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An integer additive set-indexer is defined as an injective function ( )

such that the induced function N. K. Sudev and K. A. Germina 52

we study about the sparing number of certain graphs and the relation of sparing number with some other parameters like matching number, chromatic number, covering number, independence number, etc.

( )

0 2 : N → G E g f defined by ( ) ( ) ( ) v f u f uv g f + =
is also injective. An IASI f is said to be a weak IASI if

( ) ( ) ( ) ( ) v f u f uv g f , max = for all ( ). , G V v u ∈
A graph which admits a weak IASI may be called a weak IASI graph. The set-indexing number of an element of a graph G, a vertex or an edge, is the cardinality of its set-labels. The sparing number of a graph G is the minimum number of edges with singleton set-labels, required for a graph G to admit a weak IASI. In this paper,

Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [START_REF] Harary | Graph Theory[END_REF]. Unless mentioned otherwise, all graphs considered here are simple, finite and have no isolated vertices. An integer additive set-indexer (IASI, in short) is defined in [START_REF] Germina | Integer additive set-indexers of a graph: sum square graphs[END_REF] as an injective function ( )

0 2 : N → G V f
such that the induced function :

f g ( ) 0 2 N → G E defined by ( ) ( ) ( ) v f u f uv g f + =
is also injective.

The cardinality of the labeling set of an element (vertex or edge) of a graph G is called the set-indexing number of that element. Lemma 1.1 [START_REF] Germina | On weakly uniform integer additive set-indexers of graphs[END_REF]. Let A and B be two non-empty finite subsets of . 0 N Then, ( )

. , max B A B A B A ⋅ ≤ + ≤
Therefore, for an integer additive set-indexer f of a graph G, we have [START_REF] Germina | On weakly uniform integer additive set-indexers of graphs[END_REF]. An IASI f is said to be a weak IASI if

( ) ( ) ( ) ≤ v f u f , max ( ) ( ) ( ) ( ) ( ) , v f u f v f u f uv g f ≤ + = where ( ). , G V v u ∈ Definition 1.2
( ) = uv g f ( ) ( ) ( ) v f u f , max for all ( ). , G V v u ∈
A graph which admits a weak IASI may be called a weak IASI graph. A weak IASI f is said to be weakly k-uniform IASI if

( ) k uv g f = for all ( ) G V v u ∈
, and for some positive integer k.

Definition 1.3 [START_REF] Sudev | A characterisation of weak integer additive set-indexers of graphs[END_REF]. An element (a vertex or an edge) of graph which has the set-indexing number 1 is called a mono-indexed element of that graph.

Definition 1.4 [START_REF] Sudev | A characterisation of weak integer additive set-indexers of graphs[END_REF]. The sparing number of a graph G is defined to be the minimum number of mono-indexed edges required for G to admit a weak IASI and is denoted by ( ).

G ϕ

New Results on the Sparing Number of Graphs

First, we recall the following theorems proved in [START_REF] Sudev | A characterisation of weak integer additive set-indexers of graphs[END_REF].

Theorem 2.1 [START_REF] Germina | On weakly uniform integer additive set-indexers of graphs[END_REF]. If a connected graph G admits a weak IASI, then G is bipartite or G has at least one mono-indexed edge. Theorem 2.2 [START_REF] Germina | On weakly uniform integer additive set-indexers of graphs[END_REF]. Let G be a bipartite graph which admits a weak IASI and let u, v be two non-adjacent vertices in G. Then ( )

. E G ′ = ϕ
The size of the maximal bipartite subgraph of a graph G is denoted by ( ).

G b

Then, as a consequence of Theorem 2.3, we have Corollary 2.4. For a graph G, the size of its maximal bipartite subgraph

is ( ) ( ) ( ). G G E G b ϕ - = Proof. Let G be a non-bipartite graph with the edge set E. Let E E ⊂ ′ such that E G ′ - is the maximal bipartite subgraph of G. Then, ( ) = G b N. K. Sudev and K. A. Germina 54 ( ) . E E E G E ′ - = ′ - By Theorem 2.3, we have ( ). G E ϕ = ′ Therefore, ( ) ( ) ( ). G G E G b ϕ - =
The most interesting question in this context is whether the sparing number of a graph is related to other parameters like chromatic number, matching number, etc. The following results establish some relations between these parameters of certain graph classes.

Let G be a k-chromatic graph with colors , 

i c . 1 k i ≤ ≤ Then, G is a k-partite
, 2 = ϕ - χ G G where ( ) G χ
is the chromatic number of G.

Proof. If G is a path or an even cycle, then ( )

2 = χ G
and by Theorem 2.6, ( )

. 0 = ϕ G Hence, ( ) ( ) . 2 = ϕ - χ G G If G is an odd cycle, then ( ) 3 = χ G
and by Theorem 2.6, ( ) .

1 = ϕ G Hence, ( ) ( ) . 2 = ϕ - χ G G
This completes the proof.

A matching M in a given graph G is a set of pairwise non-adjacent edges. A maximum matching is a matching that contains the largest possible number of edges. The matching number ( )

G ν
of G is the size of a maximum matching. The following theorem establishes the relation between the sparing number and the matching number of paths and cycles.

Theorem 2.8. If G is a path or a cycle on n vertices, then ( )

      = ϕ 2 n G ( ), G ν - where ( ) G ν
is the matching number of G.

Proof. If G is a path, then by Theorem 2.6, ( )

. 0 = ϕ G If G is even, then ( ) 2 n G = ν and if G is odd, then ( ) ( ) . 2 1 + = ν n G Therefore, the matching number of G is . 2       = ν n Therefore, ( ) ( ). 2 G n G ν -       = ϕ
If G is an even cycle, then by Theorem 2.6, ( )

0 = ϕ G
and the matching number of G is ( )

. 2 n G = ν Here, ( ) ( ). 2 G G n ϕ = ν - If G is an odd cycle, then by Theorem 2.6, ( ) 1 = ϕ G
and the matching number of G is ( )

. 2 1 - = ν n G
Here, ( ) ( ).

1 2 G G n ϕ = = ν -      
This completes the proof. N. K. Sudev and K. A. Germina 56 Now, recall the following theorem. Theorem 2.9 [START_REF] Sudev | Weak integer additive set-indexers of certain graph operations[END_REF]. Let 1 G and 2 G be two weak IASI graphs. Then, ( ) ( ) ( ) ( ).

2 1 2 1 2 1 G G G G G G ∩ ∪ ϕ - ϕ + ϕ = ϕ
As a consequence of Theorem 2.8 and Theorem 2.9, we have Theorem 2.10. If G can be decomposed into finite number of odd cycles, then ( ) ( )

∑ = ν -       = ϕ m i i G n G 1 , 2
where m is the number of edge disjoint cycles and i n is the size of the cycle i C in G.

Proof. Let G can be decomposed into finite number of odd cycles. Let

m C C C C ..., , , , 3 2 1 
be the distinct edge disjoint odd cycles in G so that

∪ m i i G C 1 . = = Then, ( ) ( ) ∑ = ν = ν m i i C G 1 .
(2.0.1) By Theorem 2.8, ( ) ( ).

2 i i i C n C ν -       = ϕ Since all , i C m i ≤ ≤ 1 are
edge disjoint, by Theorem 2.9,

( ) ( ) ∑ = ϕ = ϕ m i i C G 1 ( ) ∑ =       ν -       = m i i i C n 1 2 ( ) ∑ ∑ = = ν -       = m i m i i i C n 1 1 2 ( ) ∑ = ν -       = m i i G n 1 . 2
This completes the proof.

Remark 2.11. We observe that Theorem 2.10 does not hold for edge disjoint bipartite graphs since equation (2.0.1) does not hold for edge disjoint even cycles. It can also be verified that equation (2.0.1) will not hold for those graphs, which can be decomposed into edge disjoint cycles, having more than one even cycle. Now, recall the well-known theorem on Eulerian graphs. Theorem 2.12 [START_REF] Chartrand | Introduction to Graph Theory[END_REF]. A graph G is Eulerian if and only if it can be decomposed into edge disjoint cycles.

In view of Theorem 2.12 and Remark 2.11, Theorem 2.10 can be rewritten as follows.

Theorem 2.13. If G is an Eulerian graph that has at most one even cycle, then ( )

( ) ∑ = ν -       = ϕ m i i G n G 1 , 2
where m is the number of edge disjoint cycles and i n is the size of the cycle i C in G.

A vertex cover of a graph G is a subset S of ( )

G V
such that each edge of G has at least one end vertex in S. The number of vertices in a minimum vertex cover of a graph G is known as the vertex covering number or simply the covering number of G and is denoted by ( ).

G β

The relations of weak IASI and sparing number with its minimal vertex cover and covering number are discussed in the following theorem.

Theorem 2.14. The minimum number of mono-indexed vertices in a weak IASI graph G is equal to the covering number of G. Moreover, the sparing number of G is the number edges of G which have both of their end vertices in the minimal vertex cover of G.

Proof. Let S be the minimal vertex cover of G. Then, S and S Vare two partitions of ( ).

G V

Since every edge of G has at least one end vertex in S, no two vertices in S Vare adjacent in G and some edges in G may have both of their end vertices in S. Since G is a weak IASI graph, the vertices in S cannot be labeled by non-singleton vertices. Hence, the set-labels of the vertices in G are singleton sets of non-negative integers. That is, the number of mono-indexed vertices in G is equal to its covering number.

Since no two vertices in S Vare adjacent to each other, we can label all the vertices in S Vby non-singleton sets of non-negative integers. Hence, an edge having both of its end vertices in S is mono-indexed. Therefore, the sparing number of G is the number of edges of G which have both of their end vertices in S. This completes the proof.

An independent set or stable set of a graph G is a subset S′ of ( )

G V in a
graph, no two vertices in S′ are adjacent. It is to be noted that a subset S′ of ( )

G V is independent if and only if its complement ( ) S G V ′ - is a vertex cover.
The number of vertices in a maximal independence set is called the independence number of G and is denoted by ( ).

G α

The following theorem establishes the relation between the independence number and covering number of a given graph G.

Theorem 2.15 [START_REF] Harary | Graph Theory[END_REF]. For any connected non-trivial graph G, ( ) ( )

G G β + α ( ) . G V =
Note that if S is a vertex cover of a graph G, then the set S Vis an independent set of G. Hence, if S is a minimal vertex cover of G, then S Vis a maximal independent set of G. Hence, we have 

G n G α - = β
Therefore, the number of mono-indexed vertices ( ).

G n α -=

If S is a minimal vertex cover of G and if all vertices in S are labeled by distinct singleton sets of non-negative integers, then

S V - is a maximal v v v v v v v
and has a common edge 

v v v v v v
Hence, remove the edge

8 1 v v from { }. , 10 4 6 5 v v v v G - Now all the cycles in { } 8 1 10 4 6 5 , , v v v v v v G H - = are of even length, which is shown in Figure 2(b). Therefore, H is the maximal bipartite subgraph in G. If = ′ E { } , , , 8 1 10 4 6 5 v v v v v v
then by Theorem 2.3, ( ) 

. 3 = ′ = ϕ E G (a)
( ) = G b ( ) ( ) . 15 3 18 = - = ϕ -G G E
The Grötzsch graph is a triangle-free graph with 11 vertices, 20 edges. The following theorem establishes the sparing number of Grötzsch graph. 

v v v v v v v v
The resultant graph { } 

v v v v v v v v v v E = ′
Then, the sparing number ( )

. 5 = ′ = ϕ E G

Let 0 N

 0 denote the set of all non-negative integers. For all , called the sumset of the sets A and B.

Theorem 2 .

 2 16. Let G be a weak IASI graph on n vertices. Then, the number of mono-indexed vertices in G is number of the graph G.Proof. By Theorem 2.14, the number of mono-indexed vertices of a graph G is equal to ( ), G β the covering number of G. By Theorem 2.15, we have ( ) ( ).
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  graph in which the ith partition, denoted by , The sparing number of an odd cycle is 1 and that of a bipartite graph is 0.

	Due to Theorem 2.6, we have
	Theorem 2.7. If G is a path or a cycle, then ( ) ( )
													C	i	1	≤	i ≤	k	,	consists
	of all the vertices of G which has the color .
	Proof. Let	c 1	,	c	2	,	c	3	,	...,	c	k
												C	i	1	≤	i ≤	k	be in the
	descending order of their cardinality. Label all the vertices in the color class
	1 C by distinct singleton sets of non-negative integers and label all the
	vertices in the color class 2 C by non-singleton singleton sets of non-negative
	integers. Since 1 C and 2 C are maximal color classes, each vertex, say v, in
	other color classes must be adjacent to at least one vertex of 1 C and at least
	one vertex of	.										

i c The set i C is called the ith color class. Hence, we have Theorem 2.5. The sparing number of a k-chromatic graph G is the total number of vertices in all the color classes of G except the two maximal color classes. be the k colors that are used for coloring the vertices G and let i C be the color class in which the vertices are assigned the color . i c Without loss of generality, let , 2

C Since G is a weak IASI graph, v can be labeled only by a singleton set, which is not used for labeling before. Hence, the sparing number of G is the total number of vertices in all the color classes of G except the two maximal color classes. Now, recall the following theorem proved in

[START_REF] Sudev | A characterisation of weak integer additive set-indexers of graphs[END_REF]

.

Theorem 2.6

[START_REF] Sudev | A characterisation of weak integer additive set-indexers of graphs[END_REF]

.

More properties and characteristics of different types of IASIs, both uniform and non-uniform, are yet to be investigated. The problems of establishing the necessary and sufficient conditions for various graphs and graph classes to have certain IASIs are also open.

independent set in which all elements are non-adjacent to each other and the set-labels of all of them are distinct non-singleton sets of non-negative integers. Hence, we have the following proposition.

Proposition 2.17. If G is a weak IASI graph, then the maximum number of vertices that are not mono-indexed in G is equal to the independence number of G.

The Sparing Number of Certain Named Graphs

In view of Theorem 2.3, we discuss the sparing number of some standard non-bipartite graphs. 

and the internal cycle

are odd and hence G is not bipartite. Hence, remove one edge, say , N. K. 

One other well-known non-bipartite graph is the Frucht graph, which is a 3-regular graph with 12 vertices, 18 edges and every vertex of which can be distinguished topologically from every other vertex. Hence, we have In G, the cycle

is of odd length and has a common edge 

Another well-known non-bipartite graph is the Dürer graph, which is a 3-regular graph with 12 vertices, 18 edges and every vertex of which can be distinguished topologically from every other vertex. Hence, we have In G, the cycles 

are odd cycles and have a common edge . , Proof. Name the vertices of dodecahedron G as shown in Figure 5(a).

From G, remove the edge