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Bleuse1[0000−0002−6728−2132], Martin Rosalie2[0000−0003−3676−120X], Grégoire
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Abstract. Chaotic attractors are solutions of deterministic processes,
of which the topology can be described by templates. We consider tem-
plates of chaotic attractors bounded by a genus–1 torus described by a
linking matrix. This article introduces a novel and unique tool to vali-
date a linking matrix, to optimize the compactness of the corresponding
template and to draw this template. The article provides a detailed de-
scription of the different validation steps and the extraction of an order
of crossings from the linking matrix leading to a template of minimal
height. Finally, the drawing process of the template corresponding to
the matrix is saved in a Scalable Vector Graphics (SVG) file.

Keywords: Chaotic attractor · Template · Linking matrix · Optimiza-
tion · Visualization.

1 Introduction

Resulting of theoretical studies on chaos attractors, applications including chaotic
dynamics can be found in a multitude of domains. Their range goes from com-
puter science [23], through classical sciences with physical networks [14], biology
and genetics [27] and chemistry with chaotic dynamics in chemical reactions [8],
all the way to electronics and chaos in electronic devices [13] and even environ-
mental studies on population evolution [5].

Birman & Williams [6] introduce templates as knot-holder to describe the
topological structure of chaotic attractors. The notion of linking matrices to de-
scribe chaotic attractors with integers has been first introduced by Mindlin et
al. in 1990 [18]. The matrix contains the number of torsions and permutations
occurring along the flow of an attractor. The template is a ribbon graph com-
bined with a layering graph. In 1998, Gilmore wrote an extensive survey on the
research on chaotic dynamical systems over the past decade [11], in which one
can see various drawings of templates. In his paper, he provides the summary of
the topological analysis from dynamical system to template.
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Fig. 1. A representation of a template of a chaotic attractor solution to the Malasoma
system (1) for α = 2.027. (a) Chaotic attractor with the Poincaré section (see [25] for
the definition of this section named Sa). (b) Template of the chaotic attractor from
the Poincaré section.

The subject of chaotic dynamics studies are promising and on-going. But it
clearly misses matrices validation and drawing tools. The research community
would benefit from an efficient application that verifies the validity of matrices
and draws their corresponding template. The novel tool presented in this paper
is publicly available online at https://gitlab.uni.lu/pcog/cate, and aims to
fill this gap.

This paper is structured as follows. In section 2 we give an introduction to
the problem. Section 3 provides a state-of-the-art analysis in the field of chaotic
attractors, focusing on their validation and visualization. In section 4, we first
outline our approach to determine the validity of a linking matrix. Secondly,
we describe the procedure to get the minimal height of a template and its vi-
sualization. In section 5, we present the experimental work and the results in
order to validate our proposed approach. Finally, we conclude and outline some
directions for future work in section 6.

2 Problem Description

A chaotic attractor is a solution of a dynamic deterministic process that is very
sensitive to its initial conditions. The solution will converge to the same global
shape (the attractor), independently of the starting position in the basin of
attraction. Malasoma [16] proposed a simple differential equations system ẋ = y

ẏ = z
ż = −αz + xy2 − x ,

(1)

with chaotic dynamics as solutions when α ∈ [2.027; 2.08]. A detailed analysis
of the topological properties of the attractors that can be produced by this
system has been proposed in [24,25]. For instance, Fig. 1 summarizes some steps
of the topological characterization (Poincaré section and template) of a chaotic

https://gitlab.uni.lu/pcog/cate
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Convention Torsions Permutations

+1 −1 positive negative positive negative

Fig. 2. Convention of representing oriented crossings. The permutation between two
branches is positive if the crossing generated is equal to +1, otherwise it is negative.
We use the same convention for torsions.

attractor when α = 2.027. In this article, we are considering only attractors
bounded by genus–1 torus such as Rössler attractors [26] or Malasoma attractors
[16] (Fig. 1a); it does not work for more complex attractors such as Lorenz
attractors [15] bounded by a genus–3 torus.

A template is a compact branched two-manifold with boundary and smooth
expansive semiflow built locally from two types of charts: joining and splitting
[10]. It is a figure that represents the topological structure of a chaotic attractor.
Since the 1990s there have been two different ways to represent templates with
linking matrices that are still used today, as one can see in the recent paper of
Gilmore and Rosalie [12], where algorithms are given to switch from one repre-
sentation to the other. Hereinafter, the representation first given by Melvin and
Tufillaro [17] is considered. This representation only requires a linking matrix,
and gives a standard representation at the end, where at the bottom of the tem-
plate the strips are ordered from the back-most on the left to the front-most on
the right. This is the representation used for the template shown in Fig. 1. We
also use the orientation convention defined by Tufillaro et al. [17,18] (Fig. 2).

A linking matrix is a matrix that details the number and the direction of
crossings in a template. As illustrated in Fig. 2, a torsion is a twist of a branch
with itself and a permutation is an exchange of position of two branches. Fur-
thermore, the torsions and permutations can be either positive or negative as
defined by the orientation convention shown in Fig 2. The linking matrix M
corresponding to Fig. 1 is given by (2).

M =


1 0 0 0
0 0 −1 −1
0 −1 −1 −1
0 −1 −1 0

}

��
~ (2)

The diagonal elements in the linking matrix correspond to the torsions. As
an example, consider matrix M . The element M1,1 = 1 represents the number of
torsions of branch one of the template from Fig. 1. This branch performs exactly
one single positive torsion as indicated by the matrix M . The non-diagonal ele-
ments correspond to the number of permutations between the different branches.
As an example, M2,4 = −1 means that branches two and four perform a negative
permutation which is depicted by the crossing of the orange and red branch in
Fig. 1. It is sufficient to consider the part of the matrix above the diagonal, as
it is symmetric.
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The linking matrix M is unique but the corresponding template can be drawn
in various ways. Some representations can be longer than others. This is why our
goal is to find the most concise template. This means that we aim to maximize
the number of permutations per level of the template. There might be however
several templates with minimum size. In this work we only consider the first
template of minimum size generated by the algorithm.

An important remark is that not every matrix corresponds to a valid template
of a chaotic attractor. As a chaotic attractor is a solution of a deterministic
process and the linking matrix represents it, such a matrix needs to fulfill certain
criteria. We will describe the tool we created to verify the validity of a linking
matrix, to solve the underlying scheduling problem to find the order of the
permutations and to determine the most concise representation of a template.
Finally, the tool also renders the solution found.

3 Related Work

The visualization of a template has been addressed in Chap. 5 Sec. 5 of [28] and,
according to our best knowledge, the validation of a linking matrix has never
been addressed. Usually, this has been done manually by each author. The only
comparable project we found is a Mathematica code written by N. B. Tufillaro
et al. [28], which draws templates. Extensive details are available in the Chap. 5
of [28]. It has been used recently in papers written by Barrio et al. [2,3,4].
This implementation, however, only works on older versions of Mathematica.
Furthermore, one has to specify as input an explicit order of crossings, which
means that it does not find them automatically from a linking matrix, unlike
the algorithm presented in this paper. This Mathematica code does not provide
a validity verification either, it is purely a tool for drawing “clean” templates.

To the best of our knowledge, such a tool has never been proposed and could
be beneficial for the scientific community, as it is not always easy to see whether a
matrix is valid or not. Indeed there have been publications with invalid matrices
that our tool would have marked as such [18]. Some other papers have presented
quite unattractive drawings of templates (eg. Fig. 4 of [1]) and we feel that our
tool would provide researchers with an easy and rapid way to solve this problem.
Moreover, it can also be used by the community as a tool for building a linking
matrix from the linking number numerically obtained during the topological
characterization method for attractors bounded by a genus–1 torus (see [11,21]
for details).

4 Linking Matrix and Template of a Chaotic Attractor

In this section, we are going to discuss the approach we developed in order to
check the validity of a given linking matrix, to find a corresponding template of
minimal height as well as to visualize it. Firstly in section 4.1, we will describe
the different validation steps which we are applying on a matrix and justify their
necessity. Secondly, section 4.2 explains the tree construction we use in order to
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minimize the height of the resulting template and the methods we apply for the
visualization of the template.

Algorithm 1 Drawing of the template of a linking matrix.

1: verify correct matrix input form
2: verify continuitiy constraints of matrix
3: verify determinism constraints of matrix
4: if passed all verification steps then:
5: construct tree
6: find shortest path in tree
7: draw template

4.1 Validation of a Linking Matrix

A linking matrix is a topological representation of a chaotic attractor, hence it
needs to satisfy certain constraints linked to the attractor. Essentially, a template
consists of strips that are stretched, twisted, folded and glued at the bottom over
and over again after a clockwise rotation. We remind that we are only considering
templates of attractors bounded by a genus–1 torus.

In order to visualize this, one can imagine having a sheet of paper split into
several strips. The behavior of those strips is given by the elements of the matrix.
If one can deform the paper in such a way that the paper respects the constraints
given by the matrix without having to tear it apart, then the matrix corresponds
to a valid template. If tears are unavoidable, no valid template exists. If there
is a tearing mechanism in the attractor, we are out of the scope because this
means that the attractor is at least bounded by a genus–2 torus.

Validation steps The steps below evaluate whether or not a linking matrix is
valid, i.e., if it corresponds to a chaotic attractor.

First of all, we need to verify that a matrix is of the right form. A valid
linking matrix, by definition, has a certain construction. It is square, symmetric
and has integers as values [17].

The next three validation steps are constraints on the continuity of the tem-
plate. Going back to the sheet of paper example, these constraints guarantee
that no tears occur. The first of these constraints is linked to the diagonal ele-
ments of the matrix. These elements have to respect the condition which dictates
that they have to differ by exactly one from their diagonal neighbors. Violating
this constraint would result in a discontinuous template. Similar to the diagonal
constraint, a linking matrix needs to satisfy the condition which states that an
arbitrary value in the matrix cannot differ from the values of all of its neigh-
bors by more than one. Finally, the last continuity constraint is based on the
order of the elements on the bottom of the template. From a linking matrix, one
needs to be able to obtain a valid order for the template. The order is an array
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Fig. 3. Planarity check of matrices (2) (left) and (4) (right).

which defines the position of the branches at the bottom of the template after
performing the crossings. We obtain this order from the matrix by applying a
simple algorithm described in [17]. A valid ordering array contains all branch in-
dexes exactly once. An index being present twice would mean that two branches
would end up at the same end position, which is impossible without a tear and
therefore would result in an invalid template.

The last two verification steps are linked to the determinism of a chaotic
attractor. As stated earlier, chaotic attractors are solutions of dynamic deter-
ministic systems, meaning that from any starting point there is a unique image
and no choice is possible. As the template is a topological representation of a
chaotic attractor, it also needs to respect its intrinsic properties like determin-
ism. The first of those two verifications consists in checking whether the linking
matrix has 2× 2 sub-matrices located on its diagonal that are not valid. Up to
addition of a global torsion (see [24] for details) there are two 2×2 matrices that
are not valid, namely B and C:{

B =

[
−1 0
0 0

{
, C =

[
0 0
0 −1

{
, C + 1 =

[
1 1
1 0

{
, . . .

}
. (3)

The set (3) corresponds to matrices that are associated to discontinuous tem-
plates. If the matrix has such a sub-matrix on its diagonal, this means that
it presents a choice opportunity at some point and violates the determinism
condition. Therefore, it is not valid.

Finally, in the second step, which we call planarity check, we verify the order
of the end positions of the template. The idea is to take the final positions of the
branches at the end of the template, and connect them with arcs in a certain
way. Start with 1, and connect it to 2 over the list. Then connect 2 to 3 below
the list, 3 to 4 over, and so on. If the arcs cannot be drawn without intersecting,
then the matrix is invalid. This is illustrated by Fig. 3, where the left part of the
figure corresponds to this verification of the matrix (2), and has no intersections.
The right side on the other hand corresponding to matrix N (4) does not pass
the test.

N =


0 0 0 0
0 1 0 −1
0 0 0 −1
0 −1 −1 −1

}

��
~ (4)

If this planarity condition was not verified and there was an intersection,
the system would have a choice when arriving at this intersection, which would
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violate the determinism assumption. Therefore, a matrix that does not satisfy
this condition cannot correspond to a valid template.

Order of the validation steps The order of the different validation steps
is defined in the way described above, we start checking the most general con-
straints, and then check the most specific ones (Alg. 1). For example, if a matrix
is not square matrix, there is no need to verify specific constraints like the di-
agonal constraint, as the matrix is not even a linking matrix by definition. The
same idea applies to the other criteria.

In literature, there have been publications with invalid matrices that our
procedure would have labeled as such. One example would be the first 4 ×
4 linking matrix in [18], which gives the matrix with the following diagonal
elements: 6, 5, 5 and 4. This matrix would not have passed the validation step
which dictates that all elements on the diagonal of a matrix have to differ by
one from their diagonal neighbors.

K =


3 2 2 3
2 2 2 3
2 2 3 4
3 3 4 4

}

��
~ (5)

For the matrix K (5) the ordering validation step fails because the ordering at the
end is given by the array [2, 3, 3, 2], meaning that both strips one and four are on
position two and strips two and three are on position three. As this is a problem
for continuity, this matrix would not pass the order test. This illustrates that a
tool to validate a matrix would facilitate the analysis of linking matrices, as it
is not always easy to see whether a matrix is valid or not. A complete example
of the validation process can be found in the appendices of the extended version
[20].

4.2 Visualization of a Template

Tree Construction After having verified the validity of a linking matrix, the
next step is to generate a visualization of a template with minimal height from
a given linking matrix. In order to determine the minimal height of a template,
one has to optimize the scheduling of all the crossings between the different
branches. For this purpose, we developed an approach where we take as input a
valid linking matrix and make use of its permutations to generate a tree graph
using a breadth first approach, meaning that we build it level by level.

To do this, we follow Alg. 2. We derive the initial order from the matrix which
represents the root of the tree as a first step. Furthermore, we also retrieve the
list of performable permutations between the branches. Beginning at the root, we
simulate the permutations and generate additional nodes which are annotated
with an updated order and then added to the tree. For each node created, the list
of permutations yet to be performed will differ. Eventually, a node representing
a leaf with an empty permutation list and a valid final order will be generated.
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Algorithm 2 Tree construction

1: if validMatrix(matrix) then
2: init = Node(permutationList, order, father = None) ;
3: finalOrder = getF inalOrder(matrix)
4: queue = [init] ;
5: while queue 6= ∅ do
6: node = queue[0] ;
7: queue = queue[1 :] ;
8: toExecute = permutationList ∩ allNeighborCombinations(node.order) ;
9: if toExecute = ∅ and node.order = finalOrder then

10: setLeaf(node) ;
11: break ;

12: for p in toExecute do
13: newNode =
14: Node(updatedPermutationList(p), updatedOrder(p), father = node) ;
15: queue.append(newNode) ;

At this point, the computation of the tree is stopped. By traversing the tree from
the root to that leaf, we get the sequence of permutations to execute in order to
obtain a template of minimal height. To illustrate this procedure, consider the
following 4× 4 matrix A (6).

A =


−1 −1 −1 −1
−1 0 0 0
−1 0 1 1
−1 0 1 2

}

��
~ (6)

From this matrix, we get an initial order where the branches are numbered
beginning from 1 to 4. To retrieve the set of permutations to perform, we have
to consider the non-diagonal elements of the matrix. For example, the branch
with the label 1, has to perform a negative permutation with the branches
2, 3 and 4. There is also a positive permutation between branch 3 and 4.
So, we obtain the following list of permutations which needs to be executed
[(1, 2), (1, 3), (1, 4), (3, 4)].

To find the permutations which can be performed at this stage, we need
to consider our initial order from which we can derive which branches are
direct neighbors. For instance, we obtain the following list of neighbor pairs
[(1, 2), (2, 3), (3, 4)]. By taking the intersection of the neighbor list and the set
of permutations to perform, we obtain a set of permutation which are possible
to process during the initial stage. By doing so, we can permute branch 1 and
2 or 3 and 4. However, we could also perform both permutations in parallel as
performing one of them does not prohibit the other one. As illustrated on top of
Fig. 4, we see the root labeled with the initial order of the branches. After the
first set of permutations have been performed, different child nodes are created
at level 1. The corresponding order of each child node is obtained by switching
the positions of the permuted branches in the initial order of the root.
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Fig. 4. Final and complete tree for matrix A from (6) including the root and the
child nodes generated per level. Each node represents the updated order after each
permutation described by the incoming edge.

From the new order of each child node, we try to find a new permutation to
perform by defining the neighbor pairs. We then recompute the possible permu-
tations for this iteration. Each iteration will add one or more children to tree
and this process is repeated until all permutations have been performed or no
new permutation can be computed. However, a node which can no longer per-
form a permutation while there are still some permutations in the set left to be
executed, is not considered valid.

Fig. 4 also shows the final tree after all permutations have been performed.
The green arrows leading to the green colored leaf denote the shortest path where
the labels show the order of execution of the permutations to get to the final order
of the template. This will result in a template of shortest possible height. There
are also three other possible solutions but they will not reduce the height of the
template to a minimum as they perform one additional permutation. However,
we stop the computation of building the tree after encountering the first valid
leaf, so the red nodes will never be computed. The breadth-first construction of
the tree guarantees that the first found solution is the shortest one.

Drawing of the Template Finally, after verification of the linking matrix
and after having found the shortest path in the tree corresponding to the most
concise order of crossings, we can now draw the template. To draw the templates
as scalable vector graphics, we used python’s swgwrite module [19].

In order to draw both torsions and permutations, we use a cubic Bézier curve
as shape. To illustrate how we use it, consider two points (x1, y1) and (x2, y2)
and suppose we want to draw this Bézier curve between them, in the same shape
as those used in the permutations and torsions. The starting point is given by
(x1, y1) and we will give the rest of the points relative to this starting point. The
relative end point is then given by (x2−x1, y2− y1) and the two relative control
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(a) (b) (c) (d) (e)

Fig. 5. An illustration of a positive torsion (a–c) and a positive permutation (d–e)
drawing process.

Fig. 6. Template of one linking matrix with five branches and eight permutations.

points by (x1, (y2 − y1)/2) and (x2 − x1, (y2 − y1)/2). So the control points are
always halfway in height between the two points and straight above respectively
below them.

To draw a torsion we first draw one Bézier curve, then add a small white circle
in the middle of this curve to erase this part. Finally we draw the other Bézier
curve. This procedure is illustrated in Fig. 5(a–c). Permutations are drawn in a
similar way. The sign of the permutation defines which of the two branches is
drawn first, then when the other one is drawn it covers it up as it comes on top
of the other one (Fig. 5(d–e)).

We start by considering the torsions of the matrix and draw all of them.
Then we move on to the permutations. They are given by the sequence of edges
forming the shortest path of the tree generated by the input matrix. We then
draw the rest of the template by levels. At each level, every strip can do one
of three actions: do a straight transition, permute left or permute right. The
shortest path tells us which two strips should permute. Given this information,
it is easy to calculate the coordinates at the next level of each strip and apply
the correct transition (Fig. 6).

5 Performance Evaluation

An elementary matrix is a unique linking matrix describing a chaotic mecha-
nism without additional torsions or symmetry properties [22]. Given an input
size, Rosalie describes in this article a method to generate all possible elementary
linking matrices of such size. We used this method to obtain the 14, 38 and 116
possible elementary matrices with resp. five, six and seven branches (resp. 5× 5,
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Fig. 7. Distribution of the number of elementary matrices with respect to the number
of permutations to process. There are 14 (resp. 38 and 116) matrices of size 5 (resp. 6
and 7).

6× 6 and 7× 7 linking matrices). Fig. 7 depicts for each matrix size the distri-
bution of the elementary matrices with respect to the number of permutations
to process.

The experiments were conducted on a server with an Intel Xeon X7560 pro-
cessor with a clock speed of 2.27 GHz, and 1024 GB of RAM. Even though
this server is not the fastest available, it is the only one fulfilling the mem-
ory requirements (instances required between 25 MB and 400 GB of memory).
For the sake of comparability, all instances have been run on the same ma-
chine. For the complete description of the cluster environment, please refer to
https://hpc.uni.lu/systems/chaos/. We computed the templates of all the
elementary matrices described above. We ran the experiments with version v0.0.1
of the code. For each input matrix, we measured 30 times the time elapsed to
get the template. The 7 × 7 matrix with 27 permutations ran out of memory
and crashed: we removed it from the graphs. Fig. 8 and Fig. 9 depict the elapsed

Matrix size: 5 Matrix size: 6 Matrix size: 7
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Fig. 8. Elapsed time depending on the number of permutations for the matrices de-
pending on their size. The diamond represents the average value.

https://hpc.uni.lu/systems/chaos/
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Fig. 9. Elapsed time depending on the number of permutations for the 167 matrices.
The diamond represents the average value.

computation time with respect to the number of permutations to process. As
expected, we observe a drastic rise that characterizes a combinatorial explosion
in the number of permutations.

6 Conclusion

In this paper, we presented a tool which verifies whether a linking matrix corre-
sponds to a topologically valid template. Moreover, our approach computes and
draws a template of minimal height corresponding to this linking matrix. This
is especially interesting for linking matrices with a higher number of crossings.
We believe that this tool could benefit the research community as it eases the
process of verifying the validity of a linking matrix, and quickly draws one of its
matching templates.

A possible extension of our work could be to represent the generated tem-
plates as a 3D model in an automated way. One representation of a 3D template
was given by Cross and Gilmore, where they include the torsions as a part of
the global modification [9]. Another visualization was given by Boulant et al.
(Fig. 6 of [7]). Such a 3D visualization would allow to be even closer visually to
the nature of a chaotic attractor, and thus could provide more intuitive insights.
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A Step by step validation of a linking matrix

In this section, we will illustrate the validation process of a linking matrix based
on the following matrix L.

L =


0 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1
−1 −1 0 0 0 0
−1 −1 0 1 1 1
−1 −1 0 1 2 1
−1 −1 0 1 1 1

}

������
~

(7)

The first validation phase includes the steps which verify that a matrix has
the correct form. As described in section 4.1, a matrix has to be square, sym-
metric and needs to be composed of integer values. We see that 7 is square as
it has the same number of rows and columns, namely 6. It is also symmetric as
L represents a square matrix and is equal to its transpose. Finally, all of its ele-
ments are integer values and therefore it successfully passes this first validation
phase.

In the second phase, we verify the continuity constraints of the matrix. First
of all, the elements on the diagonal have to differ by one. For the matrix L, we
have 0, −1, 0, 1, 2, 1 as diagonal elements, which all differ by 1. Next, we check
that for any element of the matrix, its value does not differ by more than one
from all its neighboring values. For example, consider the element L2,2= −1 for
which we obtain the 3× 3 sub-matrix with L2,2 as its central element.

l =

 0 −1 −1
−1 −1 −1
−1 −1 0

}

~ (8)

The values of the surrounding elements do not differ by more than one from the
central element. This process can be repeated for any other element of matrix
L and the difference between two values will never be bigger than 1. Therefore,
matrix L passes this step. For the next step of this phase, one needs to get a
valid order for the template for which applied the algorithm presented in [17].
By applying this algorithm to the matrix L, we obtain the following valid order:

σL = (6, 5, 1, 4, 3, 2) (9)

Where σL(i) represents the position of element i at the bottom of the template
e.g. the branch labeled one will be the back most branch whereas the third
branch will be the front most branch at the bottom of the template.

The last validation phase verifies the determinism constraints of a matrix
and consists of two steps. The first part consist of guaranteeing that the matrix
does not contain any of the two invalid 2× 2 matrices on its diagonal. For such
purpose, we need to extract all possible 2 × 2 matrices which can be found on
the diagonal of a linking matrix. For matrix L, these are:[

0 −1
−1 −1

{
,

[
−1 −1
−1 0

{
,

[
0 0
0 1

{
,

[
1 1
1 2

{
,

[
2 1
1 1

{
(10)
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Fig. 10. Planarity check of matrix L shown in (7).

It is easy to see that none of them correspond to any of the unallowed 2× 2
matrices from (3). The final step is the planarity check. As illustrated in Fig. 10,
the blue boxes represent the branches at the bottom of the template and the
value indicates their final position, e.g. the third branch is at position one. We
see that the matrix L passes this test as the arcs used to connect the numbers
from smallest to largest can be drawn without intersecting.

The matrix L successfully passes all three phases of the validation process
and so our tool is able to draw a matching template which is depicted in Fig. 11.

Fig. 11. Template of matrix L from (7).
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