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Abstract: A novel coupled-mode model is developed for the wave–current–seabed interaction
problem, with application in wave scattering by non-homogeneous, sheared currents over general
bottom topography. The formulation is based on a velocity representation defined by a series of
local vertical modes containing the propagating and evanescent modes, able to accurately treat the
continuity condition and the bottom boundary condition on sloping parts of the seabed. Using the
above representation in Euler equations, a coupled system of differential equations on the horizontal
plane is derived, with respect to the unknown horizontal velocity modal amplitudes. In the case
of small-amplitude waves, a linearized version of the above coupled-mode system is obtained,
and the dispersion characteristics are studied for various interesting cases of wave–seabed–current
interaction. Keeping only the propagating mode in the vertical expansion of the wave potential,
the present system is reduced to a one-equation, non-linear model, generalizing Boussinesq models.
The analytical structure of the present coupled-mode system facilitates extensions to treat non-linear
effects and further applications concerning wave scattering by inhomogeneous currents in coastal
regions with general 3D bottom topography.

Keywords: coupled modes system; nonlinear water waves; wave–bathymetry interaction;
wave–current interaction

1. Introduction

In coastal areas, steep bathymetries and strong currents are often observed. Among several
causes, the presence of cliffs, rocky beds, or human structures may cause strong variations of the
sea bed, while oceanic circulation, tides, wind action, or wave breaking can be responsible for the
generation of strong currents. For both coastal safety and engineering purposes, there is strong interest
in providing efficient models predicting the nonlinear, phase-resolved behavior of water waves in
such areas. This leads to computational difficulties, since large computational areas often need to be
considered, and the evolution of water waves propagating in such inhomogeneous media involves
multiple-scale phenomena. Moreover, many physical processes influence the dynamics of water waves
in such cases, due to reflection, refraction, and diffraction of water waves, in conjunction with nonlinear
wave–bottom, wave–current, and wave–vorticity interactions, and the description of these processes
requires careful attention.

Various attempts to partially treat the above problems are found in the literature. Starting with
depth-averaged models, the mild-slope equation [1,2] was derived to describe refraction, diffraction,
and reflection of dispersive water waves over varying bathymetry. The derivation is based on the
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assumption that the vertical structure of the wave field is represented by hyperbolic cosine function,
and thus, the mild-slope equation is restrained to the description of linear water waves evolving
on slowly varying bathymetries with respect to the wavelength. Similarly, Boussinesq models [1,3]
have been derived by using a polynomial function. Later, Massel [4] and Chamberlain and Porter [5]
provided an extension of mild-slope models by considering higher order approximations with respect
to the bed-slope parameter. Furthermore, Massel [4] suggested a multi-modal expansion to improve
the representation of the vertical distribution of the wave field deriving a set of coupled equations,
involving both propagating and evanescent modes. The latter approach has been further improved
by Athanassoulis and Belibassakis [6] by including extra terms to consistently treat the boundary
conditions. This approach has been extended to nonlinear equations [7,8], and many solvers are
now based on similar techniques, e.g., Raoult et al. [9]. The above techniques have demonstrated
their efficiency in modeling wave–bottom interactions in inhomogeneous environments. Similar
developments for modelling wave–current interactions have been presented by various authors, e.g.,
Booij [10], Liu [11], and Kirby [12]. The current considered in the above works is assumed to be slowly
varying in horizontal directions and uniform in depth. In the same direction, coupled-mode models
have also been derived [13].

More recently, it was established that the vorticity involved in vertically non-uniform currents
could have significant effects on the propagation of water waves [14]. This gave rise to new derivations
of models aiming to describe this interaction. In the case of currents with locally constant shear,
extended mild slope models, similar to those derived by Berkhoff and Kirby, have been obtained [15,16],
and at the next stage, a coupled mode model was derived [17]. The importance of this approach was
recently validated experimentally in a previous study [18]. In these works, the currents were assumed
to vary linearly with depth. If this case is realistic in some specific configurations [19,20], it might
be suggested that when the current contains strong vorticity it will have more complicated vertical
distribution. In the case when the second vertical derivative of the mean current flow is zero, the
vorticity conservation equation for water waves involves no source term [20]. Furthermore, in the case
of mild horizontal variations of the shear, its effect can be approximately neglected, and water waves
can be approximately described as irrotational [18].

The present work aims to extend the validity of the above models to more general current
configurations. Indeed, if the vorticity conservation equation involves a source term, due to the
interaction of the flow with the sheared current, water waves cannot be treated as irrotational anymore.
For this purpose, the present novel coupled-mode system is obtained in the framework of Euler
equations by using a velocity-based formulation, allowing one to describe wave–vorticity interactions
in more generic conditions.

The present paper is structured as follows. After the introduction, the modal expansion of
the velocity field is introduced in Section 2 using a Fourier-type basis generated by local vertical
eigenproblems. In particular, the present formulation is based on a velocity representation defined by
a series of local vertical modes containing the propagating and evanescent modes, able to accurately
treat the continuity condition and the bottom boundary condition on sloping parts of the seabed. Using
the above representation in Euler equations, in Section 3 a coupled system of differential equations on
the horizontal plane is derived, with respect to the unknown horizontal velocity modal amplitudes.
Subsequently, Section 5 is dedicated to the analysis of the dispersive behavior of this system under
linearity assumptions, and finally, numerical examples are presented and discussed in Section 6 in
order to illustrate the ability of the present system to reproduce classical propagation configurations.
Finally, the main conclusions are presented, including directions for further research.

2. Vertical Expansion of the Velocity Field

In the present work we will restrict ourselves to 2D problems corresponding to waves propagating
in a vertical strip under the additional effects by collinear currents. However, the present analysis can
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be extended in two horizontal dimensions, and this is left to be considered along with 3D applications
in future work.

Let D(t) denote the flow domain bounded below by the bottom boundary defined by the depth
function, z = −h(x), and above by the free-surface defined by the corresponding elevation, z = η(x; t);
see Figure 1. We assume that η(x; t) + h(x) > 0. In this work, we exploit a local-mode series expansion
of the wave velocity u(x, z, t) = (U(x, z, t), W(x, z, t)) in variable bathymetry regions. It is based on
extension of similar developed models, under the assumption of irrotationality, for the wave potential
by Athanassoulis and Belibassakis [6] for the linearized problem and subsequently for non-linear wave
problems [7,8]. This expansion has the general form of summation of local modes (each one numbered
by an integer index). In particular, the local-mode representation of the horizontal velocity component
reads as follows:

U(x, z, t) = ∑
n=0

Un(x, t)Z(1)
n (z; h(x), η(x, t)), (1)

where Z(1)
n (z; h(x), η(x, t)) denote vertical functions that are parametrically dependent on the

bathymetry and the free-surface elevation, having the properties to satisfy the continuity equation, the
bottom boundary condition, and to be complete in local vertical intervals z ∈ [−h(x), η(x, t)]. More
specifically, the functions Z(1)

n (z; h(x), η(x, t)) are defined as follows

Z(1)
n (z; h, η) =

cos[kn(z + h)]
cos[kn(η + h)]

, n = 0, 1, 2, 3, . . . (2)

where the quantities kn = kn(h, η), n = 0, 1, 2 . . . , are obtained as the roots of the (dispersion-like)
equations

µ0 + kn tan[kn(h + η)] = 0 (3)

The first root is imaginary k0 = i|k0| and the rest kn, n = 1, 2 . . . , are real, with
kn ≈ nπ/(h + η), n→ ∞ . The completeness property of the vertical basis stems from the fact that
Z(1)

n (z) are generated from regular vertical Sturm-Liouville eigenproblems in the local vertical
z ∈ [−h(x), η(x, t)], controlled by the frequency-type parameter µ0; see also Belibassakis and
Athanassoulis [8]. The latter parameter (or in non-dimensional form µ0h0, with h0 denoting a
characteristic depth) is not subjected to a priori restrictions. However, the specific values of these
parameters influence the accuracy of truncated versions of the local-mode series, as will be illustrated
in the sequel concerning the convergence of the expansion and the dispersion characteristics of the
present model.

The vertical component W(x, z, t) of the velocity field is represented by a corresponding modal
series based on a new set of vertical functions Z(2)

n (z; h(x), η(x, t)), as follows

W(x, z, t) = −∑
n=0

∂x

(
Un(x; t)Z(2)

n (z; h; η)
)

, (4)

and thus, it is expressed as follows

W(x, z, t) =−∑
n=0

∂xUn(x; t)Z(2)
n (z; h; η)+Un(x; t)∂xZ(2)

n (z; h; η), (5)

where the new vertical functions Z(2)
n (z; h, η) are defined to automatically satisfy the wave kinematics,

which are defined by continuity condition in the water column

∂xU(x, z, t) + ∂zW(x, z, t) = 0, (6)
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and the bottom boundary condition

W(x, z = −h, t) + ∂xhU(x, z = −h, t) = 0. (7)

It is easily verified that the above constraints are fulfilled by selecting the functions Z(2)
n (z; h, η) to

satisfy the requirement
∂zZ(2)

n (z) = Z(1)
n (z), (8)

leading to the following analytic expression of the new set of vertical functions

Z(2)
n (z; h, η) =

1
kn

sin[kn(z + h)]
cos[kn(η + h)]

, n = 0, 1, 2, . . . . (9)

In fact, from Equations (5) and (9) we see that the bottom vertical velocity is given by

W(x, z = −h, t) = −∑
n=0

Un(x; t)∂xZ(2)
n (z = −h; h; η) (10)

The latter used in the bottom boundary condition, Equation (6), it finally leads to

W(x, z = −h, t) + hxU(x, z = −h, t) = − ∑
n=0

Un(x; t)∂xZ(2)
n (z = −h) + ∂xh ∑

n=0
Un(x, t)Z(1)

n (z = −h)

= − ∑
n=0

Un(x; t)
(

∂xZ(2)
n (z = −h)− ∂xhZ(1)

n (z = −h)
)
= 0,

(11)

since, from Equation (8), it is obtained that ∂xZ(2)
n (z = −h) = ∂xhZ(1)

n (z = −h). Details concerning
the latter results are provided in Appendix A.

Moreover, the continuity condition, for all x, and −h(x) < z < η(x, t), is identically satisfied

∂xU(x, z, t) + ∂zW(x, z, t) =

∑
n=0

∂x

(
Un(x, t)Z(1)

n (z; h, η)
)
− ∂z ∑

n=0
∂x

(
Un(x; t)Z(2)

n (z; h, η)
)
=

∑
n=0

∂x

(
Un(x, t)Z(1)

n (z; h, η)
)
− ∑

n=0
∂x

(
Un(x; t)∂zZ(2)

n (z; h, η)
)
= 0.

(12)

The usefulness of the above local-mode representations, Equations (1) and (5), is that used in the
momentum equations will lead to a non-linear coupled-mode system of differential equations on the
horizontal plane, with respect to unknown modal amplitudes Un(x, t) and the unknown free-surface
elevation η(x, t). The coupled-mode system, in conjunction with the fast convergence properties of
the local mode series, greatly facilitates the numerical solution of the present problem and will be
presented in the next section. Similar modal-type series expansion has been previously introduced by
Nadaoka et al. [21] for the development of a fully dispersive, weakly nonlinear, multiterm-coupling
model for water waves, with application to slowly varying bottom topography. In that work, the
vertical modes have been selected to have the form cosh(kn(z + h)) cosh−1(knh), where the parameters
kn > 0 are independent from the free surface elevation η(x, t). This approach can be considered as an
extension of Fourier methods above a flat bottom [22,23] to variable bathymetry regions characterized
by a mildly sloped bottom.
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Figure 1. Waves propagating in variable bathymetry in the presence of current with velocity Uc.

As it is presented and discussed in more detail in Appendix B, the expected rate of convergence
of the modal series (1) is Un(x, t) = O

(
n−2), where n is the mode number. Under the assumption of

smooth upper η(x, t) and lower h(x) boundaries, the above rate ensures that U(x, z; t) ∈ H1(D(t)).
The latter is sufficient for the solution of the wave flow problem by a spectral Galerkin-type method that
will be presented in the next section, as obtained by projecting the momentum flow equations on the
vertical basis

{
Z(1)

n (z; h(x), η(x, t)), n = 0, 1, 2 . . .
}

, for each instant and at each horizontal x-position.
The modal representation Equation (1) can be further improved by introducing additional modes

in the series expansion, as presented by Athanassoulis and Belibassakis [6,7] for the wave potential [24].
In the latter works the additional slopping-bottom and free-surface modes treat the inconsistency
between the boundary conditions of the potential at z = −h(x), z = η(x, t), and the boundary
conditions satisfied by the Sturm-Liouville problem generating the vertical basis. This accelerates
the convergence of the modal series by increasing the rate of decay of the potential amplitudes
from ϕn(x, t) = O

(
n−2) to ϕn(x, t) = O

(
n−4). In the present case, there is also an inconsistency for

the velocity field U(x, z; t) but only at the free surface z = η(x, t), and could be similarly treated
accelerating the convergence. However, it should be mentioned that application of the present model
to the special case of irrotational flows, without any additional modes for the expansions of U(x, z; t)
and W(x, z; t), leads to a decay rate Un(x, t) = O

(
n−2), which would correspond to ϕn(x, t) = O

(
n−3)

concerning the underlying potential modes, as obtained by direct integration.
Two examples illustrating the above results in the case of irrotational wave-like field under a

sinusoidal upper surface of large amplitude and a vertically sheared Couette flow between horizontal
planes are presented and discussed in Appendix B.

3. Momentum Equations

In the previous section it is shown that through the appropriate selection of vertical expansions
of the velocity field, the kinematics of the wave problem concerning continuity and bottom surface
boundary condition are analytically satisfied. Thus, we are left with the requirement of the momentum
equations and the free surface boundary conditions, including the kinematic and the dynamic ones.

Neglecting the effect of viscous dissipation in the fluid volume, the momentum equations in the
horizontal and vertical components are, respectively,

∂tU +
1
2

∂x|u|2 − E = −∂x p
ρ

and ∂tW +
1
2

∂z|u|2 − e = −∂z(p + ρgz)
ρ

, (13)



Fluids 2019, 4, 61 6 of 23

where |u|2 = U2 + W2 and e = u×ω = (E, e), an helicity-type field, with ω denoting the vorticity
ω = ∇× u = Ω ĵ, which in the present two-dimensional case is fixed in the transverse direction (with
ĵ denoting the corresponding unit vector). Thus, in the present 1DH case,

E = −WΩ, e = UΩ. (14)

Subsequently, we may consider at each horizontal x-position, the vertical momentum Equation (13)
integrated in the vertical direction from a depth level z up to the free surface elevation η(x, t), from
which an expression for the pressure in the local column is obtained

−
[

p + ρgz
ρ

]z=η(x,t)

z
= −

η(x,t)∫
z

e(z)dz +

η(x,t)∫
z

∂tWdz +
1
2

[
U2 + W2

]z=η(x,t)

z
. (15)

Employing in Equation (15) the dynamic free–surface boundary condition

p(x, z = η(x, t), t) = 0, (16)

we obtain

p(x, z, t)
ρ

= g(η(x, t)− z)−
η(x,t)∫

z

e(z)dz +

η(x,t)∫
z

∂tWdz +
1
2

[
U2 + W2

]z=η(x,t)

z
. (17)

The above equation is then differentiated with respect to the horizontal coordinate to obtain

− ∂x p(x, z, t)
ρ

= −g∂xη(x, t) + ∂x

η(x,t)∫
z

e(z)dz− ∂x

η(x,t)∫
z

∂tWdz− 1
2

∂x

[
|u|2

]z=η(x,t)

z
, (18)

which substituted back to Equation (13) finally results in

∂tU + 1
2 ∂x|u|2 − E = −g∂xη(x, t) + ∂x

η(x,t)∫
z

e(z)dz− ∂x

η(x,t)∫
z

∂tWdz− 1
2 ∂x

(
|u|2z=η(x,t) − |u|

2
)

or

∂tU − E = −g∂xη + ∂xF− ∂x

η(x,t)∫
z

∂tWdz− [U∂xU + W∂xW]z=η(x,t),

(19a)

for all x and h(x) < z < η(x, t), where F(x, z, t) =
η(x,t)∫

z
e(z)dz. The last Equation (19a), in conjunction

with the kinematic free-surface boundary condition,

∂tη + U(x, z = η, t) ∂xη −W(x, z = η, t) = 0, (19b)

constitute the remaining system to be solved. In the next section, Equations (19a) and (19b) in
conjunction with the representations defined by Equations (1) and (4) will be put in the form of a
coupled-mode system with respect to the wave velocity modal amplitudes Un(x; t) and the free surface
elevation η(x, t), constituting the unknown fields in the horizontal domain.

3.1. Irrotational Waves Over Variable Bathymetry

We first consider the case of irrotational waves without a current. In order to reduce it to a
coupled system of equations we exploit the completeness properties of the local eigenfunctions
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{
Z(1)

m (z; h(x), η(x, t)), m = 0, 1, 2, . . .
}

and project both sides of Equation (19a) into the latter vertical
basis. Thus, for each horizontal x-position, we obtain

〈
∂tU + ∂x

η(x,t)∫
z

∂tWdz, Z(1)
m

〉η

−h

+
(

g∂xη + [U∂xU + W∂xW]z=η(x,t)

)〈
1, Z(1)

m

〉η

−h
= 0, m = 0, 1, 2, . . . ,

where 〈 f1(z), f2(z)〉
η
−h =

z=η∫
z=−h

f1(z) f2(z)dz. Furthermore, using the local mode representations defined

by Equations (1) and (4), and carrying out the algebra, the following set of equations is derived

‖Z(1)
m ‖

2
∂tUn +

(
∑
n

〈
W(1)

n , Z(1)
m

〉
Un∂tη

)
+
〈

1, Z(1)
m

〉(
g∂xη + [U∂xU + W∂xW]z=η(x,t)

)
+

〈
∂x

η∫
z

∂tWdz, Z(1)
m

〉η

−h

= 0, m = 0, 1, 2, . . . ,
(20a)

where the orthogonality properties of the vertical basis
〈

Z(1)
n , Z(1)

m

〉η

−h
= δnm‖Z(1)

m ‖
2

with δnm denoting

Kronecker’s delta, and W(1)
n (z; h, η) = ∂Z(1)

n (z; h, η)/∂η have been also used. Moreover, using the fact
that the vertical local eigenfunctions Z(1)

n are normalized by their free surface values (i.e., Z(1)
n (z = η) =

1), the kinematic free-surface boundary condition, Equation (19b), takes the following form:

∂tη + ∂xη ∑
n=0

Un(x; t) + ∑
n=0

∂x

(
Un(x; t)Z(2)

n (z = η)
)
= 0. (20b)

Recalling the fact that the expected rate of decay of modal amplitudes Un(x; t) = O
(
n−2),

specific attention is needed concerning the convergence of the above term-wise differentiated series at
z = η representing the horizontal flow velocity derivatives. In particular, under the assumption that
∂xUn(x; t) are expected to decay as ∂xUn(x; t) = O

(
n−2) based on evidence that all modes present

similar wavelike behavior Un(x; t) ≈ αk−2
n
∣∣k0

∣∣2U0(x; t), n > 1, which will be illustrated in the examples

below, and using the fact that ∂xZ(1)
n (z = η) = O(1), which is obtained by straightforward algebra

(see also [24]), the convergence of the series ∑
n=0

(
∂xUn(x; t)Z(1)

n (z = η) + Un(x; t)∂xZ(1)
n (z = η)

)
to the horizontal derivative ∂xU(x, z = η; t) is obtained. Furthermore, using the fact that
Z(2)

n (x, z = η) = k−1
n tan(kn(η + h)) = µ0k−2

n and thus, Z(2)
n (x, z = η) = O

(
n−2), n→ ∞ , the series

appearing as the last term in Equation (20b) converges to W(x, z = η, t) = µ0 ∑
n=0

∂x
(
k−2

n Un(x; t)
)
=

µ0 ∑
n=0

(
k−2

n ∂xUn(x; t)− 2k−3
n (∂xkn)Un(x; t)

)
. Finally, using similar arguments, it can be shown that

term-wise differentiation of the latter series converges to ∂xW(x, z = η; t). Substitution of the above
modal expansions for ∂xU(x, z = η; t) and ∂xW(x, z = η; t) in Equation (20), in conjunction with the
representations Equations (1) and (4), eventually leads to the present nonlinear coupled-mode system
(nCMS) formulated with respect to the horizontal flow velocity amplitudes Un(x; t) and the free surface
elevation η(x, t) as the unknowns. The detailed analysis of the nCMS will be presented in future works.

3.2. Waves and Current Over Bathymetry

In the case of waves propagating under the additional effects of steady currents, the flow variables
are split in two components: (i) the wave part (U, η), and (ii) the steady background current (Uc, ηc).
We furthermore assume that the variation of the current flow is smaller than the corresponding wave
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flow and that |∂xη| >> |∂xηc| ≈ 0. Using the above decomposition in Equation (19) and retaining
terms to the lowest order [25], these equations are put in the form

DtU − E = −g∂xη + ∂xF− ∂x

ηc(x,t)∫
z

∂tWdz− [U∂xUc + W∂xW]z=ηc(x,t), (21a)

Dtη + U(x, z = ηc, t) ∂xη −W(x, z = ηc, t) = 0, (21b)

where Dt = ∂t + Uc∂x denotes differentiation moving with the current.
To reduce to a coupled system of equations, we again exploit the completeness properties of the

local eigenfunctions
{

Z(1)
n (z; h(x), ηc(x, t)), n = 0, 1, 2, . . .

}
and project both sides of Equation (21a)

into the latter vertical basis. Thus, for each horizontal x-position, we obtain

〈
DtU − E + g∂xη + [U∂xUc + W∂xW]z=ηc(x,t) − ∂xF + ∂x

ηc(x,t)∫
z

∂tWdz, Z(1)
m

〉ηc

−h

= 0, m = 0, 1, 2, . . . ,

where now 〈 f1(z), f2(z)〉
ηc
−h =

z=ηc∫
z=−h

f1(z) f2(z)dz. Furthermore, using in Equation (21) the local mode

representations defined by Equations (1) and (4), and carrying out the algebra, the following set of
equations is derived, assuming also that the vorticity is essentially contained in the current Ω ≈ Ωc,

‖Z(1)
m ‖

2
DtUm +

〈
1, Z(1)

m

〉ηψ

−h

(
g∂xη + [U∂xUc + W∂xW]z=ηc(x,t)

)
+

〈
ΩW − ∂x

ηc(x,t)∫
z

(UΩ− DtW)dz, Z(1)
m

〉ηc

−h

+ ∑
n=0

Un

〈
DtZ

(1)
n , Z(1)

m

〉ηc

−h
= 0, m = 0, 1, 2, . . . .

(22)

Moreover, using the fact that the vertical local eigenfunctions Z(1)
n are normalized (i.e.,

Z(1)
n (z = ηc) = 1), the kinematic free-surface boundary condition takes the form:

Dtη + ∂xη ∑
n=0

Un(x; t) + ∑
n=0

∂x

(
Un(x; t)Z(2)

n (z = ηc)
)
= 0. (23)

The above Equations (22) and (23) constitute the present CMS in the case of waves and currents,
again formulated with respect to the horizontal flow amplitudes Un(x; t) and the free surface elevation
η(x, t) as unknowns.

4. Dispersion Characteristics of the Linearized CMS

The set of Equations (22) and (23) is linearized by first dropping the terms involving products
of the unknowns. Furthermore, assuming that ηc ≈ 0, the vertical integrals are restricted up to mean
water level z = 0. In addition, assuming that the vorticity is essentially contained in the current Ω ≈ Ωc,
we obtain the following expressions of the corresponding terms in Equation (22)〈

ΩcW, Z(1)
m

〉0

−h
= −∑

n
Un

〈
Ωc∂xZ(2)

n , Z(1)
m

〉0

−h
+ ∂xUn

〈
ΩcZ(2)

n , Z(1)
m

〉0

−h
,

−∂x
z=0∫
z
(UΩc − DtW)dz = −∑

n
((∂xUn)Fn + Un∂xFn)

−∑
n

(
Z(3)

n ∂2
x(DtUn) + 2∂x(DtUn)∂xZ(3)

n + (DtUn)∂2
xZ(3)

n

)
,
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where Fn =
z=0∫
z

ΩcZ(1)
n dz, and the functions Z(1)

n (z), Z(2)
n (z) are obtained from Equations (1) and

(4) using η = 0. Moreover, in the present case Z(3)
n (z) =

0∫
z

Z(2)
n (z)dz and the brackets denote

〈 f1(z), f2(z)〉0−h =
z=0∫

z=−h
f1(z) f2(z)dz. Thus, Equations (22) are put in the following form:

‖Z(1)
m ‖

2
DtUm + g

〈
1, Z(1)

m

〉0

−h
∂xη − ∑

n=0

〈
Z(3)

n , Z(1)
m

〉
∂2

x(DtUn) + 2
〈

∂xZ(3)
n , Z(1)

m

〉0

−h
∂x(DtUn) +

〈
∂2

xZ(3)
n , Z(1)

m

〉0

−h
(DtUn)

− ∑
n=0

∂xUn

(〈
Fn, Z(1)

m

〉0

−h
+
〈

ΩcZ(2)
n , Z(1)

m

〉0

−h

)
+ Un

(〈
∂xFn, Z(1)

m

〉0

−h
+
〈

Ωc∂xZ(2)
n , Z(1)

m

〉0

−h
−Uc∂xZ(1)

n (0)
〈

1, Z(1)
m

〉0

−h

)
= 0,

m = 0, 1, 2, . . . .

(24a)

Also, the kinematic free-surface condition, Equation (23), is linearized by dropping the second
term and transferring the condition to the level z = 0

Dtη + ∑
n=0

∂x(cnUn) = 0, (24b)

where c0 = Z(2)
0 (z = 0) = tanh(|k0|h)/|k0| and cn = Z(2)

0 (z = 0) = tan(knh)/kn.
We next consider an environment characterized by constant parameters (constant depth, constant

background flow) and use again the local mode representations. Assuming now harmonic time
dependence and seeking periodic solutions Un(x; t) = Un(x)ei(kx−ωt), η(x; t) = η(x)ei(kx−ωt) in a
constant depth strip with range independent steady current U(x), we obtain from Equation (24b)

η =
k

(ω−U0k) ∑
n=0

cnUn (25)

Using the latter result in Equation (24a) we obtain the following homogeneous system

∑
n

(
δmn −

k2g
σ2 αmcn + k2 Amn +

k
σ

Bmn

)
Un = 0 m = 0, 1, 2, . . . (26)

where σ = ω −Uc0k, with Uc0 = Uc(z = 0) the value of the current at the surface. Moreover, δmn is
Kronecker’s delta, and the rest coefficients are given by

αm =
〈

1, Z(1)
m

〉0

−h
‖Z(1)

m ‖
−2

, Amn =
〈

Z(3)
n , Z(1)

m

〉0

−h
‖Z(1)

m ‖
−2

and

Bmn =
〈

Fn + ΩcZ(2)
n , Z(1)

m

〉0

−h
‖Z(1)

m ‖
−2

.
(27)

For a given wave frequency ω, the periodicity parameter k is found by requiring the determinant
of Equation (26) to be zero, which enables us to investigate the dispersion properties of the linearized
system and compare against analytical solutions. For this purpose, we truncate the local-mode
expansion, Equation (1), keeping a finite number of terms, and investigate the linearized truncated
CMS dispersion curve against known analytical solutions.

(i) No current: In the case of waves propagating in constant depth without current (σ = ω

and Bmn = 0), numerical results obtained as non-trivial solutions of Equation (26) concerning the
normalized phase speed Ĉ(kh), which depends only on the non-dimensional wavenumber kh, are
compared against the analytical solution, given by

Ĉ(kh) =
C√
gh

=
√

tanh(kh)/(kh) (28)
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Results are presented in Figure 2 for values of the nondimensional wavenumber kh from 0 to
2π, ranging from very shallow to deep wave conditions, and using two values of the parameter
controlling the vertical basis: µ0h = 0.1π, 0.5π. A rapid convergence of results to the analytical
solution is observed, shown by using thick lines, as the modes included in the present series increases.
We also observe in Figure 2 that the present representation, keeping only the first term (n = 0) in the
expansion, provides excellent results over a bandwidth of non-dimensional wavenumbers around
the selected value of the parameter µ0h, indicating that a simplified model based on a single-term
approximation of the flow velocity U(x, z; t) = U0(x; t)Z0(z; η(x; t), h(x)) is able to provide good
results with appropriate selection of parameter µ0h.Fluids 2019, 4, x FOR PEER REVIEW 11 of 24 
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Figure 2. Dispersion characteristics of the linearized Coupled-Mode System (CMS) in the case of waves
only in constant depth strip, using one term (n = 0, indicated by 1), two terms (n = 0,1, indicated by 2),
and three terms n = 0,1,2, indicated by 3) in the local mode expansions; (a) µ0h = 0.1π, (b) µ0h = 0.5π.

(ii) Parallel flow: In the case of a uniform current in depth, the flow vorticity is zero (Bmn = 0).
Numerical results are obtained as non-trivial solutions of Equation (26) concerning the normalized
phase speed Ĉ(Sh, Fh), which now depends both on the frequency parameter Sh = ω2h/g and the
bathymetric Froude number Fh = Uc/

√
gh, and compared against the analytical solution

Ĉ(Sh, Fh) =
C√
gh

=
ω/k(ω)√

gh
(29a)

More specifically, for each frequency ω, the corresponding wavenumber k(ω) is derived from the
roots of the following dispersion relation(√

Sh − Fhkh
)2

= khtanh(kh) (29b)

where the case of opposing waves to current correspond to Fh < 0 and following waves to Fh > 0,
respectively.

Results concerning a relatively strong current characterized by Fh = 0.1 for following waves are
presented in Figure 3, again for all values of the non-dimensional wavenumber kh, ranging from 0
to 2π, corresponding from very shallow to deep wave conditions. The same as before, two values of
the parameter controlling the vertical basis (µ0h = 0.1π, 0.5π) are used. Again, rapid convergence
of present results to the analytical solution, which is shown by using thick lines, is observed as the
modes included in the present series increases. The corresponding results in the case of opposing
wave and current are presented in Figure 4. In this case the convergence to the analytical results is
slower, especially when the propagation speed becomes smaller approaching the blocking condition.
However, in both cases, the present representation, keeping only the first term (n = 0) in the expansion,



Fluids 2019, 4, 61 11 of 23

provides good results over a bandwidth of non-dimensional wavenumbers around the selected value
of the parameter µ0h, rendering the single-term model a good approximation.
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Figure 4. Dispersion characteristics of the linearized CMS in the case of waves and opposing parallel
current Fh = 0.1 in constant depth strip, using one term (n = 0, indicated by 1), two terms (n = 0, 1,
indicated by 2), and three terms (n = 0, 1, 2, indicated by 3) in the local mode expansions; (a) µ0h = 0.1π,
(b) µ0h = 0.5π.

(iii) Current with constant vorticity: In the case of a linear vertical profile Uc(z) = Uc0 + Sz, the
vorticity is constant in the domain Ωc = S and the coefficient Bmn in Equation (26) becomes Bmn =

Scnαm. Nontrivial solutions of Equation (26) are compared against the dispersion relation. Numerical
results obtained as non-trivial solutions of Equation (26) concern the normalized phase speed Ĉ(Sh, Fh).
Following a previous study [16], in this case the dispersion relation is formulated in terms of the
frequency parameter Sh = ω2h/g and two bathymetric Froude numbers: one corresponding to the
current flow at the surface Fh = Uc0/

√
gh and a second one F∗ = (Uc0 − 2Sd)/

√
gh associated with

the current speed at a depth z = −2d = −tanh(kh)/k below the free surface. The latter parameter is
also expressed in terms of Froude number Fh and the nondimensional shear coefficient Sc = S2h/g, as
follows: F∗ = Fh −

√
Sctanh(kh)/kh.

Again, for each frequency ω, the corresponding wavenumber k(ω) is derived from the roots of
the following dispersion relation(√

Sh − Fhkh
)(√

Sh − F∗kh
)
= khtanh(kh) (30a)
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and are compared against the analytical solution

Ĉ(Sh, Fh, Sc) =
C√
gh

=
ω/k(ω)√

gh
. (30b)

Results for following waves and a relatively strong current characterized by Fh = 0.1 and positive
shear Sc = 0.03 are presented in Figure 5a,b, while the case of negative shear is presented in Figure 5c,d.
Corresponding results for opposing waves and vertically sheared currents characterized by the same
parameters are presented in Figure 6. The behavior of the present CMS concerning the dispersion is
again verified. In all cases the single-term model offers a good approximation for a band of frequencies
around the selected value of the parameter µ0h defining the vertical basis. Further investigation of
the dispersive properties of the present CMS in cases corresponding to a current with a more general
vertical profile and the simulation of waves will be the subject of future work.Fluids 2019, 4, x FOR PEER REVIEW 13 of 24 
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Figure 5. Dispersion characteristics of the linearized CMS in the case of waves and following shear
current with constant vorticity in constant depth strip, using one term (n = 0, indicated by 1), and
two terms (n = 0,1, indicated by 2) in the local mode expansions; (a,c) µ0h = 0.1π, (b,d): µ0h = 0.5π.
The specific values of Fh and Sc are included in the subplots.
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5. Numerical Results

In this section, first numerical results concerning the simulation by the present CMS for waves
propagating in variable bathymetry regions will be presented. We will first investigate in Sections 5.1
and 5.2 the behavior of the linearized CMS in cases of waves propagating in variable bathymetry
regions without and with current effects, respectively, and provide some evidence concerning the
convergence of the modal series. This will reveal the characteristics and rate of decay of the modal
amplitudes Un(x; t) and will illustrate the significance of the first term n = 0 in the present modal
expansion. Subsequently, the effect of nonlinearity will be demonstrated in Section 5.3, in the case
of wave propagation over bathymetry without current, by using a simplified model based on the
truncated local mode series, and keeping only the first n = 0 term.

5.1. Numerical Solution

The modal series Equations (1) and (4) are truncated, keeping only a finite number of terms,
and the present CMS is discretized by using second-order, central finite differences to approximate
horizontal and time derivatives of the unknowns Un(x; t) and η(x; t) based on a uniform grid
(xi = xa + (i− 1)∆x, tn = (n− 1)∆t), defined by subdividing the horizontal extent of the domain
ranging in xa ≤ x ≤ xb by using Mx steps of equal length ∆x = (xb − xa)/Mx.

Based on the above analysis presented in Section 4 concerning the dispersion characteristics of
the present model, in conjunction with extensive experience from similar applications of the CMS,
in most cases the number of the retained modes required for convergence is 4–5, and the horizontal
subdivision of the domain is based on using 30–40 points per wavelength. In the examples that will be
presented and discussed below, the dimension of the discrete coupled-mode system is of the order
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of 1500, which is expected to be significantly (orders of magnitude) less than the analysis required
for a solution of Euler or Navier-Stokes equations based on a full spatial grid (see Koutrouveli and
Dimas [26]). Moreover, the time interval is 0 ≤ t ≤ tmax by using constant time steps ∆t = tmax/Mt.
An implicit Crank-Nicolson method for time-integration is considered, satisfying Courant numbers
(C∆t/∆x)max < 1.

In the examples presented below the depth function h(x) changes smoothly from ha = h(xa)

to hb = h(xb), such as the bottom slope and curvature are zero at the ends of the domain, the flow
motion starts from rest, and boundary conditions are imposed on the wave inlet boundary x = xa

corresponding to a simple periodic wave corresponding to the depth ha. Finally, the reflected back
propagating waves in the vicinity of the wave entrance x = xa and the radiated waves in the wave exit
x = xb are absorbed by using a relaxation scheme extending over one characteristic wave length in
these regions.

An example concerning harmonic incident waves of period T = 2 s and a height of 5 cm
propagating over a linear upslope with decreasing depth from ha = 0.4 m to hb = 0.1 m, presenting
a bottom slope of 4.5% is presented in Figure 7. The calculated modes Un(x; t), n = 0, 1, 2, 3 at a
given time instant are plotted along with the velocity field U(x, z = 0; t) and the free surface elevation
η(x; t) at the same instant, as obtained by the present linearized CMS, using µ0h = 0.4. Using the
results presented in Appendix B concerning the rate decay of the mode amplitude, Equations (A4)
and (A5), in conjunction with the fact that all modes (n > 0) follow the phase of the propagating
mode (n = 0) as it can be also observed in Figure 7, the following trend is expected to be valid:
Un(x; t) ≈ αk−2

n
∣∣k0

∣∣2U0(x; t), n > 1. The latter result has been used in the discussion concerning the
convergence of the present modal expansion in Section 2.Fluids 2019, 4, x FOR PEER REVIEW 16 of 24 
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Figure 7. Results obtained by the present linearized CMS for harmonic incident waves of period T = 2 s
and a height of 5 cm propagating over a linear upslope characterized by bottom slope 4.5%. The first 4
subplots present the calculated modes Un(x;t), n = 0, 1, 2, 3 at a given time instant. The vertical dashed
lines indicate the absorbing (relaxation) zones. The last three subplots show (using thick lines) the
velocity field U(x,z = 0;t) on the mean free surface (z = 0) and the free surface elevation η(x;t) at the
same instant, and finally the sloping bottom topography.
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5.2. Wave Propagation Over an Underwater Bar in the Presence of Opposing Shearing Current

As a second example, we consider the case of normal incident waves propagating over a
trapezoidal bar, seated on a flat horizontal bottom in the presence of an opposing vertically sheared
current, which is presented and discussed in Belibassakis et al. [17]. In this case, experiments have
also been carried out in the wave flume at SeaTech, University of Toulon, France. At the upwave
end of the channel, an electromagnetic piston generates regular waves by horizontal motion. Also, at
the downwave end, a sloping beach is used to absorb waves. An opposing current is injected in the
channel by a hydraulic pump and a perforated screen is used to control the shear. The opposing current
is adjusted to generate flow profiles that are linear in depth Uc(x, z) = U0(x) + S(x)z, where U0(x)
is the surface current and S(x) the shear, and thus, in this specific case the vorticity is Ω(x) = S(x).
In the experiments, the water depth was 0.305 m, and the incident wave frequencies were ranging
from 0.65 Hz to 1.3 Hz with amplitudes between 1–2 cm ensuring small wave steepness, both without
and with the vertically sheared current. The distributions of the bathymetry, as well as the surface
current and shear data, are presented in Figure 8.

Fluids 2019, 4, x FOR PEER REVIEW 16 of 24 

 
Figure 7. Results obtained by the present linearized CMS for harmonic incident waves of period T = 
2 s and a height of 5 cm propagating over a linear upslope characterized by bottom slope 4.5%. The 

first 4 subplots present the calculated modes  ; , 0,1,2,3nU x t n   at a given time instant. The 

vertical dashed lines indicate the absorbing (relaxation) zones. The last three subplots show (using 

thick lines) the velocity field  , 0;U x z t  on the mean free surface (z = 0) and the free surface 

elevation  ;x t  at the same instant, and finally the sloping bottom topography. 

 
 

Figure 8. Bathymetry and current data for waves over the trapezoidal bar presented and discussed 

in Belibassakis et al. [17]. In the lower subplot, the surface current  0U x  is plotted by using a 

solid line and the shear    S x x   is shown by using a dashed line, respectively. 

Figure 8. Bathymetry and current data for waves over the trapezoidal bar presented and discussed in
Belibassakis et al. [17]. In the lower subplot, the surface current U0(x) is plotted by using a solid line
and the shear S(x) = Ω(x) is shown by using a dashed line, respectively.

Furthermore, a coupled–mode model has been developed and discussed in Belibassakis et al. [17]
for the above problem formulated in the frequency domain. The latter model is based on the
assumption that the wave field is irrotational, which is a plausible approximation for cases where the
current flow and the vorticity structure are simplified and the corresponding parameters are slowly
varying horizontal functions. Results from the above coupled mode system have been compared
in a previous study [17] against experimental measurements concerning the reflection coefficient,
illustrating that the model is able to provide good predictions.

In order to illustrate the performance of the present system, calculated results are presented in
Figures 9 and 10 concerning harmonic incident waves of period T = 1 s and an amplitude of 2 cm
propagating over the trapezoidal bar topography, without and with the consideration of the sheared
current, using the data of Figure 8. In particular, in Figure 9 the calculated modes Un(x; t), n = 0, 1,
at a given time instant are plotted along with the surface wave velocity field U(x, z = 0; t) and the
free surface elevation η(x; t) at the same instant, as obtained by the present linearized CMS given by
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Equation (24), first without the consideration of any current. Again we observe the very fast decay of
the mode amplitudes. Moreover, the present solution concerning the free surface elevation calculated
at an instant where the wave has reached the absorbing beach is also compared with the time-harmonic
solution indicated by using dashed lines, illustrating the compatibility of the present model with
previously established ones.Fluids 2019, 4, x FOR PEER REVIEW 17 of 24 
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Figure 9. Results obtained by the present CMS for harmonic incident waves of period T = 1 s
propagating over the trapezoidal bar of Figure 8 without current. The last three subplots show
(using thick lines) the free-surface velocity field U(x,z = 0;t) and the free surface elevation η(x;t) at the
same instant, and finally the sloping bottom topography. The time-harmonic solution [17] is indicated
by using dashed lines.

The same behavior is also confirmed in the case of waves propagating against linear
vertically sheared current, as shown in Figure 10, where the corresponding result is presented
with the modifications by the presence of the opposing sheared current and compared with the
frequency-domain solution. We clearly observe the shortening of the wavelengths due to the effects of
the current, and the steepening of waves, especially over the submerged structure.

Moreover, in this case, the disturbance of the flow due to combined effect of variable bathymetry
and vorticity contained in the vertically sheared current is seen to generate a more complicated pattern
concerning the higher-order modes, especially at the face and rear side of the trapezoidal bar. Further
investigation of this behavior, including optimization of the numerical scheme to reduce possible
instabilities, with application of the present model to more complex situations and detailed analysis,
including comparison against experimental measurements, will be the subject of future work.
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5.3. A Single-Mode Weakly Nonlinear Model

Based on the above remarks concerning the convergence of the present modal series, it is
useful to consider here a simplified nonlinear model for waves without current effects, derived
from Equation (20) by keeping only the n = 0 term in the expansions of the horizontal U velocity
component and dropping the term W∂xW as higher-order quantity in the momentum equation. The
single-mode, simplified non-linear model reads as follows:

∂tU0 + β0U0∂tη + α0(g∂xη + U0∂xU0) + A∂2
x(∂tU0) + B(∂tU0) + C∂tU0 = 0 (31a)

∂tη + U0∂xη + ∂x(c0U0) = 0, (31b)

where the coefficients are given by

α0 =
〈

1, Z(1)
0

〉
‖Z(1)

0 ‖
−2

, β0 =
〈

W(1)
0 , Z(1)

0

〉
‖Z(1)

0 ‖
−2

, c0 = tanh(|k0|h)/|k0| (32a)

A = −
〈

Z(3)
0 , Z(1)

0

〉
‖Z(1)

0 ‖
−2

, B = −2
〈

∂xZ(3)
0 , Z(1)

0

〉
‖Z(1)

0 ‖
−2

, C = −
〈

∂2
xZ(3)

0 , Z(1)
0

〉
‖Z(1)

0 ‖
−2

. (32b)

The linear dispersion characteristics of the above simplified model are the same as the ones of
the present CMS with n = 1 terms shown in Figure 2. Numerical results in the case of monochromatic
waves of period T = 2 s and a height of 2cm propagating over a trapezoidal bar are shown in Figures 11
and 12, as obtained by a simplified version of the present single-mode model defined by Equations
(31) and (32), using µ0h = 0.1π. In particular, comparison of the latter model results against the
experimental data by Beji and Battjes [27] concerning a time series of free surface elevation measured at
stations 2–7 of Figure 11 are shown in Figure 12 by using dotted lines. It is observed that the nonlinear
simplified model is able to provide quite good predictions, which is evidence of the good properties of
the nonlinear system developed in the present work. Further applications and additional investigation
in the case of wave–current interaction over bathymetry will be presented in future work.
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6. Conclusions

In this work, a novel coupled-mode system is derived based on a velocity formulation and
Euler equations, overcoming the irrotational assumption of standard models of waves propagating
in variable bathymetry regions, focusing on the study of additional effects due to inhomogeneous
currents. The present work is limited to collinear waves and currents, and the new model is based on a
modal expansion of the horizontal component of the velocity field by using a vertical basis defined by
local Sturm-Liouville eigenproblems. A corresponding expansion of the vertical velocity component is
also derived fulfilling the continuity and the bottom boundary condition. Subsequently, projection
of momentum equations in the local vertical basis leads to the new coupled system of equations
with respect to the horizontal velocity mode amplitudes and the free-surface elevation, closed by the
kinematic free-surface boundary condition.

The dispersive behavior of the present system is analyzed in detail, for: (i) water waves
propagating without current, (ii) water waves propagating in the presence of a depth-uniform current
(thus involving no vorticity), and (iii) water waves propagating in the presence of a linearly sheared
current, thus presenting constant vorticity. In every case, the convergence of the system is rapidly
achieved, and good results are obtained by keeping only a few modes in the modal series, for all
values of the shallowness parameter ranging from shallow to deep water conditions. First results
concerning the numerical performance of the present system are also presented, and a demonstration
of the nonlinear behavior of the system is shown through the application of a simplified single-mode
model to the case of waves propagating over a trapezoidal bar and comparison against experimental
data. After further elaboration, the present system is expected to provide a useful tool for modeling
wave–current interactions under the effects of vorticity. Finally, the analytical structure of the present
coupled-mode system facilitates extensions to treat non-linear effects and applications concerning 3D
wave scattering by inhomogeneous currents in coastal regions with general bottom topography.
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Appendix A

Using the analytical form of the vertical functions Z(2)
n (z; h, η), as defined by Equation (8), we

obtain by direct differentiation with respect to the horizontal x-coordinate

∂xZ(2)
n (z; h, η) = cos[kn(z+h)]

cos[kn(η+h)]

(
hx +

(z+h)∂xkn
kn

)
+ sin[kn(z + h)]∂x

(
1

kn cos[kn(η+h)]

)
, n = 0, 1, 2, . . . .

(A1)

From the above equation we obtain at the seabed, z = −h, the following result is obtained:

∂xZ(2)
n (z = −h; h, η) = hxZ(1)

n (z = −h; h, η), n = 0, 1, 2, . . . . (A2)
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Appendix B

Assuming that the field U(x, z; t) is bounded and its derivatives are integrable in the domain, and
taking into account the orthogonality of the system

{
Z(1)

n (z; x), n = 0, 1, 2, . . .
}

, for each horizontal
x-position, we have

Un(x, t) =
z=η(x;t)∫

z=−h(x)
Z(1)

n (z; x)U(x, z; t)dz/‖Z(1)
n ‖

2

= − 1

k2
n‖Z

(1)
n ‖

2

z=η(x;t)∫
z=−h(x)

∂2
zzZ(1)

n (z; x)U(x, z; t)dz

= − 1

k2
n‖Z

(1)
n ‖

2

{[
∂zZ(1)

n (z)U
]z=η

z=−h
−

z=η(x;t)∫
z=−h(x)

∂zZ(1)
n (z)∂zU(z)dz

}
,

(A3)

where ∂2
zzZn(z; x) = k2

nZn(z; x) is used. Moreover, and using the fact that ∂zZ(1)
n (z = −h) =

0, and ∂zZ(1)
n (z = η) = µ0Z(1)

n (z = η) = µ0 we have,

Un(x, t) =
1

k2
n‖Z

(1)
n ‖

2

µ0U(x, z = η)−
z=η(x;t)∫

z=−h(x)

∂zZ(1)
n (z)∂zU(z)dz

 (A4)

and using standard asymptotic results for the regular Sturm-Liouville problem, kn ≈ nπ/(η + h),
for n→ ∞ , and the fact that Z(1)

n (z; x) are normalized, ‖Z(1)
n (z)‖ = O(1), the following estimate is

derived
|Un(x, t)| = O

(
n−2

)
(A5)

The above result ensures that the horizontal velocity field U(x, z; t), as represented by Equation (1)
U(x, z; t) ∈ H1(D(t)).

In order to illustrate the above results, we consider below two examples. The first concerns an
irrotational wavelike flow, which is also considered by Nicholls and Reitich [28], and Athanassoulis
and Papoutselis [24], and for which analytical solutions are known. This flow is defined by Φ(x, z) =
− cosh[κ(z + h)] cos(κx) in the domain 0 < κx < 2π,−h < z < η(x) for sinusoidal shapes of
the upper boundary upper η(x) = εh sin(κx) and the corresponding horizontal flow component is
U(x, z) = κ cosh[κ(z + h)] sin(κx). The result of the representation given by Equation (1), using as
control frequency-type parameter µ0 = κ tan[κh], is plotted in Figure A1 by using dashed lines and is
compared against the given field shown by using solid lines. In this case the differences are mainly
observed near the top boundary, as observed in the detail of Figure A1a.

The rate of convergence of the horizontal velocity series can be improved by including additional
modes increasing the rate of decay of the mode amplitudes |Un|, as shown in Figure A1b by using
dashed lines.

As a second example, we consider a Couette flow characterized by a linear distribution U(z) =
U0(1 + z/h) between two parallel planes at z/h = −1 and z/h = 0. The result of the representation
Equation (1) using the same value as before for the frequency-type parameter µ0 controlling the vertical
basis is plotted in Figure A2. In this case, the differences are mainly observed near the top and the
bottom boundaries, as observed in the details of Figure A2a, and are due to the incompatibility between
the boundary conditions of the field U(z) at z/h = −1 and z/h = 0, and the corresponding boundary
conditions satisfied by the Sturm-Liouville problem, generating the vertical basis

{
Z(1)

n (z)
}

.
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Figure A1. Modal representation of potential flow U(x, z) = κ cosh[κ(z + h)] sin(κx) at x = 0 between
horizontal bottom z/h = −1 and an upper surface η(x) = εh sin(κx) with ε = 0.7 and κh = 1. (a)
Comparison of the present modal series defined by Equation (1) shown by using dashed lines against
the potential velocity field U(x = 0, z), shown by using solid lines. (b) The calculated rate of decay of
the mode amplitudes |Un| is shown by using solid lines and the improvement obtained by including
additional free-surface mode by using dashed lines. The asymptotic trends are indicated in the figure
by using blue dotted lines.
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