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Data-driven control design in the Loewner framework:
Dealing with stability and noise

Pauline Kergus1 and Simone Formentin2 and Charles Poussot-Vassal1 and Fabrice Demourant1

Abstract— The L-DDC (Loewner Data Driven Control) al-
gorithm is a data-driven controller design method based on
frequency-domain input-output data. The identification of the
plant is skipped and the controller is designed directly from the
measurements using the Loewner approach, known for model
approximation and reduction. However, in the L-DDC method,
the identified controller is not guaranteed to be stable and the
effect of noise on the identified controller is unknown. In this
article, we ensure the stability of the controller and propose a
solution to deal with noisy data. The method is validated on a
numerical example.

I. INTRODUCTION

In many control engineering applications, no mathematical
description of the plant is available or easily accessible.
Given some input-output data collected on a system, one
can either identify a model of the plant and then, design a
controller using any kind of model-based technique (indirect
methods), or directly use the experimental data to design a
controller (direct methods). The latter option is particularly
interesting when a model of the system would be too time-
consuming, too complex or too costly to obtain. Furthermore,
the identification can result in a complex structure for the
plant, and consequently for the controller. A reduction step
(for the controller) might be needed, which is also a complex
task (see [1]). Of course, an advantage of indirect methods
over direct ones is that the model can be used for other pur-
poses (stability and robustness analysis, simulation, etc...).
However, direct data-driven methods seem less conservative,
and not sensitive to modelling errors, since the selection of
the controller is done directly from the experimental data.
Moreover, they are less time-consuming since the modelling
and/or identification steps are skipped and the resulting
control law is tailored to the actual system.

Numerous direct methods have been proposed to try to
achieve the best possible performance without using any
plant model, beginning with the unfalsified concept by Sa-
fonov, see [2]. An example is the Iterative Feedback Tuning
(IFT, [3]) and its frequency-domain variant in [4]: it finds the
controller parameters thanks to an adaptative and iterative
control algorithm based on explicit criterion minimization.
Another one is Model Free Control (MFC) which has been
applied on a complex experimental set-up in [5]. Among
all the direct design techniques, the ones proposed in [6],
[7] and [8] are iterative methods using the Nyquist criteria
so that the obtained controller guarantees the stability of
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the closed-loop. This is made possible by using an initial
stabilizing controller, which is a strong requirement. The
methods proposed in [7] and [8] also require a structure for
the set of admissible controllers, which can be difficult to
choose. Two applications of [6] can be found in [9] and
[10].

Another method is the L-DDC algorithm, originally pro-
posed in [11]. This is a one shot method based on frequency-
domain data that does not require a initial stabilizing con-
troller. The main advantage of the L-DDC method relies
on its simplicity. First, the user does not have to choose
a structure for the controller, only the order. As in system
identification, the order becomes a tunable parameter allow-
ing to find a compromise between complexity and reliability.
Moreover, the specifications are imposed easily through a
reference transfer function representing the desired closed-
loop behavior. This technique is appealing for engineers
for applications when a controller should be synthesized
quickly and for which it would be too costly or too complex
to identify a model. Moreover, the Loewner framework,
which is used to identify the controller, allows to find the
minimal representation interpolating a given data-set and it
is computationally efficient. However, as the singular value
decomposition is sensitive to noise, noisy data have a great
impact on the identified controller and no specific solution
has been proposed yet to tackle this problem. Furthermore,
another limitation of the L-DDC algorithm is that the identi-
fied controller can be unstable, which can be a problem if one
does not want to introduce unstable dynamics in the open-
loop. The objective of this paper is to enhance the L-DDC
algorithm by making it more robust to noisy data and by
enforcing the stability of the controller, which are, in many
applications, strong requirements.

This article is organized in six sections. The problem
formulation is detailed in Section II. Section III introduces
the Loewner framework which is the frequency-based in-
terpolation technique used in this work and which plays a
pivotal role in the proposed approach. Then, the proposed
method to design a controller on the basis of frequency-
domain data is exposed in Section IV. In comparison with
[11], the main contribution is to allow to treat noisy data and
to enforce the stability of the controller, these two aspects
are detailed in Section IV. Finally, an academic example is
considered in Section V to illustrate the method. Conclusions
and outlooks are finally given in Section VI.



II. PROBLEM FORMULATION
The considered problem is to design a controller for a plant

P with nu input-ny output, respectively denoted u and y,
without identifying a dynamical model of the plant. The plant
is only characterized by measurement data given as samples
of its frequency response {ωi,Φi}, i = 1 . . . N , where Φi ∈
Cny×nu and ωi ∈ R+. Of course, time-domain data can be
used if their Fourier transform gives enough samples of the
frequency response in the range of interest. In this paper,
we consider noisy data: ∀i = 1 . . . N,Φi = P(ıωi)(1 +Ni),
where Ni is the noise at ωi and ı is the complex variable.
Let us denote † the Moore-Penrose inverse. s ∈ C denotes
the complex conjugate of s ∈ C.

As detailed in [11], the L-DDC algorithm allows to
identify a controller, without any a priori structure. The
specifications are expressed as a reference transfer function
M which represents the desired behavior in closed-loop. The
L-DDC algorithm consists in two steps: 1) the closed-loop
objective transfer M and the open-loop experimental data
of the plant are used to get the frequency response of the
“ideal” controller denoted K(ıωi) for a limited frozen set of
frequency values; 2) then, this frequency response will be
approximated by a linear time-invariant input-output model
K̂ of order n. The controller K is “ideal” in the sense that
it would give exactly the objective transfer function M if
inserted in the closed-loop.

In this paper, two improvements of the second step of the
L-DDC algorithm are introduced to both ensure the stability
of the identified controller and to be robust to noisy data.
In fact, noisy data has a big impact on the controller poles
location and no special treatment has been proposed yet.
Before detailing these new aspects, the Loewner framework
is recalled in Section III.

III. PRELIMINARY RESULTS: LOEWNER-BASED
IDENTIFICATION

The Loewner approach, exposed in [12], is usually used
for model approximation and reduction. It constructs a
descriptor model in state-space form directly from the
frequency-domain data so that the model performs a barycen-
tric Lagrange interpolation (see [13] for further details). In
this article, it is used to identify an interpolating model K̂r

of the “ideal” controller.
In order to construct such a realization, the following in-

puts are required: (i) left interpolation point (µj)j=1...q ∈ C
and left tangential directions (lj)j=1...q ∈ Cny , and (ii) right
interpolation points (λi)i=1...k and right tangential directions
(ri)i=1...k ∈ Cnu . The interpolation points correspond to the
data of the model to be identified, which are, in our approach,
the samples of the frequency response of the “ideal” con-
troller {ωif ,K(ıωif )}, if = 1 . . . Nf . The computation of
the samples K(ıωif ) and the separation of the data between
left and right interpolation points, respectively (µj)j=1...q

and (λi)i=1...k, are explained in Section IV.
The following vectors are then defined from the input data:{

vTj = lTj K(µj) ∀j = 1 . . . q
wi = K(λi)ri ∀i = 1 . . . k

(1)

Note that in case of a SISO system, the tangential direc-
tions (lj)j=1...q and (ri)i=1...k are useless and can be fixed
to 1. In the Loewner approach, one seek for a model K̂ that
interpolates the data as follows:{

lTj K̂r(µj) = lTj K(µj) = vTj ∀j = 1 . . . q

K̂r(λi)ri = K(λi)ri = wi ∀i = 1 . . . k
(2)

Based on the (µj , l
T
j ,v

T
j ) and (λi, ri,wi) data, one can

construct the Loewner L and shifted Loewner Lσ matrices
as follows, for all j = 1 . . . q and i = 1 . . . k:

[L]j,i =
vT
j ri−lTj wi

µj−λi
, [Lσ]j,i =

µjv
T
j ri−λil

T
j wi

µi−λj
. (3)

As explained in [12], one of the main advantages of
the Loewner framework is that the minimal Mc Millan
order of the interpolating model K̂r can be obtained by
evaluating r = rank[L,Lσ]. By applying the singular value
decomposition:

[L,Lσ] = Y ΣlX̃∗,

[
L
Lσ

]
= Ỹ ΣrX

∗ , (4)

where Σl,Σr ∈ Rr×r, the descriptor model K̂r =
(Er, Ar, Br, Cr, 0) interpolates the data of the “ideal” con-
troller, where the realization matrices of the model K̂ are
then computed as follows :

Er = −Y ∗LX, Ar = −Y ∗LσX, Br = Y ∗V, Cr = WX .

(5)
In addition to determining the smallest exact interpolat-

ing model, the Loewner framework allows to control the
complexity of the identified model: by keeping the n largest
singular values of the decomposition of the Loewner pencil
only (4), i.e. the first n columns of X and Y , the obtained
realization is a nth order one. That is how model reduction is
done through the Loewner framework. In [11], the controller
model is directly reduced to the objective order n but then
the obtained controller is not necessarily stable and its poles
can be affected by the noise.

IV. LOEWNER BASED DATA-DRIVEN CONTROL
DESIGN

In this section, two additional features are added to the
original L-DDC algorithm. The first one is a stability con-
straint of the identified model: to that purpose, we use the
algorithm introduced in [14] which finds the best approxima-
tion of a rational model in the RH∞ spaces of real rational
functions in the Hardy space H∞. The second one a variant
of the Loewner algorithm proposed in [15] that allows to
identify an approximation of the original system even for
high noise levels. These two modifications of the classical
Loewner framework will be detailed before summing up the
enhanced L-DDC algorithm.

A. Enforcing stability of the controller

In many applications, for example when input saturation
exist, one does not want to introduce unstable dynamics in
the open-loop to preserve the internal stability. Therefore
it is important to guarantee the stability of the controller.



This was not possible in the original version of the L-DDC
algorithm proposed in [11] but, in this paper, we propose to
use the algorithm introduced in [14] to ensure the stability of
the identified controller. Note that this algorithm has already
been combined with the Loewner framework in [16] in the
area of model reduction.

Given an unstable continuous LTI descriptor system, the
method proposed in [14] allows to find a stable one which
is the best approximation of the original system in the space
RH∞. In our case, this algorithm will be applied to the the
interpolating descriptor model K̂r, obtained at the end of
Section III, which is of order r = rank[L,Lσ] (McMillan
degree). The matrices Er, Ar ∈ Rr×r, Br ∈ Rr×ny , Cr ∈
Rnu×r of the system are obtained through Equation (5). The
goal is to obtain a rth order stable controller K̂s

r that is
an optimal RH∞-approximation of K̂r, meaning that K̂s

r

solves: K̂s
r = arg min

K∈S+r,nu,ny

∣∣∣∣∣∣K̂r −K
∣∣∣∣∣∣
∞
. (6)

Let us introduce the following notations:
Sr,nu,ny

= Rr×r × Rr×r × Rr×nu × Rny×r × Rny×nu ,

S+
r,nu,ny

=
{

(E,A,B,C,D) ∈ Sr,nu,ny
;C≥0 ⊂ ρ(E,A)

}
,

S−r,nu,ny
=
{

(E,A,B,C,D) ∈ Sr,nu,ny
;C≤0 ⊂ ρ(E,A)

}
,

(7)
where σ(E,A) is the set of eigenvalues of (E,A) and
ρ(E,A) is the resolvent set: ρ(E,A) = C \ σ(E,A).

The first step is to decompose K̂r into K̂+ ∈ S+
r,nu,ny

and K̂− ∈ S−r,nu,ny
. The existence of such a decomposition

is proved in [14] and a method is proposed to compute it
(practically, one can use the Matlab function stabsep). Note
that K̂+ is the optimal approximation of K̂r in RH2.

The unstable part K̂− = (E−, A−, B−, C−, D−) is then
used to compute K̂s

r . The controllability and observability
gramians of K̂−, denoted Wc and Wo respectively, are
computed by solving the following generalized Lyapunov
equations:{

A−WcE
−T + E−WcA

−T +B−B−T = 0
A−TWoE

− + E−TWoA
− + C−C−T = 0

(8)

Let us introduce σ1 =
√

max(σ(WT
o Wc)) and the matrix

R = WoE
−WcE

−T − σ2
1I , where I is the identity matrix.

The optimal RH∞-approximation is then given by K̂s
r =

K̂+ + (Ê, Â, B̂, Ĉ, D̂), where the matrices (Ê, Â, B̂, Ĉ, D̂)
are computed as follows (the reader can refer to [14] for
details):

Ê = E−TR, B̂ = E−TWoB
−,

Ĉ = C−WcE
−T , Â = −A−TR− C−T Ĉ, D̂ = D−.

(9)

In the next paragraph, a variant of the classical SVD
implementation of the Loewner framework is proposed to
make the selection of the poles robust in presence of noise.

B. Dealing with noisy data in the Loewner framework

The Loewner framework can identify a system from given
noise-free measurements in the frequency-domain (see [1]).
An analysis of the effects of noise on the performances
of the Loewner approach is provided in [15], it exhibits

poor performances for high noise levels. Noise affects the
recovered poles: the largest singular values of the Loewner
pencil does not necessarily reflect the physical poles of
the system and often include noise dynamics. In this case,
overmodeling is the only way, in the Loewner context, to
capture the physical poles of the original system.

In the classical Loewner framework, the poles of the
system are determined through a rank revealing factoriza-
tion. In order to make the selection of the poles robust
to noise, this SVD approach is replaced by ordering the
poles of the high-order system according to the norm of the
associated residues, as explained in [15]. This approach is
recalled hereafter. It will be applied to the stable rth-order
stable K̂s

r = (Esr , A
s
r, B

s
r , C

s
r , D

s
r) obtained in the previous

paragraph as the optimal approximation of the interpolating
controller in RH∞. The objective is to obtain a stable
reduced-order controller K̂n by selecting the poles in a noise-
proof way.

Instead of using the SVD approach, the importance of
a pole λi of K̂s

r , which is an eigenvalues of (Esr , A
s
r), is

measured by the norm of the corresponding residue ri =
(Csrxi)(y

T
i E

s
rxi)

−1(yTi B
s
r), where xi ∈ Rr and yi ∈ Rr

are the right and left eigenvectors of (Esr , A
s
r) respectively

associated with the eigenvalue λi. This strategy is based on
the residue expansion of the transfer function: a pole with a
larger residue norm contributes more to the response of the
system, while the rest do not influence it that much.

As explained in [15], using this technique to select the
poles instead of the classical SVD approach, the approx-
imated poles are within appropriate pseudospectra bounds
corresponding to the noise level in comparison with the
physical poles of the controller.

Then, the n poles of the controller are the ones corre-
sponding to the nth largest residue norms. The poles are then
ordered downward, so that λ1 is the pole with the highest
dominance measure and λr has the smallest one. The poles
of the reduced stable model are [λ1 . . . λn]. After that, it is
possible to adjust the residues and the D-term to fit the data
by solving the following least squares problem:

min
ri,D

N∑
j=1

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ri
ıωj − λi

+D −K(ıωj)

∣∣∣∣∣
∣∣∣∣∣
2

F

. (10)

Finally, the nth order controller K̂n(s) = D+
∑n
i=1

ri
s−λi

is reconstructed as a transfer function by keeping the poles
corresponding to the nth largest dominance measures only
and the residues obtained by solving (10).

Since the poles of the reduced-order controller come from
the stable model K̂s

r , the obtained nth-order controller K̂n

remains stable.

C. Enhanced L-DDC algorithm
This paragraph sums up the L-DDC procedure, indicated

in Algorithm 1, to identify a stable controller of a given
order n on the basis of potentially noisy frequency-domain
measurements from an unknown plant P (see Figure II).



Algorithm 1: L-DDC algorithm
Data:
• Samples of the frequency response of the plant
{ωi,Φi}, i = 1 . . . N . Note that q = k = Nf .

• Objective order n for the controller
• Reference transfer function M

Solution:
1) Compute the samples of the frequency response of

the “ideal” controller as follows, ∀i = 1 . . . N ,

K(ıωi) = (Φi − ΦiM(ıωi))
†M(ıωi).

2) Using the Loewner framework, compute the
interpolating descriptor controller model
K̂r = (Er, Ar, Br, Cr, 0) through (5).

3) Decompose K̂r into the stable part K̂+ ∈ S+
r,nu,ny

and the unstable part K̂− ∈ S+
r,nu,ny

.
4) Compute the gramians of K̂− according to (8) and

then the matrices (Êsr , Â
s
r, B̂

s
r , Ĉ

s
r , D̂

s
r) following (9)

to form K̂s
r .

5) Compute the eigenvalues λi, i = 1 . . . r of (Esr , A
s
r)

and the corresponding left and right eigenvectors.
6) Compute the residue for each eigenvalue. The n

eigenvalues corresponding to the nth largest residue
norms are the poles of the controller.

7) Adjust the residues ri, i = 1 . . . n, and the D-term by
solving (10) to obtain he nth-order controller K̂n.

1) From the data to the “ideal” controller:

The idea of the first step of Algorithm 1 is to exploit
experimental data {ωi,Φi}, i = 1 . . . N to determine the
frequency response of the “ideal” controller K(ıωif ), which
would allow to get exactly the desired closed-loop transfer
materialized by the function M .

Remark 1: If the experimental data is given as a time
data-set of input-output measurements of the plant, a Fourier
transform allows to estimate samples of the plant frequency
response if the input signal sufficiently excite the system.

2) Using the Loewner framework to get an interpolating
model:

Then, the data of the “ideal” controller is interpolated
through the Loewner framework recalled in Section III
(step (2) of Algorithm 1). The interpolatory property of the
Loewner framework makes our method easy to use since
there no a priori structure of the controller is required.

In order to use the Loewner framework, the data are
equally separated between left and right interpolation points.
In [13], the author recommends to alternate between left and
right to avoid rank loss in the Cauchy-like Loewner matrix
L. This distribution is used in the previous version of the L-
DDC algorithm, and the reader can refer to [11] for further
details.

V. SIMULATION RESULTS

The proposed example is drawn from Matlab’s Robust
Control Toolbox and treats the control design for a SISO 9th-
order model of a head-disk assembly in a hard-disk drive. In
the Matlab example, hinfstruct is used to design a robust
controller such that a desired open-loop response is achieved
while satisfying a certain performance measure, see [17].
This example was also used in [6].

The desired open-loop transfer function is:

L(s) =
s+ 106

1000s+ 1000
,

from which the closed-loop reference transfer can
be computed. For this application, the method
developed in [6] obtains the following controller:
C(z) = 10−4 2.287z2−3.15z+0.8631

(z−1)(z−0.8598) . The sampling period is
Te = 2ms. The presence of an integrator is forced because
there is one in the chosen initial stabilizing controller
Kc(z) = 10−6

z(z−1) , giving the controller a certain structure,
while the method proposed in this paper does not allow
to structure the controller. Then, the only way to compare
properly the results of [6] and of the method presented in
this paper is to synthesize two controllers of the same order,
here n = 2.

Using Matlab, samples of the frequency response of the
plant P (ıωi), for i = 1 . . . N with N = 500, are computed
for 500 logarithmically spaced frequencies in the interval[
10, 5× 104π

]
rad.s−1 (the upper limit corresponds to the

Nyquist frequency). Then, noise of given Signal Noise
Ratio (SNR) is added to consider noisy data: for all i =
1 . . . N ,Φi = P (ıωi)(1 +Ni), where the noise is defined as
in [15]: Ni = 10−

SNR
10 (randn(1) + ı randn(1)).

Then, the frequency response of the “ideal” controller K,
which would give L exactly if inserted, is computed: ∀i =
1 . . . N, K(ıωi) = L(ıωi)

Φi
.

The enhanced L-DDC algorithm is then applied. The
different steps of Algorithm 1 are illustrated in the noise-free
case on Figure 1. First, the frequency response of the ideal
controller is represented by the blue dots. Then, these data
samples are interpolated through the Loewner framework,
giving a 10th-order model K̂r indicated by the solid yellow
line (r = 10). Its optimal RH∞-approximation K̂s

r is given
by the solid magenta line. Finally, after the order reduction,
the 2nd-order controller K̂ is represented by the cyan dashed
line. In this benchmark, in order to compare our method to
the one presented in [6], we chose to use n = 2.

This example is particularly interesting since the system is
a non minimum phase one, i.e. it exhibits a pair of unstable
zeros. According to the computation of the “ideal” controller,
the interpolating controller of order r = 10 will have two
unstable poles due to the compensation of the unstable zeros,
and this is not a proper solution to control a non minimum
phase system. Using the method developed in [14] allows
the user to avoid the compensation of unstable zeros and
to find the closest option by computing the optimal RH∞-
approximation.
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Fig. 1. Frequency response of the “ideal” controller K (blue dots), of
the interpolating model K̂r (solid yellow), its RH∞-approximation K̂s

r

(solid magenta) and the reduced-order stable controller K̂n (dash-dotted
cyan, n = 2).

Figure 2 exhibits the results of the identification of the
controller for noisy data-sets with different SNR. First, the
classic L-DDC algorithm fails to find the “physical” poles
that are not due to noise for the reduced-order controller.
However, with the enhanced L-DDC algorithm, the selection
of the poles is robust to noise. As expected, when the noise
level increases, it is more difficult to recover the dynamic
of the “ideal” controller, the performances deteriorate with
noise, but the identified controllers still show a coherent
behaviour.

Using the original system P , it is possible to compute
the resulting open-loops with the controller obtained in [6]
and the enhanced L-DDC one. Their frequency response are
indicated on Figure 3. Even for a high noise level SNR=10,
we still obtain an acceptable open-loop considering the
objective L, as seen on Figure 3. Note that the model of the
plant P is used here to validate our method on this numerical
example only, the design of the controller is completely data-
driven.

Note that our method allows to find a stabilizing controller
(even if it is not originally guaranteed by the method), and
that with a same order for the controller (n = 2) as in [6],
we achieve similar performances. The main advantage of
the enhanced L-DDC algorithm over [6] is that it does not
require an initial stabilizing controller, which can sometimes
be a strong assumption. However, the method proposed in
this paper cannot guarantee that the identified controller
stabilizes the plant in closed-loop.

In the noise free case, the H2 error between the desired
open-loop L and the one obtained with the controller de-
signed with the enhanced L-DDC algorithm is eH2

= 0.5859
while the method developed in [6] achieves eH2 = 0.7248.
The error is higher than with the enhanced L-DDC algorithm,
it can be explained by the fact that the structure of the con-
troller is constrained by the choice of the initial stabilizing
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Fig. 2. Frequency response of the “ideal” controller K in the noise-free
case (blue dots) and of the identified 2nd-order controllers for different
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(solid blue) and in the noise-free case (dashed cyan). The controller obtained
in [6] in the noise-free case is indicated by the solid dark green line. The
former version of the L-DDC algorithm [11] for SNR=20 gives the controller
in dashed light green.

controller, while the method proposed in this paper does not
require any knowledge a priori.

In order to generalize, some statistical informations are
given on Figure 4. First, as expected, the median of the error
between the desired open-loop and the one obtained with the
enhanced L-DDC algorithm increase with the noise level.
However, it remains acceptable: for SNR=10 for example,
the maximum error does not exceed the one obtained with
the method developed in [6].

Figure 4 also exhibits the H2 error between the desired
open-loop and the ones obtained with the controllers iden-
tified with the previous version of the L-DDC algorithm
presented in [11]. For SNR=20, the results of the identi-
fication can vary a lot between two different noisy data-
sets with the algorithm of [11]. The extension presented
in this paper is more robust to noise: the variance of the
error over the 50 tested data-sets is lower for the enhanced
L-DDC algorithm than for its previous version from [11]
for both SNR values considered here. However, note that if
for SNR=20, the method proposed in this paper is robust to
noisy data (low variance of the error), the identified controller
can vary significantly for higher noise level (the variance for
SNR=10 is bigger), but in reasonable bounds.

VI. CONCLUSIONS

In this paper, an extension of the L-DDC (Loewner
Data-Driven Control) has been proposed. In addition to the
previous version of the L-DDC approach, a post-processing
method to obtain an optimal RH∞-approximation of the
controller is used to ensure the stability of the controller.
Also, the reduction step is no longer based on the classical
SVD implementation of the Loewner framework, which is
too sensitive to noise. The selection of the poles is now
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Fig. 3. Frequency response of the desired open-loop L (blue dots) and
of the open-loops with the identified 2nd-order controllers for different
noise levels: SNR=10 (solid grey), SNR=20 (dash-dotted magenta), SNR=60
(solid blue) and in the noise-free case (dashed cyan). The open-loop
achieved in [6] in the noise-free case is indicated by the solid dark green
line.

done according to their residue norms, thus it is based on
the pole-residue expansion.

The problem formulation is the same: the specifications
are imposed easily through a reference transfer function rep-
resenting the desired closed-loop behavior. Despite its sim-
plicity, this approach seems to provide good performances.
First, the frequency response of the “ideal” controller is
computed thanks to frequency-domain data from the plant
and the reference transfer. This controller is called “ideal”
because it would give exactly the objective if inserted in
the closed-loop. Then, the Loewner framework is used to
interpolate this “ideal” frequency response. The optimal
RH∞-approximation of the interpolating model is computed
and its order is reduced in a noise-proof way to obtain the
desired controller.

The main advantage of the L-DDC method relies on its
simplicity, the user does not have to choose a structure for
the controller, only the order, which becomes a tunable pa-
rameter allowing to find a compromise between complexity
and reliability. This technique is appealing for engineers
for applications when a controller needs to be synthesized
quickly and for which it would be too costly or too complex
to identify a model. It is a one shot method and the obtained
controller is tailored to the actual system.

Furthermore, the improvements of the L-DDC algorithm
allow to enforce the stability of the controller and make the
approach robust to noise. However, the proposed approach
does not allow the use of model-based analysis of stability
and robustness, therefore future research will address this
point.
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