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Abstract

In this article, we develop the two-dimensional positive edge criterion for the dual simplex. This work extends a
similar pricing rule implemented by Towhidi et al. [24] to reduce the negative effects of degeneracy in the primal
simplex. In the dual simplex, degeneracy occurs when nonbasic variables have a zero reduced cost, and it may lead
to pivots that do not improve the objective value. We analyze dual degeneracy to characterize a particular set of dual
compatible variables such that if any of them is selected to leave the basis the pivot will be nondegenerate. The dual
positive edge rule can be used to modify any pivot selection rule so as to prioritize compatible variables. The expected
effect is to reduce the number of pivots during the solution of degenerate problems with the dual simplex. For the
experiments, we implement the positive edge rule within the dual simplex of the COIN-OR LP solver, and combine
it with both the dual Dantzig and the dual steepest edge criteria. We test our implementation on 62 instances from
four well-known benchmarks for linear programming. The results show that the dual positive edge rule significantly
improves on the classical pricing rules.

Keywords: Linear programming, Dual simplex, Degeneracy, Pricing criterion, Positive edge

1. Introduction

1.1. Degeneracy in the dual simplex

More than sixty years after it was first introduced by Dantzig (see [4]), the simplex remains one of the most popular
algorithms for linear programs (LPs). The algorithm iteratively progresses toward the optimal solution by stepping
from one feasible vertex to an adjacent vertex with a better objective value. Lemke [16] developed the dual counterpart
of the primal simplex in 1954. The difference between this dual simplex and the simplex applied to the dual LP is that
the latter keeps the primal representation. In particular, all the computations that occur at each pivot refer to a basis
of the primal space. The dual simplex found an early application in mixed-integer linear programming: it can be used
to efficiently reoptimize the solution after branching or adding cuts. However, according to Bixby [3], it had to wait
for the major contributions of Forrest and Goldfarb [8] and Fourer [9] before becoming a practical alternative to the
primal simplex for solving LPs. A tutorial on the dual simplex may be found in [1], and recent progress with respect
to implementation issues is surveyed in [15].

One of the difficulties that the simplex may encounter is degeneracy. A degenerate pivot is performed when the
basis changes without improvement in the objective value. In the dual simplex, this situation can arise when nonbasic
variables have a zero reduced cost. If one of these dual degenerate variables is chosen to enter the basis, then it is
impossible to improve the objective value without violating a constraint of the dual problem.

Research into degeneracy has mostly focused on the primal simplex, but the techniques can be adapted for the dual
method. For instance, a random perturbation of the constraints’ right-hand side [2] and a similar shifting of bounds
on the variables [11] are implemented in efficient codes to reduce the negative effects of degeneracy in the primal
simplex. These perturbations replace the degenerate pivots with pivots that give a small but guaranteed improvement
in the objective value. They are also used in the dual simplex to modify the objective function coefficients [3]. One
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technique specific to the dual approach is the bound-flipping ratio test [9]. The idea is that bounded variables offer
the opportunity for larger steps. In some circumstances, the value of the variable selected to enter the basis can be
changed from one of its bounds to the other while maintaining the dual feasibility of the basis. Another variable can
then be selected to make another step without additional computational effort. In many situations, this ratio test avoids
a degenerate pivot by flipping the bounds of degenerate variables. A detailed description of a bound-flipping dual can
be found in [18].

The pricing criterion is also critical in the context of degeneracy. The dual steepest edge algorithms described by
Forrest and Goldfarb in [8] motivated practical interest in the dual simplex. The classical Dantzig criterion selects
the pivot row that corresponds to the largest infeasibility. The steepest edge criterion considers the ratios of the
infeasibilities to the norms of the rows of the basis inverse. This criterion generally produces larger steps and reduces
the effects of degeneracy [13].

In the primal case, several attempts have been made to identify the variables that will produce a nondegenerate
pivot if they are selected during the pricing step. The exact identification of this set of variables is impossible in
practice since it involves the computation of the whole simplex tableau. In [12, 14], a subset of the variables that will
produce a degenerate pivot is found, and the number of algebraic operations is similar to that for the computation of
the reduced cost vector. This rule improves the likelihood of performing a nondegenerate pivot by discarding a set
of bad candidates. In contrast, Raymond et al. [23] developed the positive edge test to efficiently determine a set of
compatible variables that will give rise to a nondegenerate pivot. The variables are those that have their corresponding
columns in the span of the nondegenerate columns. Towhidi et al. [24] introduced the positive edge pricing rule to
prioritize the compatible variables in the primal simplex. Their implementation of the criterion within the COIN-OR
LP (CLP) solver [17] produces good results on the most degenerate instances of Mittelmann’s benchmark!.

1.2. Contribution statement

The most recent research on degeneracy in the simplex has mostly focused on the primal algorithm. In [22], Pan
describes a dual projective simplex for degenerate problems. However, the algorithm exploits primal degeneracy to
perform the algebraic computations with a smaller deficient basis.

Our main contribution in this work is to introduce the dual counterpart of the positive edge criterion to reduce the
effects of degeneracy in the dual simplex. This new pricing rule is supported by a description of the concept of dual
compatibility that highlights the relationship with the primal case.

Compared with the work by Towhidi et al. [24], this article has a stronger emphasis on the theoretical study of the
properties of the compatible variables. We study the stability of the set of compatible variables to justify that it does
not need to be updated after each simplex pivot. To improve the implementation of Towhidi et al., we then determine
a criterion to update the set of dual compatible variables only when necessary. Preliminary tests support the efficiency
of our approach.

Finally, we implement the criterion within CLP and perform extensive computational tests to demonstrate its
strong potential when solving degenerate instances. Our analysis of the results highlights the characteristic that has
the greatest impact on the performance of the algorithm, thus suggesting how parameters could easily be set for an
efficient adaptive use of the pricing criterion.

The article is organized as follows. In Section 2, we analyze dual compatibility and describe an efficient stochastic
test to identify the dual compatible variables. We introduce the dual positive edge pricing criterion and discuss the
implementation details in Section 3. The experimental results are presented and discussed in Section 4, and Section 5
provides concluding remarks.

"http://plato.asu.edu/ftp/lptestset/



2. Compatibility in the dual simplex

2.1. Notation

The theoretical developments focus on the LP in standard form:

min ¢’x
P):{s.t. Ax=0b ()
x>0,

where ¢,x € R", b € R", and A € R™". The corresponding dual program is expressed in standard form:

min by
D):{s.t. ATy+d=c )
yeR".d>0,

where d € R". We make the usual assumption that A is of full rank.

For any subset J C {l,...,n} of column indices, the submatrix of A with columns indexed by 7 is denoted A 7,
and x4 is the subvector of variables indexed by 7. The vectors of all ones and all zeros with dimensions dictated by
the context are denoted 1 and 0. For p € N\ {0}, j < p, the j™ vector of the canonical basis of R” is denoted ej’ .

A basis B is an ordered set of m variable indices such that Ag is nonsingular. The ordered set AV indexes the
remaining nonbasic variables. We then define the corresponding solution vector b = Az‘glb, reduced cost vector
c=c- céAgA > 0, and simplex tableau A= A%'A. The basis B is feasible if and only if b > 0, and it is dual
feasible if and only if ¢ > 0.

For conciseness, the vector spaces spanned respectively by the columns and the rows of a matrix are referred to as
the column and row spaces. The row space of a matrix M is the column space of M.

Finally, the operator (:|-) refers to the scalar product.

2.2. A definition of dual compatibility

Generalizing the work done by Elhallaoui et al. [7] for set partitioning problems, Omer [19] has introduced the
concept of compatibility in the algorithmic context of the primal simplex. The compatible variables are those that
can be pivoted into the basis without impacting the values of the degenerate variables. The most general definition of
compatibility is given for the primal case in [20].

Definition 1 (Compatibility). Let J be a set of variable indices. A variable xj, j € {1,...,n}, is compatible with ;J
if the corresponding column A is in the column space of A 7.

In this article, we are interested only in the variables that are compatible with the set S of variables that are strictly
within their bounds. As a consequence, the variables compatible with § are simply referred to as “compatible.”

To study the dual case, we first apply Definition 1 to the dual problem (D). Assuming that a feasible solution (y, d)
of (D) is available, let $ and P denote the set of positive and zero variables of d, i.e., dp > 0 and d; = 0. In this
solution, the variables strictly within their bounds are those in y and dp. A direct application of Definition 1 shows
that the variables in y and dyp are compatible, so we are mostly interested in identifying the compatible variables of d.
Since (D) involves only unbounded (y) and slack variables (d), the proposition below states another characterization
of the compatible variables for this particular model. In the remainder of this article, we use p and p = n — p to denote
the cardinality of # and P respectively.

Proposition 1. Let j; be the index of the i variable of P. Variable d . is compatible if and only if eiﬁ is in the row
space of Azg.

Proof. The constraint matrix of (D) is (AT, I) where I is the identity matrix of R”. The variables strictly within their
bounds are those of y and dyp, so the variable dj, is compatible if and only if the ji™ column of I is in the column space



of (AT I). This means that there exists a nonzero (a@y, @p) € R™ X R? such that

(Aq))Ta’y +ap =0
(Aﬁ)Tozy = eiﬁ.

Since ap can always be set to satisfy the first equation, we consider only the second one. This equation has a nonzero
solution if and only if ef is in the column space of (Aﬁ)T or, equivalently, in the row space of Az. O

In the context of a dual simplex solution, it is more natural to assume that a dual feasible basis B of (P) is available,
ie., ¢y > 0, together with xg = b and x5 = 0. The dual degenerate variables are the nonbasic variables x;, j € N,
such that ¢; = 0. In this case, the correspondence between the dual and primal solutions can be stated with respect to

the sets P and P.

Proposition 2. A feasible solution of (D) is built by setting y' = chgAgg1 and d = ¢. Since dp > 0 and dz = 0, we

have ¢p > 0 and Eﬁ = 0. The dual degenerate variables of (P) are thus associated with the degenerate variables of
D).

Based on this correspondence, we use the characterization in Proposition 1 to define the dual compatible variables.

Definition 2 (Dual compatibility). With the notation of Proposition 1, the variable xj, j; € P, is dual compatible if
and only if €} is in the row space of Az.

We may highlight the analogy between dual and primal compatibility by assuming that the columns of A are
rearranged so that A = (AzAp). In that case, the variable x;, j € {1,...,m}, is primal feasible if and only if A4 is in

the column space of A, and it is dual compatible if and only if ef, is in the row space of Az. Note that A s contains the
columns of the primal nondegenerate variables, whereas Az contains the columns of the dual degenerate variables.

Remark. On a conceptual level, one important difference between primal and dual compatibility is that a basic
solution is needed only in the dual case. If a solution of (P) is available, but no basis is known, the link with the dual
program cannot be made. The consequence is that dual compatibility cannot be defined independently of the algorithm
that is used to solve (P). In contrast, primal compatibility is exploited in [20] to derive a general decomposition
scheme that finds an improvement in the objective value at each step. The algorithm considers the compatible and
incompatible variables independently at each iteration to compute an improvement direction. The dual counterpart
of this approach would require adaptations.

The goal of this work is the development of a pivot selection rule for the dual simplex. We are thus interested in an
algebraic characterization of the dual compatible variables that exploits knowledge of a basis associated with the dual
feasible solution. For a basic solution, the reduced costs of the basic variablei are all equal to zero, and the nonbasic
variables with a zero reduced cost are the dual degenerate variables. The set # is thus composed of the basic and the
dual degenerate variables. Denoting by Z = £ N N the set of dual degenerate variables, we have ¥ = BU Z.

Proposition 3. The dual degenerate variables are not dual compatible, and the i" basic variable is dual compatible
if and only if(AZ)Te;" =0.

Proof. The elements of # can be ordered so that the first m elements correspond to the basic variables and the
remaining p — m elements correspond to the dual degenerate variables. Let x;, be the i" variable of #. Based on
Definition 2, x;, is dual compatible if and only if there exists @ € R™ # 0 such that

EN Ap)l'a \_ 5
(Ap) a =e; @( (Ar) @ =e;.
If xj, is dual degenerate, i.e., i € {m + 1,...,p}, the condition above implies that (Ag)T @ = 0. Since the basic matrix

is nonsingular, @ = 0, so x;, is not dual degenerate.



If xj, is basic, i.e.,i € {1,...,m},

(AB)TO' _ D T  _ m T  _
( (AZ)Ta/ =e, ©(Ag) a=¢and (A7) @ =0
e (A (AFH e = 0.
With the more compact notation A = A;'A, x;, is thus dual compatible if and only if (Az) e = 0. O

2.3. Identifying the dual compatible variables
In the dual simplex, the pricing criterion selects a pivot row i corresponding to an infeasible basic variable, i.e.,
b; < 0. During the ratio test, the entering variable is then chosen as

ofa o)
argmin == : a;; > 0.
jen  \dij

Assuming that the pivot row corresponds to a dual compatible variable, Proposition 3 implies that the dual degenerate
variables will not be considered during the ratio test. As a consequence, a nondegenerate pivot is always performed
when a dual compatible variable is selected to leave the basis. This suggests that we could speed up the algorithm
by prioritizing dual compatible variables in the pricing step. To this end, the dual compatible variables need to be
identified efficiently. The computational cost would be too high if the matrix A;A z had to be computed at each
iteration. We thus adapt the positive edge test that Raymond et al. [23] developed for the primal case.

Theorem 1 (Dual positive edge test). Let x;, be the i basic variable. Let v be a vector of p —m continuous random
variables. If xj, is dual compatible then ((AZ)Te;."Iv) = 0; otherwise, there is a zero probability that ((AZ)Te?’Iv) =0.

Proof. Proposition 3 states that x;, is dual compatible if and only if
(Apel =0,

s0 (A Z)Te;.”lv) = 0. Otherwise, (A Z)Tef”|v) is a continuous random variable. The probability that it takes a particular
value is then zero. O

This theorem leads to a practical stochastic test for the identification of the dual compatible variables. Given a
vector v € RP™™ sampled from a continuous random variable, the i basic variable is dual compatible with a zero
probability of error if and only if the i element of A zv is equal to zero. We first compute

a=Azv. (3)
The vector p = A zv is then obtained by solving the system
ABP =a. (4’)

This highlights that the algebraic operations are similar to those involved in the computation of the reduced costs of
the variables of Z.

Remark. In practice, limited floating-point precision makes it impossible to simulate continuous random variables,
so the probability of identifying an incompatible variable as dual compatible cannot be zero. Raymond et al. [23]
show that a well-chosen discrete random law can lead to a negligible probability of error. Moreover, our intent is
to use the stochastic test in the pricing criterion, so the worst possible consequence of such an error is that the dual
simplex performs an unexpected degenerate pivot.

The dual compatible variables may be identified relatively cheaply, but the idea of focusing on these variables may
be productive only if there are enough of them to consider in the pricing step. Intuitively, the number of dual com-
patible variables should decrease when the number of columns of A 7z, i.e., the number of dual degenerate variables,
increases. The following proposition states more precisely the relationship between the number of dual degenerate
and dual compatible variables.



Proposition 4. The number of dual compatible variables is less than or equal to m — rank A 7.

Proof. Let C be the set of basic rows corresponding to the dual compatible variables. For all i € C, (A Z)Telf” =
(A)"(AgHTer =0, 50
Span({(Ag") e} : i € C}) C Ker(AL).

Since A g is nonsingular, the dimension of Span({(A;gl)Te;” : i € C}) is equal to the cardinality of C, which proves the
proposition. O

It is possible to build simple examples of dual degenerate solutions in which there are no dual compatible variables,
or the number of dual compatible variables is equal to m — rank Az. As a consequence, Proposition 4 gives the best
theoretical bound on the number of dual compatible variables. In practice however, the number of dual compatible
variables is expected to be positively correlated with m — Card(Z).

3. Implementation of the dual positive edge criterion

3.1. A two-dimensional pricing criterion

The theoretical developments of Section 2 suggest that the dual simplex could benefit from a pricing step that
prioritizes the dual compatible variables. However, the various steepest-edge criteria compared in [8] have proved
their efficiency, and they tend to reduce the effects of degeneracy [13]. For these reasons, we choose to implement the
dual positive edge (PE) as a two-dimensional criterion, similarly to the implementation of Towhidi et al. [24] for the
primal simplex.

PE selects a dual compatible variable only when it is not a bad choice with regards to the reference pricing
criterion. To be more specific, all the well-known pricing criteria may be seen as normalized criteria. This means that
they compute a vector of m positive weights w, and they select a pivot row 7 such that

ieargmin{ﬁ k= 1,...,m}.
Wi

In the Dantzig criterion, the weights are simply set to 1. Assuming that the current solution is not optimal, i.e.,
b # 0, the two-dimensional selection rule is summarized by Algorithm 1. The two-dimensional criterion relies on a
parameter 0 < < 1, which corresponds to the level of priority that is given to the dual compatible variables. For
instance, if = 0 we always select a dual compatible variable when one is available, whereas dual compatibility is not
considered if ¢y = 1. In the rest of this article, C denotes the set of row indices corresponding to the dual compatible
variables.

Algorithm 1: Two-dimensional dual positive edge pricing criterion

Input: The current solution and weight vectors b and w.
The set of dual compatible variables C.
Output: The pivot row i.
1 ™" € argmin {Ek/wk 1 <k< m} ; b™" « min {Ek/wk 1 <k< m};
ig™ € argmin {B/wy : k € Cf: bF™  min {by/w : k € C}:
if bR < x b™" then
‘ i« igi“;
else
‘ i — imin;

A U A W




3.2. Practical identification of the dual compatible variables

Most efficient simplex implementations apply the Gilbert—Peierls method [10] to take advantage of sparsity in
the right-hand side of the linear systems. Since v is randomly generated, the right-hand side of the system (4) is
100% dense with probability 1. As a consequence, the identification of the dual compatible variables will generally
take more time than the computation of the reduced cost vector. If these operations are performed at each simplex
iteration, the overhead will be too large to be compensated for by the expected reduction in the number of iterations.

The two propositions below suggest that the set of dual compatible variables should not change dramatically after
each simplex pivot, thus justifying less frequent updates of C. In the statements and proofs of these propositions, we
denote by the symbol ’ the sets and values corresponding to the state of the solution after the pivot. Moreover, x; is
the leaving variable selected with the pricing criterion, the entering variable x, is deduced from the ratio test, and i is
the pivot row associated with x;.

Proposition 5. If a degenerate pivot is performed, then C' = C.
Proof. After a pivot, the reduced costs and the simplex tableau can be updated with the following formulas:

- .
Cj-(—Cj—Cng, lS]Sn (5)
ale‘
_ _ _ aij .
akj“‘lkj_akexa_" l<k<m,1<j<n. (6)
e

For a degenerate pivot, the entering variable must be dual degenerate, i.e., ¢, = 0. Equation (5) shows that the vector
of reduced costs is unchanged. The set of dual degenerate variables is then updated by removing x, and adding x;,
ie., Z'=Z\{e} U{l}.

Assume that k € C. Since e € Z, Proposition 3 implies that @;, = 0. Equation (6) then shows that the k< row of A
is not modified by the pivot, so k € C’.

Assume that k ¢ C. If @, = 0, the k™ row of A is not modified, so k ¢ C’. If G, # 0,

1
&,leO—akexaf¢0.
ie

Since [ € Z’, Proposition 3 implies that k ¢ C’. O

Proposition 6. Assume that a nondegenerate pivot is performed. If a dual compatible variable is selected to leave
the basis, then C' D C. Moreover, if no additional degeneracy is created by the pivot, i.e., Z' C Z, then C' = C.

Proof. 1f x; is dual compatible, i.e., i € C, then g;; = O for all j € Z. Equation (5) shows that forall j € Z, E;. =¢; =0,
s0Z' > Z. By (6),A7 =Az,50C DC.
If we also assume that Z’ ¢ Z, then Z’ = Z. Since A/Z = AZ’ we have C' = C. O

A nonsystematic update of C may cause two errors. First, dual compatible variables may not be identified as such.
Opportunities to perform nondegenerate pivots may then be missed, but this will not cause a bad decision in the pivot
selection. Second, an incompatible variable may be tagged as compatible. This situation is more troublesome, since
the two-dimensional criterion could overlook the best choice and select a leaving variable that does not even guarantee
an improvement in the objective value. Propositions 5 and 6 show that the two types of errors can happen when a
nondegenerate pivot is done with an incompatible leaving variable. Moreover, the second type of error can happen if
a nondegenerate pivot creates additional degeneracy. Since the stability of C is not guaranteed after all the possible
pivots, it is necessary to periodically update the set of dual compatible variables to ensure that PE remains efficient.

Towhidi et al. [24] update C when they observe a significant change in the number of dual degenerate variables.
This mechanism responds to the appearance of a probable cause of error. We prefer to intervene when actual diffi-
culties arise, i.e., when degenerate pivots are performed after we select variables of C as the leaving variables. More
precisely, let dgn. be the percentage of degenerate pivots when a variable of C leaves the basis, and dgn the overall
percentage of degenerate pivots. An update of C is performed as soon as dgn, becomes higher than a small percent-
age p of dgn. We also set a minimum number of iterations between two consecutive updates, ityi,, to prevent the
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Figure 1: Partial UML class diagram for CLP with the dual positive edge criterion

updates from slowing the dual simplex excessively. Finally, an update may be needed even if dgn, remains low. For
instance, if there is no dual compatible variable in the initial solution, dgn, will be equal to zero until an update of C
is performed. As a consequence, an update is also performed after if,x consecutive iterations without an update. In
our tests we set p = 0.2, ityin = 50, and it = 1000.

Remark. The stability of the set of compatible variables stated in Propositions 5 and 6 is actually essential for the
concept of compatibility. As already noted, the recent interest in compatibility is motivated by the opportunity for a
nondegenerate pivot. However, the compatible variables are not the only ones with this property. Nevertheless, com-
patibility was used even before the development of a fast approach for the identification of the compatible variables.
For instance, the improved primal simplex (IPS) of Elhallaoui et al. [6] is based on compatibility, and it was devel-
oped before the positive edge criterion. In the first versions of the algorithm, IPS computed the columns of the simplex
tableau to identify the compatible variables. Despite this large computational effort, good results were obtained in
practice because it is not necessary to identify the compatible variables at each iteration.

3.3. Implementation within COIN-OR LP solver

PE modifies the reference pricing criterion to include the two-dimensional selection. The pricing step is in the
core of the simplex algorithm, so it is impossible to implement the PE criterion without accessing the source code of
an implementation of the dual simplex. CLP is an open-source LP solver written in C++ that includes a dual simplex.
Moreover, Koberstein [15] reports good performance for the dual simplex of CLP. CLP thus appears to be appropriate
for testing the performance of PE.

The partial unified model language (UML) class diagram in Figure 1 focuses on the portion of CLP that imple-
ments the dual simplex and specifies the classes added for the positive edge criterion. ClpDualRowPivot is the base
class for dual simplex pivots in CLP. ClpDualRowDantzig implements the classical Dantzig pricing criterion, and
ClpDualRowSteepest implements the dual steepest edge criterion. The selection of the leaving variable is done in
the pivotRow () method. We thus define the two-dimensional criterion corresponding to ClpDualRowDantzig and
ClpDualRowSteepest by deriving two subclasses PEDualRowDantzig and PEDualRowSteepest that implement

8



modified versions of pivotRow(). The method getCompatibles() of the class PECompatibility computes the
set of dual compatible variables and stores the corresponding indices in the attribute setC.

4. Computational tests

In Section 4.2, we provide the numerical test results for the internal CLP implementation over a relatively large
benchmark described in Section 4.1. We perform our experiments using computers with Intel(R) Core(TM) 17-3770
CPU @ 3.40 GHz processors.

During the tests, we introduce PE within the dual simplex of CLP equipped with the dual steepest edge (DSE) and
the dual Dantzig (DD) pricing rules. Based on preliminary results, we set the priority level ¢ to 0.1 in DD and to 0.4
in DSE. The reason for choosing different values is that the DSE pricing rule is designed to avoid degenerate pivots
and small steps. If we give a high priority to the dual compatible variables, PE may actually work against DSE.

4.1. Description of the benchmark

We run the tests on Mittelmann’s LP test set?, which is used in [24] to validate the primal positive edge. To extend
the benchmark, we also consider a set of LPs listed in the LinLIB, which contains more than 500 instances collected
from four well-known libraries including Netlib3, the Kennington problems*, and the BPMPD benchmark®. The
LinLIB is organized into five size categories depending on the number of nonzero elements in the constraint matrix.
To control the number of instances, we restricted our tests to the most difficult instances. We thus used the instances
with more than 50000 nonzero elements that took more than 5 s to solve with the dual steepest edge simplex of CLP.

The dimensions of the 62 selected instances are given in Table 1. CLP systematically adds one slack variable for
each constraint; we count only the decision variables. For a better insight into the difficulty of solving each instance,
we also provide the numbers of pivots (ifcrp) and computational times (zcrp) for the dual simplex of CLP with the DSE
and DD pricing rules. The time limit for the CLP algorithm was set to 10 hours. A “t” in the ifcrp and fcrp columns
indicates that the instance could not be solved within the time limit. We do not report results for the contl1, nug20,
nug30, and L.1.d10_40 instances, because none of the tested algorithms (with or without PE) is able to solve them
within the time limit.

Table 1: Benchmark: Dimensions and solution with CLP

problem dimensions dual steepest edge dual Dantzig
Instance constraints  variables Nnonzeros itcrp torp(S) iterp torp(S)
co9 10789 14851 101578 10997 6.1 33435 14.4
contl 160792 40398 399990 54789 285.4 52100 877.4
cont4 160792 40398 398398 53970 340.8 49433 798.8
cq9 9278 13778 88897 12092 6.0 17178 6.2
dano3mip 3202 13873 79655 44872 39.1 605250 519.8
dbicl 43200 183235 1038761 119210 805.2 258383 1410.4
ds-big 1042 174997 4623442 57906 540.1 1050090 11646.8
ex3stal 17443 8156 59419 9433 11.0 20764 65.1
fast0507 507 63009 409349 3934 6.3 92682 185.4
fomell 12142 24460 71264 34909 20.5 2338627 2279.5
fomel2 24284 48920 142528 71263 48.4 4469849 7086.2
fomel3 48568 97840 285056 142249 1164 9019866  25349.2
fome20 33874 105728 230200 23471 235 2389110  4671.0
fome21 67748 211456 460400 55028 73.0 6565852 30108.1

Continued on next page

’http://plato.asu.edu/ftp/lptestset/
Shttp://wuw.netlib.org/lp/data/
“http://www.netlib.org/lp/data/kennington/
Shttp://www.sztaki.hu/~meszaros/public_ftp/lptestset/
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Table 1: continued from previous page

Problem dimensions Dual steepest edge Dual Dantzig
Instance constraints  variables nonzeros iterp terp(S) iterp torp(S)
fxm3-16 41340 64162 370839 51370 8.0 47175 10.2
gen2 1121 3264 81855 6121 7.5 188463 242.8
gend 1537 4297 107102 6951 11.6 12502 19.8
ken-18 105127 154699 358171 39023 10.0 242539 780.9
130 2701 15380 51169 9222 7.3 28864 16.8
Linf-520c 93326 69004 566193 235660 3590.2 219731 3082.5
1p22 2958 13434 65560 18155 13.1 677737 827.0
Ipll 39951 125000 381259 29542 29.4 7182991 30547.5
mod2 34774 31728 165129 37669 54.1 1112986 2187.8
model10 4400 15447 149000 68598 60.5 282136 375.9
modell 1 7056 18288 55859 29835 21.3 433141 270.9
model5 1888 11360 89483 41312 9.8 57810 199
nemswrld 7138 27174 190907 25225 284 148047 162.5
neos 479119 36786 1047675 60291 213.5 757154 4415.8
neos1 131581 1892 468009 42946 199.2 4036208  20030.1
neos2 132568 1560 552519 122160 670.8 3409450  17265.0
neos3 512209 6624 1542816 76272 2371.4 1168894  19392.7
ns1644855 40698 30200 2110696 65557 360.9 201275 524.9
ns1687037 50622 43749 1406739 60235 680.7 t t
ns1688926 32768 16587 1712128 166980 3282.7 95670 221.9
nug08-3rd 19728 20448 139008 28692 249.9 130852 21739
nugl5 6330 22275 94950 t t t t
osa-30 4350 100024 600138 2793 6.2 3657 8.3
osa-60 10280 232966 1397793 5653 31.5 9167 54.2
pds-030 49944 154998 337144 61593 106.2 t t
pds-040 66844 212859 462128 108308 276.2 t t
pds-050 83060 270095 585114 130909 405.4 t t
pds-060 99431 329643 712779 170076 569.6 t t
pds-070 114944 382311 825771 313306 1538.9 t t
pds-080 129181 426278 919524 332561 1617.5 t t
pds-090 142823 466671 1005359 408780 2265.9 t t
pds-100 156243 505360 1086785 365961 1960.5 t t
pilot87 2030 4883 73152 19053 14.6 39222 28.5
rail2586 2586 920683 8008776 26982 845.1 t t
rail4284 4284 1092610 11279748 56628 2281.8 t t
scfxm1-2r-256 37980 57714 213159 35794 7.0 56325 119
self 960 7364 1148845 3557 14.4 20714 78.2
south31 18425 35421 111498 17831 11.5 19268 9.4
stat96v1 5995 197472 588798 57502 212.6 137086 361.9
stat96v4 3173 62212 490472 295189 612.8 1518448 4093.5
stormG2-1000 528185 1259121 3341696 474765 1539.0 882336 4781.4
stormG2-125 66185 157496 418321 59922 19.6 86210 35.0
stp3dlp 159488 204880 662128 98587 389.2 3139094 33021.5
t0331-41 664 46915 430982 7539 8.1 16502 18.5
ulevimin 6590 44605 162206 25452 28.6 148208 134.1
watson1 201155 383927 1052028 204105 268.7 184023 216.1
watson2 352013 671861 1841028 321584 1071.7 303880 605.0
world 34506 32734 164470 43686 66.6 1953499 4134.7
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Figure 2: Performance profile over solution time with the dual steepest edge criterion

4.2. Results

For a global representation of the results, we draw the performance profile of the dual simplex with and without
PE. This visualization technique is very efficient for large benchmarks, because it highlights the global behavior rather
than isolated cases. Moreover, performance profiles remain clear when the algorithms fail to solve some instances or
when the solutions involve large gaps between the represented values. A detailed description of performance profiling
is given in [5].

The DSE and DD simplex algorithms of CLP are compared with the corresponding algorithms equipped with
PE in the two performance profiles in Figures 2 and 3. The two profiles clearly indicate that the two-dimensional
selection improves the DD and DSE simplex of CLP. For instance, the solution times with the DSE and DD simplex
are improved by a factor larger than two for more than 20% and 30% respectively of the instances. Moreover, PE
improves the solution times of both dual simplex algorithms significantly (by more than 15%) for more than 50% of
the instances. In contrast, PE has a significant negative impact for less than 5% of the instances, and the resulting
increase in the solution time is below a factor of two (see Figure 2).

We also provide the average improvement in the number of pivots (i) and the average speedup (7). The speedup is
computed as the ratio #¢rp/fpg, Where tpg and ferp are the solution times of the CLP’s DSE simplex respectively with and
without the positive edge criterion. A similar computation provides the improvement in the number of pivots. The first
row of Table 2 records the geometric means of these values, averaged over the instances that could be solved within
the time limit. The number f of instances that each method failed to solve within the time limit is also displayed.
The results show that PE improved the solution time of the DSE simplex by an average factor of 1.42, and that of the
DD simplex by an average factor of 1.95. A comparison of the two columns Z—LE" and ’l’fﬁ confirms that the speedup is
mostly caused by a reduction in the number of pivots. Moreover, the two-dimensional pivot rule allowed us to solve
50% of the instances that could not be solved within the time limit with the DD simplex. We do not display the time
that PE spent in the update of the dual compatible variables, because it never took more than 1% of the total solution
time.

The performance profiles show that PE has a negative impact for only a small fraction of the instances. However,
the new pricing rule does not always lead to a significant improvement. In the last three rows of Table 2, we investigate
two parameters that may impact the performance of PE. One factor that has a major impact is the number of compatible
variables. For instance, if no basic variable is compatible or if they all are, PE does not modify the selected pivot row.
Similarly, PE should not have a strong impact for the instances that exhibit a small or very large number of dual
compatible variables. In the second row of Table 2, the results focus on the instances for which the average number of
dual compatible variables is between 1% and 99% of the number of rows. Another important statistic is the percentage
of degenerate pivots. The PE algorithm is specifically designed to mitigate the negative effects of degeneracy, so the
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Figure 3: Performance profile over solution time with the dual Dantzig criterion

Table 2: Average improvement with the dual positive edge algorithms

dual Dantzig dual steepest edge
instances % ’;—L; forp — fer - instances % ’;—LE" ferp — for
every instance 62 1.69 1.95 12-6 62 1.24 142 5-4
C1: 0.01m < |C| < 0.99m 48 195 230 12-6 49 1.31 1.56 1-0
C2: degen. pivots > 20% 44 198 233 12-6 39 1.40 1.61 1-0
Cl and C2 36 236 288 11-5 31 1.49 1.76 1-0

instances that have a low level of degeneracy should not require PE. The third row restricts the study to the instances
for which more than 20% of the pivots were degenerate. Finally, the last row displays the performance of PE for the
instances that satisfy both the above conditions. For each algorithm, the column “instances” contains the number of
instances that satisfy the associated condition.

The results in Table 2 confirm that PE is more useful when the solution performs a large number of degenerate
pivots and an intermediate ratio of compatible variables is detected. Specifically, the last row of the table shows that
at least 50% of the instances satisfy both conditions. When we consider only these instances, the average speedup
increases from 1.42 to 1.76 and from 1.95 to 2.88 for DSE and DD respectively. The number of pivots follows the
same trend.

Finally, we perform additional tests to study the impact of not updating the set of dual compatible variables at
each iteration (see Section 3.2). To this end, we modify the PE algorithm to update the dual compatible variables
before every pivot. The results confirm that every pivot involving a variable of C is nondegenerate when the update
is performed at each iteration. However, the solution time increases by 60% on average due to the computational
time spent in the update of C. In contrast, the number of pivots remains about the same, so if C is updated at each
iteration the overall solution time of the DSE simplex is on average higher with PE than without PE. This highlights
that exploiting the relative stability of the set of dual compatible variables is essential for an efficient implementation
of PE.
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5. Discussion and conclusions

The first contribution of this article is in the extension of the concept of compatibility to the dual simplex. Our
theoretical developments establish the link between primal and dual compatibility and provide an algebraic character-
ization of compatibility in the context of the dual simplex. The main property of the dual compatible variables is that
they give rise to a nondegenerate pivot when selected to leave the basis. Since the characterization is similar to that
for the primal case, we are able to derive a stochastic test similar to that developed in [23] for a fast identification of
the dual compatible variables. We apply this test in a two-dimensional selection rule (PE). PE can be combined with
any dual pricing criterion to prioritize the compatible variables during the selection of the pivot row.

We implemented PE in the dual simplex of the open-source CLP solver. A key feature of the implementation is the
frequency of the update of the set of compatible variables C. Since C is not altered by degenerate pivots and by most
nondegenerate pivots on dual compatible variables, it is not necessary to update it at each iteration. We do the update
only when a significant number of degenerate pivots are done with pivot rows in C.

The computational tests were performed on a large benchmark including 62 instances from well-known linear
programming benchmarks. We focus on two classical pricing rules: the dual Dantzig criterion (DD) and the dual
steepest edge (DSE). On average, PE improves the solution times of DSE by 42% and those of DD by 95% for the
instances that can be solved in less than ten hours. For the other instances, PE allows us to solve one out of five
instances with DSE and six out of sixteen with DD. Moreover, when PE is not able to improve the pricing rules, it has
a small negative impact or no impact at all on the solution time.

The effect of PE is stronger over DD than it is over DSE, because the latter pricing rule is efficient in reducing the
negative impact of degeneracy. This leaves less room for improvement in the two-dimensional selection rule when
DSE is used.

A comparison of the number of simplex iterations shows that the speedup is mostly caused by a reduction in the
number of pivots. However, the speedup is greater than the improvement factor in the number of pivots for both
DSE and DD. This trend is also individually respected by the instances. This suggests that it is favorable to the
computational efficiency of the simplex to stay in the subspace of the compatible variables.

Finally, the results also confirmed that PE is more efficient when at least 1% and at most 99% of the basic variables
are dual compatible and when the dual simplex performs more than 20% degenerate pivots. This shows that PE should
be implemented as an adaptive strategy that is triggered only when these criteria are met. It also suggests that a better
version of the selection rule could set the priority level ¢ according to the percentage of compatible variables.

It would be interesting to investigate combining PE with the dynamic pricing criterion of Klotz [14]. This criterion
can identify variables that will lead to a degenerate pivot. It could be combined with the concept of compatibility to
derive a three-dimensional selection rule that gives a low priority to the variables that will lead to a degenerate pivot
and a high priority to the compatible variables.

Finally, IPS [6] is a primal decomposition scheme that dynamically removes constraints from degenerate problems.
At each major iteration of the algorithm, IPS uses the primal simplex to solve a reduced problem containing the
nondegenerate and the compatible variables. In a recent work [21], the authors described a revised version of IPS
that identifies the compatible variables with the (primal) positive edge test. This algorithm performs much better on
large instances. The dual counterpart of the revised IPS would be able to take advantage of dual degeneracy to reduce
the size of the problem and make quick progress toward optimality. This should lead to better performance for some
degenerate problems.
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