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aLeibniz-Institute of Atmospheric Physics at the Rostock University, Schlossstraße 6, 18225 Kühlungsborn, Germany4

Abstract5

Noctilucent clouds (NLC) have been observed with the ALOMAR Rayleigh/Mie/Raman lidar at 69° N

using a temporal resolution of 30 s since 2008. We present an approach to identify and analyze the localized

small scale wave structures of the varying altitude of the NLC layers in the range of 5–30 min that may be

caused by gravity waves. Small scale gravity waves breaking in the mesopause region contribute notably to

the momentum flux but are difficult to observe and to characterize. The approach is based on a template

matching method using generalized structures to be identified in the NLC observations. The new method

permits the identification of structures that are present in NLC only for a time too short to appear in a

Fourier or wavelet spectrum. Without the need for a continuous time series the method can handle multiple

NLC layers and data gaps. In the 2000 h of NLC data from the years 2008–2015, we find almost 5000 single

wave structures with a total length of 738 h. The structures are found on average 400 m below the NLC

centroid altitude and a large number of the structures has a length at the lower limit of 5 min. With the

background wind from the meteor radar near ALOMAR a horizontal scale is estimated based on the length of

the individual structures. The distribution of horizontal scales shows a peak of wave structures at 15–20 km

in accordance with the horizontal wavelengths found by ground-based camera observations of NLC.
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1. Introduction7

Noctilucent clouds (NLC) are mesospheric clouds first observed in 1885 (e.g. Jesse, 1885; Backhouse,8

1885; Leslie, 1885), that exist at an altitude of about 83 km in the Northern Hemisphere and are composed9

of ice particles (e.g. Jesse, 1896; von Zahn et al., 1998; Lübken et al., 2008; Hervig et al., 2001). They are an10

important tracer for the processes in the mesosphere, an altitude region that is difficult to study otherwise.11

Gravity waves of different scales influence the brightness of the clouds and generate their characteristic, highly12

structured appearance that is visible from the ground (Hines, 1968; Fritts et al., 1993). Wave breaking near13

the mesopause is a crucial driver of atmospheric dynamics (e.g. Holton, 1983; Geller, 1983), but their scales14

and propagation properties are still not sufficiently known. Regarding small scales (here: horizontal scales of15

up to 100 km and temporal scales up to 30 min) the observation methods of NLC are limited and even high16
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resolution ice models provide no sufficient resolution (e.g. Chandran et al., 2012; Kiliani et al., 2013). Rapp17

et al. (2002) simulated the influence of gravity waves on NLC, but used a minimum period of 1 h which is18

the upper limit for the waves considered here. However, it is believed that such small-scale gravity waves19

contribute a large fraction of the total momentum flux generated by gravity waves in the mesopause region20

(Fritts et al., 2014).21

The ice particles in this height region are therefore a most welcome tracer, that is easier to observe22

than the variations in the atmospheric background. They are visible by naked eye and with ground based23

cameras while the sun is just below the horizon and may also be observed by lidar independent of daytime.24

Observed from space, the clouds are called polar mesospheric clouds (PMC). Many wave patterns are visible25

in observations of all these instruments on different scales and constitute a distinctive characteristic of NLC26

(Witt, 1962; Pautet et al., 2011; Demissie et al., 2014; Chandran et al., 2009; Kaifler et al., 2013). Recently,27

high resolution observations by camera from ground and stratospheric balloons became available, which28

resolve gravity waves and their transition to turbulence on scales down to a few meters (Baumgarten and29

Fritts, 2014; Miller et al., 2015). Hoffmann et al. (2008) simulated the effect of small scale gravity waves30

with periods of 1 h on polar mesospheric summer echoes (PMSE) and concluded that gravity waves cause31

the vertical wave motions that are observed in PMSE and NLC.32

While ground-based camera observations are possible only during a limited time period after sunset, lidar33

measurements allow for continuous measurements independent of daylight, limited by weather conditions34

only. Lidar observations yield the absolute NLC backscatter coefficient and also the particle number density,35

shape and size (Hansen et al., 1989; von Cossart et al., 1999; Baumgarten et al., 2002). Instead of a36

horizontally resolved image as with a camera, the result is a vertical brightness profile in a fixed measurement37

volume. Previous studies of vertical oscillations rely on a wavelet analysis of the centroid altitude of the38

NLC brightness and were also applied separately for the sub-layers in the NLC (Kaifler et al., 2013).39

We use an alternative approach targeting specifically the small scale wave structures shorter than 30 min40

and appearing only for a few oscillations. We present an algorithm based on pattern recognition and show41

how it compares to wavelet analysis. Pattern recognition is often used for machine vision applications such42

as face recognition (e.g Viola and Jones, 2004). However such techniques are most successful if the problem43

can be generalized so that the computational effort is manageable (Bishop, 2006). The approach used here44

is a template matching algorithm. Template matching is applied in object recognition or face recognition,45

often combined with further, more sophisticated methods or a learning algorithm that are not necessary in46

this application (e.g Brunelli and Poggio, 1993).47

The NLC observations from 2008 to 2015 by the ALOMAR RMR lidar are analyzed and the results for48

temporal and horizontal scales of wave structures retrieved by template matching using generalized structures49

will be shown.50
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2. Instruments and data base51

2.1. ALOMAR RMR-Lidar52

The ALOMAR Rayleigh/Mie/Raman-Lidar is a twin lidar system located at 69° N, where NLC are53

detected during 43% of the time in the summer season (Fiedler et al., 2003). The sophisticated spatial54

and spectral filtering of the received signal allows for measurements throughout summer under daylight55

conditions. A detailed description of the instrument is given by von Zahn et al. (2000). The extraction of56

NLC data from the raw lidar signal which yields the NLC backscatter coefficient βNLC(t, z) as a function57

of altitude and time is described by Fiedler et al. (2009). We follow previous conventions and refer to the58

NLC backscatter coefficient as NLC brightness. Since 2008, high resolution data of the NLC brightness59

with a temporal resolution of 30 s and a vertical resolution of 40 m is available. Before further processing60

the data is smoothed with a 2d Gaussian Kernel with σ = 40 m and 30 s respectively. During the NLC61

season (from 1 June to 15 August at this latitude), the lidar is operated whenever permitted by weather62

conditions. In the years 2008–2015, the two systems together recorded more than 4500 h of high-resolution63

measurements during the summer season. A total of 1900 h of NLC were measured during this time. The64

two laser beams of the system can be tilted up to 30° from zenith into the northwest and the southeast65

quadrant respectively. In 15% of the measurements, both laser beams are pointing vertically or only one66

system was in operation. During the remaining 85% of the measurements, the laser beams were tilted by 20°67

to the north and east, leading to a separation of the measurement volumes of about 40 km at the altitude68

of the NLC. At small scales, the NLC show significant differences at simultaneous measurements in the two69

systems, so the measurements by the different systems are considered as independent for this analysis.70

2.2. Andenes Meteor Radar71

The Andenes meteor radar is located approximately 2 km northeast of the ALOMAR observatory. The72

system transmits with a peak power of 30 kW at a frequency of 32.55 MHz and detects between 12000 and73

18000 specular meteor trails per day during summer. More details about the radar system can be found in74

Hocking et al. (2001).75

The meteor radar winds used in this study are processed with a temporal resolution of 30 minutes by76

moving a one hour window. The vertical resolution of 1 km was obtained using a 3 km oversampling window77

centered at each height. The 3D winds (zonal, meridional and vertical) are obtained by fitting each radial78

velocity measurement weighted by its statistical uncertainty. The algorithm includes a regularization scheme79

to get a smooth solution in space (vertical) and time du/dt = const, dv/dt = const, du/dz = const and80

dv/dz = const. Additionally we regularize the vertical wind to be very small w ≈ 0, which seems to81

be justified considering the large measurement volume of 600 km in diameter of the meteor radar. This82

procedure leads to statistical uncertainties in the horizontal wind components in the order of 1–5 m/s. The83
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larger uncertainties usually occur at the upper and lower boundaries of the meteor layer due to the smaller84

number of meteor detections.85

3. Data analysis86

The results presented here are based on a new approach to identify wave structures that are found in87

NLC lidar data. This approach allows to quantify and characterize these structures. An analysis of the88

waves in NLC lidar data needs to take into account two aspects of the data: (1) The data is two-dimensional89

(NLC brightness as function of time and altitude). While a reduction to a single time series is for some parts90

sufficient to describe the dynamics of the NLC layer, the two-dimensional information is lost. (2) Small91

scale wave structures are visible only for a short period of time, the local analysis of the data is therefore92

important. The new method imitates a manual identification of 2d wave structures (altitude profile of93

brightness in time), which would be possible in theory, but due to the large NLC data set is not reasonable94

nor reproducible. The goal is therefore to automatically identify structures in NLC that are evident in a95

visual two-dimensional representation of the NLC brightness in time and altitude.96

To find typical wave-like structures, images of five variations of a “V”-shaped oscillations were chosen97

as template images. Together with their “Λ”-shaped inverse, they represent the common wave features in98

NLC observations, the vertical oscillation of a bright layer on a darker background. Such a reduction of99

the task to the identification of simplified structures (generalization of the problem) is a typical approach100

in pattern recognition (Bishop, 2006). The analysis method uses a pattern matching algorithm to identify101

these templates in the NLC data using the cross-correlation between the template images at different sizes102

and the NLC data. The template images represent only a single oscillation, such that structures that appear103

only for a few or a single oscillation in the data will be detected. With this approach several difficulties104

arising with the traditional methods are avoided:105

1. With the possibly large vertical extent of the NLC, a one-dimensional time series describes the NLC106

dynamics only insufficiently, especially for NLC featuring multiple layers (Fiedler et al., 2009; Kaifler107

et al., 2013).108

2. Due to the changing weather conditions NLC data are typically affected by interruptions, ranging from109

minutes to hours. This limits a wavelet analysis to the data unaffected by gaps or requires interpolations110

which introduce artificial effects.111

3. Sometimes very short wavelike features occur only for one or two cycles. They are suppressed in a global112

spectrum and are not significant in the local wavelet power spectrum (Kaifler et al., 2013).113

The performance of the pattern recognition compared to a wavelet analysis is studied in detail in Section 3.3.114
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Figure 1: Lidar observation of NLC brightness on July 24, 2013 above ALOMAR. (a): 6 h time span, (b): 2.5 h time span. The

time and altitude range plotted in panel (a) is indicated by a black rectangle in panel (b). Gray bars indicate times without

measurements.
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Figure 2: NLC observed on July 19, 2011 (a) and August 10, 2013 (b). Gray bars indicate times without measurements. Black

circles in panel (b) indicate wavelike structures

3.1. NLC data115

The ALOMAR RMR lidar observations show the temporal evolution of the NLC brightness in a fixed116

volume in the altitude range from 78 to 90 km. Fig. 1 shows an example of the typical structures seen by lidar117

in NLC for a case with many wave features. The NLC is of moderate brightness (about 5–10·10−10 m−1 sr−1)118

over most of the altitude range except one thin, very bright layer of more than 25 · 10−10 m−1 sr−1, that119

splits into two layers after 04:00 UT.120

While variations in the brightness of the NLC are visible, the most evident wave structures are those121

formed by the bright NLC layer. This layer features many small scale structures of 5–30 min.122

In some cases the NLC may consist of only a thin structured layer, as it is the case for the NLC shown in123

Fig. 2a. This is one of the few cases where the small-scale (∼ 15 min) structures extend over several hours124

(see Fig. 2a). More often they appear only for a single or two oscillations as shown in Fig. 2b, where the125

circles indicate the presence of small scale wave structures.126

127
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3.2. Analysis: Pattern recognition128

To find wave structures in the two-dimensional NLC data, we use a template matching approach using129

template images that correspond to the generalized structures. The matchTemplate function from the130

Open Source Computer Vision Library (OpenCV) (Itseez, 2015) is used to calculate the normalized cross-131

correlation between the template (T ) and the representation of the data (I):132

R(x, y) =

∑
x′,y′ (T ′(x′, y′)I ′(x+ x′, y + y′))√∑

x′,y′ T ′(x′, y′)
2 ∑

x′,y′ I ′(x+ x′, y + y′)
2
, (1)

where x and y denote the time and altitude coordinates of the cross-correlation matrix R, x′ and y′ the

coordinates of the template image. The brightness of the template is normalized by subtracting the mean

brightness of the template T

T ′(x′, y′) = T (x′, y′)− T . (2)

Similarly, the brightness of the data portion at the position and of the size of the template is normalized:

I ′(x+ x′, y + y′) = I(x+ x′, y + y′)− I . (3)

The result is a matrix with the cross-correlation coefficient of the template with the image at each possible133

template position. Local maxima of the cross-correlation coefficient are considered as successful matches if134

they exceed a fixed threshold. To account for the different periods and amplitudes of the wave structures135

in the NLC observations the correlation matrix is calculated for templates that are stretched in height and136

length independently. The entire algorithm is repeated for the different “V”-shaped templates. Since this137

might result in multiple matches for the same wave structure, a further multiple-match elimination is needed,138

which is discussed in detail below. The same procedure is then applied a second time, with all templates139

rotated by 180° to find the corresponding inverse, “Λ”-shaped oscillations.140

The template matching analysis relies on several parameters that determine the final results. The values141

were chosen empirically based on a subset of the total data base (data from the year 2014 and random142

samples of the previous years to verify the results for different lidar sensitivities). The critical parameters143

are listed below, followed by a discussion of their influence and the value that was used:144

1. selection of templates145

2. size constraints for the templates146

3. cross-correlation coefficient threshold that determines a successful match147

4. minimum signal-to-noise ratio (SNR) for each match148

5. multiple match elimination149
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Figure 3: Template images used for the wave structure detection. The different templates cover different characteristic structures

in the NLC data. The grey scale represents the relative brightness, the horizontal represents the time axis while the vertical

represents the altitude axis of the actual data to be matched. The vertical brightness profile is given by a Gaussian (except for

template 2).

1. Selection of templates150

To find typical wave-like structures, five variations of a “V”-shaped oscillations were chosen. Together151

with their “Λ”-shaped inverse, they represent the common wave feature in NLC observations, the vertical152

oscillation of a bright layer on a darker background. This structure represents only a single oscillation, such153

that structures that appear only for a few or a single oscillation in the data will still be detected. The different154

templates shown in Fig. 3 cover several characteristic structures. The bright layer is given by a sine function155

for the first template and targets the more rounded, sinusoidal structures. The second template is a typical156

small-scale structure taken from actual NLC data and the base for the remaining artificial templates. As the157

second template is not symmetric in time, it is also mirrored horizontally. The remaining templates consist158

of two straight lines at a 90° angle, forming a wave structure with a sharp angle. The vertical brightness159

profile is given by a Gaussian for all templates except the second template. For the first templates, this160

Gaussian decreases to a background of brightness 0. For the templates 4 and 5 the background either above161

or below the structure is set to 1
3 . These two templates are well suited for thicker layers or structures at162

the lower or upper edges of the NLC where the brightness decreases sharply to one side and only slightly to163

the other. They are also needed to detect cases where multiple layers are close to each other, such that the164

brightness close to the main layer is enhanced. The set of templates was chosen based on the specific wave165

structures that should be detected.166

Slight variations of the templates, notably the layer width and the background brightness, change the167

amount of structures that will be found. The set presented here is chosen to minimize the number of false168

detections, at the cost of not identifying all structures identified visually.169

2. Template sizes170

We have investigated the effect of the template size by starting with template sizes varying in width171

between 2 and 30 minutes and in height between 160 and 2400 m. The lower boundary is given by the172

resolution of the data, such that the template consists of at least 4 × 4 pixels. By visual inspection of173
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the results for the subset of the data we concluded that at sizes smaller than 10 × 10 pixels the manual174

verification of the detected wave structures is no longer obvious. Here we therefore use only results of at175

least 10× 10 pixels corresponding to 5 minutes and 400 m. Wave structures longer than 30 minutes are often176

superposed by smaller scale structures, such that the correlation with the templates is considerably reduced177

and no matches are found.178

3. Cross-correlation threshold179

The threshold that determines a successful match is critical for the final results. The actual value is180

a compromise between the number of detections that do not resemble a wave structure and obvious wave181

structures that are missed. For example strongly asymmetric structures are not captured by the horizontally182

symmetric templates if the threshold value is to high. It should be kept in mind that the actual value183

depends on the templates and the preprocessing of the data. For the results presented here, the threshold184

was set to 0.8, which restricts the results to the more evident wave structures.185

4. SNR threshold186

The results are further filtered depending on the signal-to-noise ratio to eliminate apparent structures187

caused by random noise. To eliminate false detections due to low data quality, the signal-to-noise ratio of188

the mean brightness βP = 〈β(t, z)〉pattern and the mean error ∆βP = 〈∆β(t, z)〉pattern of each match must be189

above a threshold (βp/∆βp > 10/3). The brightness error is calculated based on the uncertainty of the signal190

and the background assuming a Poisson distribution and using Gaussian error propagation (e.g. Baumgarten191

et al., 2008).192

5. Multiple matches193

Overlapping matches of slightly different sizes or different templates are reduced to a single match of the194

template with the highest correlation coefficient. In a first step the matches where the distance between all195

their borders is smaller than a certain threshold (fixed at 2 pixels, i.e. 1 min or 80 m) are reduced to the196

match with the highest correlation. In a second step the remaining matches are further reduced by analyzing197

the difference of their locations with a threshold dependent on the size of the match. Again the match with198

the highest correlation coefficient is selected. Since the analysis runs through the different orientations199

separately, this applies only to matches of the same orientation.200

Fig. 4 shows the results of this analysis for an NLC measurement of 3 h with several significant structures.201

The thin black boxes represent the outer limits of the templates that were used to identify the wave struc-202

tures. The length of each box gives an approximation of the scale of the observed structure. For the data203

inside each box, the centroid altitude is calculated, shown by the solid black line. For overlapping matches204

the centroid altitude (black line) might be slightly different due to the different vertical extents of the boxes.205

For comparison, the centroid altitude of the entire NLC data is indicated by the thin red line (interpolated206
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Figure 4: NLC observation on 27 June, 2013 with the results of the single pattern matching analysis: the thin black boxes

indicate the outer limit of the templates that have been used to identify the structures. The thick black lines show the centroid

altitude limited to the regions where patterns were identified. The global centroid altitude for the entire NLC is shown by the

thin red line (interpolated over the data gaps shown by the gray bars). In total 27 structures have been found.

over the data gaps). In the second part of the NLC, the centroid altitude of the NLC closely matches the207

centroid altitude given by each identified pattern. Before 09:30 UT, a second structured layer at the upper208

edge of the NLC is detected, while the centroid altitude is between both layers.209

210

3.3. Method evaluation211

Previously the NLC data have been analyzed using the well known wavelet analysis (e.g. Kaifler et al.,212

2013). Implementations of the wavelet analysis are typically based on a Fourier transform and thus require213

a continuous time series (Torrence and Compo, 1998). The centroid altitude represents best the vertical214

oscillations in the NLC, though it may be a misleading representation if the vertical structure of the NLC215

is more complex. Kaifler et al. (2013) used a sophisticated scheme to separate the different layers. For216

the following discussion we will instead use examples of NLC where only a single layer is present. The217

results from the wavelet method are used as a benchmark for our new method of identifying (quantifying218

and locating) wavelike structures in NLC by looking at two different cases. We used a Morlet wavelet of219

order 5 and have applied a correction of the power spectra as suggested by Liu et al. (2007) and Chen et al.220

(2016) to account for a bias in the power spectra towards larger scales. It is worth noting that this does not221

affect the confidence limit as pointed out by Liu et al. (2007).222

Two examples of NLC observations with their wavelet spectrum and the results from the detection223

algorithm are shown in Fig. 5. For the NLC on June 5, 2013 (Fig. 5a) the strong oscillations with periods of224

2–20 min around midnight and around 2:20 UT are locally significant in the wavelet spectrum. The wavelet225
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Figure 5: Upper panels: NLC observation on June 5–6 2013 (a) and on July 23–24, 2013 (b, see also Fig. 1). The red line

indicates the centroid altitude, the black line indicates the centroid altitude at times where wave structures were identified

by pattern recognition. Lower panels: Wavelet power spectrum of the centroid altitude (upper panels, red line) for identified

continuous NLC observations. Dashed black lines indicate the cone of influence of each block of continuous NLC observation

and solid black lines the 95% significance regions after Torrence and Compo (1998).

power spectrum provides in this case information about the periods of the wave pattern and the superposition226

of waves at different periods. The same wave structures are also detected by the pattern recognition with a227

structure length between 5 and 20 min.228

However, in the NLC on July 24, 2013 (Fig. 5b), there are many small structures identified by the new229

algorithm that are not significant in the wavelet spectrum. The wavelet analysis is performed only to the230

centroid altitude, in which the structures are reduced due to the large vertical extent and the multiple layers231

of the NLC. But also at times where the centroid altitude closely follows the wave structures as between232

3:00 and 4:00 the long train of many subsequent small structures of 5–10 min is not significant in the wavelet233

spectrum.234

It should be noted that several changes could improve the results of the traditional wavelet analysis:235

For example the choice of a different wavelet, or the reduction of the wavelet order that is better adapted236

to short waves, however this requires a re-evaluation of the confidence interval that was given by Torrence237

and Compo (1998). Considering the power spectrum, the confidence interval does not seem an appropriate238

measure to identify regions of wave presence on a local scale (Kaifler et al., 2013). With the parameters239

used here, the template matching approach seems more sensitive to the small structures than the wavelet240

analysis.241

Kaifler et al. (2013) used local and global (i.e. time average of local spectra over an NLC observation)242
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wavelet spectra for NLC data of at least 2 h to analyze the data acquired between 2008 and 2011 with243

the ALOMAR RMR Lidar. To study the significance of periods found in NLC using the significance test244

according to Torrence and Compo (1998) they compared the spectra of NLC observations with the spectra245

of random time series of similar length as the observations (Fig. 8 in Kaifler et al. (2013)). They found that246

in the local power spectra a large number of periods below 30 min are classified as significant for the random247

time series. This false identification of significant periods was not the case for the global spectra, which they248

therefore used instead.249

In summary, the new pattern recognition method offers a tool to identify the local small-scale wave250

structures in NLC. While it depends on empirically chosen parameters, a reasonable set of parameters251

results in a wave structure detection very sensible to waves of only a few cycles. Due to its the image based252

approach it handles the two-dimensional NLC data and inherently handles multiple layers directly instead253

of relying on a centroid altitude. An improvement of the period estimation is possible by combining multiple254

adjacent matches. Other characteristics of the wave structures, as the position of the wave structure in255

time and altitude, is determined directly from the pattern recognition results. It provides however only an256

estimate of their period compared to a wavelet power spectrum, since the matched templates does not match257

necessarily a half or full period. Although there is a large uncertainty when directly determining the period258

based on the pattern recognition, the new method can be used to detect locations of interesting wave features259

in the large data set or provide an indication when the centroid altitude does not sufficiently represent the260

NLC layer due to multiple layers.261

4. Results262

The analysis was applied to the data set from 2008 to 2015 with a high temporal resolution of 30 s.263

4990 wave structures with a length between 5 and 30 min were detected in the 2000 h of NLC measurements264

between 20 May and 30 August. This corresponds to a total of 738 h of structures or 37% of the NLC265

measurements, with some of them however occurring at the same time in multiple layers. The different266

templates match the structures at different rates: The first, rounded template matches in 3% of all detected267

structures, the second template and the mirrored template both in 17%, the third template in 33%, the268

fourth in 20% and the fifth in 10%. Both, the second (and its horizontally mirrored version) and the third269

template are the best matching templates, they are responsible for 67% of the matches. It shows that on270

the small scales considered here the sharp angle is characteristic, contrary to the smoother sinusoidal shape271

(Template 1) observed at scales of hours.272

Each structure is characterized by its length corresponding approximately to the period of a wave struc-273

ture. Fig. 6 shows a histogram of the occurrence and the absolute number of the length of the template.274

Most structures are found at a template length of 5 min. Then the number of structures steadily decreases275
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Figure 6: Number of structures by length of the template in the NLC observations from 2008 to 2015. In blue the absolute

number and the occurrence of the structures. The occurrence is defined as the fraction of the dataset found in a given structure

length interval. In green the occurrence of structures weighted with their length.

towards the upper limit at 30 min. Part of this decrease might be due to the fact that longer structures fit276

less often in a given time interval than shorter structures. In other words, short structures naturally may277

occur more often than long structures during a fixed time interval. To compare the occurrence of structures278

of different lengths independent of this effect, each structure is weighted with its length. This means that279

we look at the duration that structures of a certain length appear in total in the data set, as opposed to280

only the number of occurrences. After this weighting a single structure of 20 min has the same “duration”281

as 4 structures of 5 min each. This total duration compared to the total time that structures were detected282

(730 h) is also shown in Fig. 6 (green bars). In this representation the maximum is still located at the smallest283

structures, however longer structures get more important and the predominance of the shortest structures284

is less pronounced. It is worth noting that we do not observe a significant reduction of structures of the285

shortest scales of 5 min, as we would expect for bad signal-to-noise data. Studies of even higher resolved286

data show that structures of 5 min and below exist in the data (Kaifler et al., 2013; Fritts et al., 2016).287

Fig. 7a shows the distribution of NLC centroid altitude of all NLC (with and without structures) compared288

to the altitude of the structures detected by the pattern recognition. For the wave patterns we take the289

centroid altitude of wave structure only, as shown in Fig. 4. The mean centroid altitude is 83.1 km (standard290

error of the mean σm,zc = 3 m) while the patterns are found on average 400 m lower at 82.7 km (σm,pattern =291

4 m). Fig. 7b compares the altitudes only at times when structures were found. For that case the mean NLC292

centroid altitude shifts to 82.8 km, thus reducing the altitude difference to 100 m. Finally Fig. 7c shows the293

distribution of the difference between the NLC centroid altitude and the structure centroid altitude for each294

time when a structure was detected. The distribution is slightly asymmetric and shifted towards a negative295

difference.296
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Figure 7: Histogram of the centroid altitude of the NLC (green) and of the detected wave structures (blue) for the NLC

data from 2008 to 2015 using (a) all NLC data (2000 h) or (b) only the NLC data while structures were detected (738 h). The

occurrence is defined as the fraction of the dataset found in a given altitude interval. The solid lines indicate the mean values.

Panel (c) shows the difference between the centroid altitude of the structure to the centroid altitude of the NLC.

5. Discussion297

5.1. Wave structure length298

All other measurements investigating small scale structures in NLC rely on images of the clouds, provided299

by ground or space based camera observations and deduce horizontal wavelengths of the brightness structures.300

To compare to these measurements, a horizontal scale has to be derived from the length of the structures301

obtained by our pattern recognition method. The variations observed with the lidar are the result of local302

changes of the NLC as well as the advection of the NLC through the measurement volume by the background303

wind. It is not possible to separate these two effects using only the data from the lidar. However, Baumgarten304

et al. (2012) compared the lidar data with simultaneous measurement from the CIPS satellite and concluded305

that for structures below 30 minutes the advection is the predominant factor in the observed changes and306

NLC can be considered as a passive tracer on these time scales. Since our analysis is limited to periods307

shorter than 30 min, we estimate a horizontal scale for the structures based on the background wind. The308

mean background wind (as measured by the radar) during each structure is used to calculate a corresponding309

horizontal scale. The resulting distribution is shown in Fig. 8. For all detected structures, the maximum lies310

between 10 and 20 km. The distribution is influenced by the large number of very small structures of only311

5–6 min. For these short structures the horizontal scales range most often from 5 to 15 km. For all structures312

longer than 6 min, the peak of the distribution is shifted towards 15–20 km.313

It should be noted that this horizontal scale is affected by a number of uncertainties: The scale relies on314

the template length which can correspond to a half up to a full period. From this we assume an uncertainty315

of a factor of 2 in the horizontal scales. Additionally, the wind data from the meteor radar is measured in316
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Figure 8: Number of structures of corresponding horizontal scale, based on advection by the background wind. Shown in gray

is the distribution for all structures. The blue bars show the horizontal scales only for structures shorter than 6 min and the

green bars for the remaining structures larger and equal to 6 min.

a much larger volume and may not represent the actual speed of advection above the lidar, especially in317

context of the minute timescales that we investigate. Given these uncertainties the comparison to other data318

sets of horizontal scales (Fig. 9) shows a surprisingly good agreement. Pautet et al. (2011) and Demissie319

et al. (2014) both identified the distance between two wave crests in camera observations of NLC and found320

most structures at 20–30 km and 10–25 km, respectively (Fig. 9). Since the camera observations are limited321

to the time of day where NLC are visible, the data set is much smaller. Included in Fig. 9a are also airglow322

measurements at polar latitudes which show a high occurrence of waves with horizontal wavelengths around323

15–20 km (e.g. Nielsen et al., 2009, at 76°S, 27°W). These measurements are performed during the winter324

as the airglow can not be observed in the polar summer due to permanent daylight. Due to different wind325

filtering of gravity waves in the summer and winter atmosphere, wave characteristics may differ for both326

seasons. The analyses of observations from the CIPS instrument onboard the AIM satellite by Taylor et al.327

(2011) and Chandran et al. (2009) show a large number of wave structures around 20–40 km and a decrease328

to larger wavelengths. Later studies of the CIPS data revealed a maximum at 250 km (Chandran et al.,329

2010) or 300–800 km (Zhao et al., 2015) depending on the analysis used and the wavelengths of interest.330

All horizontal scales from satellite observations are far larger than the wavelengths extracted from the lidar331

data. The small scale structures below 40 km can not be clearly resolved in the satellite data due to their332

resolution of 5× 5 km, but the large field of view of the satellite images allows for the study of much larger333

wavelengths. Stober et al. (2013) analyzed gravity wave events in PMSE observations with the MAARSY334

radar and found horizontal wavelengths around 20–50 km.335

5.2. Wave structure altitude distribution336

Addressing the altitude distribution of the identified structures, it is remarkable that in the mean struc-337

tures are observed at lower altitudes compared to the mean centroid altitude of the NLC (see Fig 7a). There338

are a number of mechanisms that may explain this altitude difference. Near the summer mesopause in the339
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Figure 9: Horizontal scale derived from the structures in the lidar data from 2008 to 2015 (gray bars) compared to the wavelength

from ground based camera and OH airglow (a) (Pautet et al., 2011; Demissie et al., 2014; Nielsen et al., 2012). Panel (b) shows

the horizontal scales derived from coarser resolution satellite observations (Chandran et al., 2009, 2010; Taylor et al., 2011)

.

altitude region around 80–90 km atmospheric gravity waves break and produce turbulence, which maximizes340

at about 88 km and then rapidly drops towards lower altitudes (Lübken, 1997; Rapp and Thomas, 2006).341

This turbulence might destroy the structures in those parts of the NLC found at higher altitudes. The bright-342

ness of NLC is higher at lower altitudes (Fiedler et al., 2003; Chu et al., 2006) where the ice particles have343

reached their largest size (e.g. Rapp and Thomas, 2006; Baumgarten et al., 2008). With a lower brightness344

at higher altitudes, the lower signal-to-noise ratio reduces the chance of finding structures at these altitudes,345

even if they are present.346

In many cases the higher brightness of the NLC at lower altitudes manifests itself in form of bright but347

narrow layers embedded in the “background” NLC of lower brightness (see e.g. Fig. 1 and 4). In these narrow348

layers the localized vertical perturbations show more clearly than in an NLC of homogeneous brightness.349

The difference between the altitude of the structures and the centroid altitude shown in Fig. 7 is explained350

as follows: The altitude of the structures indeed corresponds to the altitude of the brightest layer of the351

NLC. The centroid altitude is however shifted slightly upward by the small contribution of the background352

NLC.353

The difference of 300 m between the altitude of structured NLC and all NLC further suggests that354

this difference should be taken into account when comparing the measurements with ground-based camera355

observations which rely on structured NLC for altitude determination.356
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Figure 10: NLC observation on 6 June, 2013. The black lines show the centroid altitude of the identified wave patterns. Each

combined wave pattern is highlighted by a frame. The period in minutes is noted below each combined pattern. Most events

consist of only 2 or 3 single oscillations, before the structure disappears.

5.3. Wave structure sequences357

Currently the pattern recognition method extracts only single oscillations from the data. Longer wave358

events appear as a sequence of structures, alternating between the “V” and the “Λ” orientation, sometimes359

overlapping. Such sequences can be merged to longer and more complex wave pattern. An example is360

shown in Fig. 10, where the borders of each wave pattern, consisting of combined templates, are indicated361

by the thin black box. From the merged wave patterns the number of oscillations and the duration of their362

appearance in the NLC can be determined.363

The estimation of a period for the entire pattern increases the accuracy, as the period of the wave event364

can now be calculated using a Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982) for time series of365

combined centroid altitudes. That way, dominant periods of local structures embedded into a larger NLC366

layer can be extracted, see Fig. 10.367

This analysis is based on an algorithm that identifies single subsequent wave structures which are part368

of the same wave event. It is crucial that the algorithm is robust, as this identification has a large impact on369

the derived quantities. Some of the topics to be solved prior to a statistical analysis of our large NLC data370

set regarding periods of merged wave events are listed in the following.371

Spatial proximity as well as similarity in size of single structures are indicators for wave events. However,372

the complex structure of NLC layers complicates the decision if adjacent single events are part of the same373

larger scale period or if the observed period of the wave events varies. Difficulties also arise with the vertical374

distance between structures that closely follow each other. Vertical distances are often caused by vertical375

shifts of the entire NLC layer due to a modulation by a larger-scale wave. However, they can just as well be376
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an indicator for multiple layers that feature independent wave structures. A comprehensive processing and377

discussion of merged wave events and their interpretation is therefore beyond the scope of this paper.378

6. Conclusion379

We have introduced an approach to analyze small-scale wave structures in lidar observations of NLC380

using pattern recognition. The focus lies on structures between 5 min and 30 min, appearing only locally381

in the NLC. Such structures were not detectable previously by analyses based on global wavelet spectra.382

The measured periods of these small scale structures vary and hence do not show up significantly in the383

spectra. At scales longer than 30 min, and for continuous lidar soundings without measurement gaps, a384

wavelet analysis is the more suited tool to identify wave events that modulate the NLC centroid altitude.385

However, at such longer time scales local changes of the NLC properties caused by microphysical processes386

become more important and the approximation of NLC particles as passive tracer is no longer valid.387

The new method is sensitive to the visible small scale variations in NLC and offers a valuable tool to388

identify regions of strong wave activity in the large data set. The method uses directly the two-dimensional389

character of NLC data, allowing also for the analysis of the altitude of wave structures.390

Applying the method to the ALOMAR RMR lidar NLC data set from 2008 to 2015 we calculated that391

wave structures with lengths between 5 and 30 min were found during 37% of the 2000 h of NLC data.392

Structures occur often within the lower part of the clouds and their mean centroid altitude is a few hundred393

meters below the one determined from the entire cloud altitude range. The frequency distribution shows a394

maximum at short structure lengths with a tail to larger values. In terms of horizontal scale, the peak of395

the distribution is found around 15 km. We have demonstrated that sequences of single oscillations found396

by the pattern recognition method can be combined to longer wave patterns. Further investigations will be397

a subject of future work. Furthermore, the method itself could be used to analyze wave events in general398

applications having a structured tracer distinguished from a background.399
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