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Hybridisation of Nonlinear and Mixed Integer
Linear Programming for Aircraft Separation with

Trajectory Recovery
Jérémy Omer, and Jean-Loup Farges

Abstract—The approach presented in this article aims at find-
ing a solution to the problem of conflict-free motion planning for
multiple aircraft on the same flight level with trajectory recovery.
One contribution of this work is to develop three consistent
models, from a continuous-time representation to a discrete-
time linear approximation. Each of these models guarantees
separation at all times as well as trajectory recovery, but they
are not equally difficult to solve. A new hybrid algorithm is thus
developed in order to use the optimal solution of a mixed integer
linear program as a starting point when solving a nonlinear
formulation of the problem. The significance of this process is that
it always finds a solution when the linear model is feasible while
still taking into account the nonlinear nature of the problem.
A test bed containing numerous data sets is then generated
from three virtual scenarios. A comparative analysis with three
different initialisations of the nonlinear optimisation validates the
efficiency of the hybrid method.

Index Terms—Air traffic control, conflict resolution, nonlin-
ear programming, mixed integer linear programming, optimal
control.

I. INTRODUCTION

A IR TRAFFIC Control (ATC) is the last stage of the
current Air Traffic Management (ATM) system. It aims

at monitoring the current air traffic in real-time. If necessary
ATC is responsible for requesting changes in the trajectories of
aircraft in order to maintain a reference horizontal separation
of 5 NM or a vertical reference separation of 1000 ft. ATC
is presently performed by human operators. The airspace is
divided in geographical volumes and each volume is super-
vised by a pair of ATC Officers (ATCO). ATCOs are able
to fulfill their task in the current network but the airspace
is congested and many flights are delayed to keep air traffic
density below manageable thresholds. The European research
project on ATM, SESAR, points automation as a key feature
for improvement of ATC [1].

A conflict between two aircraft is detected when both the
horizontal and the vertical reference separation distances are
not respected. Automated ATC systems usually aim at finding
the trajectories of a set of aircraft such that a cost function
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is minimised and no pairwise conflict is detected in the next
10-15 minutes. In classical studies, trajectories are obtained
by a sequence of manœuvres that each aircraft has to execute.
These manœuvres may be classified into three categories: turns
or heading changes, modifications of speed norm or speed
changes, and vertical manœuvres.

The generic problem of collision avoidance is intrinsically
difficult because it is nonconvex. Even with no constraint on
motion dynamics, finding collision-free paths for rectangular
objects was proved to be PSPACE-hard [2]. In addition, the
mechanic and aerodynamic laws governing aircraft motion are
very complex and finding the optimal trajectory of one aircraft
is challenging in itself [3].

Conflict-free motion planning for aircraft has been the sub-
ject of many studies. The reader is referred to the remarkable
review on automated ATC in [4] to get an extensive view on
the problem. The state of the art given below illustrates some
promising approaches.

Kirwan and Flynn [5], and Farley and Erzberger [6] remain
in a framework very close to current operations. Efficient
manœuvres are identified for pairwise conflicts and a heuristic
search determines which action should be carried out. Such
a process cannot guarantee that conflict-free trajectories are
found, thus [5] plans to let ATCOs handle the situation in
case of failure. Theoretical studies of the pairwise conflict
with no bound on velocity [7] and with constant velocity [8]
were carried out in the optimal control framework. Optimal
trajectories were determined for this simple case and applied to
the general case through a genetic algorithm [7] and a heuristic
procedure [8].

Without prejudging what a good manœuvre should be, the
problem may be simplified by allowing only one initial mod-
ification of speed vectors [9]–[11]. A Mixed Integer Linear
Program (MILP) may then be solved to find conflict-free
trajectories with speed modifications only, or with heading
modifications only [9], or with both manœuvres [10]. [11]
treats the 3D problem using mixed integer nonlinear program-
ming. These approaches have to be included in a receding
horizon procedure which iteratively solves the problem every
t minutes in order to find the best speed vector at each
time step. Unfortunately, each optimal solution is based on
the assumption that only one speed modification will be
carried out. Although, for instance, [10] takes into account
the recovery of the initial trajectory in the objective function
through an estimate of the additional distance travelled, these
models do not explicitly include decision variables describing
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the manœuvres leading to recovery.
Alonso-Ayuso et al. [12] describe a MILP with multiple

speed and altitude changes. They give an interesting analysis
of tightening techniques implemented to solve their model
more quickly. Richards and How [13] and Menon et al. [14]
present complete models of the problem with multiple speed
modifications. In [13], a MILP is solved after making the
separation constraints linear while [14] keeps the original con-
straints and solves a Nonlinear Program (NLP). The strength
of a MILP formulation is that its resolution converges to a
globally optimal solution, but it only gives the optimum of an
approximate model. On the other hand, nonlinear optimisation
may take into account the real constraints but there is no
guarantee that it leads to a feasible solution, and when it does,
it only converges to a local optimum. Global optimisation
techniques were developed in order to establish proofs of
convergence when solving a nonconvex NLP. For instance,
deterministic algorithms for global optimisation may involve
some divide and conquer technique in order to explore the
entire admissible space by sequentially solving sub-problems
after partitioning the original space [15]. They usually require
a great computational effort and may not be suited for this
particular problem.

The main contributions of this article deal with modelling
and algorithmic issues. As opposed to previous works in-
volving a MILP formulation, a consistent evolution of the
constraints, from their natural continuous-time representation
to their discrete-time linear approximation, is presented. This
rational approach allows for an analysis of the discretisation
process and gives more insight on the differences between the
different models. Additionally, constraints imposing trajectory
recovery after the manœuvres are explicitly included. A hybrid
algorithm is also developed in order to cope with the difficul-
ties encountered when solving the nonlinear model. It takes
advantage of the optimality of the MILP solutions in order to
find a good starting point for the resolution of a NLP which
considers the real geometry of the nonlinear constraints.

The basic problem formulation in continuous time is pre-
sented in Section II, Section III gives a NLP formulation
to solve the problem numerically. An initialisation process
through a MILP is given in Section IV, and improvements
of this model, developed with a view to reducing computation
time, are described in Section V. Finally, Section VI describes
the benchmark on which the models are tested and reports the
associated results.

II. CONTINUOUS TIME FORMULATION

A. Working hypotheses

Several hypotheses are first stated in order to clarify the
exact ATC problem that is tackled in this article.

Centralised planning: ATC is a centralised decision system.
It is responsible for and has an authority on the whole
controlled air space. The automated system presented here
follows this conception of ATC. All the aircraft trajectories
are planned at the same time, hence taking every possible
interference between aircraft into account.

Planar motion: The current traffic is organised in horizon-
tal layers, called flight levels, meeting the standard vertical
separation. The traffic considered in this article is limited to
aircraft flying on a high altitude, whose flight level is supposed
to be stabilised. This portion of air traffic is also called en-
route traffic. Manœuvres consisting in changing flight level
to avoid a conflict are not popular, being both uneconomic,
uncomfortable for passengers, and hard to monitor for ATCOs.
This study then deals with planar motion planning of multiple
aircraft flying on the same flight level.

4D contracts: With a view to improving the traffic pre-
dictability, several projects consider a trajectory-based ATM
in which an aircraft would have to meet 4D waypoints along
its flight [1], [16]. We define the reference trajectory of an
aircraft as a planned trajectory that would satisfy every 4D
waypoint. It is also assumed that each aircraft would follow
its reference trajectory if there was no other aircraft to avoid. In
order to allow for such 4D contracts, the problem solved here
constrains the aircraft to recover their reference trajectories by
the end of the conflict resolution time window.

Optimal trajectories: This problem aims at finding a cost
minimising conflict-free motion planning. The cost of a solu-
tion is assumed to be proportional to the aircraft accelerations
along their trajectories.

B. Kinodynamic planning

The motion planning problem deals with a set of aircraft
A between which separation has to be maintained during a
time interval [0, T ]. The point-mass aircraft model described
in [14] is commonly accepted to represent dynamical effects
in civil aviation. Due to its complexity, there is a high risk that
planning trajectories of several interfering aircraft with such
a model would require too much computational effort. In the
case of planar motion, a good approximation of the aircraft
point mass model dynamics is derived by [8]. The state of an
aircraft i at time t is represented by the vector p

i

(t), whose
Cartesian coordinates are (p

i,x

(t), p

i,y

(t)), and by its heading
angle �

i

(t). The dynamics of the system to be controlled is
given by: 8i 2 A, 8t 2 [0, T ],

✓
ṗ
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◆
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i
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i
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◆
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i

(t),

where functions t 7! !

i

(t) and t 7! V

i

(t) are the control
variables of the dynamical system. V

i

(t) is the horizontal
velocity at t; !

i

(t) has the dimensions of an angular speed and
is called yaw rate. In this model, [8] assumes that an autopilot
is able to track the horizontal velocity and the yaw rate by
adjusting the aircraft commands properly. This assumption is
guaranteed by bounds on V and !: 8i 2 A, 8t 2 [0, T ],

V

i

 V

i

(t)  V

i

,

|!
i

(t)| ⇢

V

i

,

where ⇢ is a constant issued from usual operational practice
in terms of bank angles. As margins on speed are narrow in
en-route traffic, the bound on yaw rate is approximated by the



4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 3, SEPTEMBER 2013

constant factor ⇢

V

ref

i

, where V

ref

i

is the constant velocity of
aircraft i on its reference trajectory.

In our approach, since polar coordinates of speed (V ,�)
cannot be made linear, it is more relevant to favour
a dynamical system expressed in Cartesian coordinates:
8i 2 A, 8t 2 [0, T ],

0

BB@
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CCA , (1)

where (v
i,x

(t), v

i,y

(t)) and (u
i,x

(t), u

i,y

(t)) are the Cartesian
coordinates of speed and acceleration at time t; the associated
vectors are v

i

(t) and u
i

(t). The control variables are the two
coordinates of acceleration. Bounds on the horizontal velocity
are maintained as in [8] by, 8i 2 A, 8t 2 [0, T ],

V

i

2  kv
i

(t)k2  V

i

2
, (2)

where k·k is the Euclidean norm. The constraint on yaw rate
is conserved by a bound on the norm of acceleration. By
formulating the derivatives of v

2
i,x

(t) and v

2
i,y

(t) in the polar
coordinates, it comes that

ku
i

(t)k2 =
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˙

V

i

(t)

⌘2
+ V

2
i

(t)!

2
i

(t)

Hence |!|  ⇢

V

is guaranteed if, 8i 2 A, 8t 2 [0, T ],

ku
i

(t)k2  ⇢

2
⇣
= U

i

2
⌘

(3)

C. Separation constraints

In this work, two aircraft i and j are said to be in potential
conflict when the minimum distance between their reference
trajectories is inferior to an arbitrary danger threshold (20 NM
to 50 NM, depending on their relative direction). Let C be the
set of pairs of aircraft in potential conflict. There is no conflict
within the time window [0, T ] if and only if the following
separation constraint is respected: 8(i, j) 2 C, 8t 2 [0, T ],

kp
j

(t)� p
i

(t)k2 � D

2
, (4)

where D is the horizontal reference separation distance.
A realistic formulation of the problem shall also account for

the existence of prohibited areas, or segregated areas, in the
airspace. Some portions of the airspace are indeed reserved,
at least on a temporary basis, for military use. Rectangular
motionless obstacles were already considered by [13]. The
constraint in [13] is extended to any polygonal obstacle o

delimited by a set of edges E
o

. Each polygon is then described
by a set of affine inequalities a

e

x+ b

e

y + c

e

 0, e 2 E
o

. Let
O be the set of obstacles; in order to avoid o 2 O the position
(p

x

, p

y

) of an aircraft has to verify at least one of the inequali-
ties a

e

p

x

+ b

e

p

y

+ c

e

� 0, e 2 E
o

. Avoidance of all obstacles
is thus guaranteed if and only if, 8o 2 O, 8i 2 A, 8t 2 [0, T ],

max

e2E
o

(a

e

p

i,x

(t) + b

e

p

i,y

(t) + c

e

) � 0 (5)

D. Complete problem

In addition to the constraints stated above,
• Initial position and speed of an aircraft i, pini

i

and vini

i

,
represent its present state and are supposed to be known.

• Each aircraft i has to recover its reference position and
speed pT

i

and vT

i

by time T .
• An optimal motion planning minimises the norm of the

control variables over [0, T ].
Tracking of the original plans is ensured by recovering

reference positions and speeds at the end of the time interval.
Most models found in the literature include a term ensuring
the minimisation of flight time in their criterion [8], [11],
[13], [14]. Due to trajectory recovery, such a term would be
redundant here. Instead, we chose to minimise the norm of
the control variables with a view to performing as smooth
and small variations of speed and heading as possible. This
criterion, or an equivalent one, is used in conjunction of other
criteria by several authors [9], [13], [14]. Other objective
functions based on fuel consumption or on deviation from
reference trajectory could also be considered in a similar
model.

The overall model may be formulated as a Bolza problem:

P =

8
>>>>><

>>>>>:

min z =

P
i2A

⇣R
T

0 ku
i

(t)k dt
⌘

subject to constraints (1)-(5), and
(pi(0),vi

(0)) = (pini

i

,vini

i

), 8i 2 A
(p

i

(T ),v
i

(T )) = (pT

i

,vT

i

), 8i 2 A
p
i

(t),v
i

(t),u
i

(t) 2 R2
, 8t 2 [0, T ], 8i 2 A

(6)

Partial solutions of P were found by [8], but they only
exhibited portions of trajectories that are optimal for pairwise
conflicts. No complete analytical solution of P was found yet.

III. DISCRETE TIME NONLINEAR MODEL

In order to solve P numerically, the time win-
dow is discretised into a sequence of K + 1 instants
0 = t0 < t1 < . . . < t

K

= T . Converting the continuous time
problem P into a discrete time problem is called direct
transcription – see [17] for an overview of numerical reso-
lution in optimal control. The model derived through direct
transcription is a NLP. As far as modelling is concerned, two
major difficulties arise during transcription. The differential
equations (1) and the criterion of (6) have to be numerically
integrated and the constraints have to be respected for all
t 2 [0, T ]. In many studies on automated ATC involving
numerical resolution, these issues are simplified by considering
piecewise linear trajectories (e.g. [9], [10], [12]). These models
consider that speed changes are instantaneous, which is only
acceptable if manœuvres are initiated a long time before
conflict [18]. After studying the error made by assuming speed
changes are instantaneous, Paielli states that speed changes
at constant acceleration were a much more acceptable option
[18]. The numerical resolution of P was then simplified by
assuming that acceleration is a piecewise constant function
whose discontinuities correspond to the reception of control
orders. If the sequence T is chosen so that new orders may
only be issued at an instant t 2 t0, . . . , tK , acceleration is
constant on each interval [t

k

, t

k+1[.
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In the rest of this paper, the following notations are used.
• T = {t

k

}
k2{0,...,K} and T �

= {t
k

}
k2{0,...,K�1}

• T is partitioned according to a constant time step � :
8t

k

2 T �
, t

k+1 � t

k

= �.
• The value a function f takes at an instant t

k

2 T is noted
f

k

= f(t

k

).

A. Numerical integration

Numerical integration of differential equations is commonly
performed by a collocation method that approximates the
solution by piecewise continuous functions such as polyno-
mials of a chosen maximum order. In this particular case, it
is assumed that acceleration is constant on each subinterval
[t

k

, t

k+1[. Differential equations (1) are then easy to solve
exactly. Transcription of (1) leads to the exact expression:

pk+1
i

= pk

i

+�⇥ vk

i

+

�

2

2

uk

i

, 8i 2 A, 8t
k

2 T (7a)

vk+1
i

= vk

i

+�⇥ uk

i

, 8i 2 A, 8t
k

2 T � (7b)

Acceleration being constant on each subinterval [t
k

, t

k+1[,
the criterion of P also has an exact expression in the discrete-
time model:

z

NL

=

X

i2A

 
K�1X

k=0

�⇥ ��uk

i

��
!

B. State and control constraints

State constraints of the continuous-time problem P are
given by upper bounds on velocity (2) and acceleration (3),
separation constraints (4) and obstacle constraints (5). They
have to be respected at any instant of the time horizon.

1) Bounds on speed and acceleration: In this model, ac-
celeration of an aircraft i is piecewise-constant and speed is
piecewise-linear. The two-variable function (x, y) ! x

2
+y

2 is
convex, so upper bounds on speed and acceleration are convex
constraints. Hence it is sufficient to verify these constraints at
each time step: 8i 2 A,

��vk

i

��2  V

i

2
, 8t

k

2 T and
��uk

i

��2  U

i

2
, 8t

k

2 T � (8)

Lower bounds on speed lead to concave constraints but, as
far as ATC is concerned, these bounds are set to keep speed
in a small range around nominal speed. For instance, Paielli
[18] states that speed decreases of more than 40 kt are often
considered excessive. As this value remains a lot higher than
the minimum speed induced by performance limitations, small
violations of these constraints between two time steps may be
accepted. Lower bound constraints are thus verified at each
time step only:

��vk

i

��2 � V

i

2
, 8i 2 A, 8t

k

2 T (9)

On the other hand, separation constraints (4) and obstacle
constraints (5) do not tolerate any violation.

�

�������	
������

��

����
�

����
���

���

����
�

�

� �
�

Fig. 1. Concavity of separation constraints and illustration of the worst case

2) Discrete verification of separation constraints: Let
(i, j) 2 C and R

i

be the moving frame centred on i. Relative
state variables of j in R

i

are noted with double indices i, j,
e.g. relative position is noted p

i,j

= p
j

� p
i

. A geometric
representation, in frame R

i

, of the separation constraint for
(i, j) is given in Figure 1. The constraint delimits a circular
forbidden area C

i

in the solution space for the state variable
p
i,j

. Figure 1 illustrates that the minimum distance might be
respected at t

k

and t

k+1 while not being respected inside the
interval [t

k

, t

k+1].
It is important to get an idea of the error made when only

checking separation constraints on a discrete time space. The
order of magnitude of this error is obtained by studying a
simple example where relative speed is assumed to be con-
stant, i.e. v

i,j

(t) = vk

i,j

, 8t 2 [t

k

, t

k+1]. In that case, the worst
situation happens when both

��pk

i,j

��
= D and

��pk+1
i,j

��
= D

(see Figure 1). The minimum distance d

k

i,j

between i and j is
then reached at time t when the cartesian product of p

i,j

(t)

and vk

i,j

vanishes. Basic geometrical considerations lead to
t = t

k

+

�
2 and

(d

k

i,j

)

2
= D

2 �
✓
�

2

��vk

i,j

��
◆2

Notice that this worst case often happens as it is the objective
of the optimisation to find the shortest path. An extra margin
D

m

should then be added to D to ensure that i and j are
always separated by the proper distance, with

(D +D

m

)

2
= D

2
+

✓
�

2

��vk

i,j

��
◆2

A numerical example with D = 5 NM, � = 1 min
and

��vk

i,j

��
= 500 kt results with an additional margin

D

m

= 4.71 NM, which would be highly inefficient. As a
consequence, it is important to find a constraint that guarantees
separation at every instant.

3) Valid separation constraints: Due to the hypothesis of
constant acceleration, the distance between aircraft i and j at
time t

k

+ ⌧, ⌧ 2 [0,�], is:

d
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+ ⌧) =

����p
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⌧
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2
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����

In order to find ⌧
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so that the minimum distance d
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i,j

is
equal to d

i,j

(t

k

+ ⌧

k

i,j

), it is necessary to find the roots of the
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polynomial

˙

d

2
i,j
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+ ⌧) = 2hpk

i,j

|vk
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i+ 2
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+3hvk
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i⌧2 + huk

i,j

|uk

i,j

i⌧3,
where h·|·i is the Euclidean scalar product. Separation con-
straints thus involve the roots of a 3

rd degree polynomial.
The number of distinct real roots of this polynomial depends
on the sign of the discriminant. If included in the model,
these constraints would have to be written as disjunctions of
highly nonlinear expressions. Large scale problems with such
constraints are usually too difficult to be solved efficiently.

Let us first consider the case where velocity is constant on
a subinterval [t

k

, t

k+1], i.e. u
i,j

(t

k

+ ⌧) = 0 for ⌧ 2 [0,�[.
If velocity is constant, the only root of ˙
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2
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obtained as
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The separation constraint between i and j on [t

k

, t

k+1] is then:

d

2
i,j

�
t

k

+max

�
0,min(�, ⌧

k

i,j

)

�� � D

2

The error made by assuming that speed is constant is
now calculated. Let ˜p

i,j

(t) be an approximate position with
constant speed and ˜vk

i,j

the associated constant speed on
[t

k

, t

k+1]. ˜pk
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and ˜vk
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) = pk
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with ˜p
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on [t
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is given by
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which is maximal for ⌧ = �/2. As a consequence, separation
of all pairs of aircraft in potential conflict is guaranteed by:
8(i, j) 2 C, 8t
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2 T �
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���˜p
i,j

(t

k

i,j

)

���
2
�
✓
D +

�

2

8

��uk

i,j

��
◆2

, (11)

where t

k

i,j

is calculated as in (10).
Typical values of U result in an error term

�
8

��uk

i,j

��  1 NM. Directly adding the error term in
the constraint leads to an interesting behaviour in the overall
traffic: aircraft mostly modify their speed before and after the
potential conflicts so that the error term has no impact when
close to the conflict. Conflict resolution is mostly done in this
manner today. ATCOs send orders several minutes before a
detected conflict, and clearance to recover initial trajectories
is only sent once the conflict is sure to be solved.

4) Obstacle constraints: Polygonal constraints are prob-
lematic for aircraft i when the closest edge e for which
a

e

p

i,x

+ b

e

p

i,y

+ c

e

� 0 changes. Aircraft could be outside
the obstacle at time t

k

and t

k+1 while crossing it in the
meantime. A conservative option is chosen to avoid such a
situation. For all aircraft i and all subintervals [t

k

, t

k+1], it is
required that at least one edge stays with its constraint verified
for the whole time interval. Similar calculations as above lead
to constraints: 8i 2 A, 8t

k

2 T ,

max

e2E
o

(min( a

e

p

k

i,x

+ b

e

p

k

i,y

+ c

e

�m

e

,

a

e

p

k+1
i,x

+ b

e

p

k+1
i,y

+ c

e

�m

e

)) � 0

(12)

with m

e

an additional margin taking into account non-constant
speed. m

e

depends on the angle between obstacle edges and
is less than 1 NM for typical values of �, V and U .

C. Summary of the NLP

The complete nonlinear model P
NL

is summarised below:

P
NL

=

8
>>>>>>>>><

>>>>>>>>>:

min z

NL

=

X

i2A

 
K�1X

k=0

�

��uk

i

��
!

subject to constraints (7)-(12), and
8i 2 A :�

pi
0
,v0

i

,pK

i

,vK

i

�
=

�
pini

i

,vini

i

,pT

i

,vT

i

�
,

pk

i

,vk

i

2 R2
, 8i 2 A, 8t

k

2 T
uk

i

2 R2
, 8i 2 A, 8t

k

2 T �

It is well known that the solution of a nonconvex NLP
depends on the initial point from which it is started. Several
global optimisation techniques rely on a stochastic generation
of multiple initial points before running the NLP solver on
each point [19]. Although it cannot prove the optimality of a
given solution, stochastic global optimisation offers an asymp-
totic convergence guarantee in some probabilistic sense. These
approaches thus constitute a faster alternative to deterministic
global optimisation. On the other hand, such a multi-start
technique still requires that the NLP is solved several times to
perform well, which may already be far too costly for a large
conflict-free planning of multiple aircraft trajectories. The
option that was preferred in this article focused on generating
a unique good starting point. P

NL

is then approximated by a
MILP for which a global optimum may be found in reasonable
time for most operational cases.

IV. A MIXED INTEGER LINEAR FORMULATION

A Linear Program (LP) is an optimisation problem formu-
lated as the minimisation of a linear criterion subject to a
set of linear constraints on continuous variables. LP is a very
popular framework in optimisation because some algorithms,
such as the Dantzig simplex [20] or the interior point algorithm
[21], proved to be very efficient. Several works on conflict-
free trajectories planning proposed a linear model for the
automation of ATC [9], [13], [22], [23], for the motion of
virtual humans [24], or for the general case of multiple robots
[25].

Modelling this problem as a LP is not natural, due to the
nonconvex separation constraints. The goal may be achieved
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�

����

�������	
��

Fig. 2. Approximation of upper bounds with chords

by making strong assumptions which are not consistent with
the search of a solution close to the global optimum of P

NL

.
The model is very close to a LP when deviations are plainly
forbidden, i.e. ! = 0 [9], when a set of decisions is done
before resolution, as in [22], or under rules of reciprocal
collision avoidance [24]. As the approached model aims at
finding an initial solution for the NLP resolution, the same
assumptions must be done in both formulations. Discussions
below show that P

NL

may be approximated with a linear
criterion and linear constraints, but separation constraints
involve continuous and binary variables, hence leading to a
MILP.

A. Convex constraints on speed and acceleration

Upper bounds on acceleration and velocity are convex
but they are quadratic. These constraints may be interpreted
geometrically as circles inside of which speed and acceleration
vectors have to lie. As in [22] and [13], an upper bound is
approximated by N chords equally spread on the circle (cf.
Figure 2).

Property 1: The relative error made by approximating a
circle with N equally spread chords is 1� cos

�
⇡

N

�
.

Proof: Maximum error is reached on the middle of each
chord. Basic geometry considerations lead to the result.

Let ✓ 2 [0, 2⇡]: the vector e(✓) is defined as
e(✓) = (cos ✓, sin ✓). For any vector v, the set of equations

hv|e
⇣

(2n�1)⇡
N

⌘
i  V cos

�
⇡

N

�
, n = 1, .., N

is a conservative linear approximation of the constraint
kvk  V with a maximum relative error 1 � cos

�
⇡

N

�
. Al-

though it might result in a great number of additional con-
straints, they only involve real variables, which are easy to
handle when compared to binary variables.

This formulation does not allow to compute the nonlinear
criterion, but a set of intermediate variables u

k

i

might be
used to get a good approximation of

��uk

i

��. The following
approximate constraints on acceleration are then considered:

huk

i

|e
⇣

(2n�1)⇡
N

⌘
i  u

k

i

cos

�
⇡

N

�
, 8i, k, n

0  u

k

i

 U

i

, 8i, k
(13)

Fig. 3. Approximation of the separation circle with tangents

Instead of being directly bounded by U

i

, the norm of ac-
celeration is bounded by u

k

i

, which is bounded by U

i

. If
u

k

i

is minimised, it gets as close as possible to the norm of
acceleration. It is thus equivalent to minimise

��uk

i

�� and to
minimise u

k

i

. This leads to a linear form of the criterion:

z

MIL

=

X

i2A

 
K�1X

k=0

�⇥ u

k

i

!

Regarding velocity, it is convenient to save a great num-
ber of constraints by considering that not every direction is
efficient or even reachable for short term conflict avoidance.
Denote  

k

i

the angle between vk

i

and the speed vector on
reference trajectory at time t

k

. It was empirically observed
during tests on a reduced version of the benchmark described
in Section VI that  k

i

remained in the range [�⇡

4 ,
⇡

4 ]. Upper
bounds on velocity are then respected if 2Q + 1 constraints
are set in the range [�⇡

4 ,
⇡

4 ] around the reference speed.
8i 2 A, t

k

2 T , q = 0, .., 2Q:

hvk

i

|e
⇣

(q�Q)⇡
4Q +  

ref
i,k

⌘
i  V

i

cos

⇣
⇡

8Q

⌘
, (14)

where  ref
i,k

is the direction of reference speed on [t

k

, t

k+1].

B. Nonconvex constraints

Approximating P
NL

with a linear model actually consists
in forming a disjunction of convex problems. Let us focus
on a potential conflict between two aircraft i and j. Once
represented in the moving frame R

i

, the separation constraint
excludes the separation circle C

i

(Figure 1). As the half-
planes delimited by the straight lines tangent to C

i

are the
biggest convex sets excluding C

i

, it is adequate to approximate
separation constraints by disjunctions of such half-planes.

The difficulty due to the quadratic evolution of posi-
tion with respect to time is handled as for the nonlinear
case. Conflicts are solved for aircraft with a constant speed
˜vk

i,j

= vk

i,j

+

�
2 u

k

i,j

and the error made is compensated by
adding a term to separation distance. The modified separation
distance is:

D

k

i,j

= D +

�

2

8

(u

k

i

+ u

k

j

)
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If speed is constant on [t

k

, t

k+1], the motion of aircraft
j in R

i

is a straight line. Separation is thus guaranteed on
[t

k

, t

k+1] if j is on the separating side of the same tangent
at both t

k

and t

k+1, as is represented in Figure 3. The
constraint is conservative because it may force an aircraft to
move away from reference trajectory although separation is
already performed. This is however essential to maintain the
proper separation at every moment. Eventually the separation
constraint is approximated by a set S of tangents above one of
which j has to be at both t

k

and t

k+1 to avoid conflict during
[t

k

, t

k+1]. Such disjunction is modelled with linear constraints
by using binary variables. The optimisation decides which
tangent maintains separation between i and j on [t

k

, t

k+1]

by setting the values of binary variables �k
i,j,s

, s 2 S , such
that �k

i,j,s

= 1 if j is on the side of the tangent s that does
not include C

i

during [t

k

, t

k+1] and �

k

ij,s

= 0 otherwise.
Let ✓

s

, s 2 S , be such that s is tangent to C
i

at the
point D ⇥ e(✓

s

). Separation on [t

k

, t

k+1] is formulated as:
8t

k

2 T �
, 8(i, j) 2 C,

hpk

i,j

|e (✓
s

)i � D

k

i,j

�M(1� �

k

i,j,s

), 8s 2 S (15)

hpk+1
i,j

|e (✓
s

)i � D

k

i,j

�M(1� �

k

i,j,s

), 8s 2 S (16)
P

s2S

�

k

i,j,s

= 1 (17)
�

k

i,j,s

2 {0, 1}, 8s 2 S (18)

The positive constant M is chosen big enough to ensure that
constraints (15)-(16) are redundant for any relative position
if �k

i,j,s

= 0. Constraints (17) make sure that at least one
tangent is separating i and j on [t

k

, t

k+1]. This technique is
commonly used to formulate disjunctive constraints in a MILP.
It is usually referred to as the big-M formulation.

Following a similar reasoning, avoidance of segregated areas
o 2 O is modelled with linear constraints involving binary
variables �k

i,e

, e 2 E
o

, such that aircraft i is on the side of
edge e that does not include o during [t

k

, t

k+1] if �k
i,e

= 1,
i.e.: 8i 2 A, 8t

k

2 T �
, 8o 2 O,

a

e

p

k

i,x

+ b

e

p

k

i,y

+ c

e

+m

e

� M(�

k

i,e

� 1), 8e 2 E
o

, (19)

a

e

p

k+1
i,x

+ b

e

p

k+1
i,y

+ c

e

+m

e

� M(�

k

i,e

� 1), 8e 2 E
o

(20)
P
e2E

o

�

k

i,e

= 1, (21)

The lower bound on speed is also ensured by a disjunctive
constraint. If the quadratic constraint kvk2 � V

2 is repre-
sented by a circle outside of which v has to lie, a linear
approximation is obtained by considering a set of tangents
instead of the chords involved in the upper bound constraints.
The lower bound is thus satisfied if v satisfies at least one of
the constraints associated with the tangents. This is formulated
through constraints similar to (14) by adding a set of binary
variables ✏k

i,q

: 8i 2 A, 8t
k

2 T , 8q 2 {0, . . . , 2Q},

hvk

i

|e
✓
(q �Q)⇡

4Q

+  

ref
i,k

◆
i � V

i

�M

0
(1� ✏

k

i,q

) (22)
X

q2{0,...,2Q}
✏

k

i,q

= 1 (23)

✏

k

i,q

2 {0, 1} (24)

C. Summary of the MILP
The complete MILP P

MIL

is given here:

P
MIL

=

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

min . z

MIL

=

P
i2A

⇣P
K�1
k=0 �⇥ u

k

i

⌘

subject to constraints (7), (13)-(24), and
8i 2 A :�
pi

0
,v0

i

,pK

i

,vK

i

�
=

�
pini

i

,vini

i

,pT

i

,vT

i

�

pk

i

,vk

i

2 R2
, 8i 2 A, 8t

k

2 T ,

uk

i

2 R2
, u

k

i

2 R+
, 8i 2 A, 8t

k

2 T �
,

�

k

i,j,s

2 {0, 1}, 8(i, j) 2 C, 8t
k

2 T �
, 8s 2 S,

�

k

i,e

2 {0, 1}, 8i 2 A, 8t
k

2 T �
, 8e,

✏

k

i,q

2 {0, 1}, 8i 2 A, 8t
k

2 T , 8q
V. COMPUTATIONAL ANALYSIS AND IMPROVEMENTS

P
MIL

is a disjunction of a large number of LPs. By
exploring the tree built from the possible decisions with an
efficient algorithm such as a branch and bound algorithm, first
described by [26], it is possible to find the global optimum of
the overall problem. At each node of the tree, a continuous
relaxation of P

MIL

is solved by fixing a set of binary variables
to chosen values and by replacing constraints � 2 {0, 1}
with � 2 [0, 1] for the other variables. In this framework,
computation time depends mostly on three criteria:

1) the size of the continuous relaxation, given by its number
of constraints and variables;

2) the number of binary variables;
3) the tightness of continuous relaxations.

The first two aspects are quantified below. In the following
property, |Set| refers to the cardinal of Set, and the total
number of edges is noted E, i.e. E =

P
o2O |E

o

|.
Property 2: P

MIL

is composed of
• 7 |A| ⇥K continuous variables for position, speed and

acceleration,
• K ⇥ |S| ⇥ |C| binary variables for separation and

|A|⇥K ⇥ |O| binary variables for obstacles avoidance,
• |A|⇥ (8 +K ⇥ (4 +N + 4Q)) motion constraints,
• K ⇥ |C|⇥ (2 |S|+2)+K ⇥ |A|⇥ (E+ |O|) separation

and segregated area constraints.
While |A|, |C|, |O| and E are problem data, K, |S|, N

and Q are parameters of the model. As the model has to
remain accurate, the problem’s size may not be decreased
below an acceptable threshold. The remaining option is to
make continuous relaxations much tighter by calculating good
values for big-M constants in (15)-(16) and by adding valid
inequalities.

A. Tightening P
MIL

The choice of a good value for big-M constants in (15)-(16)
depends on the pair of aircraft, the instant and the tangent
considered. This means that a set of constants {Mk

i,j,s

} has
to be determined. Let (i, j) 2 C and t

k

2 T �. M

k

i,j,s

and
M

k+1
i,j,s

need to be chosen so that any pair of reachable relative
positions pk

i,j

and pk+1
i,j

satisfy separation constraints when
�

k

i,j,s

= 0, i.e.

hpk

i,j

|e (✓
s

)i � D �M

k

i,j,s

hpk+1
i,j

|e (✓
s

)i � D �M

k+1
i,j,s

,
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where D is an upper bound of D

k

i,j

. The value of M

k

i,j,s

leading to the tightest formulation of P
MIL

is thus given by

M

k

i,j,s

= max

pk

i,j

{D � hpk

i,j

|e (✓
s

)i} (25)

Alonson-Ayuzo et al. gave a tight MILP formulation of
conflict-free motion planning with speed and altitude manœu-
vres [12]. In [12], 2D paths are fixed and only velocity or
flight level vary. It is then straightforward to calculate {Mk

i,j,s

}
so that (25) is verified. If aircraft are allowed to change
their headings, finding {Mk

i,j,s

} involves the resolution of
a maximisation problem for each (i, j) 2 C, t

k

2 T and
s 2 S , which may be long and inefficient. Instead of applying
such a process, it is assumed that, in optimal trajectories,
maximum deviations from reference trajectories do not exceed
10% of the total reference trajectories lengths. This assumption
is reasonable considering the dynamics of aircraft and the
constraints that they have to be on their reference trajectories
at the initial and final times. It was also verified with a
comfortable margin on the experimental tests described in
Section VI.

Let pref

i

(t), t 2 [0, T ], be the reference trajectory of i

and d
i

(t), t 2 [0, T ], the deviation from this trajectory, i.e.
p
i

(t) = pref

i

(t) + d
i

(t), 8t 2 [0, T ]. If dref
i

and d

ref

j

are the
maximum deviations of i and j implied by the assumption
stated above, it is straightforward that, 8t

k

2 T , 8s 2 S ,

hpk

i,j

|e (✓
s

)i  hpref

i,j

(t

k

)|e (✓
s

)i+ d

ref

i

+ d

ref

j

(26)

hpk

i,j

|e (✓
s

)i � hpref

i,j

(t

k

)|e (✓
s

)i � d

ref

i

� d

ref

j

(27)

From (27), it comes that the solution of (25) is

M

k

i,j,s

= D � hpref

i,j

(t

k

)|e (✓
s

)i+ d

ref

i

+ d

ref

j

(28)

Moreover, (26) implies that if there exists s 2 S such that, for
some t

k

2 T ,

hpref

i,j

(t

k

)|e (✓
s

)i+ d

ref

i

+ d

ref

j

< D

then the separation constraint associated with (i,j), t
k

and s

may be dropped as it will not be satisfied. Similarly, (26)
implies that if, for any t

k

2 T , there exists s 2 S:

hpref

i,j

(t

k

)|e (✓
s

)i � d

ref

i

� d

ref

j

� D

then all separation constraints for conflict (i,j) and time t
k

may
also be dropped as separation is guaranteed to be satisfied.
Through such considerations, the number of constraints and
binary variables is decreased for most problems and a much
tighter formulation is obtained.

A similar approach could be applied to tighten constraints
(19)-(20). Finally, the best value for the constant M

0 that
appears in constraint (22) is the sum of the lower and upper
bounds on velocity.

B. Valid inequalities

It is also possible to tighten the model by appending
redundant constraints, hence reducing the feasible space while
keeping optimal solutions. Several improvements were added
to the model by considering specific properties of the appli-
cation; two such simplifications are detailed below.

�
�

�
�

����	


����

����

�

�

�

�

�

�

� ����

�

�����

����
���
���

Fig. 4. Representation of valid inequalities

Let i and j be two aircraft in potential conflict. A rotation
is applied to the moving frame R

i

so that relative speed on
the reference trajectories vref

i,j

is collinear to the x-axis and
points in the same direction, as in Figure 5. Experimental tests
conducted on pairwise conflicts showed that when i and j cross
with an angle larger than 30

�
, optimal solutions never plan that

j performs a u-turn in the frame R
i

. Let C30� be the set of such
potential conflicts. Assuming that this “no u-turn” hypothesis
is valid, two sets of redundant constraints may be added to
the problem. It should be observed that if the assumption is
not verified, the inequalities below might prevent the solver
from finding the optimal solution, but as long as the problem
remains feasible the solution is a good candidate to initialise
the NLP.

It is first important to state directly in the model that, under
this assumption, 8(i, j) 2 C30� , j passes either below or above
C

i

. This statement avoids the exploration of many useless
combinations when setting the values of {�k

i,j,s

}. The expres-
sion of this redundant constraint involves one new binary
variable �

i,j

for each potential conflict, such that �
i,j

= 1

when j goes above C
i

and �
i,j

= 0 when it goes below (see
Figure 4). Let S+ be the set of tangents above the circle and
S� the set of tangents below the circle, the valid inequalities
are formulated: 8(i, j) 2 C30� , 8tk 2 T ,

X

s2S+

�

k

i,j,s

 �
i,j

, 8k (28a)

X

s2S�

�

k

i,j,s

 1� �
i,j

, 8k (28b)

Under the same assumption, there also has to be a temporal
progression in the choice of the separating tangents from left
to right. S+ and S� are then ordered so that s < s

0 2 S+ (or
s < s

0 2 S�) implies that the binary variable associated with
tangent s is set to 1 before the binary variable associated with
s

0. An ordering is represented by the numbering of tangents
above and below the circle in Figure 4. These constraints are
then formulated as: 8(i, j) 2 C30� , 8tk 2 T ,

X

s2S+

s�

k

i,j,s


X

s2S+

s�

k+1
i,j,s

(28c)

X

s2S�

s�

k

i,j,s


X

s2S�

s�

k+1
i,j,s

(28d)

C. Relaxation of the separation constraints
When considering a large number of aircraft in potential

conflict, runtime may be far over the operational requirements.
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It would indeed be exaggerated to spend more than one or two
minutes looking for a resolution to conflicts that are to happen
in five to ten minutes. A way of tackling this issue is to add a
runtime limit of say 60 seconds when solving the MILP and
use the best feasible solution found as a candidate starting
point for the optimisation of P

NL

. It is however not even
sure that a feasible solution is found within the 60 seconds,
which is why separation constraints are relaxed by adding non
negative slack variables penalised in the criterion. Let {slk

i,j

}
be the slack variables; once relaxed, (15) and (16) become:
8(i, j) 2 C, 8t

k

2 T �

hpk

i,j

|e (✓
s

)i � D

k

i,j

�M(1� �

k

i,j,s

)� slk
i,j

, 8s 2 S (29)

hpk+1
i,j

|e (✓
s

)i � D

k

i,j

�M(1� �

k

i,j,s

)� slk
i,j

, 8s 2 S (30)

slk
i,j

� 0 (31)

and the term
P

(i,j)2C,t
k

2T � µ⇥ slk
i,j

is added to the criterion
with µ >> U . Once separation constraints are relaxed, it is
much easier to get a solution that is at least feasible with regard
to every constraint but the separation constraints. By penalising
the slack variables, the minimisation searches solutions in
which slack variables are equal to 0, which implies that the
separation constraints are satisfied.

VI. COMPUTATIONAL EXPERIMENTS

A. Sensitivity to initialisation

When solving a nonconvex NLP, classical iterative algo-
rithms only converge to a local minimum. This solution and the
speed of convergence both depend on the point from which the
algorithm is started. The sensitivity of the solution of P

NL

to
initialisation is first illustrated on a simple case before studying
more complex scenarios.

A pairwise potential conflict between two aircraft i and j

is considered and it is assumed that all other aircraft in the
vicinity are far enough to be disregarded. The problem was
solved with two different initial solutions Tini

r

and Tini

l

. On
trajectories Tini

r

(resp. Tini

l

) both aircraft make a 20

� turn to
the right (resp. on the left) for 2 minutes and then go straight
until they make another 20

� turn to recover their reference
trajectories. Once represented in the moving frame R

i

, if j

follows Tini

r

(resp. Tini

l

) it passes above (resp. below) C
i

.
P
NL

was solved with SNOPT1, a software package for
solving large-scale optimisation problems. It uses Sequential
Quadratic Programming (SQP), an iterative procedure which
approximates the NLP by a quadratic programming subprob-
lem at each step. More details on SQP may be found in [27].

Solutions T
r

and T
l

are represented next to their matching
initial solutions in Figure 5. Solution T

r

was found to be
150% more expensive than T

l

. Resolution kept the trajectory
on the same side of C

i

as in the initial solution, hence leading
to a clearly suboptimal solution T

r

.

B. Generation of data sets

In order to illustrate the performances of the algorithms
presented in this article, three generic data sets were chosen

1website : http://www.sbsi-sol-optimize.com/asp/sol product snopt.htm

Fig. 5. Pairwise conflict with two sets of resolutions

for their complexities and the diversity of the difficulties
they offer. They focus on clusters of aircraft in potential
conflict and they were designed in order to cover situations
ranging from what may currently be handled by ATCOs to
much more complex conflicts. The aircraft of a data set are
entirely described by their initial states (positions and speeds),
their final goal positions and the bounds on their speeds and
accelerations. The environment is given by the equations of the
edges of the polygonal segregated areas. For simplicity, all air-
craft have identical performances. Parameters were chosen to
represent generic performances found in the BADA database2:
nominal velocity V

nom

= 500 kts, V = 1.05 ⇥ V

nom

, and
V = 0.92 ⇥ V

nom

. The time interval is 10 minutes long and
is split in 10 sampling periods (i.e. K = 10). The number
of sampling periods was set on the basis of a previous work
[28] in which the effect of the number of periods was studied
thoroughly on a reduced number of data sets. Although the
model was not as complete as the one described in this article,
the global behaviour of the algorithm was close enough to
follow the conclusions that were drawn in [28] on this topic.

The first type of data sets is a classical academic example
in automated ATC [7], [29]. Several aircraft are initially set on
a 50 NM radius circle and must reach the opposite extremity
of the diameter by the end of the time range. Figure 6(a)
gives a representation of the initial situation with four aircraft.
Its difficulty lies in the strong dependency between all the
conflicts. It is not possible to try to solve one conflict without
impacting the others. The optimal solution is known for
aircraft with equal performances: all aircraft take a turn in
the same direction, as if in a roundabout.

Another configuration that was considered interesting in-
volves parallel aircraft flows intersecting perpendicularly (see
Figure 6(b)). It aims at studying the behaviour of the au-
tomated ATC when several consecutive conflicts have to be
handled in a very structured environment. It also illustrates a
specificity of air traffic because controlled airspace is currently
organized in routes that aircraft have to follow.

The third type of data sets illustrates the ability of avoiding
a segregated area while managing a complex situation. The
aircraft are initially organised in two parallel flows and they
have to reach final points to which the shortest path infringes
on the segregated area. In order to make the situation more
complex, the flows are mixed: aircraft belonging to the same

2BADA is the Base of Aircraft Data of EUROCONTROL. It is available on-
line at http://www.eurocontrol.int/eec/public/standard page/proj BADA.html
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(c) Segregated area

Fig. 6. Representations of the benchmark data sets

initial flow do not all aim at the same final route. Figure 6(c)
gives a possible implementation of this configuration with
three aircraft per flow.

The three generic situations were used to generate a com-
plete benchmark. For each scenario described above, four
configurations were chosen with increasing numbers of aircraft
and conflicts. Their properties are summarised in Table I. n

v

,
n

b

, and n

c

are the numbers of variables, binary variables and
constraints in the associated tightened MILP, respectively. The
high symmetry in these configurations was partly broken by
adding random terms in the initial positions of the aircraft.
Each aircraft was moved on its reference trajectory according
to a distance that was randomly sampled from a uniform
distribution on [�3 NM, 3 NM]. The tests were conducted on
100 randomly generated data sets for each configuration in
Table I.

TABLE I
SUMMARY OF THE DATA SETS

data scenario |A| |C| nv nb nc

G-01 Grid 6 15 732 125 3404
G-02 Grid 6 15 774 153 3516
G-03 Grid 8 28 1142 268 4972
G-04 Grid 12 66 1866 476 7838
R-01 Roundabout 3 3 342 51 1632
R-02 Roundabout 4 6 512 102 2308
R-03 Roundabout 5 10 746 194 3146
R-04 Roundabout 6 15 1008 303 4050
S-01 Seg. Area 4 6 928 414 3444
S-02 Seg. Area 5 10 1370 664 4860
S-03 Seg. Area 6 15 1896 977 6498
S-04 Seg. Area 7 21 2506 1346 8358

C. Computational results

This section reports the results obtained when solving P
NL

for the data sets described in the preceding section. As it was
observed in Section VI-A that solving P

NL

was sensitive to
initialisation, three options were considered in order to provide
a good starting point. Such a resolution is often referred to as
a warm start.

Solving the complete MILP, presented in Section IV, pro-
vides the optimal solution of an approximate problem. It
ensures that the solver process starts from a good point that
might even be in the neighbourhood of the NLP optimum
in some cases. The MILP solution being feasible for P

NL

,
the current best solution of the solver is always feasible,
which means that it may be stopped at any moment to return
an efficient motion planning for the aircraft. This any time
property is very useful in an application such as ATC where
reactivity and robustness are important. The hybrid warm start
optimisation of P

NL

from the solution of P
MIL

is noted S
h

.
Due to the fact that waiting for the MILP to converge may take
too much time, another candidate starting point was obtained
by adding a time limit of 60 seconds when solving P

MIL

.
The separation constraints were relaxed, as described in V-C,
to make sure that a solution is always found. This alternative
process is noted S60

h

. As they are already available without any
further calculation, reference trajectories were provided as a
third candidate starting point to P

NL

resolution. The reference
trajectories satisfy every constraint but separation constraints.
In the simple pairwise conflict studied in Section VI-A, this
starting point also leads to the best solution. Warm start
optimisation from reference trajectories is noted S

ref

.
When solving P

MIL

, the lower bounds on velocity (22)-(24)
were withdrawn because the recovery of the planned positions
and speeds associated with the minimisation of acceleration
are more likely to lead to velocities above nominal speed. A
post-process routine was implemented in order to verify that
lower bounds are satisfied and solve P

MIL

again with the
constraints (22)-(24) if it is not the case. However this second
resolution was never needed because no violation of (22)-(24)
was detected by the routine during the tests.

The values of the parameters N and Q involved in the
linearisation of the quadratic constraints on velocity and ac-
celeration did not impact computation time seriously, which is
why they were set to rather high values: N = 40 and 2Q = 10.
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TABLE II
COMPUTATIONAL RESULTS FOR EACH ALGORITHM

data %0 %r %h %60
h z0 zr zM zh z60M z60h

G-01 100 100 100 100 19.3 18.3 26.2 12.9 26.2 12.9
G-02 91 100 100 100 42.4 16.3 17.2 14.3 17.2 14.3
G-03 100 100 100 100 42.1 36.4 25.0 20.2 25.1 20.2
G-04 88 99 100 99 88.3 53.1 35.4 27.4 47.7 40.8
R-01 100 100 100 100 11.6 9.8 9.9 8.9 9.9 8.9
R-02 100 100 100 100 17.5 15.6 16.3 14.1 16.3 14.1
R-03 87 88 100 100 40.6 28.1 24.9 21.5 24.9 21.5
R-04 62 89 100 100 58.8 34.6 34.9 29.6 35.4 29.8
S-01 99 99 100 100 48.9 48.4 49.0 48.4 49.0 48.4
S-02 99 99 100 100 65.4 60.5 61.2 60.5 61.2 60.5
S-03 99 97 100 100 76.5 72.6 73.7 72.6 73.7 72.6
S-04 100 99 100 100 96.3 84.9 85.9 84.8 86.1 85.0

On the other hand, computation time is very sensitive to the
number of separation tangents, which is why |S| was set to
its minimal value, i.e. S = 4.

P
MIL

was solved by running the commercial solver
Gurobi3. As most MILP solvers, Gurobi explores the search
tree with a branch and bound method and tightens the contin-
uous relaxation by generating valid inequalities. The reader is
referred to [30] for an overview of the current MILP solvers
and the advanced techniques they employ. The implementation
of the improvements described in Sections V-A and V-B sped
up the resolution of P

MIL

by a factor of two to ten. Most
of this acceleration is due to valid inequalities. As in Sec-
tion VI-A, P

NL

was solved with SNOPT. The default options
of both solvers were used. Computations were performed on
a PC Intel Xeon 2.80 Ghz and 12 Gbytes of RAM.

Tables II and III report comparative results for the three
warm starts introduced above and for a resolution where no
starting point is provided to the solver, which is noted S0.
In Table II, column headers %0, %

r

, %

h

and %

60
h

are the
percentages of data sets for which a feasible solution was
found by S0, S

ref

, S
h

and S60
h

, respectively. As finding a
feasible solution is the primary objective, the other columns
give average results over the data sets for which every method
found a feasible solution. z0, z

r

, z

h

and z

60
h

are the costs
of the best solutions found by S0, S

ref

, S
h

and S60
h

. The
costs z

M

and z

60
M

of the initial solutions found by solving
P
MIL

with no time limit and with a 60 seconds time limit
were added. Through the construction of P

MIL

they provide
an upper bound of z

h

and z

60
h

and indicate how much the
resolution of P

NL

was able to improve this starting point. In
Table III, t0, t

r

, t
h

, t60
h

are the elapsed times (seconds) to find
these solutions. Computation times of the hybrid algorithm, t

h

and t

60
h

, are decomposed to give insight on the proportion of
time spent in the resolutions of P

MIL

(t
M

and t

60
M

) and P
NL

(t
NL

and t

60
NL

).
A first analysis of the results in Table II focuses on feasi-

bility. The SQP algorithm implemented in SNOPT alternates
between a phase where a quadratic criterion subject to a linear
approximation of the constraints is solved to get the next
iterate which might not satisfy all nonlinear constraints, and an
elastic phase during which feasibility is recovered with respect

3Gurobi website: http://gurobi.com

TABLE III
COMPUTATION TIME FOR EACH ALGORITHM (SECONDS)

data t0 tr tNL tM th t60NL t60M t60h
G-01 8 3 3 6 8 3 6 8
G-02 5 2 3 3 6 3 3 6
G-03 10 6 4 33 37 4 26 30
G-04 61 25 11 658 670 14 60 74
R-01 1 1 1 1 2 1 1 2
R-02 2 2 1 2 3 1 2 3
R-03 3 2 2 23 24 2 23 24
R-04 6 4 2 98 100 2 59 61
S-01 4 3 2 3 5 2 3 5
S-02 8 4 4 6 10 4 6 10
S-03 18 8 6 17 23 6 17 23
S-04 29 11 9 54 63 11 41 52

to a given tolerance. In most cases, an infeasible solution
satisfies the linear constraint but does not meet the feasibil-
ity tolerance with respect to nonlinear constraints, although
SNOPT minimised these nonlinear infeasibilities. This was the
case when S0 or S

ref

did not converge to a feasible solution.
The trajectories characterised by infeasible solutions thus look
implementable but slightly violate either the upper bound on
velocity, the separation constraints, or both. Contrary to S0

and S
ref

, the hybrid algorithm S
h

was always able to find
a feasible solution because the global search realised when
solving P

MIL

was successful in providing a starting point
that is feasible for P

NL

. In this respect, it is also remarkable
that S

ref

always performed better than S0. This shows that
even a partially feasible solution constitutes a valuable starting
point.

By focusing on the results of S0, it appears that it was
more difficult to find a feasible solution for G-02 than for
G-03 although G-03 involves more aircraft. This behaviour is
explained by the fact that G-02 simulates the encounter of two
trails of three aircraft while G-03 involves trails of two aircraft
(G-03 is the scenario drawn in Figure 6(b)). In Figure 7,
an infeasible solution produced by S0 for G-02 is compared
with the feasible solution produced by S

h

. The diamond
symbols give the positions of the aircraft at t, and dotted
lines correspond to the remaining parts of the trajectories. In
the solution of S0, the whole vertical trail goes behind the
horizontal trail, which results in a 2.5 NM minimum distance
between the first aircraft of the vertical trail and the last aircraft
of the horizontal trail. Although the solution of S

h

is feasible
and the associated trajectories look implementable, it results
in a situation that ATCOs may still consider too dangerous
because the aircraft of the vertical trail go between successive
aircraft of the horizontal trail. In order to find more robust
trajectories, the uncertainties should be explicitly included in
the models. On the other hand, it is interesting to observe in
Figure 8 that trajectories found by S

h

are naturally structured
as in a roundabout while the more costly solution found by
S
ref

does not present any specific structure.
Solution costs also followed the same hierarchy between the

models. Solutions found by S
h

were on average 15% better
than S

ref

solutions and 32% better than S0. The solutions of
P
MIL

were already cheaper than those of S
ref

and S0, and the
resolution of P

NL

improved them by an average 10%. S
ref



OMER AND FARGES: NONLINEAR AND MIXED INTEGER LINEAR PROGRAMMING FOR AIRCRAFT SEPARATION 13

��� � �� �� �� ��
���

���

���

�

��

��

��	
��

��
	
�
�


(a) S0, t = 4.5 min
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(d) Sh, t = 5.2 min

Fig. 7. Infeasible (above) and feasible trajectories (below) for G-02; a specific
color is assigned to each aircraft
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(a) Sref , t = 5 min
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(b) Sref , t= 6 min
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(c) Sh, t = 5 min
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(d) Sh, t = 6 min

Fig. 8. Infeasible (above) and feasible trajectories (below) for R-03; a specific
color is assigned to each aircraft

also proved to be an efficient alternative to S
MIL

in terms of
cost.

Finally, the runtime of S
h

was bigger in every case although
t

NL

and t

60
NL

are slightly smaller than t0 and t

r

. The starting
point obtained by solving P

MIL

accelerates the convergence
of the resolution of P

NL

but P
MIL

is a large scale MILP
which may be time-consuming. Nevertheless, computational
effort remains below 40 seconds for most data sets. Com-
putation time would only be unacceptable for the biggest
“grid” and “roundabout” data sets, G-04 and R-04, and could
be found excessive for some S-04 data sets. The difficulties

encountered when solving a “roundabout” scenario are mostly
due to its highly symmetric structure which is usually a major
obstacle to combinatorial optimisation. The last “grid” data
set, G-04, was longer to solve because it involves many more
aircraft. It is however important to notice that such complex
situations are never met in the current air traffic. Situations
where six interacting aircraft are in potential conflict are
exceptional and the airspace structure forbids such symmetric
trajectories as in “grid” and “roundabout” scenarios. If such
a situation is encountered in real traffic, the quick resolution
obtained by adding a time limit of 60 seconds proved to be
efficient as it only failed to find a feasible solution once and
still provides solutions whose costs are smaller than z0 and
z

r

, even if a 50 % cost increase was observed for G-04.

VII. CONCLUSION

The objective of the approach presented in this article is
to solve the problem of conflict-free motion planning for
multiple aircraft on the same flight level with trajectory
recovery. One of the major advancements in this paper is a
consistent approximation scheme from the natural continuous-
time representation of the problem to a discrete-time linear
approximation. In particular, it connects formulations that are
usually treated independently in the literature. Moreover, the
approximations are chosen in order to satisfy the requirements
for separation between aircraft at all times with accurate
constraints. The operational concept of 4D contract is also
taken into account by explicitly including in the model the
recovery of reference trajectories after the necessary manœu-
vres. The second important contribution is a hybrid algorithm
in which a warm start optimisation of a nonlinear model is
performed from the solution of a linear approximation. This
algorithm enables taking into consideration the real geometry
of nonlinear constraints while guaranteeing to find a feasible
solution when the linear model has one. Experimental tests
were conducted on a large benchmark including three air traffic
scenarios, representative of several difficulties that may be
encountered. These tests highlighted the positive impact of
the hybridisation in terms of number of feasible solutions and
of cost of these solutions. It was however observed that the
resolution of the mixed integer linear model could take too
much time for an operational implementation. A significant
improvement in runtime with only a minor deterioration of
the solutions was achieved by stopping this resolution after
one minute when the solver had not converged yet.

On a theoretical level, a perspective that was opened by
this work deals with the development of an algorithm aiming
at global optimality of the NLP by iteratively improving
bounds on its criterion. Indeed, it is possible to build a linear
approximation whose minimum cost is a lower bound of the
optimal cost of the NLP. This approximation may be obtained
by a similar process as the one described in this article except
that, when linearising quadratic constraints, chords should be
replaced with tangents and, reciprocally, tangents with chords.

Our current research on the subject focus on improving the
implementability of the models with the aim of integrating it
in a decision support system. In order to meet the constraints
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imposed by decision makers, additional research has to be
conducted on four levels. The model has some limitations,
such as the fact that constraints on longitudinal and lateral
accelerations are not decoupled, and that the criterion does not
explicitly formulate the operational cost of trajectories. More
precise constraints on acceleration and a cost function based on
fuel consumption are to be included in the model. Moreover, as
the definition of an ideal criterion is still an open issue, other
criteria such as deviation from the reference trajectory could
be investigated. In order to extend the applicability of this
automated conflict resolution to aircraft whose altitude is not
stabilised, a 3D model is under study. Uncertainties should also
be explicitly added in the problem in order to obtain robust
conflict-free motion planning. It must however be noted that
these last two improvements give rise to much more complex
problems, that may only be tractable for small instances unless
some simplifying assumptions are made. Finally, the bench-
mark proposed here was useful to demonstrate the strengths
and limits of this algorithm but it remains too artificial. There
would be a need to test this method on operational data. Full
scale real-life data sets were already collected and still have to
be used as other entries of our benchmark. After addressing
these issues, the solver could be implemented as a module
activated either periodically or upon request of the controllers.
It will then be possible to assess the impact of the system in
an operational context.
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