, d P R` be a time instant and a duration, and consider the amount
of data Apt` dq ´Aptq.

Let first assume that some packet is being sent at instants t and t` d.
Let s be the begin of the sending interval of t, and v the end of the sending

interval of t` d, as illustrated on Figure 19.
The main step of the proof consist in showing that Apt ` dq ´ Aptq ď

l
Y

αpd`wq
l

]

´Rw with w “ pt´ sq ` pv ´ pt` dqq.

Let w1 “ t´ s, w2 “ v ´ pt` dq, A1 “ Aptq ´Apsq the amount of data sent
on rs, ts, A2 “ Apvq´Apt`dq the one on rt`d, vs. Consider the decomposition
Apvq ´Apsq “ A1 `Apt` dq ´Aptq `A2.

On intervals rs, ts and rt ` d, vs, some part of a packet is sent, as constant
speed R, so A1 “ Rw1 and A2 “ Rw2, leading to Apvq ´ Apsq “ Apt ` dq ´
Aptq `Rpw1 ` w2q.

The flow admits α as arrival curve, so Apvq ´ Apsq ď αpv ´ sq. But by
construction, they are n P N full packets of size l sent on rs, vs, i.e. Apvq´Apsq “

nl, so n ď
Y

αpv´sq
l

]

and

Apt` dq ´Aptq `Rpw1 ` w2q ď l

Z

αpv ´ sq

l

^

(35)

Let w “ w1 ` w2, notice that v ´ s can be written as v ´ s “ d` w, it yields

Apt` dq ´Aptq ď l

Z

αpd´ wq

l

^

´Rw (36)

ď sup
wě0

l

Z

αpd´ wq

l

^

´ λRpwq (37)

“

´

l
Yα

l

]

m λR

¯

pdq (38)

If not packet is sent at time t, let t1 the next instant when some packet starts
its emission (if t1 does not exist, it mean that Apt ` dq “ Aptq and the result
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Algorithm

Model

Fluid Per flow con-
stant packet
size

Per flow and
per queue
constant
packet size

End-to-End Explicit Linear, LP SFA/Fc SFA/FQc
Local TFA/Aff TFA/Fc TFA/FQc

Table 2: The analysis strategies

holds). Then Aptq “ Apt1q. Conversely, if no packet is sent at t ` d, let d1 ď d
such that t`d1 the previous instant when some packet ends its emission. It holds
Apt`d1q “ Apt`dq. Then, the previous result can be applied: Apt`d1q´Apt1q ď
`

l
X

α
l

\

m λR
˘

pd1q. By definition of t1 and d1, Apt` dq ´Aptq “ Apt` d1q ´Apt1q

and since l
X

α
l

\

m λR is non decreasing, and d1 ď d

Apt` dq ´Aptq ď
´

l
Yα

l

]

m λR

¯

pdq. (39)

8 Comparing strategies

Several algorithms and models have been presented in the previous sections.
They will be compared on several case studies, with increasing size to ease
interpretation of the results.

The algorithms have been partitioned in two categories: a first one com-
puting a end-to-end delay, and a second one computing local per queue delays.
Three kind of models have been considered: either no information on the packet
size is modeled (“fluid” model), or we assume that all packets in a given flow
have the same size (“per flow constant packet sizes” model) or we also assume
that all packets in a given queue have the same size (“per flow and per queue
constant packet sizes” model).

The explicit linear approach, presented in Section 6, is an end-to-end algo-
rithm with an affine model. The SFA is the most known end-to-end algorithm,
but in the specific case of concave/convex piecewise-linear arrival and service
curves, it is outperformed by the LP approach [11]. This LP approach gives
the exact worst delay (also known as tight), but its computation is exponential
in the length of the path. Nevertheless, since the paths on our case studies
are not so long, it was possible to use it. So, LP is used instead of SFA for the
affine model. The modeling of per flow constant packet sizes (use of Theorem 6)
lead to non concave arrival curves, and in this case, we use SFA for the end-
to-end delay computation (SFA/Fc). Moreover, the model can considers that
all packets in a queue have the same size (use of Theorem 5); this is algorithm
SFA/FQc.
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Flow f1 f2 f3 f4

Rate 2
3

1
3

1
3

1
3

Max. Frame Size. 17 17 17 17
Burst 17

3
34
3

34
3

34
3

Table 3: Flow parameters, first example (topology of Figure 20), first experiment
(original values).

Conversely, the computation of the flow delay as the sum of the local de-
lays is done with TFA, with either an affine model (TFA/Aff), per flow con-
stant packets sizes (TFA/Fc) and per flow and per queue constant packets sizes
(TFA/FQc).

This different methods will be compared on two examples, with variation on
three parameters, the maximal frame size, the load, and the number of flows
per queue.

The results on the Explicit Linear method have been obtained using a tool
developed by Kalray [28]. The results on the LP method have been obtained
using the NetCalBounds tool [8]. The results on the affine Total Flow Analysis
have been obtained using the RTaW-Pegase tool [2]. All other results have been
obtained by a prototype plugin to the RTaW-Pegase tool.

8.1 First Example: 4 nodes

The first example, comes from [28]. It has 4 nodes, generating 4 flows crossing
4 routers, with routing depicted in Figure 20.

8.1.1 First experiment, original values

In a first experiment, all flows have a packet size of 17 flits (considered as typi-
cal), all flows have a long-term rate 1

3 but f1 that have r1 “
2
3 . The admissible

bursts at network ingress are 34
3 but f1 that have b1 “

17
3 (cf. Table 3).

The upper bounds on delays for this example are plotted in Figure 21. Even
this simple example shows interesting trends, that will be mainly confirmed by
the other experiments.

First, the explicit linear approach, which is a formulation simple enough to
allow the computation of routing, gives good results w.r.t. other methods. The
interpretation of the TFA method is also simple: whereas TFA is a perhaps
the simplest approach, it is the one that captures in the most efficient way the
packetisation effect of data flows. Whereas the fluid TFA is the worst method
for all flows, TFA with constant packet size per flow give results comparable to
other approaches, and if moreover all packets in each queue have the same size,
it gives the best results.

The end-to-end approaches deserve a discussion: whereas the LP solution
has been designed to compute the exact worst case, the explicit linear solution
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Figure 20: Case study from [28], 4 nodes

Flow f1,1 f2,1 f3,1 f4,1 f1,2 f2,2 f3,2 f4,2

Rate 1
3

1
6

1
6

1
6

1
3

1
6

1
6

1
6

Max. Frame Size. 9 9 9 9 8 8 8 8
Burst 6 7.5 7.5 7.5 16

3
20
3

20
3

20
3

Table 4: Flow parameters, first example (topology of Figure 20), second exper-
iment (splitting flows)

is smaller for the flow F3. The reason is that LP does not model the shaping in-
troduced by the link. Having stronger assumptions, the explicit linear approach
reduces the set of admissible flows, and even if it does not compute the maxi-
mum of this set, but only an upper bound, this upper bound is smaller than the
maximum of the larger set where no shaping constraint exist. The same hap-
pens when considering packets of fixed sizes in SFA: with more assumptions,
and considering non concave/convex piecewise-linear functions (Figures 18, 9),
the bounds are better, even if the core of the resolution method is worst.

8.1.2 Second experiment, splitting flows

The second experiment is a small modification of the first one: each flow fi
is split into two flows fi,1, fi,2 with the same routing, a flow rate divided by
two, and fi,1 have maximal frame size 9 and fi,2 have maximal frame size 8.
This example has more flows, each queue is used by at least two flows, and one
cannot assume that all packets in a queue have the same size. The parameters
are listed in Table 4. Note that splitting a flow increases the initial burst 9. This
is due to the fact that the MPPA NoC egress traffic limiter must always allow a
packet to be fully sent at egress: then, reducing the per flow rate increases the
burst size w.r.t. the frame size (cf. Figure 2 and eq. (21)).

The results are reported in Figure 22. The results are comparable with the
ones of the previous experiment. The explicit linear solution does not give the

9If rpfq (resp. lmaxpfq and bpfq) denotes the rate (resp. maximal size and burst) of the flow
f , then rpfi,1q`rpfi,2q “ rpfiq, l

maxpfi,1q` l
maxpfi,2q “ lmaxpfiq, but bpfi,1q`bpfi,2q ą bpfiq
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Figure 21: Upper bounds on delay, per flow and per method, first example
(topology from Figure 20), first experiment (original values, parameters from
Table 3)
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Figure 22: Upper bounds on delay, per flow and per method, first example
(topology from Figure 20), second experiment (splitting flows, parameters from
Table 4)
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Flow f1 f2 f3 f4

Rate 2
3

1
3

1
3

1
3

Max. Frame Size. 7O 70 70 70
Burst 70

3
140
3

140
3

140
3

Table 5: Flow parameters, first example (topology of Figure 20), third experi-
ment (large frame size.
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Figure 23: Upper bounds on delay, per flow and per method, first example
(topology from Figure 20), third experiment (large packets, parameters from
Table 5)

best results, but nevertheless give good bounds. The LP solution is in general
better than the other affine approaches (explicit linear and fluid TFA), and even
gives the best results for flows f2,1, f2,2. For all other flows, if all packets of a
given flow have the same size, the per flow constant size TFA can model it and
gives the bests results.

8.1.3 Third experiment, large frame size

The third experiment uses the same parameters as the initial experiment (sec-
tion 8.1.3), but with large packet size (70 flits). The flow parameters are given
in Table 5.

The results are reported in Figure 23. The results look very similar to the
ones of the first experiment, but one have to pay attention that the range of
values is very different: whereas the range of values was [0,180] in the first
experiment (Figure 21), it is [0,700] is this plot. Since the frame and burst
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Figure 24: Case study from [3], 7 nodes

sizes are 70
17 « 4.11 larger, the delay also are globally four times larger. The

main difference is that the Explicit Linear method is now the best method. The
reason is that this method uses Proposition 1, that captures in a very efficient
way the limited impact of FIFO policy on burst sizes. Its increase of delay is
only around 2.5.

8.2 Second Example: 7 nodes

The second example comes from [3]. It is made of 6 flows, f1, . . . , f6. The
routing is given in Figure 24. This case study has been used to illustrate the
“Recursive Calculus”, a method developed in [3].

8.2.1 First experiment, original parameters

The first experiment uses the values of the parameters used in [3]: all packets
have a constant size of 50 flits, and all the flows have a period of 1000 cycles.
Then all flows have a rate of 0.05 and an burst of 47.5.

On this example with very small loads (from 5% to 15%), the burst is the
parameter that have the main influence. The results are reported in Figure 25.
The bounds of the “Recursive Calculus” from [3] have been reported10. In this
example, the TFA approach outperforms all others, except for flow f5. This is
mainly because this flow is very long, with very few interference. The recursive
calculus, that has been designed to analyze both Tilera and MPPA NoCs, gives

10Note that the values presented here are not exactly the same as in [3]: as far as we
understand, in [3] the delay include the arbitration in the node, whereas the methods presented
here only consider the NoC delays. Then, the node arbitration delays have been removed for
flows f1, f2 and f3.
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Figure 25: Upper bounds on delay, per flow and per method, second example
(topology from Figure 24), first experiment (original parameters)

results comparable to the SFA approach (flows f2, f4, f5, f6) or to the explicit
linear model (flows f1, f3).

Since the different methods gives very different values in this example, it
well illustrates some of their differences.

Consider the flow F1. The explicit linear solution computes a delay d˚1 of
206 cycles, decomposed into a latency of T˚1 “ 145 and a “burst absorption
time of” 61, cf. eq (32). This latency is due to the traversal of one round-robin
arbitration (in router R2), whereas the burst related term is related to the FIFO
sharing of the queue in routers R1 and R3. The LP formulation also counts a
latency of 50 due to arbitration in router R2 and reduces the FIFO interference
all along the path to 50. The TFA approach computes a per router delay. But
it computes a null delay in routers R1 and R3: indeed, in R1, the three flows
f1,f2 and f3 are shaped (i.e. serialized) at the input link, then since the router
uses a cut-through forwarding, there is a null delay11. Then, the only delay is
related to the arbitration in output port of R2.

Note that small delay in R1 is true, but related to the fact that the contention
between the flows has been resolved in the node N1 itself.

8.2.2 Second experiment, realistic load

The second experiment considers the same routing than the previous one, but
with maximal frame size of 17 and rates computed in order to ensure fairness

11In fact, it exists some cycles related to the routing and the computation, but since this
delay is small and constant, it has not be modeled in any approach.
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Flow f1 f2 f3 f4 f5 f6

Rate 1{3 1{3 1{3 2{3 1{3 2{3
Max. Frame Size. 17 17 17 17 17 17
Burst 34{3 34{3 34{3 17{3 34{3 17{3

Table 6: Flow parameters, second example (topology of Figure 24), second
experiment (realistic configuration)
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Figure 26: Upper bounds on delay, per flow and per method, second example
(topology from Figure 24), second experiment (realistic configuration, parame-
ters from Table 6)

and efficient link utilization (all parameters are presented in Table 4).
The delay bounds are plotted in Figure 26. The first observation is that

even if the rates are quite 10 times bigger, the delay bounds are about 2 times
smaller. This is due to frame size reduction, since the frame size influences both
the flow burst size and the latency of the round-robin arbiter.

Like for other case studies, even for the fluid model, there is no best solution:
depending on the flow, the best bound is given either by explicit linear approach
(f5, f6) or the affine TFA (f1, f2). The LP is never the best, meaning that
shaping has a strong influence on this case study.

And if all packets have the same size, the TFA approaches gives the best
results.
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Flow f1 f2 f3 f4 f5 f6

Rate 1{3 1{3 1{3 2{3 1{3 2{3
Max. Frame Size. 50 50 50 50 50 50
Burst 100{3 100{3 100{3 50{3 100{3 50{3

Table 7: Flow parameters, second example (topology of Figure 24), third ex-
periment (loaded configuration)
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Figure 27: Upper bounds on delay, per flow and per method, second example
(topology of Figure 24), third experiment (loaded configuration, parameters
from Table 7)

8.2.3 Third experiment, loaded configuration

The third experiment considers the large packet size of the first experiment (50
flits) and the flow rates of the second (cf. Table 7).

The results are plotted in Figure 27, with the same scale as in Figure 25.
Looking at load change (i.e. comparing with the first experiment, where

maximal packet size is the same, but the load is smaller), the impact is very
different on each method. The explicit linear algorithm computes quite the
same value in both experiments. On this example, the explicit linear algorithm
is mainly influenced by the frame size and very few by the load. The other
methods are more influenced by this change of load, and this changes the relative
quality of the different algorithms.

Looking at maximal packet size change, (i.e. comparing with the second
experiment, where maximal packet size is 17 instead of 50, but the load is the
same) a remarkable effect appears: the ratio between the bounds computed in
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Flows (k P t1, 2u) f1,k f2,k f3,k f4,k f5,k f6,k

Rate 1{6 1{6 1{6 1{3 1{6 1{3
Max. Frame Size. 25 25 25 25 25 25
Burst 125{6 125{6 125{6 50{3 125{6 50{3

Table 8: Flow parameters, second example (topology of Figure 24), fourth ex-
periment (loaded configuration, doubling number of flows)

both experiments is exactly 50
17 ˘ 1%, for each methods and each flow. This

is due to the fact that both the arbiter latency (round-robin) and the burst
size are proportional to this maximal frame size (every other parameters being
unchanged).

8.2.4 Fourth experiment, loaded configuration, doubling number of
flows

The fourth experiment is based on the third one, where each flow fi is split into
two flows fi,1, fi,2 with the maximal frame size and the throughput divided by
two, as shown in Table 8.

It means that this experiment has somehow the same global load (except the
burst that are slightly higher), but there are two times more flows per queue.
Moreover, since the maximal frame size is smaller, the blocking time associated
to the round-robin arbiter is also smaller, even if the long-term rate is the same.
Both effects have opposite impact in the delay. On the one hand, the increase in
the number of flows, and the associated small increase of the burst both lead to
a per flow delay increase. On the other hand, the reduction of the round-robin
blocking time decreases the per flow delay.

Then, for a given method, the difference in the result between this exper-
iment and the third one depends on how the method handle the FIFO policy
(inside each queue) and the round-robin policy (between queues).

The results are plotted in Figure 28 (except the values of methods SFA/Fc
and SFA/FQc, which is equal to 750 cycles).

As in previous experiments, in case of a fluid model, the Explicit Linear, LP
and TFA algorithms give comparable results (within a factor of 2), but none
is always better. But in case of packets of constant size, per flow or also per
queue, only the TFA algorithms is able to capture this effect and always gives
the better bounds. Since the TFA algorithms computes an aggregate arrival
curve by summing all arrival curves in a queue, it is insensitive to the number
of flows, as long as the total load and burst is the same.

8.2.5 Fifth experiment, loaded configuration, large number of flows

The fifth experiment is based on the third one, where each flow fi is split into
five flows fi,1, . . . , fi,5 with the maximal frame size and the throughput divided
by five, as shown in Table 9.
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Figure 28: Upper bounds on delay, per flow and per method, second exam-
ple (topology of Figure 24), fourth experiment (loaded configuration, doubling
number of flows, parameters from Table 8)

Flows (k P t1, . . . , 5u) f1,k f2,k f3,k f4,k f5,k f6,k

Rate 1{15 1{15 1{15 2{15 1{15 2{15
Max. Frame Size. 10 10 10 10 10 10
Burst 28{3 28{3 28{3 26{3 28{3 26{3

Table 9: Flow parameters, second example (topology of Figure 24), fifth exper-
iment (loaded configuration, large number of flows)
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Figure 29: Upper bounds on delay, per flow and per method, second example
(topology of Figure 24), fifth experiment (loaded configuration, large number of
flows, parameters from Table 9)

The results are plotted in Figure 29, where the SFA results have been plotted
on a separated chart because of their very large values. Note that this time, the
affine SFA algorithms has been plotted, even if it has no practical interest since
it is outperformed by the LP approach with equivalent hypotheses (piecewise-
linear concave/convex functions, without modeling of shaping for LP).

Considering a fluid model, the TFA gives this time the best results for all
flows, whereas the explicit linear and the LP solutions are incomparable, but
always in the same range of values.

On the opposite, the SFA approach gives bounds that are 5 to 10 times
bigger than the corresponding TFA solution. When packets are of constant
size, the TFA algorithm can improve its bounds.

8.3 Third example, full MPPA NoC

8.3.1 First experiment: 128 flows

The third example is based on the MPPA architecture presented in Figure 1.
Each node is the source of 4 flows, with randomly chosen destination, leading to
128 flows. Each flow has a constant packet size of 17 flits, and the routing and
rate allocations have been generated using the strategies presented in [28], [17].
The flow mean length is 4.4, and the length distribution is listed in Table 10.
The mean link load is 44% (168 links are used), 4 links have a load of 100%, 7
of load in r80%, 89%s and 36 a load in r50%, 79%s.

Then, the upper bounds on delays have been computed using some of the
approaches presented in the previous sections. The LP approach [11] has been
limited to 2mn of computing time for each flow. In case of timeout, the deborah
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Length 2 3 4 5 6 7 8
Number of flows 16 22 31 26 22 10 1
Number of LP time-out 0 0 0 2 4 8 1

Table 10: Number of flows with a given length (Mean: 4.4) and number of time-
out with method LP (with time-out at 2mn), third example, first experiment.
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Figure 30: Upper bounds on delay, per flow and per method, third example, first
experiment. The flow are sorted by bound value with explicit linear approach.

tool [5] has been used. The number of LP timeout is listed Table 10. The
SFA/Fc and SFA/FQc algorithms require the computation of the convolution
between complex service curves, and its leads to very long computation times.
Moreover, the previous experiments have shown that they are outperformed by
the TFA/FQc algorithms. Then, they have not been used in this experiment.

The bound computed for each flow with each method is plotted in Figure 30,
where flows have been sorted w.r.t. the bound computed by the explicit linear
approach (which yields to a smooth curve for this method).

The results are quite similar to the one on the small test cases: the TFA/FQc
(that captures both shaping and the fixed packet size nature of flows) outper-
forms all other methods in most cases. The LP or deborah tools (that does not
capture the shaping neither the packet sizes) gives quite always a worst value
than the explicit linear approach. The TFA/Aff and TFA/Fc behave sometime
better, sometime worst than explicit linear or LP or deborah. When consider-
ing mean values (last column of Figure 31), the importance of shaping appears
clearly: the explicit linear gives bound one third less than LP or deborah. The
TFA algorithm is quite bad with an affine model, but once modeling constant
packet sizes, its gives the best results.

40



 0

 500

 1000

 1500

 2000

 2500

 3000

n=2 n=3 n=4 n=5 n=6 n=7 MeanM
e
a
n
 b

o
u
n
d

 o
n
 d

e
la

y
, 

p
e
r 
fl
o
w

 l
e
n
g

th
 (

in
 c

y
cl

e
s)

Explicit Linear
LP|deborah

TFA/Aff
TFA/Fc

TFA/FQc

Figure 31: Mean value of bounds (in cycle), per flow length n, third example,
first experiment.

One may wonder if the path length has an influence: one may guess that
algorithms using the PBOO principle may have better results on long paths.
Then, Figure 32 plots the same bounds as Figure 30, but flows are grouped
by flow length before being sorted by bound of the explicit linear approach. It
appears clearly than longer paths have larger delays, but showing the relation
between methods requires other figures. Then Figure 33 plots, for each flow, the
ratio between explicit linear and LP-deborah w.r.t TFA/FQc, using the same
flow ordering than in Figure 32, and Figure 31 shows the mean bound computed
by each method, depending on the flow length.

Both confirm the relations obtained between methods, independently of the
path length. The gain obtained by the PBOO principle is mitigated by a worst
modeling of the residual service in each router.

8.3.2 Second experiment: 256 flows

The second experiment on the full MPPA topology considers 8 flows per cluster.
Since there are 8 traffic limiter per cluster, this is the maximum that can be
done on the MPPA.

The distribution of flow length is given in Table 11, and the mean length is
4.6. In this example, the mean link load is 34%, and only 2 links have a 100%
load, 5 are in interval r90%, 99%s and 20 in interval r50%, 89%s.

The individual bounds per flow are not plotted, since the relations between
the methods are the same as in previous experiment. Only the mean bound per
flow length are given in Figure 34. Since they are more flows, they are more
conflicts per router, and the worst delays are increased. The mean gain between
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Figure 32: Upper bounds on delay, per flow and per method, third example,
first experiment. The flow are sorted first by flow length n then by bound value
with explicit linear approach.
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Length 2 3 4 5 6 7 8
Number of flows 18 45 57 60 49 21 6
Number of LP time-out 0 0 0 12 31 21 6

Table 11: Number of flows with a given length (Mean: 4.4) and number of time-
out with method LP (with time-out at 2mn), third example, second experiment.
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Figure 34: Mean value of bounds (in cycle), per flow length n, third example,
second experiment.

Explicit Linear and TFA/FQc becomes 25%, whereas it was 20% in the previous
experiment, with 128 flows.

8.4 Conclusions on case studies

Theses experiments on a real case study give us several results, some that con-
firm some well known aspects of network calculus and some more unexpected.

The well known result is that modeling the shaping introduced by link max-
imal capacity has an important impact on delay bounds (it has been shown in
AFDX context in [32, § 4] and confirmed in [18], [55], [61]): whereas it has
been proved that the LP approach computes the exact worst case for FIFO pol-
icy (without considering shaping), it is outperformed by solutions that models
shaping: explicit linear (in all cases), and TFA on the first and second case
studies.

The shaping can be easily added in the LP approach, one just have to add
a new linear constraint (an upper bound) on the flows sharing a common link.
That is to say, when the linear program encodes the minimal output of a rate-
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(a) network input, no jitter

hDevpα¨, βq
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(b) with jitter
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J

Figure 35: Gain related to modeling of packets in arrival curve

latency service βR,T by the condition

D1t
1 ` D2t

1 ě A1t` A2t`Rpt´ t1 ´ T q (40)

where t, t1, D1t
1, D2t

1, A1t, A2t are program variables that respectively represents
two instants t, t1 and flow departure and arrival valuesD1pt

1q, D2pt
1q, A1ptq, A2ptq,

the shaping introduced by a link of constant capacity C can be encoded as

A1t` A2t ď Cpt´ t1q. (41)

A second expected result is that the modeling of packet size in data flows
has also a beneficial impact (it has been shown in the context of AFDX in
[20],[21]), since it gives smaller arrival curves, and gives lower burst in the
network. Looking at example on Figure 18, it is obvious that the arrival curve
modeling constant packet size is smaller, but the impact on delay is not so
obvious. The Figure 35 illustrate this relation between the per packet arrival
and the delay. Consider a fluid flow arrival, αf and the associated per packet
flow arrival αp; even if αf ď αp they both have the same horizontal deviation
with the service curve β. But after crossing the first node, the flow has a new
arrival curve. To ease the discussion, assume that this server creates a jitter J ,
and has a shaping curve equals to the link input shaping. Then, the respective
arrival curves at the next node will be α1f and α1p. And in this case, the delay
associated with each arrival curve are different, as illustrated in Figure 35.b.

Conversely, the modeling of packet size in the round robin scheduling policy
gives a bigger service curve, as illustrated in Figure 9. But the benefit in the
delay evaluation is related to the modeling of the packet size in the arrival curve
also. Figure 36 illustrates the situation where a single flow is entering a round-
robin arbiter, and all packets in the flow have the same size. This flow (resp.
arbiter) can be modeled using either a fluid arrival curve αf or a packetized
one αp (resp. a fluid service curve βf or a packetized one βp). Then, the burst
fits exactly the height of the first step of the curve, and the delay a is smaller
than considering a fluid residual service (delay a ` b), or even considering a
fluid arrival curve and a fluid residual service (delay c ` d). But it might also
happen that both sizes do not fit, like in Figure 37, and even if there is a gain
at modeling packet size, it may be smaller.
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Figure 36: Gain related to modeling of packets in both arrival and service curves,
when service packet size fits arrival packet size.
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Figure 37: Gain related to modeling of packets in both arrival and service curves,
when service packet size does not fit arrival packet size.
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Nevertheless, an accurate modeling of packet sizes requires to abandon the
efficient class of piecewise-linear concave/convex functions to handle more gen-
eral classes, like the Ultimately Pseudo Periodic class [15]. There encoding in a
integer linear program is not so straightforward and may moreover increase the
computation time.

On the side of unexpected result, a first one was the usability of the LP
solution. Whereas it has a theoretical exponential cost, related to the length
of paths, it can in practice be used for NoC, since the paths are not very long.
Table 10 shows that even if it was no able to deal with paths of size greater
than 6 (in less than 2mn), its has computed bounds for 17 out of 22 paths of
length 6 (i.e. 77%) and 24 out of 26 (i.e. 92%) of paths of length 5, and all
for smaller paths. Notice also that the LP problems has been solved using the
lp solve solver [4] and that other solvers may have different resolution time.

But the main unexpected results is the inefficiency of the Single Flow Anal-
ysis (SFA) w.r.t. Total Flow Analysis (TFA). Quite all published studies in
network calculus confirm that the TFA is the less efficient solution, except in a
few specific cases [6]. But all these studies consider blind multiplexing, and the
residual service computed in this case with Thm. 3 is known to be tight. But
for the FIFO policy, SFA requires the choice of a θ parameter (the choice of its
value has been discussed in section 7.2). It may happen that with a better choice
of this parameter, SFA can gives better results than TFA, but it does not exist,
up to our knowledge, any strategy for choosing this parameter in the general
case (and in the specific case of piecewise-linear concave/convex function, one
better have to use LP). In other words, SFA is certainly a good algorithm when
a good residual service per flow is known, which is not the case for FIFO policy
up to now.

Last, one have to pay attention to the fact that even if all methods give
similar results on average (cf. Figures 31, 34), for a given flow, the difference
may be very large (cf. Figure 33). Nevertheless, since all are valid bounds, one
may run all algorithms and take the minimum of all bounds.

9 Conclusion

The MPPA2-256 processor [54] integrates 256 processing cores and 32 manage-
ment cores on a chip, communicating through a shared NoC. Before embedding
critical real-time application on such an architecture, one need some method to
bound the communication latency introduced by the NoC sharing.

In this paper, we have presented different ways to model this NoC using the
network calculus framework: the explicit linear model, that has been developed
to both compute the routing of flows and set the flow throughput; the general
purpose LP solution, developed to get the exact worst case in case of FIFO
network with piecewise-linear arrival and service functions; the SFA and TFA
algorithms, that have been enhanced in the specific case of flows with constant
packet sizes.
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They have been compared, first on small already published examples, to get
a comprehensive view on their differences, and to compare new approaches with
the previous one on known examples. They also have been compared with the
Recursive Calculus on one example. Thereafter, they have been compared on a
larger case study, with 128 and 256 data flows.

All experiments confirm a well known fact: the flow burstiness is limited by
link capacity, and modeling this shaping has a major impact on results. More-
over, when all packets in a flow have the same size, modeling it also improves
the bounds, especially in the case of the Round-Robin policy. And modeling
these aspects of the system can outperform exact algorithms that do not model
it. In other words, there always is a trade-off between the accuracy of the model
and the tightness of the algorithms. In the case of this NoC, shaping and packet
sizes are major parts that must be modeled to get good bounds.

Moreover, as claimed in [6], “there is a job for everyone”: even if all methods
give similar average results on the large case study, no method always have the
best bound. But in case of packets of constant size, the TFA algorithms with
“packet-accurate” arrival and service curve gives bounds 20%-25% smaller than
any other, on average.
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[48] Borislav Nikolić, Patrick Meumeu Yomsi, and Stefan M Petters. Worst-case
communication delay analysis for noc-based many-cores using a limited
migrative model. Journal of Signal Processing Systems, 84(1):25–46, 2016.

[49] E. Papastefanakis, X. Li, and L. George. Deterministic scheduling in
network-on-chip using the trajectory approach. In Proc. of the IEEE 18th
International Symposium on Real-Time Distributed Computing (ISORC
2015), pages 60–65, April 2015.

51
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[55] Jean-Luc Scharbarg, Jérome Ermont, Henri Bauer, and Christian Fraboul.
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