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GERAD and École Polytechnique de Montréal,
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In this article, we propose a general framework for an algorithm derived from the primal simplex that

guarantees a strict improvement in the objective after each iteration. Our approach relies on the identification

of compatible variables that ensure a nondegenerate iteration if pivoted into the basis. The problem of

finding a strict improvement in the objective function is proved to be equivalent to two smaller problems

respectively focusing on compatible and incompatible variables. We then show that the improved primal

simplex (IPS) of Elhallaoui et al. is a particular implementation of this generic theoretical framework. The

resulting new description of IPS naturally emphasizes what should be considered as necessary adaptations

of the framework versus specific implementation choices. This provides original insight into IPS that allows

for the identification of weaknesses and potential alternative choices that would extend the efficiency of the

method to a wider set of problems. We perform experimental tests on an extended collection of data sets

including instances of Mittelmann’s benchmark for linear programming. The results confirm the excellent

potential of IPS and highlight some of its limits while showing a path toward an improved implementation

of the generic algorithm.
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1. Introduction

1.1. Degeneracy in the Primal Simplex

The primal simplex, described by Dantzig in 1947 (see Dantzig (1955)), was the first

efficient algorithm to be developed for solving linear programs (LPs) and is still used for

a large number of applications. It starts with a feasible solution obtained from a basis of

the variable space by setting all the nonbasic variables at one of their bounds. It then
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iteratively improves the objective value until optimality is reached. At each iteration, the

algorithm moves to an adjacent, improving basis by selecting a nonbasic entering variable

and removing a variable from the basis through a simplex pivot. One of the major difficulties

the algorithm may encounter is called degeneracy. It occurs when many the basic variables

are at one of their bounds. In this case, there is a high probability that the variable selected

to enter the basis cannot have its value modified without making the current solution

infeasible. The resulting degenerate pivot leads to no change in the current solution and

no improvement in the objective value. In a study of degeneracy in the simplex method,

Perold (1980) states that typically if on average 20% of the basic variables are at one of

their bounds, 50% of the iterations will be degenerate. Combined with the multiplicity of

highly degenerate problems arising in industrial applications, this observation highlights

the need for an efficient treatment of degeneracy in any good implementation of the primal

simplex algorithm.

1.2. Dealing with Primal Degeneracy: A Short State of the Art

Several techniques have been developed to cope with degeneracy. One family of these meth-

ods focuses on the selection of the variable entering the basis. For instance, in Greenberg

(1978), a vector is computed such that each of its positive entries corresponds to a nonbasic

variable that will necessarily lead to a degenerate pivot if it is chosen to enter the basis. The

number of operations is similar to the computation of a reduced cost, but the test is only

heuristic since it does not identify all the nonbasic variables that would lead to a degen-

erate pivot. The perturbation (Benichou et al. 1977) and bound-shifting (Gill et al. 1989)

techniques follow a different path. They apply a random modification of either the values

of the degenerate variables or their bounds to put an end to a sequence of nonimproving

pivots. The random modification avoids performing iterations without improvement, but

it usually replaces them with small steps. Although not supported by a strong theory, the

two methods, that mostly differ from an implementation point of view, perform well, and

they appear in most efficient simplex codes. For further information, an excellent study of

degeneracy emphasizing its computational aspects is given by Maros (2003).

Another approach aims to take advantage of degeneracy rather than just to minimize

its negative effects. Geometrically, a degenerate vertex of the n-dimensional polytope

described by the LP’s constraints is the crossing point of more than n facets of the poly-

tope. Degeneracy thus corresponds to a local excess of information, which suggests that
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a smaller problem may be considered locally to make progress from a degenerate solu-

tion. Perold (1980) introduces a particular degeneracy structure in the LU decomposition

of the basis, which involves fewer calculations when performing degenerate pivots. Pan

(2008) generalizes the definition of basis to include deficient bases containing p indepen-

dent columns, with p lower than the number of rows. When degeneracy occurs, a deficient

basis, smaller than the usual square basis matrix, may be used to perform the pivot cal-

culations. Generalizing the dynamic constraint aggregation described by Elhallaoui et al.

(2005) for set partitioning problems, the improved primal simplex (IPS) of Elhallaoui et al.

(2011) makes the most of degeneracy by simultaneously reducing the number of rows and

columns to perform as many cheap pivots as possible. Once all the interesting pivots are

done, a complementary LP is solved to find a dual solution maximizing the minimum

reduced cost. Either this reduced cost is null and optimality is proved, or it corresponds

to a combination of primal variables that may enter the basis through a sequence of piv-

ots ending with a strict improvement in the objective. Metrane et al. (2010) prove the

equivalence of IPS to a particular column generation algorithm by respectively identifying

the reduced and complementary problems of IPS with the master and pricing problems of

column generation.

1.3. Contribution Statement

The present article is motivated by the promising experimental results for IPS that are

reported by Elhallaoui et al. (2011) and Raymond et al. (2010b). However, Elhallaoui

et al. (2011) conduct their tests on instances containing a majority of set-partitioning

constraints, while the improvements proposed in Raymond et al. (2010b) are designed for

only a part of this restricted benchmark. Based on this proof of concept, our intent is to

investigate the performance of the algorithm on a much more diversified benchmark and,

using a new, more general theoretical description of the algorithm, to highlight potential

improvements.

With that in mind, our first contribution is to describe IPS for an LP with upper and

lower bounds on the variables. In Elhallaoui et al. (2011), the algorithm is described for

an LP in standard form, because every LP has an equivalent standard form, but this is

not compatible with an efficient implementation. Including the bounds explicitly shows

how degeneracy can be efficiently handled when a variable may be at either its lower or

its upper bound, and it specifies the special treatment that unbounded variables should
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receive. The presentation of the algorithm is then generalized to a theoretical framework

of which IPS is only one possible implementation. Our goal is to emphasize the steps in

IPS that may be seen as implementation choices. By analyzing these choices independently

of the core of the method, we can identify their main advantages and drawbacks and

consider alternative implementations. Moreover, the new framework is purely primal, which

simplifies the presentation and the proofs. We then extend the benchmark by including

larger instances and problems that do not share the specific structure of the instances used

by Elhallaoui et al. (2011) and Raymond et al. (2010b). A thorough analysis of the results

provides a much more accurate description of the families of problems that may be solved

efficiently using IPS while highlighting the implementation choices that would enlarge its

domain of efficiency. The main contribution is thus to identify the limits of IPS while laying

the theoretical foundation for future improvements.

The generic theoretical framework is developed in Section 2, and the implementation

choices for IPS are described in Section 3. The results of the experimental tests are analyzed

in Section 4, and in Section 5 we discuss directions for future research.

1.4. Notation

Lower-case bold symbols are used for column vectors and upper-case bold symbols denote

matrices. For subsets I ⊆ {1, ...,m} of row indices and J ⊆ {1, ..., n} of column indices,

the submatrix of A with rows indexed by I and columns indexed by J is denoted AIJ .

Similarly, AI· is the set of rows of A indexed by I, A·J is the set of columns of A indexed

by J , and for any vector v ∈ Rn, vJ is the subvector of all vj, j ∈ J . The vector of all

zeros with dimension dictated by the context is denoted 0, and AT is the transpose of A.

2. A Generic Decomposition Algorithm Taking Advantage of
Degeneracy

Like the primal simplex or gradient-descent methods, IPS is a primal algorithm: it starts

from an initial feasible solution and iteratively improves it until optimality is reached. Pri-

mal algorithms mainly differ from each other in the improvement procedure, i.e., the way

of finding a better solution. Some of them guarantee a strict improvement in the objec-

tive function, whereas others do not. Typically, Dantzig’s primal simplex cannot guarantee

this strict improvement when the instances are degenerate. As for IPS, it was designed to

avoid nonimproving steps, although in practice degenerate pivots are still performed. The
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purpose of this section is to describe a general decomposition algorithm yielding a strict

improvement at each step; IPS may be seen as one of its possible implementations. More-

over, we give a theoretical insight based on a purely primal approach. This approach both

gives a rather geometric understanding of the algorithm and eases the proof of optimality.

In Section 2.1, we describe a primal algorithm that guarantees a strict improvement at each

iteration, and in Section 2.2, we show how the algorithm can be improved by decomposing

the problem.

2.1. A Primal Algorithm for Degenerate Problems

IPS was designed to start from an extreme solution of the feasible domain, assuming

nonnegative variables. We generalize it to allow any feasible starting solution, and we

consider an LP with bounded variables:
min cTx

s. t. Ax= b

l≤x≤ u,

(P)

where x∈Rn is the vector of decision variables, c∈Rn is the cost vector, A∈Rm×n is the

constraint matrix, b ∈ Rm is the right-hand side vector, and l,u ∈ R ∪ {±∞}, l < u, are

respectively the lower- and upper-bound vectors. We assume that A is of full rank m with

m≤ n and has no zero-column, and that the feasible domain FP is nonempty.

Given a feasible solution x ∈ FP, the indices of its components can be partitioned into

four sets, P, L, U , and M. L and U respectively designate the set of indices of variables

that are at their lower and upper bounds. For the remaining variables—all of them being

strictly within their bounds—P designates a maximal subset such that A·P is linearly

independent, while M gathers all the others. Note that |P| ≤ m, but nothing can be

inferred for |M|. With this decomposition and a convenient reordering of the columns,

x= (xP ,xL,xU ,xM) with lP <xP <uP , xL = lL, xU =uU , and lM <xM <uM, and

A·PxP +A·LlL+A·UuU +A·MxM = b. (1)

A·P is a basis of the linear span of A·P∪M, denoted Span(A·P∪M), and P is therefore

called the reduced or working basis. Its indices and the variables of xP are respectively

referred to as basic indices and basic variables, and p= |P| denotes the cardinality of this

working basis. Finally, the set of all nonbasic indices is denoted N : N =L∪U ∪M.

In the rest of this paper, x0 ∈FP denotes the current feasible solution of (P).
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Definition 1. d∈Rn is a feasible direction at x0 if there exists a step ρ> 0 such that

x0 + ρ ·d ∈FP. Moreover, d is improving if cTd< 0, i.e., if taking a positive step along d

yields an improvement in the objective value.

To guarantee a strict improvement, the following problem must be addressed:

Improvement Problem (Imp): Given a feasible solution x0, either supply a

feasible improving direction d∈Rn, or assert that x0 is optimal for (P).

The feasible improving direction d can be normalized at will as long as the length of the

step ρ is chosen such that x0 + ρ ·d∈FP. The set of all feasible directions at x0 can then

be described as the following cone section:

∆0 =

{
d∈Rn |Ad= 0 , dU ≤ 0 , dL ≥ 0 ,

∑
i∈P∪N

wi |di|= 1

}
(2)

where w ∈Rn, wP ≥ 0, wN > 0.
∑

i∈P∪N wi|di|= 1 geometrically represents a normaliza-

tion constraint. Without this constraint, ∆0 is a cone and if x0 is an extreme point of FP,

the extreme directions of this cone are the directions of the edges of FP at x0.

Since dU ≤ 0 and dL ≥ 0, the normalization constraint can be written in a way that

makes it closer to a linear equality, which will prove useful later. With wU < 0, wL > 0,

wM > 0 and wP ≥ 0, Equation (2) reads:

∆0 =

{
d∈Rn |Ad= 0 , dU ≤ 0 , dL ≥ 0 ,

∑
i∈P∪M

wi |di|+
∑

i∈U∪L

wi |di|= 1

}
. (3)

Moreover, given a feasible improving direction d0, the maximal step along d0 at x0,

defined as ρ0 = max
{
ρ|x0 + ρd0 ∈FP

}
, is the most interesting step to take since it yields

the greatest possible improvement along d0.

One way to tackle the improvement problem is to minimize the chosen objective over the

domain ∆0. Typically, that objective is related to the improvement in the objective function

given by d∈∆0. Imp may thus come down to solving the following greatest normalized

improvement program:

z?Gni = min
d∈Rn

{
cTd |d∈∆0

}
. (Gni)

Lemma 1. x0 is optimal for (P) if and only if z?Gni ≥ 0.

Based on Lemma 1, the procedure of Algorithm 1 is guaranteed to reach optimality.

Moreover, each step ρk ·dk taken during this procedure yields a strict improvement in the

objective function since all the improving directions dk are feasible, thus ρk > 0 and each

improvement is zk+1− zk = ρk · cTdk < 0. Degeneracy is therefore avoided.
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Algorithm 1: Nondecomposed Primal Improvement Procedure

Input: A linear program P, x0 a feasible solution of P.

Output: xk, an optimal solution of P.

1 k← 0; z?Gni←−1;

2 while z?Gni < 0 do

3 Solve Gni; z?Gni← optimal objective value of Gni;

4 dk← optimal solution of Gni; xk+1←xk + ρk ·dk; k← k+ 1;

2.2. Of Compatibility and Decomposition: Turning Degeneracy into an Asset

Algorithm 1 not only avoids degeneracy but it represents an opportunity to turn it into

an asset. Gni may be decomposed into two smaller problems that, even if they are solved

separately, assert that the current solution xk is optimal or provide a feasible improving

direction. This decomposition is the main topic of the present subsection. The main idea is

to sequentially find nondegenerate improving simplex pivots if they exist, and otherwise to

solve a more complicated problem similar to Gni. This decomposition relies on the notion

of compatibility.

Definition 2. Given a working basis P, a vector v ∈Rm is compatible (with P) if and

only if v ∈ Span(A·P).

This notion is extended to the nonbasic columns of A·N , their indices, and the correspond-

ing variables. The set of indices of the compatible columns of A·N is denoted C. Every

other column of I =N \C is said to be incompatible, and (C,I) forms a partition of N .

Proposition 1. M⊂C.

Proof By definition of P, for every index j ∈M, the corresponding column A·j is in

Span(A·P). �

According to Proposition 1, C = CL∪CU ∪M and I = IL∪IU , where for any pair of sets

(X ,Y), XY = X ∩Y. All incompatible variables are thus at their lower or upper bounds.

The following proposition indicates the value of compatible columns when solving Imp.

Proposition 2. Compatible columns are exactly those that yield nondegenerate pivots

if inserted into the working basis P.

Proof Let j ∈ N . Pivoting A·j into the working basis leads to a solution x1 ∈ FP

(not necessarily different from x0). Since only A·j has been pivoted, for all k ∈ N \ {j},
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x1
k = x0

k. Since x1 and x0 both satisfy the linear constraints of (P), Ax = b, and thus

A·Px0
P +A·jx0

j =A·Px1
P +A·jx1

j , so if d=x1−x0

A·jdj =−A·PdP . (4)

Since A·P is of full rank, dP = 0 if and only if dj = 0. Therefore, A·j yields a nondegenerate

pivot if and only if x1 6= x0, that is, if and only if dj 6= 0. Finally, Equation (4) admits a

solution d such that dj 6= 0 if and only if A·j ∈ Span(A·P), so the result holds. �

Note that bounds are not mentioned in the above proof. Since all the variables in P are

strictly within their bounds, they can increase or decrease without violating their bounds.

Therefore, if |dj| is sufficiently small, for all i∈P, li ≤ x1
i ≤ ui.

From the perspective of the simplex algorithm, it will be efficient to give priority to

the compatible columns since they are exactly those that yield nondegenerate pivots when

inserted into the working basis P. Based on the compatible-incompatible partition of the

variables, we will show in the following that Gni can be decomposed into the Reduced -Gni

problem (R-Gni) and the Complementary-Gni problem (C-Gni) that respectively focus

on the compatible and incompatible variables:

z?R-Gni = min
(dP ,dC)

cTPdP + cTCdC

s.t. A·PdP + A·CdC = 0∑
i∈P wi |di| +

∑
i∈Mwi |di|+

∑
i∈CU∪CL widi = 1

dCL ≥ 0 , dCU ≤ 0

(R-Gni)

z?C-Gni = min
(dP ,dI)

cTPdP + cTIdI

s.t. A·PdP + A·IdI = 0∑
i∈P wi |di| +

∑
i∈Mwidi = 1

dIL ≥ 0 , dIU ≤ 0

(C-Gni)

R-Gni and C-Gni are both smaller than Gni, so solving them separately must be much

faster than solving Gni. The only remaining issue is to ensure that the search space for

an improving direction ∆0 can be split into that of the compatible columns (FR-Gni) and

that of the incompatible columns (FC-Gni), i.e., that solving Gni is equivalent to solving

R-Gni and C-Gni.
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Lemma 2. A column A·j is compatible if and only if there exists v ∈Rp such that A·j =

A·Pv. In this case, v is unique.

Proof This lemma is a consequence of the definition of compatibility and of the fact

that A·P is a full-rank matrix. �

Theorem 1. Assume wP = 0, then z?Gni = min{z?R-Gni, z
?
C-Gni}.

Proof Recall that wL > 0, wU < 0, C = CL ∪ CU ∪ M, and I = IL ∪ IU . Let d =

(dP ,dC,dI) be a solution of Gni. If dC = 0 or dI = 0, d is respectively a solution of C-Gni

or R-Gni and the result clearly holds.

Suppose now that dC 6= 0 and dI 6= 0. We first prove that d can be written as a con-

vex combination of u′, the solution of R-Gni, and v′, the solution of C-Gni. For every

j ∈ C, A·j ∈ Span(A·P ), so linear combinations of compatible columns A·CdC are also

compatible. According to Lemma 2, there exists uP ∈ R|P| such that A·PuP = −A·CdC.
Let u= (uP ,dC,0) and v= d−u= (vC,0,dI). Let αu =

∑
i∈Mwi |di|+

∑
i∈CU∪CL widi and

αv =wTv = 1− αu. Thus, 0< αu, αv < 1. Moreover, let u′ = u/αu and v′ = v/αv be the

corresponding normalized directions. With these definitions, d= αuu
′+αvv

′. By construc-

tion, u′ (resp. v′) is a solution of R-Gni (resp. C-Gni) and αu +αv = 1, because d ∈∆0.

Therefore, d = αuu
′ + αvv

′ is a convex combination of a solution of R-Gni (u′) and a

solution of C-Gni (v′).

Looking at the objective function, the convex combination reads cTd = αu(cTu′) +

αv(c
Tv′). Either cTd≥ cTu′ or cTd≥ cTv′. However, since every solution of R-Gni and

C-Gni is also a solution of Gni and d is optimal for Gni, cTd≤ cTu′ and cTd≤ cTv′. One

of the two inequalities is thus an equality and the second follows from cTd= αu(cTu′) +

αv(c
Tv′). Therefore, cTd= cTu′ = cTv′, and since d is an optimal solution of Gni, z?Gni =

z?R-Gni = z?C-Gni. �

Theorem 1 extends a theorem established by Rosat et al. (2014) for the set partitioning

problem to general linear programming, and it has no equivalent in past presentations of

IPS. It gives strong theoretical support to the compatible-incompatible partition and to

the R-Gni/C-Gni decomposition of Gni: it states that one of the optimal solutions of

Gni is an optimal solution of one of the decomposed problems. Solving them separately

is thus equivalent to solving Gni, i.e., to determining whether or not x0 is optimal (see

Lemma 1). Since the theorem requires that wP = 0, we retain this assumption in the rest of
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this paper. This last condition is not overly restrictive. It is only natural that the emphasis

is put on the nonbasic variables during the search for an improving direction. The same

assumption is made by Elhallaoui et al. (2011) and by most pricing rules designed for the

simplex algorithm.

Corollary 1. If, for a current solution x and the associated partition (P,C,I), the

optimal values of R-Gni and C-Gni are both nonnegative, then x is optimal for (P).

This corollary is a straightforward consequence of Theorem 1 and Lemma 1 .

One other key aspect of the decomposition is that R-Gni may be further reduced by

observing that the rank of its constraint matrix A·P∪C is the same as the rank of A·P , i.e.,

p. Since R-Gni is feasible by construction, it contains m− p redundant constraints that

may be removed without harm. Assuming that the rows are permuted so that the first p

constraints are independent, these rows are indexed by P while the redundant ones have

their index set denoted P = {p+ 1, . . . ,m}. Since we also have wP = 0, R-Gni may be

equivalently rewritten:

z?R-Gni = min
(dP ,dC)

cTPdP + cTCdC

s.t. APPdP + APCdC = 0∑
i∈Mwi |di|+

∑
i∈CU∪CL widi = 1

dCL ≥ 0 , dCU ≤ 0

This new form clearly emphasizes the potential advantage of solving R-Gni instead of Gni

to find an improving feasible direction.

The previous results canonically lead to the procedure described in Algorithm 2. The

main idea is to first look at compatible columns to perform nondegenerate pivots (R-Gni),

and if no suitable columns are found, to look for a collection of incompatible columns that

globally supplies an improvement (C-Gni).

Corollary 1 shows that x is optimal if and only if z?R-Gni ≥ 0 and z?C-Gni ≥ 0, therefore the

main while loop ends when this condition is satisfied. Notice however that this criterion is

valid only if R-Gni and C-Gni refer to the same partition (P,C,I). z?R-Gni and z?C-Gni are

then set to an arbitrary negative value after the updates of (P,C,I) (lines 7 and 12) to

exit the main loop only when both values have been computed for the same partition.
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Algorithm 2: Compatibility-based Decomposed Primal Improvement Procedure

Input: A linear program P, x0 a feasible solution of P.

Output: x, an optimal solution of P.

1 x←x0; (P,C,I)← partition corresponding to x; z?R-Gni←−1; z?C-Gni←−1;

2 while z?R-Gni < 0 or z?C-Gni < 0 do

3 while some criterion is satisfied and z?R-Gni < 0 do

4 Solve R-Gni; z?R-Gni← the optimal objective value of R-Gni;

5 if z?R-Gni < 0 then

6 Update x by following the direction found by R-Gni; update (P,C,I);

7 z?C-Gni←−1 ;

8 while some criterion is satisfied and z?C-Gni < 0 do

9 Solve C-Gni; z?C-Gni← the optimal objective value of C-Gni;

10 if z?C-Gni < 0 then

11 Update x by following the direction found by C-Gni; update (P,C,I);

12 z?R-Gni←−1 ;

Remark 1. No theoretical ground requires R-Gni to be given priority over C-Gni. The

order in which both while loops 3-7 and 8-12 are performed in Algorithm 2 is based on

common sense: R-Gni is easier to solve than C-Gni because compatible columns guarantee

nondegenerate pivots. These two while-loops could possibly be switched. Also, the criteria

that appear at lines 3 and 8 may be set to allow for several instances of R-Gni or C-Gni

to be solved consecutively. They may thus be used to emphasize the preference for one or

the other problem.

Algorithm 2 provides a strong basis for an efficient algorithm for degenerate LPs. Yet it

is too generic to be implemented as such, and choices are necessary to make it a practical

LP solver. Matters such as how to find an initial solution, when to update the (P,C,I)

partition, or when to switch from solving R-Gni to solving C-Gni are more than just imple-

mentation details. They are critical features of the algorithm that can dramatically change

its computational behavior and the resulting running time. The next section thoroughly

addresses the evolution from this theoretical scheme to a numerically efficient procedure.

3. Implementing the Framework: IPS

Implementations similar to Algorithm 2 already exist, even though the associated generic

theory was never presented. One of them is, as already mentioned, the IPS algorithm
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of Elhallaoui et al. (2011). IPS includes practical implementation techniques, but it also

makes implicit choices. In particular, all the weights in the normalization constraint are set

to 1, and the complementary problem is transformed through a costly algebraic operation

to reduce its size. These choices are discussed below, together with the most important

implementation issues. Although some of them are discussed in Elhallaoui et al. (2011) and

Raymond et al. (2010b), we adapt the presentation to emphasize the relationship between

IPS and the aforementioned generic framework. New details are also needed because of

the efficient treatment of upper-bounded and unbounded variables. Moreover, our intent

to diversify the benchmark and the general view provided by the previous section give rise

to several improvements.

3.1. Starting the Algorithm with an Initial Feasible Solution

One important improvement is that the theoretical presentation in the previous section

does not assume that the initial feasible solution is basic. We use a simplex phase I to

generate the initial solution in our tests, but IPS could start from a feasible solution

generated, for instance, by an external heuristic procedure. The only additional work is

to identify a maximal linearly independent set of columns within their bounds. This can

be done, for instance, by performing Gaussian eliminations until reduction to row echelon

form. The operation simultaneously provides the set P and the m−p redundant constraints

of R-Gni.

3.2. Identifying Compatible Variables and Transforming the Complementary
Problem

The efficiency of Algorithm 2 relies on the ability to quickly update the partition (P,C,I).

Once P is known, identifying C is equivalent to finding the set of nonbasic columns that

belong to Span(A·P). A straightforward way to do this is to complete the columns of A·P
with vectors of Rm to form a basis matrix B of Rm. Since the columns of A·P are the first p

columns, any vector v ∈Rm is written in the basis matrix B as
((
B−1v

)
P ,
(
B−1v

)
P

)
, with(

B−1v
)
P ∈ Span(A·P). This decomposition being unique, it follows that v ∈ Span(A·P) if

and only if
(
B−1v

)
P = 0.
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Elhallaoui et al. (2011) and Raymond et al. (2010b) always assume a complete basis is

available because the initial solution comes from a simplex phase I. Here, the computations

are minimized by choosing the simplest possible completion, i.e.,

B =

APP 0

APP Im−p

⇔B−1 =

 A−1
PP 0

−APPA
−1
PP Im−p

 .
As a consequence, the set of compatible columns is determined by forming the matrix

−APPA
−1
PPAPN +APN . Only for xM may this calculation be skipped, since those columns

are known to be compatible.

In contrast to the identification of compatible columns, the transformation of C-Gni

is not necessary for the execution of the algorithm. It is however an essential element of

IPS. In C-Gni, the linear constraints A·PdP +A·IdI = 0 can be interpreted as follows:

the weighted combination of the columns A·IdI that potentially enter the basis must

be compatible. These constraints are equivalent to A·IdI ∈ Span(A·P). As stated above,

another way of putting this condition is

(
−APPA

−1
PPAPI +API

)
dI = 0. (5)

Moreover, since A·P is a full-rank matrix, for a given dI satisfying (5), there is a unique

dP such that A·PdP +A·IdI = 0. This vector is given by dP = −A−1
PPAPIdI . Denoting

c̄T = cT − cTPA−1
PPAP· to extend the usual notation of the reduced cost, the solution of

C-Gni is thus equivalently found by solving a smaller LP that involves only the variables

of dI :

z?C-Gni = min
dI

c̄TIdI

s.t.
(
−APPA

−1
PPAPI +API

)
dI = 0

wT
IdI = 1

dIL ≥ 0,dIU ≤ 0

(Cr-Gni)

This transformation of the complementary problem C-Gni into a smaller problem Cr-

Gni is similar to that performed in the reduced-gradient algorithms as presented by Kallio

and Porteus (1978). That is, the reduction of a problem with p+ |I| variables to |I| vari-

ables in such a way that (dP ,dI) is easily inferred from dI resembles the reduced-gradient

approach. However, the reduction in the number of constraints presented here is not men-

tioned in either the theory (see Kallio and Porteus (1978)) or the MINOS implementation
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of Wolfe’s reduced-gradient (see Murtagh and Saunders (1978)), and neither work suggests

adding a normalization constraint that could influence the objective.

Although the density of the constraint matrix changes as we transform C-Gni, in a way

that is impossible to predict in the general case, it seems that an important reduction in

the computational time could be achieved by considering an LP with fewer variables and

constraints. In IPS, R-Gni has p constraints and p+ |C| variables, and Cr-Gni has m− p
constraints and n− p− |C| variables. If the number of simplex pivots correlates with the

size of the two problems, one would expect IPS to perform best on problems with p≈ 0.5m

and approximately as many compatible as incompatible variables.

Focusing now on the computational burden of the algebraic operations described above,

we see that the method used to determine C is closely linked to the choice of whether or

not to transform C-Gni. If −APPA
−1
PPAPN +APN is computed to check the compatibility

of the nonbasic variables, there is no other costly operation to execute in order to form

Cr-Gni. Therefore, solving Cr-Gni should be faster than solving C-Gni. On the other

hand, if a fast method for identifying the compatible columns is available, much of the

time spent computing the constraints of Cr-Gni would potentially be saved by keeping

the original constraints in C-Gni. With this in mind, Raymond et al. (2010a) recently

proposed a stochastic compatibility test that does approximately as many operations as the

computation of a reduced cost and identifies all the compatible columns with an extremely

small probability of error.

3.3. Setting the Normalization Constraint in the Complementary Problem

The second important implementation choice considered as a part of IPS by Elhallaoui

et al. (2011) and Raymond et al. (2010b) is the normalization constraint of C-Gni. For

simplicity, all the weights are set to ±1 in IPS.

To better understand the effect of this choice, one may observe that Cr-Gni could

be equivalently solved by removing the normalization constraint and minimizing the nor-

malized criterion c̄TIdI/w
T
IdI . A normalized solution of Cr-Gni would then be obtained

as d?
I/w

T
Id

?
I . This shows that the normalization constraint actually impacts the criterion

guiding the search for an improving compatible combination of columns. For instance, even

if it cannot lead to a compatible direction, if the search is restricted to solutions with one

nonzero variable, c̄i/wi, i ∈ I will be minimized. Setting all the weights to ±1 thus leads

to an extension of Dantzig’s original pricing criterion (see Dantzig (1955)) to improving
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directions with more than one nonzero nonbasic variable. The main advantage of Dantzig’s

pricing is that the weights are easy to compute, however, there is no reason why they

should particularly lead to good directions.

3.4. Solving the Reduced Problem

The practical solution of R-Gni results from the immediate computation of its optimal

solution, as indicated by the proposition below.

Proposition 3. R-Gni admits an optimal solution (d?
P ,d

?
C) such that

d?j =
1

wj

, for some j ∈ arg min

({
c̄i
wi

: i∈ CL ∪CU
}
∪
{
−|c̄i|
wi

: i∈M
})

d?i = 0 , for all i∈ C \ {j}

d?
P =− 1

wj

A−1
PPA·j.

(6)

Proof Let zmin = min
({

c̄i
wi

: i∈ CL ∪CU
}
∪
{
− |c̄i|

wi
: i∈M

})
. For any feasible solution d

of R-Gni, dP =−A−1
PPA·CdC, so the objective function cTPdP+cTCdC is equivalently written∑

i∈C

c̄idi =
∑
i∈C

c̄i
wi

widi ≥
∑

i∈CL∪CU

c̄i
wi

widi +
∑
i∈M

−|c̄i|
wi

wi |di|

≥min

{
c̄i
wi

: i∈ CL ∪CU
} ∑

i∈CL∪CU

widi + min

{
−|c̄i|
wi

: i∈M
}∑

i∈M

wi |di|

≥ zmin×

( ∑
i∈CL∪CU

widi +
∑
i∈M

wi |di|

)
= zmin.

One can easily verify that a vector d? satisfying (6) is a feasible solution of R-Gni whose

objective value is equal to zmin, so it is optimal. �

The consequence of Proposition 3 is that solving R-Gni and following the optimal solu-

tion until a bound is reached is equivalent to pivoting a compatible column into the working

basis. As long as the variables of xP are strictly within their bounds, those pivots are

guaranteed to be nondegenerate. In practice, this guarantee may be costly since it implies

that variables at one of their bounds must be removed from P and C after each pivot. As

a consequence, IPS solves R-Gni several times without updating the partition (P,C,I) by

running the primal simplex on the following reduced problem until a stopping criterion is

reached: 
min cTPxP + cTCxC

s. t. APPxP +ACPxC = b̃P

lP ≤xP ≤uP , lC ≤xC ≤uC

(Red)
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Here b̃P = bP −A·ILlIL −A·IUuIU is used instead of bP to ensure the feasibility of the

current solution. The choice of the weights wC determines the pricing criterion used to

solve Red. For instance, if all the weights are set to ±1, the primal simplex selects entering

variables according to Dantzig’s criterion.

The stopping criterion is that determined by Raymond et al. (2010b): the simplex is

stopped after m iterations if optimality is not reached earlier. In contrast to Raymond

et al. (2010b), a new partition is not built every time m consecutive pivots are performed

because identifying the compatible variables can be costly. Instead, Red is built anew only

if at least 10% of the variables in P are equal to one of their bounds and if 30% of P has

changed since the last update of (P,C,I). The first criterion ensures that no update of

Red is performed provided the degeneracy remains low enough. The second guarantees

that some progress is made between two consecutive manipulations of the constraints.

3.5. Solving the Complementary Problem

Once an optimal solution of Red has been found, new improving directions are found or

optimality is proved by solving Cr-Gni. Theoretically, each time that Cr-Gni is solved it

provides a feasible descending direction. However, this property requires that the partition

(P,C,I) is updated each time. Furthermore, following the improving direction found by

Cr-Gni usually results in only a small modification of the current solution and the associ-

ated Red. For these reasons, the strict theoretical framework described in Algorithm 2 is

usually inefficient in practice. As stated at the end of Subsection 3.4, the decomposition is

thus updated only when the solution is degenerate enough and P has changed significantly

since the last update or z?C-Gni = 0. Following the procedure of Raymond et al. (2010b),

we then solve the complementary problem several times in a row. Each time we remove

the variables that appear in the resulting direction from the problem and solve Cr-Gni

again to find a new direction involving different nonbasic variables. These directions are

not directly followed; the nonzero variables are instead included in C together with the

other variables belonging to Span (A·P∪C). This is done to grant the simplex more flex-

ibility in choosing the order of the pivots when solving the resulting Red. In our tests,

complementary problems were solved until at least 10% of the columns of I were selected

to be appended to the reduced problem.

As in Raymond et al. (2010b), Cr-Gni is solved with the dual simplex algorithm but no

warm start is described. An improvement is added to ensure that this process starts from
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a dual feasible solution. With that in mind, consider the dual formulation of Cr-Gni with

slack variables s:

z?C-Gni = max
(π,y)

y

s.t. wiy+πT
(
−APPA

−1
PPAPi +APi

)
+ si = c̄i, ∀i∈ IL

wiy+πT
(
−APPA

−1
PPAPi +APi

)
− si = c̄i, ∀i∈ IU

s≥ 0,π ∈Rm−p, y ∈R

(7)

With j ∈ arg min{c̄i/wi : i ∈ I}, a feasible solution of (7) is obtained by setting π = 0,

y= c̄j/wj, sj = 0, and si =±(c̄i− c̄j wiwj
) (≥ 0),∀i∈ I \ {j}. The associated basis is made up

of y and {si}{i∈I\{j}}, while π and sj are nonbasic. Clearly, this solution is not optimal

since the complementarity conditions would lead to only one nonzero variable in dI , which

contradicts the definition of an incompatible variable. On the other hand, giving this

solution to a LP solver helps to avoid a potentially time-consuming phase I.

Once an optimal solution d?
I of Cr-Gni has been found, all the variables such that

d?i 6= 0, i ∈ I, are removed from Cr-Gni, which is equivalent to removing the associated

constraints and slack variables in (7). As a consequence, the solution remains dual feasible

and can be used to efficiently warm-start the solution process for this smaller Cr-Gni.

3.6. Summary of the Algorithm

The choices and adaptations that are included in IPS to obtain an efficient practical imple-

mentation are summarized in Algorithm 3. The set P is not necessarily updated after

each modification of the solution. Instead, we denote by P+ the set indexing the variables

strictly within their bounds. Immediately after building (P,C,I) from scratch (step 5),

P =P+, but this may change after pivots are performed. The reduced and complementary

problems, Red and Cr-Gni, correspond to the current partition (P,C,I). The updates of

(P,C,I) at step 5 thus correspond to a decrease in the size of Red while those at step 17

lead to an increase.

4. Extended Computational Analysis of IPS

4.1. Solution of the LPs

The optimization library cplex 12.41 is called for the solution of every LP. The initial

primal feasible solution is generated through a simplex phase I; the primal simplex is used

1 cplex is freely available for academic and research purposes under the IBM academic initiative: http://www-03.
ibm.com/ibm/university/academic
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Algorithm 3: Improved primal simplex with upper and lower bounds

Input: A linear program P, x0 a basic feasible solution of P.

Output: x, an optimal solution of P.

1 x←x0; P ←{j : x0
j is basic}; P+←{j : lj <x

0
j <uj}; P0←∅; optimal ← false;

2 while optimal = false do

3 while x is not optimal for Red do

4 if |P+| ≤ 0.9 |P| and |P0 ∩P+| ≤ 0.7 |P0| then

5 Build the partition (P,C,I) corresponding to x; P0←P;

6 Solve Red for m iterations or until optimality: x← the current solution;

7 P+←{j : lj <xj <uj};
8 Solve Cr-Gni: d?

I← the optimal solution; z?Cr-Gni← the optimal objective value;

9 if z?Cr-Gni ≥ 0 then

10 optimal ← true;

11 else

12 I+←{i∈ I : d?i > 0};
13 while z?Cr-Gni < 0 and |I+| ≤ 0.1 |I| do

14 Remove dI+ from Cr-Gni;

15 Solve Cr-Gni and update d?
I and z?Cr-Gni;

16 I+←I+ ∪{i∈ I : d?i > 0};
17 Complete P with indices of I+ to get a basis of Span(A·P∪I+); update (C,I);

to solve Red while the dual simplex is used for Cr-Gni. IPS is then evaluated by comparing

its performance with a direct solution of the complete problem P by the primal simplex of

cplex, starting from the same initial primal feasible solution. For convenience, this direct

primal simplex approach is referred to as DPS in the following discussion. Moreover, we

performed the cplex presolve initially and ran the simplex phase I, IPS and DPS on the

presolved instances. This way, the two algorithms take advantage of both the presolve and

the warm start.

The default options of cplex are used for all the parameters except the pricing method.

With default pricing, cplex automatically switches between the different criteria imple-

mented for the primal simplex, depending on indicators that are unfortunately not docu-

mented or available to the user. There are several disadvantages to this automatic pricing.

First and foremost, iteratively starting and stopping cplex has a strong undesirable impact
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on the choices it makes with regards to the selected criterion. As a consequence, the dif-

ferences between the DPS and IPS performance could originate from the differing pricing

methods, which would make interpretation difficult. Second, the choice of the pricing has

important consequences on the number of pivots performed while solving an LP and the

computational time for each pivot, as illustrated in Table 1. The automatic pricing would

thus invalidate any comparison of the number of pivots. We therefore chose a specific

pricing method for all the calls to cplex, both in DPS and IPS. To choose the method,

we tested the three usually most efficient pricing methods implemented in cplex on the

benchmark detailed in the next section. These methods are the automatic pricing, the

devex method of Harris (1973), and an approximate version of the steepest-edge criterion

first described by Goldfarb and Reid (1977). These methods respectively correspond to

the values 0, 1, and 3 for the CPX PARAM PRIIND parameter. Table 1 shows the aver-

age runtime and the number of pivots for each problem family. For an easier comparison,

we present the results for devex and steepest-edge as geometric means of the ratios rela-

tive to the default option. The results show that the approximate steepest-edge is neither

systematically better nor worse than the automatic pricing, and so we used it in all the

tests.

Table 1 Comparison of three pricing criteria in cplex

default devex (ratios) steepest-edge (ratios)

Instance pivots cpu pivots cpu pivots cpu

UBFA 128165 192.00 s 1.08 0.65 0.31 0.25
UFL 52926 17.56 s 1.63 0.94 0.76 0.74
VCS 169552 62.78 s 1.05 3.61 0.28 1.51
Mittelmann 672386 255.92 s 0.62 1.67 0.21 1.23

4.2. Description of the Benchmark

The performance of IPS was tested on five families of problems. The first three sets of

instances correspond to specific types of problems: combined fleet assignment and aircraft

routing problems (UBFA), uncapacitated warehouse location problems (UFL), and simul-

taneous vehicle and crew scheduling problems (VCS). Instances of these problems were

used by Elhallaoui et al. (2011) because they exhibit significant degeneracy. We made two

noteworthy modifications to this benchmark. The ten VCS instances of Elhallaoui et al.
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Table 2 Characteristics of the benchmark

size of P DPS solve degeneracy

Instance m: rows n: cols ρA cpupI
piv cpu var piv

UBFA1 5182 23650 2.5E-3 23.64 11129 8.78 74.0% 65.2%
UBFA2 5182 23990 2.5E-3 30.09 15566 13.05 74.5% 66.9%
UBFA3 5182 24282 2.5E-3 35.47 67792 93.72 76.2% 68.5%
UBFA4 5182 24517 2.5E-3 28.60 142550 255.36 76.5% 73.2%
UBFA5 5182 24875 2.5E-3 31.03 53591 73.42 76.9% 85.8%

UFL1 7965 7965 2.4E-4 0.02 20327 5.31 57.3% 45.6%
UFL2 10440 10440 1.9E-4 0.02 36072 8.94 69.7% 60.2%
UFL3 15476 15476 1.3E-4 0.03 54069 17.57 75.1% 61.3%
UFL4 20534 20534 9.6E-5 0.04 60587 23.72 76.7% 71.4%
UFL5 25931 25931 7.7E-5 0.05 58382 23.21 80.2% 84.3%

VCS1 2082 10259 1.5E-2 7.35 18598 16.51 44.6% 70.7%
VCS2 2082 10065 1.5E-2 7.72 18631 16.64 44.1% 65.3%
VCS3 2081 26260 1.6E-2 0.83 85014 149.58 62.3% 47.9%
VCS4 1199 130902 1.7E-2 99.47 12327 62.78 53.1% 64.2%
VCS5 1600 551346 1.2E-2 2757.59 26126 591.57 58.2% 68.9%

dano3 3150 13837 1.6E-3 0.15 13392 5.01 33.5% 56.9%
dbic1 33666 140273 1.4E-4 0.30 19943 7.71 88.7% 85.0%
dfl001 3792 8984 8.8E-4 1.98 21059 6.51 46.8% 77.0%
fome12 15168 35936 2.2E-4 2.58 85321 51.23 48.5% 76.2%
fome13 30336 71872 1.1E-4 2.58 155263 146.29 48.9% 71.5%
l30 2698 15363 1.2E-3 6.18 281111 246.24 22.9% 96.5%
lp22 2872 8693 1.9E-3 3.21 28187 14.03 30.1% 60.9%
mod2 23828 23904 1.2E-4 5.34 38619 31.62 16.2% 13.1%
neos1’ 1892 131581 1.9E-3 16.50 34064 116.10 82.3% 57.1%
neos2’ 1558 131875 2.7E-3 18.47 33565 114.37 82.4% 20.8%
ns1688926 24576 16489 1.1E-3 0.26 17581 57.50 43.6% 69.6%
nsct2 7778 11297 4.2E-3 0.12 8411 0.40 89.6% 62.2%
nug08-3rd 18269 20447 2.5E-4 642.70 462736 9649.38 99.5% 99.9%
rail4284 4176 1090526 2.4E-3 3.28 89959 2568.54 26.2% 38.5%
rlfprim’ 4046 40340 9.8E-4 0.05 3198 1.06 96.4% 99.9%
stat96v1 4502 187604 6.6E-4 0.34 40208 171.55 39.4% 75.9%
world 23752 25702 1.2E-4 2.66 44396 38.94 17.7% 13.6%

(2011) all had 2084 constraints and about 6000 to 10000 variables. We kept only the largest

two, and we added three others involving two to fifty times more variables to observe the

sensitivity of the algorithm to variations in the number of variables. We derived the UBFA

instances from the five largest fleet assignment instances of Elhallaoui et al. (2011) by

explicitly adding upper bounds on the variables. The set-partitioning constraints implicitly

constrain the variables to be less than or equal to one; we added the upper bound xi ≤ 1

to every variable xi. Additionnally, presolve was switched off for these instances to prevent

it from removing these implied bounds. We emphasize that we did not modify the original

fleet assignment instances to improve the performance of the algorithm with respect to the



Omer et al.: IPS: General Framework and Extended Experimental Analysis
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2014-03-OA-060 21

results of Elhallaoui et al. (2011). Our goal is only to build quickly a test set for a first

evaluation of the algorithm with upper and lower bounds.

The instances used by Elhallaoui et al. (2011) and Raymond et al. (2010b) share common

features that motivated their choice. They are all highly degenerate, their sizes are reason-

able, the variables are all bounded below (by 0) but not above, and they include similar

types of constraints. For instance, the UBFA, and VCS problems all contain a majority of

set-partitioning constraints. Although we made some changes to the benchmark by con-

sidering larger instances and adding finite upper bounds to the fleet-assignment instances,

it is difficult to make a thorough analysis of the strengths and weaknesses of IPS for

such a homogeneous benchmark. We therefore added instances selected from Mittelmann’s

benchmark2, which was built to enable a rigorous evaluation of the commercial and open

implementations of the most efficient algorithms for LP. To keep the size of the benchmark

reasonable, we only kept the instances with less than 50000 constraints. We also consid-

ered the dual form of the instances containing significantly more constraints than variables

when the number of constraints of the dual LP is less than 50000 constraints. Even with

this restriction, some selected instances are large enough to exhibit the difficulties that IPS

may encounter when the number of rows increases. Moreover, in Algorithm 3, the partition

is not built as long as less than 10% basic variables are degenerate. This threshold is never

reached when solving gen4, qap12, qap15, nug15 and self, so IPS is equivalent to DPS.

As a consequence, we do not display the results for these instances. Testing IPS on the

remaining instances should help to confirm its strengths and identify its limits.

Table 2 summarizes the characteristics of the instances that we used. It focuses on three

aspects of the instances: their sizes, the performance of DPS, and indicators of degeneracy.

Since the algorithms are run after the presolve, the characteristics given in the table refer

to the presolved instances (except for UBFA1–5). The header ρA stands for the density

of the original constraint matrix A, and cpupI
is the time spent in the simplex phase I.

To characterize the degeneracy during the solution of the instances, we recorded both

the average number of degenerate variables and the number of degenerate pivots. The

Mittelmann instances for which we solved the dual form are indicated with a ′ symbol.

2 These instances are available online: http://plato.asu.edu/ftp/lpcom.html
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4.3. Experimental Results

The tests were all performed on an OpenSuse operating system with an Intel(R) Core(TM)

i7-3770 CPU @ 3.40 GHz processor.

IPS as summarized in Algorithm 3 was called on the benchmark to obtain the results in

Table 3. These results are relevant to a first analysis of the IPS performance. The headers

are partitioned into three types of information. The first two columns record the number

of times the partition (P,C,I) was updated (“PCI”) and the number of times the reduced

problem was expanded by solving Cr-Gni several times (“EXP”). The following columns

give the proportion of the runtime spent in computing the partitions (P,C,I), solving Red,

and solving Cr-Gni, as well as the total runtime of IPS. For an easier comparison, the last

four columns contain the ratios of the performance measures of DPS relative to those of

IPS, thus indicating the improvement factor of IPS. The headers “pivRed” and “deg piv”

respectively stand for the total number of primal simplex pivots and the proportion of

degenerate pivots, and “cpu” stands for the total runtime. The quantity in the “cpuRed”

column is the ratio of the time spent solving Red relative to the DPS runtime. This

column gives a measure of the improvement that could be expected for IPS if (P,C,I) was

updated rapidly and the solution of C-Gni was fast even if the problem is not transformed

(since the transformation of C-Gni comes with costly updates of (P,C,I)). Geometric

averages are provided for the improvement factors of the first three types of problems, but

given the heterogeneity of the Mittelmann instances it did not seem relevant to base an

interpretation on average values. The analysis of the Mittelmann instances is instead done

on a case-by-case basis.

The solution was on average 4 times faster with IPS than with DPS for the VCS

instances. Similar results were observed by Elhallaoui et al. (2011) and Raymond et al.

(2010b) for instances whose sizes are comparable with those of VCS1 and VCS2. The inter-

esting point is that IPS remains efficient on VCS3, VCS4, and VCS5, where the number

of variables is two to fifty times larger. As expected, the total number of pivots and the

proportion of degenerate pivots are lower for IPS than for DPS, and an important indi-

cator of efficiency is that the time spent in transforming and solving Cr-Gni remains a

small part of the total runtime. The instance VCS4 seems to be an exception, but this is

because that IPS performed many fewer pivots in Red, thus giving more importance to

the partition updates and Cr-Gni.
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Table 3 Evaluation of IPS against cplex

phase count cpu allocation improvement factors

PCI EXP PCI Red Cr-Gni cpu pivRed deg piv cpuRed cpu

VCS1 4 10 3.3% 82.6% 12.9% 6.15 1.49 2.17 3.25 2.68
VCS2 3 10 2.7% 85.6% 10.6% 6.02 1.55 1.47 3.23 2.76
VCS3 3 12 3.0% 56.6% 39.3% 15.97 5.10 1.23 16.56 9.37
VCS4 1 4 3.0% 85.2% 10.4% 18.16 1.07 1.18 4.06 3.46
VCS5 1 4 1.7% 93.4% 4.3% 128.23 1.62 1.23 4.94 4.61
Average 1.83 1.42 5.11 4.06

UBFA1 1 7 17.4% 45.3% 34.3% 6.08 s 1.12 1.90 3.19 1.44
UBFA2 1 8 16.5% 44.4% 35.6% 6.47 s 1.49 1.86 4.54 2.02
UBFA3 1 8 16.0% 48.5% 32.3% 6.72 s 5.94 1.56 28.74 13.94
UBFA4 1 8 14.6% 43.0% 39.4% 7.77 s 11.41 1.97 76.43 32.86
UBFA5 1 10 14.9% 49.3% 32.5% 7.26 s 4.26 1.89 20.53 10.12
Average 3.44 1.83 14.55 6.70

UFL1 3 15 18.4% 57.0% 21.3% 3.79 s 1.76 1.43 2.46 1.40
UFL2 3 13 25.9% 38.4% 31.8% 4.37 s 3.21 1.47 5.32 2.04
UFL3 4 12 32.6% 37.4% 26.8% 9.00 s 2.80 1.56 5.22 1.95
UFL4 3 11 32.2% 33.7% 31.4% 14.23 s 2.51 2.32 4.94 1.67
UFL5 4 10 43.8% 19.8% 33.9% 18.44 s 2.82 1.78 6.36 1.26
Average 2.57 1.68 4.64 1.64

dano3 2 6 6.7% 73.8% 17.7% 3.66 1.16 1.61 1.86 1.37
dbic1 1 4 29.6% 4.3% 64.2% 210.63 0.93 1.16 0.86 0.04
dfl001 2 10 8.0% 58.5% 31.7% 5.43 1.23 1.53 2.05 1.20
fome12 3 14 13.6% 29.7% 55.2% 104.6 0.98 2.08 1.65 0.49
fome13 3 14 12.8% 22.0% 64.0% 455.82 0.90 1.36 1.46 0.32
l30 2 3 34.6% 8.3% 56.3% 151.37 12.29 1.32 19.58 1.63
lp22 6 9 5.5% 84.5% 9.4% 11.29 1.01 1.78 1.47 1.24
mod2 1 9 3.5% 93.6% 2.6% 38.94 0.80 1.37 0.87 0.81
neos1’ 3 6 45.2% 3.7% 42.6% 6.87 16.57 0.66 456.74 16.90
neos2’ 2 4 44.3% 18.4% 30.6% 5.4 7.15 0.22 115.23 21.18
ns1688926 1 1 52.3% 41.6% 6.0% 70.88 1.76 1.46 1.95 0.81
nsct2 2 7 26.3% 2.0% 69.3% 8.5 1.54 0.68 2.43 0.05
nug08-3rd 3 3 0.2% 0.3% 99.5% 5810.19 272.52 1.00 553.59 1.66
rail4284 1 9 1.3% 84.3% 13.8% 1386.36 1.07 0.73 2.20 1.85
rlfprim’ 2 1 56.2% 0.2% 42.9% 4.87 1599.00 ∞ 120.92 0.22
stat96v1 3 3 14.9% 45.4% 39.5% 126.5 2.33 1.12 3.00 1.36
world 1 10 3.2% 93.5% 3.0% 44.31 0.84 1.17 0.94 0.88

Referring to Table 2, it appears that around 75% of the basic variables were degenerate

for the UBFA instances. About one third of these variables are at their upper bounds

(xi = 1) while the rest are at their lower bounds (xi = 0). Because of this high number of

degenerate variables, 65% to 80% of the pivots of DPS are degenerate, and there is a great

variability in the number of pivots although the instances all derive from the same problem

and have similar sizes. The average improvement by a factor of 6.7 for this class of problem

reflects a stabilization of the solution process for these highly degenerate problems: as

expected, the IPS runtimes are close for these instances, ranging from 6.1 s to 7.8 s, and
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they globally increase with the instance sizes. These positive results validate the potential

usefulness of IPS for degenerate problems with bounded variables.

The UFL instances clearly illustrate the impact of the partition updates on the overall

execution of IPS. Although IPS achieves a considerable reduction in the number of pivots,

leading to an average 2.6 improvement factor and a proportion of degenerate pivots that

is 1.7 times smaller than that for DPS, the total improvement is not as good as that for

the other families of problems. This is mostly due to the computational time spent in the

update of (P,C,I) (see column “PCI”), which seems to grow much faster than the time

spent solving Red as the number of constraints increases. As a consequence, the column

“cpuRed” shows a large improvement factor (4.6 on average) over DPS. This shows the

potential for improvement in IPS if the partition can be updated quickly and the ensuing

transformation of C-Gni avoided in such cases.

In contrast to the previously examined families of instances, the performance of IPS is

much less homogeneous for the Mittelmann instances. A significant improvement (greater

than 20%) was achieved for 9 of the 17 instances (dano3, dfl001, l30, lp22, neos1’,

neos2’, nug08-3rd, rail4284, stat96v1), the computational time was significantly worse for

7 instances (dbic1, fome12, fome13, mod2, ns1688926, nsct2, rlfprim’), and it was similar

for the remaining instance (world).

Starting with the largest improvements, we see that the success of IPS on the two similar

instances neos1’ and neos2’ is due to the large proportion of degenerate variables (82%).

Because of this, Red is small, hence it is solved quickly. An impressive improvement factor

for the solution of Red alone was also recorded for nug08-3rd and l30. For these instances,

a massive proportion of degenerate pivots (96.5% to 99.9%) are performed when executing

the primal simplex in DPS (see Table 2). With IPS, a large number of degenerate pivots is

avoided by focusing on the compatible variables and on the improving directions identified

by Cr-Gni. These results are consistent with the purpose of IPS.

The other five instances for which IPS performed significantly better than DPS (dano3,

dfl001, lp22, rail4284, stat96v1) share several attributes: they have comparable constraint

matrix densities and numbers of constraints, and the proportion of degenerate variables

ranges from 26% to 46%. Since the computational time spent updating (P,C,I) depends

on the number of constraints and the number of degenerate variables, it is logical that it

is responsible for only a small part of the total computational time. On the other hand,
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although the overall cpu improvement factors are close (ranging from 1.2 to 1.9), the

solution of Cr-Gni represents a great proportion of the total runtime for dfl001 and

stat96v1. As a consequence, a significant gain could be achieved if the solution of Cr-

Gni could be sped up for these instances; an improvement factor ranging from 2 to 3 was

recorded for the solution of Red alone.

The remaining eight Mittelmann instances did not lead to a significant improvement. The

possible identification of probable causes is supported by Table 4. This table is restricted

to these eight instances. The bold font highlights the information most relevant to explain-

ing the low improvement factors, and the instances with similar features are grouped in

adjacent rows. The columns related to degeneracy and the improvement factors reproduce

the corresponding columns of Tables 2 and 3. The second group of columns focuses on

the partition updates. To better emphasize the comparison with DPS, the computational

time spent in the updates is divided by the DPS runtime. The second column (“|C|/ |P|”)

displays the maximum value of the ratio of the cardinality of C and P found after the

partition updates. This value is an indicator of the potential progress made when solving

Red: if it is large, there is a greater probability that many cheap pivots are performed.

The third group of columns focuses on the solution of Cr-Gni. The first column indicates

the impact of the transformation of C-Gni on the density of its constraint matrix. The

second column shows the Cr-Gni computational time divided by the DPS runtime.

Table 4 Focus on the unimproved instances

degeneracy updates of (P,C,I) solve Cr-Gni improvement factors

var piv cpu
cpuDPS

|C|/ |P| ρCr-Gni
ρA

cpu
cpuDPS

cpuRed cpu

mod2 16.2% 13.1% 4.3% 92.5% 5.1 3.2% 0.87 0.81
world 17.7% 13.6% 3.6% 98.8% 4.6 3.4% 0.94 0.88

dbic1 88.7% 85.0% 808.7% 6.2% 4.5 1754.7% 0.86 0.04
fome12 48.5% 76.2% 27.8% 43.2% 1.6 112.6% 1.65 0.49
fome13 48.9% 71.5% 39.9% 45.1% 1.6 199.3% 1.46 0.32

ns1688926 43.6% 69.6% 64.5% 95.1% 2.0 7.4% 1.95 0.81
nsct2 89.6% 62.2% 555.8% 613.0% 1.0 1461.5% 2.43 0.05
rlfprim’ 96.4% 99.9% 257.5% 0.0% 1.6 197.2% 120.92 0.22

The first group of instances, mod2 and world, exhibit low proportions of degenerate vari-

ables and pivots when solved by DPS. Since the main benefits of IPS are the opportunity

to solve a reduced problem and to perform fewer degenerate pivots, these two instances
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leave little room for improvement. The IPS runtime is larger than that for DPS, and so

is the time spent solving Red. It appears that IPS is not appropriate for such instances.

A simple adaptation would be to wait for an important proportion of degenerate pivots

to be performed before starting the algorithm. With such a modification, IPS would be

equivalent to DPS on such instances.

Regarding the second group (dbic1, fome12 and fome13), the most probable cause of the

mediocre performance of IPS is the number of compatible variables after each reduction.

The direct consequence is that after the reduction, a large majority of the variables in Red

belong to the working basis, leaving little hope for important progress toward optimal-

ity. This also has a direct impact on the time spent solving the complementary problem

since many variables have to be returned to Red before it includes a sufficient number of

variables. A simple adaptation would be to estimate the number of compatible variables

before starting IPS. However, that is currently costly since it requires the computation of

−APPA
−1
PPAPN +APN , so a faster method would need to be used.

The two instances ns1688926 and dbic1 illustrate the difficulties that IPS may encounter

when the size of the LP increases. The partition update may then take more time than the

complete solution with the primal simplex of DPS. Moreover, the complementary problem

may need to be solved a large number of times before selecting 10% of the incompatible

variables, thus leading to a large runtime for Cr-Gni. The same behavior was also observed

for the two smaller instances nsct2 and rlfprim’. Their particularity is that their solution

times with DPS is much smaller than for the other Mittelmann instances with comparable

sizes. As a consequence, the overhead generated by the dynamic reduction is too large

for IPS to compete with the primal simplex. Once again, the only possible fix for such

situations would be to run IPS with fast partition updates and no transformation of C-Gni.

Remark 2. rlfprim’ is a special case because the initial feasible solution is optimal.

With DPS, 3198 degenerate pivots are performed before proving optimality, whereas IPS

solves Cr-Gni once before declaring that the solution is optimal.

Finally, it appears that the matrix of Cr-Gni is up to 5 times denser than A for these

eight instances. This certainly affects the solution of Cr-Gni and is another motivation

for IPS not to resort to the transformation of A.

Remark 3. Overall, we observed that the transformation of C-Gni leads to a less dense

matrix only for the VCS, and UBFA instances, which concurs with the global deduction
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that IPS has a special affinity with certain classes of problems, such as set partitioning

problems.

5. Conclusion

We have developed a new decomposition-based primal algorithm for degenerate LPs. The

decomposition relies on the partition of the nonbasic variables into compatible (C) and

incompatible variables (I), the first group containing the variables that can be pivoted into

the working basis P with a strict improvement in the objective value. This separates the

overall improvement problem, Gni, into two smaller problems, R-Gni and C-Gni, respec-

tively focusing on C and I. We have shown that solving R-Gni and C-Gni is equivalent

to solving Gni, and we have proposed a decomposition procedure to find the optimum of

the LP.

Among the multiple possible implementations of this generic framework is the IPS algo-

rithm, first described by Elhallaoui et al. (2011). The following developments focus on

the choices to be made and the issues to be addressed when moving from the theoreti-

cal procedure to IPS. Some new insight into the solution of R-Gni and C-Gni results

from this approach that considers IPS as a particular implementation of a much more

general algorithm. We make a link between the normalization weights and the pricing cri-

terion; we explain how the algorithm can start from any feasible solution, whether or not

it is basic; and we highlight the importance of warm-starting the solution of C-Gni. It

appears that the most important choices relate to the identification of the compatible vari-

ables, the transformation of the constraint matrix in C-Gni, and the choice of the weights

appearing in its normalization constraint. For instance, the first two choices involve costly

algebraic operations, while the normalization weights are simply set to ±1, thus extend-

ing the Dantzig pricing criterion to improving directions with multiple nonbasic nonzero

variables.

Finally, we conducted experiments on a diversified version of the instances of Elhallaoui

et al. (2011) extended with fifteen data sets from Mittelmann’s benchmark. IPS outper-

formed direct solution with the primal simplex on several classes of problems including

set partitioning, set covering, and warehouse location problems. It also achieved impres-

sive gains for some very degenerate instances from Mittelmann’s benchmark. On the other

hand, it gave no improvement on half of Mittelmann’s benchmark. A thorough analysis of
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these results identified criteria that should be checked before switching from the standard

simplex algorithm to IPS. It is necessary to observe a sufficiently large number of degener-

ate variables and pivots, otherwise there is no reason why IPS should perform better than

the primal simplex. Moreover, the number of compatible variables must be large enough,

or solving Red will not make significant progress toward optimality. As for the pricing

criteria, perturbations, bound shifting, and other techniques included in efficient imple-

mentations of the simplex algorithm, IPS should not used blindly but only when certain

criteria are met.

We also demonstrated the limits of the current update of the partition (P,C,I), the most

important one being that it may be time consuming. This indicates the necessity for an

implementation of IPS that would update (P,C,I) quickly and solve C-Gni efficiently even

without transformation of its constraint matrix. The positive-edge criterion described by

Raymond et al. (2010a) could be considered since it is a fast method for the identification

of compatible variables. Moreover, we noticed that although the transformation leads to

a much smaller form of C-Gni, it may also increase the density of the constraint matrix.

Further experimentation will be needed to get more insight into this issue.

Our theoretical and experimental analyses suggest numerous interesting directions for

further research. For instance, since solving C-Gni or R-Gni does not always provide fea-

sible improving directions in IPS, the important nondegeneracy property of the generic

theoretical scheme is lost for the sake of practical efficiency. As a consequence, it is also

interesting to interpret IPS as an analytical—as opposed to systematic—partial pricing

strategy for the primal simplex algorithm. Let J ⊂N be the set of nonbasic variables that

are considered during the pricing. This set is initialized with the set of compatible vari-

ables C. Later on, J goes through several consecutive phases of expansions and reductions

respectively triggered by insufficient progress or problematic degeneracy. The reduction

is done by keeping in P only the variables strictly within their bounds and updating C

accordingly. The expansion is performed by solving a sequence of complementary prob-

lems, as described in Subsection 3.5. This expansion is an unusually complex procedure

for a partial pricing, which is why we qualified it as “analytical.” This interpretation could

certainly be fruitful for further improvements of IPS.

McCormick and Shioura (2000) proved that a particular choice of the weights appear-

ing in the normalization constraints makes the primal improving procedure polynomial
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if the improvement problem is considered as an oracle. This result underlines the special

attention that should be given to this constraint in future developments. With additional

calculations, the weights could be modified to emulate the steepest-edge rule of Goldfarb

and Reid (1977), the devex of Harris (1973), or any other normalized pricing rule. One

may also devise another normalization resulting in a faster solution of C-Gni.

From a more practical point of view, using an open optimization library would be valu-

able. As in Towhidi et al. (2014), the integration of IPS as an internal procedure of the

COIN-OR CLP solver would have several benefits. The extended control over the sim-

plex algorithm would allow us to adapt the choices made during the solution process to

the particularities of IPS. Moreover, with complete information on the simplex algorithm

available, it would be possible to fill some gaps in the interpretation of the performance of

IPS.

Finally, we have focused on the primal version of the simplex algorithm. However, better

results are often reported for the dual simplex, and it is also a powerful reoptimization tool

used for instance in mixed integer programming to explore the branch-and-bound tree. For

these reasons, it would be interesting to develop a dual version of IPS to take advantage

of dual degeneracy when solving LPs with the dual simplex.
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