Marc Boyer

Amaury Graillat

Benoît Dupont De Dinechin

Jörn Migge

Comparing strategies to bound the latencies of the MPPA NoC

come

Introduction

While embedded systems require more and more computing power, also requiring low power and strong integration, multicore-based systems appear as a promising solution. Nevertheless, to ensure critical real-time functions, such platforms must provide guaranteed real-time performances. And as in any distributed platforms, offering bounded latency is a key point of real-time performances.

The Kalray MPPA c processor has been designed to offer both high and guaranteed performances. In particular, its network on chip (NoC) provides some hardware mechanisms (egress traffic limiters) that can be configured to offer bounded latencies. But since the computation of the exact values of latencies can be too complex [START_REF] Bouillard | Tight performance bounds in the worst-case analysis of feed-forward networks[END_REF], one have to rely on latency bounds.

Whereas it exists a large literature on the computation on such bounds for NoCs, there are not so many that deal with real architectures (Section 4).

This paper then first presents the Kalray MPPA NoC: the egress flow limiters (the traffic shapers) and the router architecture, in Section 2.

Getting the best capacity of such a platform requires some efficient method to compute bounds on latency. This paper presents and compare several of them, all based on network calculus (presented in Section 3). The first one, called "explicit linear", presented in Section 6, transforms the network calculus equations into a Mixed-Integer Linear Problem (MILP), that allows computing such bounds while computing the routes of data flows. Then, Section 7 shows how generic network calculus algorithms (Total Flow Analysis -TFA, Single Flow Analysis -SFA) can be adapted to analyze this system, and how the common case where all packets have the same size can be modeled.

Last, all these approaches are compared in Section 8 on three case studies: two small ones than have been already presented in the previous studies [START_REF] Dupont De Dinechin | Network-on-chip service guarantees on the Kalray MPPA-256 bostan processor[END_REF], [START_REF] Ayed | Towards a unified approach for worst-case analysis of Tilera-like and Kalray-like NoC architectures[END_REF]. It allows to compare the new approaches to already published results. Moreover, they are small enough to allow a fine interpretation of the results. The last case study is more realistic: each of the 32 clusters sends 4 or 8 data flows. Section 8.4 gives some insight on the mathematical reasons of performance differences.

Description of the NoC

The MPPA2-256 processor [START_REF] Saidi | The shift to multicores in real-time and safety-critical systems[END_REF] integrates 256 processing cores and 32 management cores on a chip, all implementing the same VLIW core architecture. The MPPA2-256 architecture is clustered with 16 compute clusters and 2 I/O clusters, where each cluster is built around a multi-banked local static memory shared by 16+1 (compute cluster) or 4+4 (I/O cluster) processing + management cores. The clusters communicate through a NoC, with one node per compute cluster and 8 nodes per I/O cluster.

The MPPA2 NoC is a direct network based on a 2D-torus topology extended with extra links connected to the otherwise unused ports of the NoC nodes on the I/O clusters (see Fig. 1). The MPPA2 NoC implements wormhole switching with source routing and without virtual channels. With wormhole switching, a packet is decomposed into flits (OF 32-bits on the MPPA2 NoC), which travel in a pipelined fashion across the network elements, with buffering and flow control applied at the flit level. The packet follows a route determined by a bit string in the header. The packet size is between 2 and 71 flits.

The motivation for implementing wormhole switching with source routing and without virtual channels is the reduction of hardware dedicated to the network elements and interfaces. However, once a buffer is full, the flow control mechanism of wormhole switching asks to the previous router to store flits instead of forwarding them. This back pressure mechanism can goes back up to the source. It can also lead to a global deadlock of the network.

Each MPPA2 NoC node is composed of a cluster interface and a router (Fig. 3). They are eight traffic limiters in the cluster interface. Each one implements a token-bucket traffic shaper with configurable burst b and rate r. The burst parameter must be large enough to allow to send one full packet at link speed (one flit per cycle) before being limited by the budget (as illustrated in Figure 2 -the exact relation between r, b and the packet size will be given in eq. (21)). Each router is connected to its four neighbors and to the local cluster (respectively called North, West, South, West and Local). Each output port has four (or five) queues, to store waiting flits. They are arbitrated using a per packet round-robin algorithm.

Whereas the back pressure mechanism of the wormhole switching can lead to complex interactions between flows, and even deadlocks, one may avoid its activation by avoiding the buffer filling. This can be done by 1) defining a static set of data flows, 2) allocating to each flow a traffic limiter and a route, with and adequate configurations of the traffic limiters. The network calculus, presented in the next section, will be used to compute such configuration.

Deterministic Network Calculus

The Network Calculus theory has been designed to compute upper bounds on delay and memory usage in networks [START_REF] Cruz | A calculus for network delay, part I: Network elements in isolation[END_REF].

Here is presented a short recall of the network calculus theory, to present the main results and set the notations. All results presented in this section can be found in [START_REF] Chang | Performance Guarantees in communication networks[END_REF], [START_REF] Boudec | Network Calculus[END_REF], except when a specific reference is given.

Mathematical background and notations

The network calculus mainly uses functions from time domain, R `, to data amount R `, so, let F denote the set of such functions, and F Ò the subset of non-decreasing functions: F Ò def " tf P F @t, d P R `: f pt `dq ě f ptqu. Since one may need to project functions in F or F Ò , let define rf s The composition operator is denoted ˝: pf ˝gqpxq " f pgpxqq. The ceiling is denoted r.s and the flooring t.u: r1.5s " 2, t1.5u " 1.

The network calculus relies on the (min,+) dioid, and on its convolution ånd deconvolution m defined as

pf ˚gqptq def " inf 0ďsďt tf pt ´sq `gpsqu , (1)
pf m gqptq def " sup 0ďu tf pt `uq ´gpuqu .

(

) 2
Some functions, plotted in Figure 4, are commonly used: the delay function δ T ptq " 0 if t ď T , 8 otherwise, the token-bucket function γ r,b ptq " prt bq ^δ0 ptq, the rate-latency function β R,T ptq " R rt ´T s `, the test function 1 tąDu ptq " 1 if t ą D, 0 otherwise, the pure rate λ R " β R,0 , and the stair-case ν h,P ptq " h P t P T , where r¨s is the ceiling function.

Modeling reality within network calculus

In network calculus, a flow is modeled by its cumulative curve, a function A P F Ò , left-continuous1 , with Ap0q " 0. The semantics of such a function is that Aptq represents the total amount of data sent by the flow up to time t.

A server is a relation S between cumulative curves, such that for any arrival A, it exists a departure D such that pA, Dq P S. Moreover, for any pA, Dq P S, D ď A, meaning that the departure of a bit of data always occurs after its arrival. One may also denote by A

vDevpA, D, tq def " Aptq ´Dptq.

The semantics of the backlog is quite obvious. The one of the delay deserves an explanation: the delay associated to the bit arrived at time t is the duration required for the accumulated departure curve to reach the same amount of data. The worst delay (resp. backlog) associated to the pair pA, Dq is the supremum of the delay (resp. backlog) for all time t.

hDevpA, Dq

Of course, in general, a server is shared by several flows, but as will be presented further, one main work-flow in network calculus consists in reducing a server shared by several flows into an "equivalent" server crossed by a single flow.

A n-server S is a relation that associates to each vector of arrival cumulative curves pA 1 , . . . , A n q at least one vector of departure cumulative curves pD 1 , . . . , D n q such that @i P r1, ns :

D i ď A i .
Given a n-server, its aggregate server S Σ is defined as

A SΣ Ý Ý Ñ D if is exists pA 1 , . . . , A n q S Ý Ñ pD 1 , . . . , D n q such that A " ř n i"1 A i , D " ř n i"1 D i .
And for any i P r1, ns, its residual server S i is defined by

A i Si Ý Ñ D i if it exists pA 1 , . . . , A n q S Ý Ñ pD 1 , . . . , D n q. S D 1 D 2 A 1 A 2 S 1 A 1 D 1 S Σ A 1 `A2 D 1 `D2

Contracts

The exact behavior of a data flow or a server is commonly unknown at design time, or too complex. Then, the performance analysis is made using contracts: maximal load generated by a flow, and minimal capacity of a server. A cumulative curve A is said to have a function α P F as maximal arrival curve if @t, d P R `: Apt `dq ´Aptq ď αpdq.

This condition is equivalent to A ď A ˚α. The adjective "maximal" is often omitted since even if it exists a notion of minimal arrival curve, it is not commonly used, and in particular it is not used in this article. It exists two contracts on the minimal capacity of a server: a simple minimal service and a strict minimal service.

Given a server S, it offers a simple minimal service of curve

β P F if @A S Ý Ñ D : D ě A ˚β. (8)
This server offers a strict minimal service of curve β P F if @A S Ý Ñ D, @t, d ě 0, @x P rt, t`dq, Apxq ą Dpxq ùñ Dpt`dq´Dptq ě βpdq.

An interval rt, t `dq such that @x P rt, t `dq : Apxq ą Dpxq is called a backlogged interval or backlogged period.

If a server offers a strict minimal service of curve β, it also offers a simple minimal service of curve β [START_REF] Boudec | Network Calculus[END_REF], [START_REF] Bouillard | Comparison of different classes of service curves in network calculus[END_REF].

The maximal capacity of a server is also of interest: given an arrival/departure pair A S Ý Ñ D, the upper bounds on the delay and backlog of the flow in the server S are influenced by the minimal performance of the server, but the shape of the departure cumulative curves is influenced by the maximal capacity of the server, as will be shown in Thm. 1.

Let σ P F, a server S is a σ-shaper if @A S Ý Ñ D, D has σ as arrival curve.

Main results

If the contracts on the arrival and the server are known, one can compute upper bounds on the delay, backlog, and also compute the contract on the departure (its allows to propagate the computation).

Theorem 1 (Network calculus bounds). Let S be a server, and A S Ý Ñ D two arrival and departure cumulative curves. Then if S offers a minimal service of curve β, and S is a σ-shaper, and A has α as arrival curve, then hDevpA, Dq ď hDevpα, βq,

vDevpA, Dq ď vDevpα, βq,

and D has α 1 as arrival curve, with

α 1 " pα m βq ^σ. (12)
This theorem computes local bounds, but when considering a sequence of servers, a tighter bound can be computed.

Theorem 2 (Pay burst only once). Let S 1 , S 2 be two servers offering respectively a minimal simple service of curve β 1 , β 2 , and let A a cumulative curve crossing both in sequence (i.e. A S1 ÝÑ B S2 ÝÑ C). Then, the sequence S 1 , S 2 is a server offering a minimal simple service of curve β 1 ˚β2 . This result is interesting since it gives lower bounds than the sum of local delays2 .

Theorem 3 (Blind multiplexing). Let S be a n-server such that S Σ offers a minimal strict service of curve β. Then, if each arrival A j has α j as arrival curve, for any i P r1, ns, the residual server S i offers the minimal simple service of curve

β blind i " « β ´ÿ j‰i α j ff Ò . (13)
The result was in [41, Thm. 6.2.1] without the non-decreasing closure that has been added in [START_REF] Bouillard | Composition of service curves in network calculus[END_REF]. It is also known as "arbitrary multiplexing" since it can be applied on any service policy.

Theorem 4 (FIFO multiplexing). Let S be a n-server such that S Σ offers a minimal simple service of curve β. Then, if each arrival A j has α j as arrival curve, for any i P r1, ns, the residual server S i offers the minimal simple service of curves

β g-FIFO i " δ d with d " hDev ˜n ÿ j"1 α j , β ¸, (14)
β θ´FIFO i " « β ´ÿ j‰i α j ˚δθ ff `^δ θ , @θ P R `. (15)
In fact, they are two results for the FIFO policy. One may either compute the delay of the aggregate server, d, or choose one θ for each flow and use β θ´FIFO i . In this case, the challenge is the choice of the θ value (that will be discussed in Sections 4 and 7.2). Proofs can be found in [START_REF] Bouillard | Deterministic Network Calculus -From theory to practical implementation[END_REF][Thm. 7.4,Thm. 7.5].

Proposition 1 (Burstiness increase due to FIFO, general case). Let S be a n-server such that S Σ offers a minimal simple service of curve β R,T . Assume that the flow of interest A i has arrival curve γ ri,bi , and that the aggregate flow A ‰i " ř j‰i A j has a sub-additive arrival curve α ‰i , with r ‰i its long term rate. Then, if r i `r‰i ă R, then departure flow

D i has arrival curve γ ri,b 1 i with b 1 i " b i `ri ˆT `B R ˙, B " sup uě0 tα ‰i puq `ri u ´Ruu .
The previous proposition is the re-writing of Thm. 6.4.1 from [START_REF] Boudec | Network Calculus[END_REF].

Corollary 1 (FIFO and token-bucket arrival curves). Let S be a n-server such that S Σ offers a minimal simple service of curve β R,T . Assume that each arrival A j has γ rj ,bj as arrival curve, with ř n j"1 r j ă R then for any i P r1, ns, the residual server S i offers the simple minimal service of curve β Ri,Ti with R i " R ´řj‰i r j , T i " T `řj‰i bj R , and the departure D i has arrival curve γ ri,b

1 i with b 1 i " b i `ri T i .
The previous corollary is the re-writing of Cor. 6.2.3 from [START_REF] Boudec | Network Calculus[END_REF].

Theorem 5 (Residual service of RR). Let S be a n-server shared by n flows, denoted by pA 1 , . . . , A n q S Ý Ñ pD 1 , . . . , D n q, applying a round robin policy. For any i P r1, ns, let l max i and l min i , some upper and lower packet sizes for the flow i.

If S Σ offers a strict service of curves β, then the residual server S i offers the residual strict service of curves

β RR i " ´λ1 ˚νl min i ,l min i `Lmax ‰i ¯˝`β ´Lmax ‰i ˘, (16)
β RR-lin i " l min i l min i `Lmax ‰i " β ´Lmax ‰i ‰ `(17) β RR i β RR-lin i T RR i l min i Figure 9
: Illustration of WRR residual service, with βptq " Rt.

q 1 q 2 β 123 A 1 D 1 A 2 D 2 A 3 D 3 q 1 β 1 A 1 D 1 q 1 β 12 A 1 D 1 A 2 D 2 T h m . 3 T h m . 3 , T h m . 5
Thm. 4, Cor. 1

bound on dpA 1 , D 1)

T h m . 1 F I F O T o o l
ř j‰i l max j . If βptq " Rt, then β RR-lin i " β R RR i ,T RR i with R RR i " R l min i l min i `Lmax ‰i , T RR i " L max ‰i R . (18)
This theorem gives three expressions of residual services, but in fact there is only one, since β RR-lin i is just a linear lower bound of β RR i , and β R RR i ,T RR i the expression of β RR-lin i when the aggregate service is a constant rate. Their relation is illustrated on Figure 9. The proof can be found in [START_REF] Bouillard | Deterministic Network Calculus -From theory to practical implementation[END_REF]Thm. 8.6].

Analyse principles

Local analysis

When an output port implements a round robin policy between queues, and each input queue is shared by several flows, it exists several ways to compute the delay associated to each flow. Consider Figure 10, and assume we are interested by the flow A 1 . From the initial configuration (on the middle left), with strict service of curve β 123 , one may compute a residual server, S 1 , with service β 1 , considering arbitrary multiplexing (Thm. 3). But one also may first Since the expressions of the residual curves are different for each theorem, the choice of one or the other will give a different residual curve, and then different bounds on the delay. They all are corrects, but some are smaller.

S 2 , β 1 S 2 , β 2 S 2 , β 3 S 2 , β 4 A 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 A 4 B 4 C 4
For example, when going from S to S 12 , if A 3 use less then half of the bandwidth, it may be better to use Thm. 3.

Global analysis

There exist several ways to bound the end-to-end delay of a given flow. Let F j denotes the set of flows crossing a server q j . The simplest one, the Total Flow Analysis (TFA) [START_REF] Schmitt | The DISCO network calculator -a toolbox for worst case analysis[END_REF], computes one bound d j for each server, and for a given flow, does the sum of all servers its crosses d TFA i " ř fiPF j d j . It will be presented in details in Section 7.1. In the topology of Figure 11, TFA will compute one delay d i for each server S i , and the delay for the flow f 4 (of cumulative curves A 4 , B 4 , C 4) will be bounded by d3 `d4 .

The most famous one, the Single Flow Analysis (SFA) computes, for a given flow f i , for each crossed server β j , a residual service β j i . Then, using the Pay Burst Only Once principle (Thm. 2), one gets an end-to-end service β SFA i " ˚fiPF j β j i that allows computing d SFA " hDevpα i , β SFA i q a bound on the endto-end delay. In the topology of Figure 11, to bound the delay of f 4 , SFA will compute β 3 4 (resp. β 3 4), a residual service for the flow f 4 in the server S 3 (resp. β 4 4), and the delay will be bounded by hDevpα 2 , β 3 3 ˚β4 3 q. In both SFA and TFA, the computation of the residual service depends on the scheduling policy. And none of the algorithm specifies how to compute the arrival curves of the interfering flows (the arrival curves of B 2 and B 3).

SFA is often considered as better than TFA 3 . But most of the studies have considered only blind multiplexing. As will be shown in this study, when considering FIFO policy, the results could be different. The reason may be that there is no well known strategy to get a "good" residual service for FIFO.

A complete different approach has been developed in [START_REF] Bouillard | Tight performance bounds in the worst-case analysis of feed-forward networks[END_REF]: assuming that all arrival (resp. service) curves are piece-wise linear concave (resp. convex)

S 1 S 2 A 1 B 1 C 1 A 2 B 2 C 2

Cyclic dependencies

Last, let us illustrate why cyclic dependencies are still an open problem in network calculus.

Consider the topology of Figure 12, and first assume a blind policy. To compute the delay of the flow A 1 in S 1 , one may use Thm. 3, but then, the arrival curve of B 2 is required. And to compute this arrival curve, one may use Thm. 1 and 3, but the arrival curve of B 1 is required.

The same apply if S 1 and S 2 apply a FIFO policy. An overview of handling of cyclic dependencies can be found in [9, § 12].

But if S 1 or S 2 uses a round robin policy, alternating service of packets for flows A and B, the problem does not occur anymore since the computation of the residual service does not require the arrival curve of the competing flows.

State of the art

They have been several studies designed to compute upper bounds on the worst case traversal time (WCTT) of a NoC by a data flow. Nevertheless, very few address the Karlay MPPA NoC architecture.

An overview of the state of the art of NoC performance evaluation (up to 2013) can be found in [START_REF] Eslami Kiasari | Mathematical formalisms for performance evaluation of networks-on-chip[END_REF].

Most NoCs use a wormhole switching mechanisms: a packet is decomposed as a sequence of flits (typically of 64 or 128 bits), and the flits are forwarded in a cut-through way once the routing decision has been made, based on the header of the packet. This mechanism allows a router to forward the head of a packet before the reception of the full packet. A credit-based mechanism ensures that no buffer overflows: if a destination buffer is full, the switch stops forwarding flits. This can lead to a local buffer filling and then the previous switch must also stop to send flits, and so on, up to the source. This mechanism is called back-pressure.

In a real-time environment, the back-pressure mechanism may create large latencies and is quite hard to analyze. Then, in case of real-time constraints, one often try to avoid back-pressure activation.

TDMA access upon wormhole switching One solution to avoid the backpressure activation is to build a global time-based schedule (Time Division Multiple Access, TDMA), where times slots are reserved to data flows, in a way such that no contention occurs in the buffers [START_REF] Carle | Static mapping of real-time applications onto massively parallel processor arrays[END_REF], [START_REF] Perret | Mapping hard real-time applications on many-core processors[END_REF], [START_REF] Perret | Temporal isolation of hard real-time applications on many-core processors[END_REF].

Wormhole switching, virtual channels and static priorities The use of virtual channels allows reducing the number of conflicts in buffer use and so the number of activations of the back-pressure mechanism.

For example, an active community considers NoC with wormhole switching, in each routers, preemption at the flit level and static priorities scheduling between virtual channels. Moreover, it is often assumed that the number of virtual channel is not less than the maximum number of contentions in each port [START_REF] Shi | Real-time communication analysis for on-chip networks with wormhole switching[END_REF], [START_REF] Nikolić | Worst-case communication delay analysis for noc-based many-cores using a limited migrative model[END_REF], [START_REF] Burns | A wormhole NoC protocol for mixed criticality systems[END_REF], [START_REF] Xiong | Extending realtime analysis for wormhole NoCs[END_REF]. Note that with such assumptions, the back-pressure mechanisms of the wormhole switching is never used.

Wormhole with back-pressure A few papers have addressed the problem of wormhole switching with back-pressure activation.

The recursive calculus has been designed to compute bounds on the SpaceWire technology, a wormhole-based technology [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on SpaceWire networks[END_REF], [START_REF] Ferrandiz | Worst-case end-to-end delays evaluation for spacewire networks[END_REF]. The recursive calculus is one of the rare method that takes into account the back-pressure mechanism of the wormhole switching. It has been adapted to the Karlay MPPA NoC in [START_REF] Ayed | Towards a unified approach for worst-case analysis of Tilera-like and Kalray-like NoC architectures[END_REF] and compared with a network-calculus based approach [START_REF] Dupont De Dinechin | Time-critical computing on a single-chip massively parallel processor[END_REF] on an example, that will also be considered in this article (cf. Section 8.2). This recursive calculus approach has been enhanced in [START_REF] Abdallah | Wormhole networks properties and their use for optimizing worst case delay analysis of manycores[END_REF] to take into account the pipeline effect of the cut-through forwarding in the wormhole switching, considering a NoC with input-queuing and round-robin arbitration.

The Compositional Performance Analysis (CPA, [START_REF] Henia | System level performance analysis -the SymTA/S approach[END_REF]) is a theory that, like network calculus, uses functions to bounds the flow shape, but, unlike network calculus, uses a buzy-period based analysis to compute the per node latency. In [START_REF] Tobuschat | Real-time communication analysis for networks-on-chip with backpressure[END_REF], the authors develop a CPA-based method to compute the latency bounds on a wormhole NoC, with back-pressure activation and taking into account the input flow shapes.

The trajectory approach, originally developed for Ethernet networks [START_REF] Martin | The trajectory approach for the end-toend response times with non-preemptive FP/EDF*[END_REF], [START_REF] Li | The trajectory approach for AFDX FIFO networks revisited and corrected[END_REF], has been adapted to NoC, considering a system with input queuing, FIFO arbitration and back-pressure activation in [START_REF] Papastefanakis | Deterministic scheduling in network-on-chip using the trajectory approach[END_REF].

One study in network calculus takes into account the back-pressure, and it is presented in the next section.

Network calculus Since the back-pressure is activated once a buffer is full, one way to avoid its activation consists in statically ensuring that it will never occur, by adequate configuration of traffic limiters. To do so, one may use the network calculus theory [START_REF] Boudec | Network Calculus[END_REF], [START_REF] Chang | Performance Guarantees in communication networks[END_REF], that is devoted to the computation on upper bounds on buffer occupancy and delay.

From the network calculus point of view, when the back-pressure mechanism is disabled, the NoC of the Karlay MPPA is simply a network using a round robin arbiter and cut-through forwarding. So, we are going to present first pure network-calculus studies on Weighted Round Robin (WRR), FIFO policy and thereafter application of network calculus to NoC.

A network-calculus model of the WRR policy has been presented in [START_REF] Georges | Network calculus: application to switched real-time networking[END_REF], [START_REF] Georges | Strict priority versus weighted fair queueing in switched ethernet networks for time critical applications[END_REF], without any proof and implicitly considering that all packets have the same size. It gives, for each class, a residual service. The same assumptions are done in [START_REF] Long | Analysis and evaluation of per-flow delay bound for multiplexing models[END_REF], that also gives a residual service. Theses works has been generalized in [START_REF] Bouillard | Deterministic Network Calculus -From theory to practical implementation[END_REF]Thm. 8.6] considering an upper and lower bound on packet size for each flow. This last result is the one presented as Theorem 5 in Section 3.

One may also analyze a WRR arbiter using the "arbitrary multiplexing" (cf. Theorem 3), since a WRR arbiter is also a work-conserving arbiter. One difference between both is that the WRR residual service offers to one queue depends only on the weights and the packet sizes, but is independent from the traffic of the flows using the others queues, whereas the arbitrary multiplexing result does not consider the weights, only the maximal packet size and the flow traffics.

Both theorems on WRR transform the network into another one using only FIFO policy. They have been several works done on FIFO policy in the network calculus domain. The simplest approach, used for example in [START_REF] Frances | Using network calculus to optimize AFDX network[END_REF], [START_REF] Boyer | PEGASE, a robust and efficient tool for worst case network traversal time[END_REF], computes the end-to-end delay of a flow by doing the sum of the local delays. But, as recalled in Theorem 2, network calculus allows to compute smaller end-to-end bounds, using the Pay burst only once principle. Nevertheless, in the case of the FIFO policy, the application of this principle requires the choice of some real parameter θ ě 0 (cf. Theorem 4) per crossed server. The choice of a good set of parameters was the core work of the DEBORAH tool [START_REF] Bisti | DEB-ORAH: a tool for worst-case analysis of FIFO tandems[END_REF], [START_REF] Lenzini | Delay bounds for FIFO aggegates: a case study[END_REF], [START_REF] Lenzini | Tight end-to-end per-flow delay bounds in FIFO multiplexing sink-tree network[END_REF], [START_REF] Lenzini | End-to-end delay bounds in FIFOmultiplexing tandems[END_REF]. Since this work only considers token-bucket flows and latency-rate servers, some others works have been done on more general classes of curves [START_REF] Cholvi | Worst case burstiness increase due to FIFO multiplexing[END_REF], [START_REF] Boyer | Tightening end to end delay upper bound for AFDX network with rate latency FCFS servers using network calculus[END_REF]. Surprisingly, all these works compute either optimal delay or arrival curve, without any explicit expression of the θ parameters.

A new approach, LP, have been developed in [START_REF] Bouillard | Tight performance bounds in the worst-case analysis of feed-forward networks[END_REF]: instead of locally computing a residual service, the basic equations of network calculus are encoded as a mixed-integer linear program. Initially developed for arbitrary multiplexing, it has been adapted to FIFO multiplexing, and its had been shown that it outperforms the DEBORAH results, but with a higher computation complexity [START_REF] Bouillard | Exact worst-case delay for FIFOmultiplexing tandems[END_REF], [START_REF] Bouillard | Exact worst-case delay for FIFOmultiplexing feed-forward networks[END_REF].

Considering the studies on NoC using network calculus, one may first cite [START_REF] Yue Qian | Analysis of communication delay bounds for network on chips[END_REF], where the authors assume a NoC with FIFO policy and infinite buffers. The paper is mainly an adaption of [START_REF] Lenzini | Tight end-to-end per-flow delay bounds in FIFO multiplexing sink-tree network[END_REF] to the NoC context.

The same authors address a realistic configuration in [START_REF] Yue Qian | Analysis of worst-case delay bounds for best-effort communication in wormhole networks on chip[END_REF]: each router has only one queue per input port (input queuing), the switching fabric uses a weighted round-robin to serve this input queues, and wormhole switching is used to avoid buffer overflow. The network-calculus model takes into account the limited sizes of the queues and the use of the back-pressure mechanism. The back-pressure mechanism is also modeled in [START_REF] Jia Zhan | Designing energy-efficient noc for real-time embedded systems through slack optimization[END_REF], but the authors seem not aware of the previous work of [START_REF] Yue Qian | Analysis of worst-case delay bounds for best-effort communication in wormhole networks on chip[END_REF] and the equation (5) in [START_REF] Jia Zhan | Designing energy-efficient noc for real-time embedded systems through slack optimization[END_REF] different than the equations (4.1) and (4.2) in [START_REF] Yue Qian | Analysis of worst-case delay bounds for best-effort communication in wormhole networks on chip[END_REF].

Weighted round-robin policy is also assumed in [START_REF] Jafarin | Optimal regulation of traffic flows in networks-on-chip[END_REF]. It considers a NoC where in each port, the number of virtual channels is not less than the number of flows, and that VCs are served with a per-packet round-robin policy. It also assumes that the flows are regulated at the source by a token-bucket shaper. Then, it optimizes the token-bucket parameters in order to minimize the buffer use while "satisfying acceptable communication performances".

This model (round-robin arbitration and token-bucket shaping at the source) is quite close to the Karlay MPPA architecture, but the Karlay MPPA does not apply a round-robin per flow but per queue.

The Karlay MPPA is explicitly targeted in [START_REF] Giannopoulou | Mixed-criticality scheduling on cluster-based manycores with shared communication and storage resources[END_REF], avoiding back-pressure by adequate traffic limiter configuration, but per flow round-robin is assumed.

In [START_REF] Dupont De Dinechin | Time-critical computing on a single-chip massively parallel processor[END_REF], a first network calculus model of the Karlay MPPA model was presented, assuming constant packet size.

Last, computing routing and resource allocation under delay constraint have been also studied in [START_REF] Frangioni | Optimal joint path computation and rate allocation for real-time traffic[END_REF], [START_REF] Frangioni | Qos routing with worstcase delay constraints: Models, algorithms and performance analysis[END_REF] 5 Notations on topology Before presenting the different methods used to compute upper bounds for flows on the MPPA NoC, let us introduce some notations shared by all methods.

These notations will be illustrated on a small example. In Figure 13, a flow f 1 goes from N1 to N3, crossing routers R1, R2, R3; another flow f 2 goes from N2 to N3, crossing routers R2, R3. In router R1, the flow f 1 is set in the queue "From Local" of the output port "To West". In router R2, it is set into the queue "From East" of the output port "To West". And in router R3, it uses the queue "From East" of the output port "To Local".

A hierarchical model would define routers, with ports and queues as attributes of a router. Our network calculus model considers a flat set of all ports in the NoC, p 1 , . . . , p np (, and also a flat set of all queues q 1 , . . . , q nq (. Figure 5 reports a subset of the queues involved in example of Figure 13: only queues "From Local" and "From West" have been drawn, and only the used ports. For example, the output port "To East" of the router R1 is p 1 , and its queue "From Local" is q 1 . The relation between queues and ports is done by a function p such that ppq i q " p k if q i is an input queue of the port p j . In the example, ppq 1 q " ppq 2 q " p 1 , ppq 3 q " ppq4 q " p 2 , etc.

The set of flow is f 1 , . . . , f n f (. A flow has a static path between one source and one destination 4 , l min i (resp. l max i) denotes the minimal (resp. maximal) size of a packet of flow f i . The routing of a flow is denoted queue per queue: q j fi Ý Ñ q k if the flow f i goes from the queue q j to the queue q k . For a flow f i , Q i is the (ordered) sequence of queues it crosses, i.e. since the flow f 1 follows the path q 1 f1 Ý Ñ q 4 f1 Ý Ñ q 6 , then Q 1 " q 1 q 4 q 6 . q 1 , . . . , q nq (set of queues p 1 , . . . , p np (set of ports ppq i q " p k q i is an input queue of p j f 1 , . . . , f n f (set of flows l min i , l max i minimal and maximal packet size of f i q j fi Ý Ñ q k f i goes from q j to q k Q i route of flow f i , as a sequence of queues F j set of flows crossing q j A j i cumulative curve of f i entering q j D j i cumulative curve of f i leaving ppq j q α j i arrival curve of A j i 9 α j i arrival curve of D j i Table 1: Notations related to topology Figure 13: Small example to illustrate notations For a queue q j , F j denotes the set of flows crossing this queue. Of course, if a queue q j is in the path of flow f i , then f i is in the set of flows crossing this queue, i.e. q j P Q i ðñ f i P F j . In the example, F 1 " F 4 " tf 1 u, F 2 " F 5 " H, F 3 " tf 2 u, and F 6 " tf 1 , f 2 u.

The cumulative curve of the flow f i entering the queue q j is denoted A j i . The cumulative curve leaving the output port ppq j q is denoted D j i . For a given algorithm 5 , α j i (resp. 9 α j i) denotes the arrival curve of the cumulative curve A j i (resp. D j i). Of course, q j fi Ý Ñ q k implies D j i " A k i and 9 α j i " α k i . The translation into network calculus just renames ports and queues, as 5 Different algorithms can compute different arrival curve for the same cumulative curve.

q 1 q 2 p 1 q 3 q 4 p 2 q 5 q 6 p 3 f 1 f 2 A 3 2 D 3 2 " A 6 2 D 6 2
Figure 14: Partial translation of example of Figure 13 illustrated in Figure 5 (only queues "From Local" and "From West" have been drawn). The output port "To East" of the router R1 is p 1 , and its queue "From Local" is q 1 .

Explicit linear solution

The delay experienced by a flow crossing a NoC depends of course of the NoC capacity, but also of the route from the source to the destination and the characteristics of the flows sharing some buffer or links along this route. Computing the route of a given set of flows such that each flow respects its deadline, such that the routing does not create cyclic dependency, and such that the global configuration makes the best use of the NoC capacity while ensuring some fairness between flow is an optimization problem.

To allow the resolution of the problem using efficient tools, it has been chosen to express the problem as a Mixed-Integer Linear Problem (MILP). It requires, among other things, to express the evaluates of delays and backlogs as a linear problem.

This section will present only the part related to delays, and the reader may refer to [START_REF] Dupont De Dinechin | Network-on-chip service guarantees on the Kalray MPPA-256 bostan processor[END_REF] for details on routing and fairness.

This approach is called "explicit" since the network calculus results presented in Section 3, involving specific operators (deviations, convolutions, etc.) are particularized in the specific case of affine arrival and service curves, and explicit analytic expressions are derived.

Since the rate of a flow is not modified along the NoC traversal, only the burstiness of the flows are the variable of the linear problem.

In this linear formulation, the arrival curve associated to each flow f i at the input of a queue q j P Q i is a token-bucket

α j i " γ ri,b j i
, where r i is its rate (constant along the path) and b j i its burstiness in front of queue q j .

Arrival curve at queue input, and shaping of incoming link

Queue q j receives the aggregates of flows F j passing through it, so its arrival curve is of leaky-bucket type γ r j ,b j with

r j " ÿ fiPF j r i , b j " ÿ fiPF j b j i . (19)
But this aggregate flow comes from a link of peak rate r. Then, it also have λ r as arrival curve. Combining both, it yields the arrival curve λ r ^γr j ,b j : t Þ Ñ minprt, b j `rj tq, which is a special case of the standard T-SPEC arrival curve αptq " minpM `pt, rt`bq1 ttą0u used in IntServ [START_REF] Firoiu | Theories and models for internet quality of service[END_REF]. Note the intersection of the two lines pt`M and rt`b has coordinate p M ´b r´p , M r´pb r´p q and that αptq " M `pt if t P ´0, M ´b r´p ı and αptq " rt `b if t ě M ´b r´p (cf Figure 15). Assume that this queue q j receives from the link arbiter a rate-latency service curve β R j ,T j (the computation of these parameters R j , T j will be done in Section 6.3) with R j ď r and R j ě r j . The bound on delay for queue q j is the maximum horizontal deviation between the arrival curve and the service curve d j def " hDevpγ r,b j , β T j ,R j q. Application of the T-SPEC arrival curve on such service curve yields [START_REF] Boudec | Network Calculus[END_REF] d j " T j `bj pr ´Rj q R j pr ´rj q .

(20)

Flow arrival curve

At ingress, whole packets are atomically injected at rate r. Call θ the date when injection ends. We have rθ " l max i and l max i ď b i `ri θ, so

@f i P F : b i ě b min i def " l max i r ´ri r . (21
)
We now express the values r j i and b j i for all flows f i P F j for an active queue q j . If q j is the first active queue traversed by the flow, then b j i " b i . Else, let q k be predecessor of q j in the sequence of active queues traversed by flow f i (i.e. q k fi Ý Ñ q j), with β R k ,T k its (residual) service curve. When flow f i traverses queue q k , its burstiness increases differently whether it is alone or aggregated with other flows in q k . If the flow is alone in queue q k , we apply the classic result of the effects of a rate-latency service curve β R,T on a flow constrained by an affine arrival curve γ r,b . The result is another affine arrival curve γ r,b`rT [START_REF] Boudec | Network Calculus[END_REF], so

b j i " b k i `ri T k . (22
)
Else, we apply Prop. 1. Let introduce r j ‰i " r j ´ri , b j ‰i " b j ´bj i , i.e.

r j ‰i " ÿ f l PF j ,l‰i r l , b j ‰i " ÿ f l PF j ,l‰i b j l . (23)
The competing flows have arrival curve α ‰i ptq " minprt, r j ‰i t `bj ‰i q1 tą0 (the rt term comes from link shaping at q k egress). Since this function is sub-additive and r i `r‰i " ř lPF i r l ă R, the proposition can be applied. The α ‰i function is a T-SPEC function, it is equal to the first term if u ď

Application of Prop. 1 leads to

b j i " b k i `ri ˜T j `bj ‰i pr `ri ´Rj q R j pr ´rj ‰i q ¸. (27)
Note that the use of Cor. 1 would lead to b k i `ri ˆT j `bj ‰i R j ˙that does not capture the benefit of the shaping r at input.

Link Arbiter Service Curves

On the MPPA2 NoC, the output link arbiters operate in round-robin on turn queues at the packet granularity, while each queue contains flows aggregated in FIFO. As the packets presented to a link arbiter are not processed in FIFO order, previous work (e.g. [START_REF] Bouillard | Worst-Case Analysis of Tandem Queueing Systems Using Network Calculus[END_REF]) would have to assume blind multiplexing between all flows and fail to exploit FIFO aggregation. This is addressed in [START_REF] Dupont De Dinechin | Network-on-chip service guarantees on the Kalray MPPA-256 bostan processor[END_REF] by exposing the service offered to each queue of a link arbiter: either, the rate and latency ensured by round-robin packet scheduling; or, the residual service guaranteed by blind multiplexing across queues when the round-robin service does not apply. Then, aggregation need only be considered withing the scope of single queues so is FIFO.

The service curve offered by a link arbiter to each of its queues is abstracted as a rate-latency function β j " β R j ,T j . The first approach to derive this curve is to consider the behavior of the round-robin arbiter, assuming that each flow f i has its packet sizes bounded by a minimum l min i and a maximum l max i . Let l min F j def " min fiPF j l min i and l max F j def " max fiPF j l max i be respectively the minimum and maximum packet sizes for q j (with convention that max H " 0 to encode the fact that a queue crossed by no flow has no influence on the round robin arbiter). Let Q ‰j def " q k ppq k q " ppq j q, k ‰ j (be the set of queues sharing the same arbiter that q j . The general round-robin service curve β j " β R j ,T j for q j is R j " rl min

F j l min F j `řkPQ ‰j l max F k , T j " ř kPQ ‰j l max F k r . (28)
The second approach to derive a service curve for queue q j is to consider that the round-robin arbiter serves packets at peak rate r according to a blind multiplexing strategy across the queues. Application of Thm. 3 yields the blind multiplexing service curve β j " β R j ,T j for q j R j " r ´ÿ kPQ ‰j r k , T j "

ř kPQ ‰j b k r ´řkPQ ‰j r k . (29
)
The blind multiplexing service curve must be used whenever the sum of flow rates inside q j exceeds R j in Eq. (28). Else, we select the formula that evaluates to the lowest T j .

End-to-End Latency Bound

For computing an upper bound on the end-to-end latency of any particular flow f i , we proceed in three steps. First, compute the left-over (or residual) service curve β j i of each active queue q j traversed by f i . Second, find the equivalent service curve β i offered by the NoC to flow f i through the convolution of the leftover service curves β j i . Last, find the end-to-end latency bound by computing d i the delay between α i the arrival curve of flow f i and β i . Adding d i to the constant delays of flow f i such as the traversal of non-active queues and other logic and wiring pipeline yields the upper bound. This approach is similar in principle to the Separated Flow Analysis (SFA) [START_REF] Bouillard | Worst-Case Analysis of Tandem Queueing Systems Using Network Calculus[END_REF], even though the latter is formulated in the setting of aggregation under blind multiplexing, while we use FIFO multiplexing.

For the first step, we have two cases to consider at each active queue q j . Either f i is the only flow traversing q j , and β j i " β R j ,T j from equations (28) or [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on SpaceWire networks[END_REF]. Or, f i is aggregated in q j with other flows in F j . Packets from the flow aggregate F j are served in FIFO order, so we may apply Corollary 1. This yields the left-over service curve β j i " β R j i ,T j i for an active queue q j traversed by f i :

R j i " R j ´rj ‰i F j , T j i " T j `bj ‰i R j . (30
)
For the second step, we compute the convolution β i " ˚qj PQi β j i of the left-over service curves β j i . Thanks to the properties of rate-latency curves [START_REF] Boudec | Network Calculus[END_REF], β i is a rate-latency curve whose rate R i is the minimum of the rates and the latency T i is the sum of the latencies of the left-over service curves β j i :

R i " min jPQi R j i , T i " ÿ jPQi T j i . (31
)
21

For the last step, we compute the delay d i between α i the arrival curve of flow f i at ingress and β i . This flow is injected at rate r i and burstiness b i , however it is subject to link shaping at rate r as it enters the network. As a result, α i " minprt, b i `ri tq1 tą0 and we may apply Eq. (20):

d i " T i `bi pr ´Ri q R i pr ´ri q . (32
)
7 Adaptation of generic algorithms to the MPPA NoC Section 6 has presented a modeling of the MPPA NoC that allows both to compute the route of the application flows using linear constraints while respecting deadline and buffer constraints (even if in this article, the focus is done only on the delay evaluation). One may wonder if other algorithms may compute better bounds. This section presents first how the Total Flow Analysis (TFA) and Single Flow Analysis (SFA), initially defined for tandem topology with blind multiplexing, can be adapted to the case of the MPPA NoC, and especially to its hierarchical FIFO/RR scheduling (sections 7.1 and 7.2). Thereafter, is discusses how the specific case of constant packet size can help the analysis.

Total Flow Analysis

This section presents how the Total Flow Analysis (TFA), presented in Section 3.5.2, is used and has been adapted to the specific case of the MPPA NoC.

The basic idea is of TFA is, given a queue q j , to consider A j " ř fiPF j A j i the total input flow, to compute α j an arrival curve for A j , and given β j a service curve of the queue, to compute d j " hDevpα j , β j q a delay bound of the queue. Since the queue applies a FIFO policy between its flows, this delay bound is also a bound for each flow, and the end-to-end delay of a flow can be bounded by the sum of the d j of the crossed queues q j : d TFA i " ř fiPF j d j . This algorithm requires to compute α j and β j . The computation of α j relies on the iterative transformation of arrival curve 6 . Let α j i be an arrival curve for the flow A j i . Then, the corresponding departure flow D j i has arrival curve 9 α j i " ´αj i m δ d j ¯^δ 0 (cf. eq. (12) and eq. (14)). Then, the computation of α j relies on the identification of all queues q k sending flits to the queue q j . Let I j def " ! q k Df i : q k fi Ý Ñ q j) be this set. Note that if a flow f i goes from a queue q k to a queue q j , then A j i " D k i . Then α j can be computed as the sum of all individual arrival curves 9 α k i . But all these flows also pass through a link with peak rate r. This shaping implies that λ r is another arrival curve for A j , leading to

α j " λ r ^ÿ q k PI j ÿ fiPF k XF j 9 α k i . (33)
The computation of β j can be done using either the residual service of the round-robin policy (Thm. 5), or the blind multiplexing (Thm. 3). The computation of the blind multiplexing requires to compute the arrival curve of the competing flows 7 . It can be of interest when a queue shares the output link with lightly loaded queues. But the TFA algorithm is not forced to choose between both, it can compute both residual services, β j Blind , β j RR and then set d j " hDevpα j , β j Blind q ^hDevpα j , β j RR q.

Single Flow Analysis

Whereas the Single Flow Analysis (SFA) is well defined for a tandem network with blind scheduling policy, its application to the NoC MPPA requires several adaptations, and some trade-offs, presented in this section. The basic idea of SFA is, given a flow f i to compute β SFA i " ˚qj PQi β j i , where β j i is a residual service for the flow f i in queue q j . From a single flow point of view, the MPPA applies a hierarchical scheduling FIFO/RR: the bandwidth is shared between the queues using a RR scheduling and this left-over service is shared by the flows using a FIFO policy.

Then, one may consider several ways to compute the residual service β j i : either consider this hierarchical scheduling as a black box, and use the blind multiplexing result (Thm. 3), or first consider the residual service offered to the queue β j (using either round robin residual service or blind multiplexing, as discussed in Section 7.1 on TFA) and secondly deduce the residual service left by the FIFO policy (using either eq. (15) or eq. (14) or the Cor. 1). Combining all possibilities leads to 7 different expressions, as presented in Figure 16.

In fact, not all are of interest. Considering only blind multiplexing (β j,Blind i

) is always worst than modeling the RR arbiter per a blind policy and thereafter modeling the FIFO policy inside the queue (residual services β j,Blind/*-FIFO i

). The reason is that modeling a FIFO policy per a blind multiplexing is a pessimistic modeling.

Considering the global delay (g-FIFO residual service) would lead to the same result than TFA (presented in Section 7.1), and is not considered neither.

The same, Corollary 1 can be applied only to affine modeling, and would lead to quite the same results than the explicit linear solution (presented in Section 6) and is not considered neither.

So, either β j,RR/θ-FIFO i or β j,Blind/θ-FIFO i has to be considered. Notice that every value of θ P R `leads to a possible residual service, so each β j,RR/θ-FIFO i and β j,Blind/θ-FIFO i represents an infinite number of service curves. 7 This can be done using eq. 33. If C j is the set of queues sharing the same output port than q j , α ´j " ř kPC j α k is an arrival curve for all the competing flows, and β j Blind " " β ´α´j ‰ Ò the blind residual service. . One may want to compute both β j,RR and β j,Blind and do the maximum of both service curves. But it is not true in general: it is true that that if a server offers two minimal strict service of curves β, β 1 , it offers a minimal strict service curve max tβ, β 1 u, but the results does not hold for minimal simple service [9, § 5.2.3]. One also may want to compute both for each server, and compute a residual service for all possible combination. But, for a path of length n, it will results in 2 n service curves. The strategy used in this paper consists in computing both β j,RR and β j,Blind , and then to choose the one with the smaller TFA delay.

Let now discuss the choice of the θ parameter. The expression of the residual service is recalled here

β θ-FIFO i " rβ ´α‰j ˚δθ s `^δ θ , (34)
with α ‰i " ř j‰i α  . To the best of our knowledge, there is no general result on the best, neither any good, θ parameter. The works presented in the state of the art consider only affine or piece-wise linear concave/convex functions, and do not give any explicit expression of this θ parameter.

Nevertheless, one may notice that setting θ " 0 is equivalent to consider a blind multiplexing, i.e. the worst possible scheduling among all others for the flow of interest 8 .

The choice of the parameter is a trade-off: let θ, θ 1 be two parameters, with θ ă θ 1 , how to compare β θ-FIFO i and β θ 1 -FIFO i ? The convolution by a delay is just a time shift: for any θ P R `, pf ˚δθ qptq " f prt ´θs `q. Then, on the one hand, θ ă θ 1 implies α ‰j ˚δθ ą α ‰j ˚δθ 1 , i.e. a larger parameter decreases the impact of competing flows, leading to β ´α‰j ˚δθ ă β ´α‰j ˚δθ 1 . On the other hand, θ ă θ 1 ùñ δ θ ą δ θ 1 . Then, in general, β θ-FIFO i and β θ 1 -FIFO i and incomparable (cf. Figure 17).

One may nevertheless restrict the range of the parameter. First, notice that β θ-FIFO ď δ θ , then any θ greater than hDevp ř n i"1 α i , βq, will be smaller

α ‰ i θ δ θ α ‰ i ˚δθ θ 1 δ θ 1 α ‰ i ˚δθ 1 β R , T θ δ θ θ 1 δ θ 1 β θ -F I F O β θ 1 -F I F O
Figure 17: Residual FIFO service with to θ, θ 1 parameters, α ‰i " ř j‰i α j than the one obtained with the g-FIFO solution. So any θ ą hDevp ř n i"1 α i , βq will give a worst delay than the TFA approach. Second, it is common to have a service curve nul up to some value. Let T β " inf tt βptq ą 0u (for a rate-latency function β R,T , this is the latency term, i.e. T β R,T " T). Then, for any θ ă T β , β ^δθ " β, leading to β θ-FIFO " rβ ´α‰j ˚δθ s `. So, considering θ ă θ 1 ă T β , β θ-FIFO ă β θ 1 -FIFO , meaning that values of θ P r0, T β s have no interest. Then, only values θ P rT β , hDevp ř n i"1 α i , βqs are of interest. To sum up, the value 0 reduces FIFO to blind multiplexing, the values in r0, T β q are worst than T β and the value hDevp ř n i"1 α i , βq gives the same result than TFA. So, in this study, the value θ " T β will be considered. The definition of a strategy computing a better parameter is out of the scope of this study.

Last, the SFA does not specify how are computed the arrival curves of the competing flows: in each node, for any j ‰ i, one may compute α j using TFA, or considering a new SFA problem for this flow (up to this node), or compute both and take the minimum, etc.

To ease comparison with TFA, the arrival curves of the competing flows will be the one computed with TFA.

Constant packet size

Both TFA and SFA, presented in the previous section, can be seen as black boxes transforming some input arrival and service curves into delay bounds.

This section discusses these input curves.

The traffic limiters at the NoC egress ensure that each flow respects a (configurable) token-bucket shape. Considering also the limited link throughput lead to a T-SPEC arrival curves, as presented in section 6.1 (cf. Figure 2). It belongs to the class of concave piecewise-linear function (CPL). Conversely, the residual service of a round robin arbiter given by eq. 18 is also a convex piecewise-linear function (CxPL). And the residual service of a blind multiplexing is also a CxPL function if the arrival curves are CPL and the aggregate service is CxPL. Using such concave/convex piecewise-linear functions in network calculus is called a linear, or affine or fluid model.

In a previous work [START_REF] Boyer | Computing routes and delay bounds for the network-on-chip of the Kalray MPPA2 processor[END_REF], the explicit linear method and the TFA approach with affine curves has been compared on one example (that will be reused in Section 8.2).

But such model can not capture accurately the impact of packetization. Indeed, a flow is made of packets, and in the MPPA NoC (and in the absence of back-pressure activation), when a packet starts is emission, it is sent up to completion at link speed. Modeling this effect allows more accurate arrival and service curve, leading to better (i.e. smaller) bounds. This is true at arbiter output, and this behavior is captured by eq. 16. But this is also true at traffic limiters output and this is captured by Theorem 6 when all packets in a flow have the same size.

Indeed, the traffic limiter in the DMA engine, presented in section 2, ensures by design that the output flow will respect a token-bucket arrival curve γ r,b . But the DMA engine also sendS only full packets, i.e. the first flit of a packet is sent only if there will be enough credit to send the full packet without any interruption. When a data flow always send packets of the same size, it means that not all values of the arrival token-bucket arrival curves can be reached by a real sequence of packets. Theorem 6. Consider a data flow A made only of packets of fixed length l, such that when a packet starts it emission, it is emitted up to completion at a constant rate R. Then if α is a maximal arrival curve for A, also is

α 1 " l X α l \ m λ R .
The cumulative curve of such a flow is an alternation of flat segments (no output of data) and segments of slope R, eight l and length l R . Note that this result can be applied for any arrival curve, whereas in the context of the MPPA NoC, it will be used only for functions of the form α " λ R ^γr,b (as in Figure 18). Let first assume that some packet is being sent at instants t and t `d.

Let s be the begin of the sending interval of t, and v the end of the sending interval of t `d, as illustrated on Figure 19.

The main step of the proof consist in showing that Apt `dq ´Aptq ď l Y αpd`wq l] ´Rw with w " pt ´sq `pv ´pt `dqq. Let w 1 " t ´s, w 2 " v ´pt `dq, A 1 " Aptq ´Apsq the amount of data sent on rs, ts, A 2 " Apvq ´Apt `dq the one on rt `d, vs. Consider the decomposition Apvq ´Apsq " A 1 `Apt `dq ´Aptq `A2 .

On intervals rs, ts and rt `d, vs, some part of a packet is sent, as constant speed R, so A 1 " Rw 1 and A 2 " Rw 2 , leading to Apvq ´Apsq " Apt `dq Áptq `Rpw 1 `w2 q. The flow admits α as arrival curve, so Apvq ´Apsq ď αpv ´sq. But by construction, they are n P N full packets of size l sent on rs, vs, i.e. Apvq´Apsq " nl, so n ď

Y αpv´sq l
] and

Apt `dq ´Aptq `Rpw 1 `w2 q ď l Z αpv ´sq l

^(35)

Let w " w 1 `w2 , notice that v ´s can be written as v ´s " d `w, it yields

Apt `dq ´Aptq ď l Z αpd ´wq l ^´Rw (36
)
ď sup wě0 l Z αpd ´wq l ^´λ R pwq (37) " ´l Y α l] m λ R ¯pdq (38)
If not packet is sent at time t, let t 1 the next instant when some packet starts its emission (if t

Apt`d 1 q´Apt 1 q ď `l X α l \ m λ R ˘pd 1 q
. By definition of t 1 and d 1 , Apt `dq ´Aptq " Apt `d1 q ´Apt 1 q and since l X α l \ m λ R is non decreasing, and

d 1 ď d Apt `dq ´Aptq ď ´l Y α l] m λ R ¯pdq. (39
)
8 Comparing strategies

Several algorithms and models have been presented in the previous sections.

They will be compared on several case studies, with increasing size to ease interpretation of the results. The algorithms have been partitioned in two categories: a first one computing a end-to-end delay, and a second one computing local per queue delays. Three kind of models have been considered: either no information on the packet size is modeled ("fluid" model), or we assume that all packets in a given flow have the same size ("per flow constant packet sizes" model) or we also assume that all packets in a given queue have the same size ("per flow and per queue constant packet sizes" model).

The explicit linear approach, presented in Section 6, is an end-to-end algorithm with an affine model. The SFA is the most known end-to-end algorithm, but in the specific case of concave/convex piecewise-linear arrival and service curves, it is outperformed by the LP approach [START_REF] Bouillard | Tight performance bounds in the worst-case analysis of feed-forward networks[END_REF]. This LP approach gives the exact worst delay (also known as tight), but its computation is exponential in the length of the path. Nevertheless, since the paths on our case studies are not so long, it was possible to use it. So, LP is used instead of SFA for the affine model. The modeling of per flow constant packet sizes (use of Theorem 6) lead to non concave arrival curves, and in this case, we use SFA for the endto-end delay computation (SFA/Fc). Moreover, the model can considers that all packets in a queue have the same size (use of Theorem 5); this is algorithm SFA/FQc. Flow

f 1 f 2 f 3 f 4 Rate 2 3 1 3 1 3 1 3
Max. Frame Size. 17 Table 3: Flow parameters, first example (topology of Figure 20), first experiment (original values).

Conversely, the computation of the flow delay as the sum of the local delays is done with TFA, with either an affine model (TFA/Aff), per flow constant packets sizes (TFA/Fc) and per flow and per queue constant packets sizes (TFA/FQc).

This different methods will be compared on two examples, with variation on three parameters, the maximal frame size, the load, and the number of flows per queue.

The results on the Explicit Linear method have been obtained using a tool developed by Kalray [START_REF] Dupont De Dinechin | Network-on-chip service guarantees on the Kalray MPPA-256 bostan processor[END_REF]. The results on the LP method have been obtained using the NetCalBounds tool [START_REF] Bouillard | Netcalbounds home page[END_REF]. The results on the affine Total Flow Analysis have been obtained using the RTaW-Pegase tool [START_REF]RTaW-Pegase home page[END_REF]. All other results have been obtained by a prototype plugin to the RTaW-Pegase tool.

First Example: 4 nodes

The first example, comes from [START_REF] Dupont De Dinechin | Network-on-chip service guarantees on the Kalray MPPA-256 bostan processor[END_REF]. It has 4 nodes, generating 4 flows crossing 4 routers, with routing depicted in Figure 20.

First experiment, original values

In a first experiment, all flows have a packet size of 17 flits (considered as typical), all flows have a long-term rate 1 3 but f 1 that have r 1 " 2 3 . The admissible bursts at network ingress are 34 3 but f 1 that have b 1 " 17 3 (cf. Table 3). The upper bounds on delays for this example are plotted in Figure 21. Even this simple example shows interesting trends, that will be mainly confirmed by the other experiments.

First, the explicit linear approach, which is a formulation simple enough to allow the computation of routing, gives good results w.r.t. other methods. The interpretation of the TFA method is also simple: whereas TFA is a perhaps the simplest approach, it is the one that captures in the most efficient way the packetisation effect of data flows. Whereas the fluid TFA is the worst method for all flows, TFA with constant packet size per flow give results comparable to other approaches, and if moreover all packets in each queue have the same size, it gives the best results.

The end-to-end approaches deserve a discussion: whereas the LP solution has been designed to compute the exact worst case, the explicit linear solution Figure 20: Case study from [START_REF] Dupont De Dinechin | Network-on-chip service guarantees on the Kalray MPPA-256 bostan processor[END_REF], 4 nodes

Flow f 1,1 f 2,1 f 3,1 f 4,1 f 1,2 f 2,2 f 3,2 f 4,2 Rate 1 3 1 6 1 6 1 6 1 3 1 6 1 6 1 6
Max. Frame Size. Table 4: Flow parameters, first example (topology of Figure 20), second experiment (splitting flows) is smaller for the flow F3. The reason is that LP does not model the shaping introduced by the link. Having stronger assumptions, the explicit linear approach reduces the set of admissible flows, and even if it does not compute the maximum of this set, but only an upper bound, this upper bound is smaller than the maximum of the larger set where no shaping constraint exist. The same happens when considering packets of fixed sizes in SFA: with more assumptions, and considering non concave/convex piecewise-linear functions (Figures 18,9), the bounds are better, even if the core of the resolution method is worst.

Second experiment, splitting flows

The second experiment is a small modification of the first one: each flow f i is split into two flows f i,1 , f i,2 with the same routing, a flow rate divided by two, and f i,1 have maximal frame size 9 and f i,2 have maximal frame size 8. This example has more flows, each queue is used by at least two flows, and one cannot assume that all packets in a queue have the same size. The parameters are listed in Table 4. Note that splitting a flow increases the initial burst 9 . This is due to the fact that the MPPA NoC egress traffic limiter must always allow a packet to be fully sent at egress: then, reducing the per flow rate increases the burst size w.r.t. the frame size (cf. Figure 2 and eq. (21)).

The results are reported in Figure 22. The results are comparable with the ones of the previous experiment. The explicit linear solution does not give the

f 1,1 f 1,2 f 2,1 f 2,2 f 3,1 f 3,2 f 4,1 f 4,2
Explicit Linear LP SFA/Fc TFA/Aff TFA/Fc Figure 22: Upper bounds on delay, per flow and per method, first example (topology from Figure 20), second experiment (splitting flows, parameters from Table 4) Table 5: Flow parameters, first example (topology of Figure 20), third experiment (large frame size. 5) best results, but nevertheless give good bounds. The LP solution is in general better than the other affine approaches (explicit linear and fluid TFA), and even gives the best results for flows f 2,1 , f 2,2 . For all other flows, if all packets of a given flow have the same size, the per flow constant size TFA can model it and gives the bests results.

Flow f 1 f 2 f 3 f 4 Rate

Third experiment, large frame size

The third experiment uses the same parameters as the initial experiment (section 8.1.3), but with large packet size (70 flits). The flow parameters are given in Table 5.

The results are reported in Figure 23. The results look very similar to the ones of the first experiment, but one have to pay attention that the range of values is very different: whereas the range of values was [0,180] in the first experiment (Figure 21), it is [0,700] is this plot. Since the frame and burst Figure 24: Case study from [START_REF] Ayed | Towards a unified approach for worst-case analysis of Tilera-like and Kalray-like NoC architectures[END_REF], 7 nodes sizes are 70 17 « 4.11 larger, the delay also are globally four times larger. The main difference is that the Explicit Linear method is now the best method. The reason is that this method uses Proposition 1, that captures in a very efficient way the limited impact of FIFO policy on burst sizes. Its increase of delay is only around 2.5.

Second Example: 7 nodes

The second example comes from [START_REF] Ayed | Towards a unified approach for worst-case analysis of Tilera-like and Kalray-like NoC architectures[END_REF]. It is made of 6 flows, f 1 , . . . , f 6 . The routing is given in Figure 24. This case study has been used to illustrate the "Recursive Calculus", a method developed in [START_REF] Ayed | Towards a unified approach for worst-case analysis of Tilera-like and Kalray-like NoC architectures[END_REF].

First experiment, original parameters

The first experiment uses the values of the parameters used in [START_REF] Ayed | Towards a unified approach for worst-case analysis of Tilera-like and Kalray-like NoC architectures[END_REF]: all packets have a constant size of 50 flits, and all the flows have a period of 1000 cycles. Then all flows have a rate of 0.05 and an burst of 47.5.

On this example with very small loads (from 5% to 15%), the burst is the parameter that have the main influence. The results are reported in Figure 25. The bounds of the "Recursive Calculus" from [START_REF] Ayed | Towards a unified approach for worst-case analysis of Tilera-like and Kalray-like NoC architectures[END_REF] have been reported 10 . In this example, the TFA approach outperforms all others, except for flow f 5 . This is mainly because this flow is very long, with very few interference. The recursive calculus, that has been designed to analyze both Tilera and MPPA NoCs, gives Since the different methods gives very different values in this example, it well illustrates some of their differences.

Consider the flow F1. The explicit linear solution computes a delay d 1 of 206 cycles, decomposed into a latency of T 1 " 145 and a "burst absorption time of" 61, cf. eq [START_REF] Frances | Using network calculus to optimize AFDX network[END_REF]. This latency is due to the traversal of one round-robin arbitration (in router R2), whereas the burst related term is related to the FIFO sharing of the queue in routers R1 and R3. The LP formulation also counts a latency of 50 due to arbitration in router R2 and reduces the FIFO interference all along the path to 50. The TFA approach computes a per router delay. But it computes a null delay in routers R1 and R3: indeed, in R1, the three flows f 1 ,f 2 and f 3 are shaped (i.e. serialized) at the input link, then since the router uses a cut-through forwarding, there is a null delay 11 . Then, the only delay is related to the arbitration in output port of R2.

Note that small delay in R1 is true, but related to the fact that the contention between the flows has been resolved in the node N1 itself.

Second experiment, realistic load

The second experiment considers the same routing than the previous one, but with maximal frame size of 17 and rates computed in order to ensure fairness Flow 24), second experiment (realistic configuration, parameters from Table 6) and efficient link utilization (all parameters are presented in Table 4).

f 1 f 2 f 3 f 4 f 5 f 6 Rate 1{3 1{3 1{3 2{3 1{3 2{3
The delay bounds are plotted in Figure 26. The first observation is that even if the rates are quite 10 times bigger, the delay bounds are about 2 times smaller. This is due to frame size reduction, since the frame size influences both the flow burst size and the latency of the round-robin arbiter.

Like for other case studies, even for the fluid model, there is no best solution: depending on the flow, the best bound is given either by explicit linear approach (f 5 , f 6) or the affine TFA (f 1 , f 2). The LP is never the best, meaning that shaping has a strong influence on this case study.

And if all packets have the same size, the TFA approaches gives the best results.

Flow 24), third experiment (loaded configuration, parameters from Table 7)

f 1 f 2 f 3 f 4 f 5 f 6 Rate 1{3 1{3 1{3 2{3 1{3 2{3

Third experiment, loaded configuration

The third experiment considers the large packet size of the first experiment (50 flits) and the flow rates of the second (cf. Table 7).

The results are plotted in Figure 27, with the same scale as in Figure 25. Looking at load change (i.e. comparing with the first experiment, where maximal packet size is the same, but the load is smaller), the impact is very different on each method. The explicit linear algorithm computes quite the same value in both experiments. On this example, the explicit linear algorithm is mainly influenced by the frame size and very few by the load. The other methods are more influenced by this change of load, and this changes the relative quality of the different algorithms.

Looking at maximal packet size change, (i.e. comparing with the second experiment, where maximal packet size is 17 instead of 50, but the load is the same) a remarkable effect appears: the ratio between the bounds computed in Flows (k P t1, 2u) both experiments is exactly 50 17 ˘1%, for each methods and each flow. This is due to the fact that both the arbiter latency (round-robin) and the burst size are proportional to this maximal frame size (every other parameters being unchanged).

f 1,k f 2,k f 3,k f 4,k f 5,k f 6,

Fourth experiment, loaded configuration, doubling number of flows

The fourth experiment is based on the third one, where each flow f i is split into two flows f i,1 , f i,2 with the maximal frame size and the throughput divided by two, as shown in Table 8. It means that this experiment has somehow the same global load (except the burst that are slightly higher), but there are two times more flows per queue. Moreover, since the maximal frame size is smaller, the blocking time associated to the round-robin arbiter is also smaller, even if the long-term rate is the same. Both effects have opposite impact in the delay. On the one hand, the increase in the number of flows, and the associated small increase of the burst both lead to a per flow delay increase. On the other hand, the reduction of the round-robin blocking time decreases the per flow delay.

Then, for a given method, the difference in the result between this experiment and the third one depends on how the method handle the FIFO policy (inside each queue) and the round-robin policy (between queues).

The results are plotted in Figure 28 (except the values of methods SFA/Fc and SFA/FQc, which is equal to 750 cycles).

As in previous experiments, in case of a fluid model, the Explicit Linear, LP and TFA algorithms give comparable results (within a factor of 2), but none is always better. But in case of packets of constant size, per flow or also per queue, only the TFA algorithms is able to capture this effect and always gives the better bounds. Since the TFA algorithms computes an aggregate arrival curve by summing all arrival curves in a queue, it is insensitive to the number of flows, as long as the total load and burst is the same.

Fifth experiment, loaded configuration, large number of flows

The fifth experiment is based on the third one, where each flow f i is split into five flows f i,1 , . . . , f i,5 with the maximal frame size and the throughput divided by five, as shown in Table 9.

f 1,1 f 2,1 f 3,1 f 4,1 f 5,1 f 6,1
Explicit Linear LP SFA/Fc SFA/FQc TFA/Aff TFA/Fc TFA/FQc Figure 28: Upper bounds on delay, per flow and per method, second example (topology of Figure 24), fourth experiment (loaded configuration, doubling number of flows, parameters from Table 8) 24), fifth experiment (loaded configuration, large number of flows, parameters from Table 9)

Flows (k P t1, . . . , 5u) f 1,k f 2,k f 3,k f 4,k f 5,k f 6,k Rate 1{15 1{15
The results are plotted in Figure 29, where the SFA results have been plotted on a separated chart because of their very large values. Note that this time, the affine SFA algorithms has been plotted, even if it has no practical interest since it is outperformed by the LP approach with equivalent hypotheses (piecewiselinear concave/convex functions, without modeling of shaping for LP).

Considering a fluid model, the TFA gives this time the best results for all flows, whereas the explicit linear and the LP solutions are incomparable, but always in the same range of values.

On the opposite, the SFA approach gives bounds that are 5 to 10 times bigger than the corresponding TFA solution. When packets are of constant size, the TFA algorithm can improve its bounds.

Third example, full MPPA NoC

First experiment: 128 flows

The third example is based on the MPPA architecture presented in Figure 1. Each node is the source of 4 flows, with randomly chosen destination, leading to 128 flows. Each flow has a constant packet size of 17 flits, and the routing and rate allocations have been generated using the strategies presented in [START_REF] Dupont De Dinechin | Network-on-chip service guarantees on the Kalray MPPA-256 bostan processor[END_REF], [START_REF] Boyer | Computing routes and delay bounds for the network-on-chip of the Kalray MPPA2 processor[END_REF]. The flow mean length is 4.4, and the length distribution is listed in Table 10. The mean link load is 44% (168 links are used), 4 links have a load of 100%, 7 of load in r80%, 89%s and 36 a load in r50%, 79%s.

Then, the upper bounds on delays have been computed using some of the approaches presented in the previous sections. The LP approach [START_REF] Bouillard | Tight performance bounds in the worst-case analysis of feed-forward networks[END_REF] has been limited to 2mn of computing time for each flow. In case of timeout, the deborah One may wonder if the path length has an influence: one may guess that algorithms using the PBOO principle may have better results on long paths. Then, Figure 32 plots the same bounds as Figure 30, but flows are grouped by flow length before being sorted by bound of the explicit linear approach. It appears clearly than longer paths have larger delays, but showing the relation between methods requires other figures. Then Figure 33 plots, for each flow, the ratio between explicit linear and LP-deborah w.r.t TFA/FQc, using the same flow ordering than in Figure 32, and Figure 31 shows the mean bound computed by each method, depending on the flow length.

Both confirm the relations obtained between methods, independently of the path length. The gain obtained by the PBOO principle is mitigated by a worst modeling of the residual service in each router.

Second experiment: 256 flows

The second experiment on the full MPPA topology considers 8 flows per cluster. Since there are 8 traffic limiter per cluster, this is the maximum that can be done on the MPPA.

The distribution of flow length is given in Table 11, and the mean length is 4.6. In this example, the mean link load is 34%, and only 2 links have a 100% load, 5 are in interval r90%, 99%s and 20 in interval r50%, 89%s.

The individual bounds per flow are not plotted, since the relations between the methods are the same as in previous experiment. Only the mean bound per flow length are given in Figure 34. Since they are more flows, they are more conflicts per router, and the worst delays are increased. The mean gain between Explicit Linear and TFA/FQc becomes 25%, whereas it was 20% in the previous experiment, with 128 flows.

Conclusions on case studies

Theses experiments on a real case study give us several results, some that confirm some well known aspects of network calculus and some more unexpected.

The well known result is that modeling the shaping introduced by link maximal capacity has an important impact on delay bounds (it has been shown in AFDX context in [32, § 4] and confirmed in [START_REF] Boyer | Tightening end to end delay upper bound for AFDX network with rate latency FCFS servers using network calculus[END_REF], [START_REF] Scharbarg | Analyse des délais de bout en bout pire cas dans les réseaux avioniques[END_REF], [START_REF] Zhao | Using multi-link grouping technique to achieve tight latency in network calculus[END_REF]): whereas it has been proved that the LP approach computes the exact worst case for FIFO policy (without considering shaping), it is outperformed by solutions that models shaping: explicit linear (in all cases), and TFA on the first and second case studies.

The shaping can be easily added in the LP approach, one just have to add a new linear constraint (an upper bound) on the flows sharing a common link. That is to say, when the linear program encodes the minimal output of a rate-

D 1 t 1 `D2 t 1 ě A 1 t `A2 t `Rpt ´t1 ´T q (40
)
where t, t 1 , D 1 t 1 , D 2 t 1 , A 1 t, A 2 t are program variables that respectively represents two instants t, t 1 and flow departure and arrival values D 1 pt 1 q, D 2 pt 1 q, A 1 ptq, A 2 ptq, the shaping introduced by a link of constant capacity C can be encoded as

A 1 t `A2 t ď Cpt ´t1 q. (41)
A second expected result is that the modeling of packet size in data flows has also a beneficial impact (it has been shown in the context of AFDX in [START_REF] Boyer | An efficient and simple class of functions to model arrival curve of packetised flows[END_REF], [START_REF] Boyer | Experimental assessment of timing verification techniques for afdx[END_REF]), since it gives smaller arrival curves, and gives lower burst in the network. Looking at example on Figure 18, it is obvious that the arrival curve modeling constant packet size is smaller, but the impact on delay is not so obvious. The Figure 35 illustrate this relation between the per packet arrival and the delay. Consider a fluid flow arrival, α f and the associated per packet flow arrival α p ; even if α f ď α p they both have the same horizontal deviation with the service curve β. But after crossing the first node, the flow has a new arrival curve. To ease the discussion, assume that this server creates a jitter J, and has a shaping curve equals to the link input shaping. Then, the respective arrival curves at the next node will be α 1 f and α 1 p . And in this case, the delay associated with each arrival curve are different, as illustrated in Figure 35.b.

Conversely, the modeling of packet size in the round robin scheduling policy gives a bigger service curve, as illustrated in Figure 9. But the benefit in the delay evaluation is related to the modeling of the packet size in the arrival curve also. Figure 36 illustrates the situation where a single flow is entering a roundrobin arbiter, and all packets in the flow have the same size. This flow (resp. arbiter) can be modeled using either a fluid arrival curve α f or a packetized one α p (resp. a fluid service curve β f or a packetized one β p). Then, the burst fits exactly the height of the first step of the curve, and the delay a is smaller than considering a fluid residual service (delay a `b), or even considering a fluid arrival curve and a fluid residual service (delay c `d). But it might also happen that both sizes do not fit, like in Figure 37, and even if there is a gain at modeling packet size, it may be smaller. Nevertheless, an accurate modeling of packet sizes requires to abandon the efficient class of piecewise-linear concave/convex functions to handle more general classes, like the Ultimately Pseudo Periodic class [START_REF] Bouillard | An algorithmic toolbox for network calculus[END_REF]. There encoding in a integer linear program is not so straightforward and may moreover increase the computation time.

On the side of unexpected result, a first one was the usability of the LP solution. Whereas it has a theoretical exponential cost, related to the length of paths, it can in practice be used for NoC, since the paths are not very long. Table 10 shows that even if it was no able to deal with paths of size greater than 6 (in less than 2mn), its has computed bounds for 17 out of 22 paths of length 6 (i.e. 77%) and 24 out of 26 (i.e. 92%) of paths of length 5, and all for smaller paths. Notice also that the LP problems has been solved using the lp solve solver [START_REF] Berkelaar | [END_REF] and that other solvers may have different resolution time.

But the main unexpected results is the inefficiency of the Single Flow Analysis (SFA) w.r.t. Total Flow Analysis (TFA). Quite all published studies in network calculus confirm that the TFA is the less efficient solution, except in a few specific cases [START_REF] Bondorf | Improving cross-traffic bounds in feedforward networks -there is a job for everyone[END_REF]. But all these studies consider blind multiplexing, and the residual service computed in this case with Thm. 3 is known to be tight. But for the FIFO policy, SFA requires the choice of a θ parameter (the choice of its value has been discussed in section 7.2). It may happen that with a better choice of this parameter, SFA can gives better results than TFA, but it does not exist, up to our knowledge, any strategy for choosing this parameter in the general case (and in the specific case of piecewise-linear concave/convex function, one better have to use LP). In other words, SFA is certainly a good algorithm when a good residual service per flow is known, which is not the case for FIFO policy up to now.

Last, one have to pay attention to the fact that even if all methods give similar results on average (cf. Figures 31,[START_REF] Frangioni | Qos routing with worstcase delay constraints: Models, algorithms and performance analysis[END_REF], for a given flow, the difference may be very large (cf. Figure 33). Nevertheless, since all are valid bounds, one may run all algorithms and take the minimum of all bounds.

Conclusion

The MPPA2-256 processor [START_REF] Saidi | The shift to multicores in real-time and safety-critical systems[END_REF] integrates 256 processing cores and 32 management cores on a chip, communicating through a shared NoC. Before embedding critical real-time application on such an architecture, one need some method to bound the communication latency introduced by the NoC sharing.

In this paper, we have presented different ways to model this NoC using the network calculus framework: the explicit linear model, that has been developed to both compute the routing of flows and set the flow throughput; the general purpose LP solution, developed to get the exact worst case in case of FIFO network with piecewise-linear arrival and service functions; the SFA and TFA algorithms, that have been enhanced in the specific case of flows with constant packet sizes.

They have been compared, first on small already published examples, to get a comprehensive view on their differences, and to compare new approaches with the previous one on known examples. They also have been compared with the Recursive Calculus on one example. Thereafter, they have been compared on a larger case study, with 128 and 256 data flows.

All experiments confirm a well known fact: the flow burstiness is limited by link capacity, and modeling this shaping has a major impact on results. Moreover, when all packets in a flow have the same size, modeling it also improves the bounds, especially in the case of the Round-Robin policy. And modeling these aspects of the system can outperform exact algorithms that do not model it. In other words, there always is a trade-off between the accuracy of the model and the tightness of the algorithms. In the case of this NoC, shaping and packet sizes are major parts that must be modeled to get good bounds.

Moreover, as claimed in [START_REF] Bondorf | Improving cross-traffic bounds in feedforward networks -there is a job for everyone[END_REF], "there is a job for everyone": even if all methods give similar average results on the large case study, no method always have the best bound. But in case of packets of constant size, the TFA algorithms with "packet-accurate" arrival and service curve gives bounds 20%-25% smaller than any other, on average.

Figure 1 :

 1 Figure 1: MPPA2 NoC topology unfolded (I/O nodes are labeled N0..N3, E0..E3, S0..S3, W0..W3).

Figure 2 :Figure 3 :

 23 Figure 2: Tocken-bucket traffic limiter

Figure 4 :Figure 5 :

 45 Figure 4: Common curves in network calculus

SÝÑ

 D the relation pA, Dq P S. The delay and backlog associated to a server are defined from the arrival and departure cumulative curves. The delay at time t is defined as hDevpA, D, tq,

Figure 6 :

 6 Figure 6: Delay and backlog between arrival and departure flows

Figure 8 :

 8 Figure 8: Arrival curve

Figure 10 :

 10 Figure 10: Decomposition of output port in residual servers

Figure 11 :

 11 Figure 11: Simple topology

Figure 12 :

 12 Figure 12: Cyclic dependencies

Figure 15 :

 15 Figure 15: T-SPEC flow caracteristic curve

Figure 16 :

 16 Figure 16: Different ways to compute a residual service

1 Figure 18 :

 118 Figure 18: Effect of constant packet size on arrival curve, Thm. 6, with α " γ 1{2,1{2 ^λ1 , l " 1

1 A 2 Figure 19 :

 1219 Figure 19: Per packet cumulative curve

Figure 21 :

 21 Figure 21: Upper bounds on delay, per flow and per method, first example (topology from Figure 20), first experiment (original values, parameters from Table3)

Figure 23 :

 23 Figure23: Upper bounds on delay, per flow and per method, first example (topology from Figure20), third experiment (large packets, parameters from Table5)

Figure 25 :

 25 Figure25: Upper bounds on delay, per flow and per method, second example (topology from Figure24), first experiment (original parameters)

Figure 27 :

 27 Figure27: Upper bounds on delay, per flow and per method, second example (topology of Figure24), third experiment (loaded configuration, parameters from Table7)

Figure 31 :

 31 Figure 31: Mean value of bounds (in cycle), per flow length n, third example, first experiment.

Figure 32 :

 32 Figure 32: Upper bounds on delay, per flow and per method, third example, first experiment. The flow are sorted first by flow length n then by bound value with explicit linear approach.

Figure 33 : 32

 3332 Figure 33: Ratio between each method and the TFA/FQc one, third example, first experiment, same sorting as in Figure32.

Figure 34 :

 34 Figure 34: Mean value of bounds (in cycle), per flow length n, third example, second experiment.

Figure 35 :

 35 Figure 35: Gain related to modeling of packets in arrival curve

 , βpq a `b " hDevpαp, β f q c " hDevpα f , βpq c `d " hDevpα f , β f q

Figure 36 :

 36 Figure 36: Gain related to modeling of packets in both arrival and service curves, when service packet size fits arrival packet size.

Figure 37 :

 37 Figure 37: Gain related to modeling of packets in both arrival and service curves, when service packet size does not fit arrival packet size.

Table 2 :

 2 1 does not exist, it mean that Apt `dq " Aptq and the result The analysis strategies holds). Then Aptq " Apt 1 q. Conversely, if no packet is sent at t `d, let d 1 ď d such that t`d 1 the previous instant when some packet ends its emission. It holds Apt`d 1 q " Apt`dq. Then, the previous result can be applied:

	Model			
		Fluid	Per flow con-	Per flow and
	Algorithm		stant packet size	per constant queue
				packet size
	End-to-End	Explicit Linear, LP SFA/Fc	SFA/FQc
	Local	TFA/Aff	TFA/Fc	TFA/FQc

Table 8 :

 8 Flow parameters, second example (topology of Figure24), fourth experiment (loaded configuration, doubling number of flows)

	k

Table 9 :

 9 Flow parameters, second example (topology of Figure24), fifth experiment (loaded configuration, large number of flows)

	300 350 400 450				Explicit Linear LP TFA/FQc TFA/Fc TFA/Aff		4000 5000 6000	SFA/Aff SFA/Fc SFA/FQc
	250							3000	
	200								
	150							2000	
	50 100							1000	
	0	f 1	f 2	f 3	f 4	f 5	f 6	0	f 1 f 2 f 3 f 4 f 5 f 6
	Figure 29: Upper bounds on delay, per flow and per method, second example
	(topology of Figure						

Table 11 :

 11 Number of flows with a given length (Mean: 4.4) and number of timeout with method LP (with time-out at 2mn), third example, second experiment.

	Mean bound on delay, per flow length (in cycles)	0 2000 4000 6000 8000 10000 12000 14000	n=2 Explicit Linear n=3 LP|deborah TFA TFA/Fc TFA/FQc	n=4	n=5	n=6	n=7	n=8	Mean

For a discussion on continuity in network calculus, see[START_REF] Boyer | Continuity for network calculus[END_REF] or[9, § 1.3].

i.e. hDevpα, β 1 ˚β2 q ď hDevpα, β 1 q `hDevpα 1 , β 2 q with α 1 " α m β 1

"In network calculus, the Total Flow Analysis (TFA) had been abandoned since it is inferior to other methods."[6, §7]

The MPPA NoC has multicast capabilities, not considered here to keep notations simple.

A discussion on how the original input curves are computed is postponed to Section

7.3.

To be exact, with θ " 0, the θ-FIFO residual service can be worst than the blind multiplexing since there is no non-decreasing closure.

If rpf q (resp. l max pf q and bpf q) denotes the rate (resp. maximal size and burst) of the flow f , then rpf i,1 q`rpf i,2 q " rpf i q, l max pf i,1 q`l max pf i,2 q " l max pf i q, but bpf i,1 q`bpf i,2 q ą bpf i q

Note that the values presented here are not exactly the same as in[START_REF] Ayed | Towards a unified approach for worst-case analysis of Tilera-like and Kalray-like NoC architectures[END_REF]: as far as we understand, in[START_REF] Ayed | Towards a unified approach for worst-case analysis of Tilera-like and Kalray-like NoC architectures[END_REF] the delay include the arbitration in the node, whereas the methods presented here only consider the NoC delays. Then, the node arbitration delays have been removed for flows f 1 , f 2 and f 3 .

In fact, it exists some cycles related to the routing and the computation, but since this delay is small and constant, it has not be modeled in any approach.

tool [START_REF] Bisti | DEB-ORAH: a tool for worst-case analysis of FIFO tandems[END_REF] has been used. The number of LP timeout is listed Table 10. The SFA/Fc and SFA/FQc algorithms require the computation of the convolution between complex service curves, and its leads to very long computation times. Moreover, the previous experiments have shown that they are outperformed by the TFA/FQc algorithms. Then, they have not been used in this experiment.

The bound computed for each flow with each method is plotted in Figure 30, where flows have been sorted w.r.t. the bound computed by the explicit linear approach (which yields to a smooth curve for this method).

The results are quite similar to the one on the small test cases: the TFA/FQc (that captures both shaping and the fixed packet size nature of flows) outperforms all other methods in most cases. The LP or deborah tools (that does not capture the shaping neither the packet sizes) gives quite always a worst value than the explicit linear approach. The TFA/Aff and TFA/Fc behave sometime better, sometime worst than explicit linear or LP or deborah. When considering mean values (last column of Figure 31), the importance of shaping appears clearly: the explicit linear gives bound one third less than LP or deborah. The TFA algorithm is quite bad with an affine model, but once modeling constant packet sizes, its gives the best results.