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Abstract. In this article, we formulate a new variant of the problem of
finding a maximum clique of minimum weight in a graph applied to the
detection and resolution of conflicts between aircraft. The innovation of
the model relies on the cost structure: the cost of the vertices cannot
be determined a priori, since they depend on the vertices in the clique.
We apply this formulation to the resolution of conflicts between aircraft
by building a graph whose vertices correpond to a set of maneuvers and
whose edges link conflict-free maneuvers. A maximum clique of minimal
weight yields a conflict-free situation involving all aircraft and minimiz-
ing the costs induced. We solve the problem as a mixed integer linear
program. Simulations on a benchmark of complex instances highlight
computational times smaller than 20 seconds for situations involving up
to 20 aircraft.

Keywords: Air Traffic Control, Conflict Resolution, Maximum Clique,
Mixed Integer Linear Programming

1 Introduction

Developing advanced decision algorithms for the air traffic control (ATC) is of
great importance for the overall safety and capacity of the airspace. Resolution
algorithms for the air conflict detection and resolution problem are relevant
especially in a context of growing traffic, where capacity and safety become an
issue. Indeed, a simulation-based study performed by Lehouillier et al. [1] shows
that the controllers in charge of the traffic in 2035, which will have increased by
50%, would have to solve on average 27 conflicts per hour in a busy sector.

Maintaining separation between aircraft is usually referred to as the air con-
flict detection and resolution (CDR) problem. A conflict is a predicted loss of
separation, i.e., when two aircraft are too close to each other regarding predefined
horizontal and vertical separation distances of 5NM and 1000ft respectively. To
solve a conflict, the controllers issue maneuvers that can consist of speed, head-
ing or altitude changes. Given the current position, speed, acceleration and the
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predicted trajectory of a set of aircraft, the CDR problem corresponds to iden-
tifying the maneuvers required to avoid all conflicts while minimizing the costs
induced.

The CDR problem is one of the most widely studied problems in air traffic
management. For a comprehensive coverage of the existing literature, the reader
may refer to the review in Mart̀ın-Campo thesis [2]. Exact methods include op-
timal control, which can be associated with nonlinear programming. However,
these methods suffer from the sensitivity to the starting point of the resolution
and the high computational time. Mixed integer linear and nonlinear program-
ming (MILPs and MINLPs) techniques are often considered. Omer and Farges [3]
present a time-discretization of optimal control. Omer [4] also develops a space
discretization using the points of interest for the conflict resolution. Pallottino
et al. [5] develop MILPS solving the problem with speed changes and constant
headings or with heading changes and constant speeds. Alonso-Ayuso et al. [6]
develop a MILP that considers speed and altitude changes. However, MINLPs
suffer from high computational times and do not give any optimality guarantee
in finite time. Besides, the hypotheses made in MILPs to have linear constraints
may not work il all situation. Several heuristics were developed to find a solu-
tion rapidly. Examples of techniques developed include ant colony algorithms
like in Durand and Alliot [7], variable neighborhood searches (see Alonso-Ayuso
et al. [8]). Other fast methods include particle swarm optimization, prescribed
sets or neural networks. Heuristics find a solution rapidly, but the hypotheses
can be restrictive and the convergence is not guaranteed. Graph theory is seldom
used in ATC. Generally, conflicts between aircraft are modeled by a graph whose
vertices represent the different aircraft and whose edges link pairs of conflicting
aircraft, like in Vela [9]. Barnier and Brisset [10] assign flight levels to aircraft
with intersecting routes by looking for maximum cliques in a graph where a
proper coloring of the vertices defines an assignment of all aircraft to a set of
flight levels.

The model presented in this article uses the concept of a clique in a graph,
which is a subset of the vertices where each pair of elements is linked by an edge.
Finding a maximum clique in an arbitrary graph is a well-known optimization
problem that is NP-hard. The problem has been thoroughly studied and several
methods, both exact and heuristic, have been developed. For a comprehensive
coverage on the subject, one can refer to Bomze et al. [11] and Hao et al. [12].

We formulate the air conflict detection and resolution problem as a new
variant of the problem of finding a maximum clique of minimum weight in a
graph. To this end, we build a graph whose vertices represent a set of possible
maneuvers and where a clique yields a conflict-free solution involving all the
aircraft. On the one hand, our model is innovative due to the cost structure for
the vertices. With this model, we can maintain a reasonable size for the graph
built, hence reducing the computational time. On the other hand, our model
significance relies on its flexibility: a modification of the problem constraintes or
objective function do not jeopardize the validity of the mathematical framework
developed. Being flexible is critical in ATC: in addition to being able to cover
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more ground, it will allow meaningful comparisons with existing models in the
literature.

2 Problem Formulation

2.1 Modeling aircraft dynamics

To model the flight dynamics, we use the three-dimensional point-mass model
presented in the BADA user manual [13]. Aircraft follow their planned 4D trajec-
tory, which is a sequence of 4D points requiring time and space accuracy, leaving
the remainder of the trajectory almost unconstrained. The non-compliance with
this contract costs penalty fees to companies. As a consequence, an aicraft needs
to recover its initial 4D trajectory after performing a maneuver. We assume
that the planned speed for an aircraft corresponds to its nominal speed, i.e., the
speed minimizing the fuel burn rate per distance unit traveled using the model
described in [13].

Maneuvers are performed dynamically as described in [14], where the author
states that the typical acceleration during a speed adjustment is in the order
of 0.4kn/s. Heading changes are approximated by a steady turn of constant
rate and radius. The changes of flight level are performed with a vertical speed,
whose computation is detailed in [13], as a function of the thrust, drag, and true
airspeed.

2.2 On cliques and stables

Let G = (V, E) be an undirected, simple graph with a vertex set V and an edge
set E ⊆ V × V.

A clique in graph G is a vertex set C with the property that each pair of
vertices in C is linked by an edge:

C ⊆ V is a clique⇔ ∀(u, v) ∈ C × C, (u, v) ∈ E (1)

A maximum clique in G is a clique that is not a subset of any other clique
in G. The cardinality of a maximum clique of G is called clique number and is
denoted by w(G). Let c : V → R be a vertex-weight function associated with G. A
maximum clique of minimum-weight in G is a maximum clique C that minimizes∑
v∈C

c(v).

A stable set S ⊆ V is a subset of vertices no two of which are adjacent. A
bipartite graph is a graph whose vertices can be partitionned into two distinct
stable sets V1 and V2. Each edge of the graph connects one vertex of one stable
to a vertex in the other stable. This concept is extended to k−partite graphs,
where the vertex set is partitionned into k distinct stable sets.

2.3 Graph construction

In this subsection, we introduce the graph G = (V, E) used to model the CDR
problem.
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Defining the vertices Let F = J1;nK denote the set of the considered aircraft.
We define M = ∪nf=1Mf as the set of the possible maneuvers, Mf being the
set of maneuvers for aircraft f ∈ F . We consider both horizontal and vertical
maneuvers of the following types:

– NIL refers to the null maneuver, i.e., when no maneuver is performed;
– Hθ corresponds to a heading change by an angle θ ∈ [−π;π]1;
– Sδ corresponds to a relative speed change of δ%;
– Vδh denotes a change of δh flight levels.

A maneuver m ∈M is described as a triplet (δχm, δVm, δFLm) correspond-
ing to the heading, speed and flight level changes induced by m. The set of
vertices is defined as V = J1; |M|K2. We note Vf the set of vertices correspond-
ing to aircraft f .
In emergency scenarios where the feasibility of the problem can be an issue, it
is possible to introduce n vertices corresponding to costly emergency maneuvers
to ensure the feasibility of the problem. However, since the feasibility was not an
issue for the tested instances, those vertices were not considered in this article.
The weight of the vertices correspond to the fuel consumption induced by the
corresponding maneuvers. We give further detail in Subsection 2.3.

Defining the edges Let (i, j) ∈ V×V be a pair of vertices representing maneu-
vers (mi,mj) ∈M×M of aircraft (fi, fj) ∈ F ×F . For i 6= j, we write mi2mj

when no conflict occurs if aircraft fi follows maneuver mi while aircraft fj per-
forms maneuver mj . The set of edges E corresponds to the pairs of maneuvers
performed by two different aircraft without creating conflicts:

E = {(i, j) ∈ V × V, i 6= j : mi2mj} (2)

It is important to note that there is no edge between two different maneuvers
of a given aircraft, which yields Proposition 1.

Proposition 1. For all f ∈ F ,Vf is a stable set, i.e there is no edge linking
two distinct vertices of Vf . Hence, the graph G is |F|-partite.

Let (i, j) ∈ V × V be a pair of vertices representing maneuvers (mi,mj) ∈
M×M of aircraft (fi, fj) ∈ F × F . The methodology used to compute if the
edge (i, j) is added to G is described with the following notations:

– T : time horizon for the conflict resolution;
– pfi(t) ∈ R3: position vector of aircraft fi at time t. pfi,x(t) pfi,y(t) and
pfi,z(t) denote respectively the abscissa, ordinate and altitude components
of the position vector;

– sfi(t) ∈ R3: speed vector of aircraft fi at time t. sfi,x(t) sfi,y(t) and sfi,z(t)
denote respectively the abscissa, ordinate and altitude components of the
speed vector;

1 positive angles correspond to counter-clockwise rotations
2 |M| is the cardinality of set M
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– afi(t) ∈ R3: acceleration vector of aircraft fi at time t. afi,x(t) afi,y(t) and
afi,z(t) denote respectively the abscissa, ordinate and altitude components
of the acceleration vector;

– pfj (t), sfj (t) and afj (t) are also defined following the same notations.

The definition of the maneuvers mi and mj applied to fi and fj is used
to project the aircraft trajectory over time. Aircraft fi and fj are said to be
separated at time t if and only if at least one of constraints (3) and (4) holds:

dhfifj (t)
2 = (pfi,x(t)− pfj ,x(t))2 + (pfi,y(t)− pfj ,y(t))2 ≥ D2

h,min (3)

dvfifj (t)
2 = (pfi,z(t)− pfj ,z(t))2 ≥ D2

v,min (4)

3

At any time t ∈ T , either none, one or both aircraft are maneuvering. T can
thus be divided into intervals where both fi and fj have a constant acceleration.
For each interval, we compute the time at which the aircraft are the closest
to verify if the separation constraints hold. Let Tk be one of these intervals.
Consider fi and t0 ∈ T be the starting time of maneuver mi. If we assume that
maneuver mi is applied with a constant acceleration, we obtain the position and
the speed vector of fi at time t0 + t with t such that t− t0 ≤ |Tk|:

pfi(t0 + t) = pfi(t0) + (t− t0)sfi(t0) +
(t− t0)2

2
afi(t0) (5)

sfi(t0 + t) = sfi(t0) + (t− t0)afi(t0) (6)

Let phfifj (respectively shfifj , a
h
fifj

) denote respectively the horizontal posi-
tion, the speed and the acceleration of aircraft fj relatively to aircraft fi. We
define

dhfifj (t+ τ) = ||phfifj (t+ τ)||

= ||phfifj (t) + τshfifj (t) +
τ2

2
ahfifj (t)||

where τ ≥ 0.
Let τfifj ∈ argmin

τ≥0
dhfifj (t+ τ)2 , and thfifj ∈ argmin

t∈T
dhfifj (t)

2.

We have: thfifj =


0 if τfifj = 0

|T | if τfifj ≥ |Tk|
τfifj otherwise

Aircraft fi and fj are horizontally separated during interval T if and only if
(7) holds:

dhfifj (t
h
fifj )

2 ≥ D2
h,min (7)

By a similar reasoning, aircraft fi and fj are vertically separated during
interval T if and only if (8) holds:

dvfifj (t
v
fifj )

2 ≥ D2
v,min (8)

3 In this paper we choose Dh,min = 5NM and Dv,min = 1000ft.
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If either (7) or (8) holds when aircraft fi and fj apply maneuvers mi and mj ,
then an edge is created between i and j. As explained in 2.1, it is important that
every aircraft initiates a safe return towards its initial trajectory once the conflict
is avoided. For each edge, we compute the minimum time necessary before one
or both aircraft can recover their initial trajectories. The cost of the recovery of
a trajectory is detailed in Subsection 2.3.

Application to the CDR problem As mentioned in Section 1, given the cur-
rent position, speed, acceleration and the planned trajectories of a set of aircraft,
solving the CDR problem consists in finding a conflict-free set of maneuvers that
minimizes the costs. Proposition 2 links the cliques in G to the CDR problem:

Proposition 2. Let C be a clique in graph G. Then C represents a set of conflict-
free maneuvers for a subset of F of cardinality |C|.

Proposition 2 shows that finding a set of conflict-free maneuvers for F is
equivalent to finding a clique of G of cardinality |F|. We derive the following
theorem:

Theorem 1. If a conflict-free solution exists, then ω(G) = |F|. Otherwise, ω (G)
is the maximum number of flights involved in a conflict-free situation.

We define the problem CDRM as the restriction of the CDR problem to the
set of maneuversM. Using both Proposition 2 and Theorem 1, we can state anew
the CDRM problem as follows: solving the CDRM problem consists in finding a
clique of maximum cardinality and minimal cost in graph G. In fact, we consider
a new variant of a clique problem where the weight associated with a vertex is not
known a priori and rather depends on the edges induced by the clique. Indeed,
the cost associated with a maneuver depends on the duration that this maneuver
will be performed before returning towards the planned trajectory. Because this
duration depends on the maneuvers selected for the other aircraft, it cannot be
determined a priori and must be computed as the maximum duration needed to
avoid a loss of separation with all other aircraft given their chosen maneuvers.
To handle such vertex costs, we first define edge costs.

Computing the cost of the edges The cost measure chosen for this article
corresponds to the extra fuel consumption induced by the maneuvers, i.e., the
additional fuel required to return to the 4D trajectory after the maneuver is
performed. We use the model given in [13]. For a jet commercial aircraft f , the
fuel consumption by time and distance unit is given by (9) and (10):

Ct,f (t) = c1,f

(
1 +

Vf (t)

c2,f

)
FT,f (t) (9)

Cd,f (t) =
Ct,f (t)

Vf (t)
(10)

where c1,f and c2,f are numerical constants depending on the type of aircraft f .
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We compute the cost of an edge e = (i, j) linking two vertices representing
two maneuvers of aircraft fi and fj , denoted mi and mj , as a pair constituted of

the extra fuel costs for both fi and fj , denoted C
(i,j)
i and C

(i,j)
j . The additional

consumed fuel corresponds to the performed maneuver along with the fuel re-
quired to recover the inital 4D trajectory. After a change of speed of δ% during a
period δt, the aircraft recovers its 4D trajectory by making the opposite change
of speed during δt. After a change of direction δχ during a period δt, the aircraft
performs a turn with an angle θr in order to recover its physical trajectory along
with a change of speed to retrieve the 4D trajectory. The cost induced is the
extra fuel burnt when the aircraft flies at the recovery speed and the fuel burnt
on the extra distance induced by the maneuver. For a flight level change, we
compute the extra cost as the difference of consumption between the different
flight levels, along with the cost of changing twice of flight level. The distance
flown is also longer, and this extra distance is also accounted for.

Computing the cost of the vertices Several techniques can be followed in
order to determine the vertices cost. The basic one would be to discretize the
duration of the maneuver, and to create the vertices accordingly. In this situation,
computing the costs would be straight-forward. However, the drawback of this
method is that the graph built is huge, which could result in a difficult resolution.
We choose to follow another structure of cost because it is more compact in terms
of graph size.

Let us consider a vertex i which corresponds to a maneuver mi for an aicraft
fi. The cost of each edge linking i to one of its neighbors j, associated to a
maneuver mj for aircraft fj , corresponds to fi applying mi during a time tji ,

which depends on mj . Time tji is the minimum time during which fi must apply
mi in order to avoid any conflict if one or both aircraft return to their initial

trajectory. Following maneuver mi for a duration tji induces a cost C
(i,j)
i . If i is

part of the maximum clique C to be determined, we need to establish the time
ti during which maneuver mi is actually applied in order to determine its cost
ci. ti is obtained by:

ti = max
j∈V∩C

tji (11)

As a consequence, we have that ci is the cost of aircraft fi applying mi dur-
ing ti. If i is not part of the maximum clique C, then no constraint is imposed
on the cost ci. As detailed in Section 3, the optimization model will automat-
ically force the value of ci to 0. To conclude, we have that for any i ∈ V:

ci =

 max
j∈V∩C

C
(i,j)
i if i ∈ C

0 otherwise

2.4 Illustrative example

For the sake of clarity, an illustrative example with three aircraft is given in
Figure 1. If each aircraft follows its planned trajectory, conflicts will happen
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between the blue aircraft and the two others. For this example, we assume that,
in addition to the null maneuver, only two heading changes (±30◦) are allowed.
We build the CDR graph shown in Figure 1(b). The graph is 3-partite, as the
vertex set is partitionned into 3 stable sets of 3 vertices each. Solving the CDR
is then equivalent to searching for a minimum-weight clique of 3 vertices, i.e., a
triangle.

0

30

-30 -30

-30

0

030

30

(a) Illustrative example

30

30

30-30

-30

-300

00

(b) Resulting graph G

Fig. 1: Illustrative example with three aircraft

3 Methodology

Determining the cost of a vertex i is very specific, since it is correlated to whether
or not i belongs to a maximum clique C. As a consequence, the algorithms usually
used in existing librairies dedicated to graph theory cannot be used for our model.
We formulate the problem as a mixed-integer linear program using the following
variables:

– xi =

{
1 if vertex i is part of the maximum clique

0 otherwise
– ci ∈ R+ is the cost of vertex i.

We describe the clique search by the following linear integer program:

minimize
∑
i∈V

ci (12)

subject to xi + xj ≤ 1,∀(i, j) 6∈ E (13)∑
i∈V

xi = |F| (14)

ci ≥ C(i,j)
i (xi + xj − 1),∀(i, j) ∈ E (15)

xi ∈ {0; 1},∀i ∈ V (16)

ci ∈ R+,∀i ∈ V (17)
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The objective function (12) minimizes the cost of the maneuvers. (13) are
clique constraints, and constraint (14) exploits Theorem 1 defining the cardinal-
ity of the maximum clique. Constraints (15) are used to compute the cost of the
vertices: if a vertex is in the maximum clique, then its cost must be greater than
its cost on all edges connecting it to other vertices in the clique.

4 Results

All tests were performed on a computer equipped with an Intel Core i7-3770
processor, 3.4 GHz, 8-GB RAM. The algorithms were implemented in C++ and
using CPLEX 12.5.1.04.
The headings of the tables presented in these section are given as follows:

– case: case configuration;
– |F|: number of aircraft;
– |V|: number of vertices;
– |E|: number of edges;

– d = 2|E|
|V|(|V|−1) : graph density;

– n: number of variables;
– m: number of constraints;
– zip: optimal value for the problem;
– nodes: number of branch-and-bound nodes;
– tlp: time (in seconds) to continuous relaxation of the MILP;
– tip: time (in seconds) to obtain the zip value;

4.1 Benchmark description

The benchmark used for this study gathers three types of instances. The first
set is roundabout instances Rn, where n aircraft are distributed on the circum-
ference of a 100NM radius and fly towards the center at the same speed and
altitude. The second set is crossing flow instances Fn,θ,d, where two trails of n
aircraft separated by d nautical miles intersect each other with an angle θ. The
last type of instance is a grid Gn,d constituted of two crossing flow instances
Fn,π2 ,d with a 90◦ angle, one instance being translated 15NM North-East from
the other. An example of these instances is given on Figure 2.

4.2 Computational results

The first set of simulations considers only horizontal maneuvers, with relative
speed changes of ±3% and ±6% and heading changes of ±5◦,±10◦,±15◦. The
graph remains small when one considers this set of maneuvers, and their small
magnitude makes them less costly. Nevertheless, if these values were to be ineffi-
cient to solve all the conflicts, we could introduce maneuvers of larger magnitude.

4 see the IBM-ILOG CPLEX v12.5. User’s manual for CPLEX
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(a) Roundabout (b) Crossing Flow (c) Grid

Fig. 2: Examples

Table 1 gathers information about the graph G, the MILP and the main com-
putational results. The solution time for the continuous relaxation is very small,
but the quality of the relaxation is mediocre. Indeed, the fractional solution of
the linear relaxation chooses two maneuvers for each aircraft with a value of
0.5. Constraints (15) force the cost of each vertex to be 0, yielding an optimal
value of 0 and a gap of 100%. Results also display short solution times: problems
known to be complex with 20 aircraft are solved to optimality in less than 15
seconds. This result is very satisfying since the density of the graph is high.

Graph G MILP Resolution

Instance type Case |F| |V| |E| d m n zip nodes tlp tip

Roundabout

R2 2 22 90 0.39 44 225 3.71 6 0 0.02
R4 4 44 492 0.52 88 1073 14.98 73 0 0.02
R6 6 66 1194 0.56 132 2521 22.7 0 0.01 0.15
R8 8 88 2184 0.57 176 4545 31.05 47 0.01 0.53
R10 10 110 3430 0.57 220 7081 112.7 208 0.05 1.56
R12 12 132 4944 0.57 264 10153 189.27 581 0.09 3.41
R14 14 154 6720 0.57 308 13749 224.75 183 0.1 6.98
R16 16 176 8896 0.57 352 18145 261.44 162 0.15 9.5
R18 18 198 11358 0.58 396 23113 636.7 257 0.21 12.1
R20 20 220 1402 0.58 440 28461 740.6 210 0.27 3.2

Flows

F5,30,10 10 110 4522 0.75 220 9265 49.08 405 0.02 1.5
F5,45,10 10 110 4518 0.75 220 9257 41.29 535 0.02 1.52
F5,60,10 10 110 4478 0.75 220 9177 34.49 238 0.02 1.39
F5,75,10 10 110 4492 0.75 220 9205 30.66 496 0.02 1.34
F5,90,10 10 110 4528 0.76 220 9277 28.28 269 0.02 1.41

Grids
G2,3,10 12 132 6645 0.78 264 13555 57.65 564 0.01 3.64
G2,5,10 20 220 19724 0.82 440 39889 121.92 2740 0.2 12.7

Table 1: Dimensions of the instances and computational results
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In the second simulation set, we introduce altitude maneuvers: aircraft are
allowed to move to an adjacent flight level. Table 2 reports the main results. The
values of the optimal solutions for the roundabout instances remain the same,
highlighting that it is optimal to make simple turns instead of changing flight
levels. For the crossing flows and the grid instances, it is more efficient for some
aircraft to change their flight level instead of turning or changing their speed. As
a consequence, the solutions are less expensive. Solution times tend to slightly
increase, but the solution can still be computed in a short time. These results
are promising since the instances tested are denser than real-life instances.

Graph G MILP Resolution

Instance type Case |F| |V| |E| d m n zip nodes tlp tip

Roundabout

R2 2 26 116 0.36 52 285 3.71 7 0 0.05
R4 4 52 832 0.63 104 1769 14.98 153 0 0.07
R6 6 78 2076 0.69 156 4309 22.7 440 0.01 0.19
R8 8 104 3840 0.72 208 7889 31.05 245 0.01 0.83
R10 10 130 6080 0.73 260 12421 112.7 375 0.05 1.4
R12 12 156 9096 0.75 312 18505 189.27 648 0.09 3.11
R14 14 182 12208 0.74 364 24781 224.75 256 0.1 6.46
R16 16 208 16416 0.76 416 33249 261.44 210 0.15 9.08
R18 18 234 20772 0.76 468 42013 636.7 289 0.21 12.1
R20 20 260 25760 0.77 520 52041 740.6 223 0.27 6.5

Flows

F5,30,10 10 110 4522 0.75 220 9265 46.12 401 0.02 1.5
F5,45,10 10 110 4518 0.75 220 9257 40.12 588 0.02 1.52
F5,60,10 10 110 4478 0.75 220 9177 31.69 324 0.02 1.39
F5,75,10 10 110 4492 0.75 220 9205 30.11 542 0.02 1.34
F5,90,10 10 110 4528 0.76 220 9277 26.12 287 0.02 1.41

Grids
G2,3,10 12 132 6645 0.78 264 13555 45.18 612 0.01 3.64
G2,5,10 20 220 19724 0.82 440 39889 108.12 2910 0.2 12.7

Table 2: Dimensions of the instances and computational results

5 Conclusions

A new variant of the problem of finding a maximum clique of minimum weight
in a graph and its application to aircraft conflict resolution have been presented.
The innovation of the model comes from the cost structure: the costs of the
vertices cannot be determined a priori since they depend on the vertices in the
clique. As a consequence, we model the problem as a MILP. The model performs
well, since complex instances involving up to 20 aircraft are solved to optimality
in near real-time. The design of the model is flexible, meaning that tuning some
parameters of the model will allow meaningful comparisons with existing models.

These conclusions validate the model as a basis for further research. For
instance, techniques reducing the size of the graph are of interest. Adding un-
certainties is also a meaningful extension of the model. Additional benchmarks
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including real-life instance and random scenarios will be necessary in order to
challenge the model.
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