AVERAGES AND THE /(%'-COHOMOLOGY OF HEISENBERG GROUPS

PIERRE PANSU AND FRANCESCA TRIPALDI

ABSTRACT. Averages are invariants defined on the £! cohomology of Lie groups. We prove that
they vanish for abelian and Heisenberg groups. This result completes work by other authors and
allows to show that the ¢! cohomology vanishes in these cases.

1. INTRODUCTION

1.1. From isoperimetry to averages of L' forms. The classical isoperimetric inequality implies
that if u is a compactly supported function on R", |lul|,» < C|[dul|;, where n’ = 5. Equivalently,
every compactly supported closed 1-form w admits a primitive u such that ||ul|, < Cllw|;. More
generally, if w is a closed 1-form on R™ which belongs to L', does it have a primitive in ' ?
There is an obstruction. We observe that each component a; of w = Z?Zl a;dz; is again in L',
the integral fRn a; dxq - - - dx, is well defined and it is an obstruction for w to be the differential of

an LY function (for every finite ¢). Indeed, if w = du, a, = 667“. For almost every (x1,...,2n-1),
the function ¢ — 687“71(301, .o, @p_1,t) belongs to L' and t +— u(z1,...,7,_1,t) belongs to LI. Since
u(x,...,xn—1,t) tends to 0 along subsequences tending to +oo or —oo,

/ﬂ(zl,...,xn,l,t)dtzo, hence / ﬂd:v1~~~dzn:0.
R 6$n Rn OTn
A similar argument applies to other coordinates. Note that a,, dvq A« Adx, = (=1)" 1w A (dz1 A
S ANdTp—1).

More generally, if G is a Lie group of dimension n, there is a pairing, the average pairing,
between closed L' k-forms w and closed left-invariant (n — k)-forms 3, defined by

(w,B)H/GwAB.

The integral vanishes if either w = d¢ where ¢ € L', or 8 = da where « is left-invariant. Indeed,
Stokes formula [}, dy = 0 holds for every complete Riemannian manifold M and every L' form ~
such that dy € L'. Hence the pairing descends to quotients, the L''-cohomology

LY H*(G) = closed L' k-forms/d(L" (k — 1)-forms with differential in L),
and the Lie algebra cohomology

H"*(g) = closed, left-invariant (n — k)-forms/d(left-invariant (n — k — 1)-forms).

1.2. ¢9! cohomology. It turns out that L'!-cohomology has a topological content. By definition,
the 9P cohomology of a bounded geometry Riemannian manifold is the ¢9P cohomology of every
bounded geometry simplicial complex quasiisometric to it. For instance, of a bounded geometry
triangulation. Contractible Lie groups are examples of bounded geometry Riemannian manifolds
for which L!-'-cohomology is isomorphic to ¢!:!-cohomology.

We do not need define the ¢9P cohomology of simplicial complexes here, since, according to
Theorem 3.3 of [6], every £2P cohomology class of a contractible Lie group can be represented by
a form w which belongs to LP as well as an arbitrary finite number of its derivatives. If the class
vanishes, then there exists a primitive ¢ of w which belongs to L? as well as an arbitrary finite
number of its derivatives. This holds for all 1 < p < ¢ < cc.

Although ¢? with p > 1, and especially ¢? cohomology of Lie groups has been computed and
used for large families of Lie groups, very little is known about ¢! cohomology.
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1.3. From ("' to (%! cohomology. For instance, the averaging pairing is specific to ¢! coho-
mology and it has never been studied yet. The first question we want to address is whether the
averaging pairing provides information on ¢%:! cohomology for certain ¢ > 1.

Question 1.1. Given a Lie group G, for which exponents ¢ and which degrees k is the averaging
pairing (¢ H*(G) @ H"*(g) — R well-defined?

The question is whether there exists ¢ > 1 such that the pairing vanishes on all L' forms which
are differentials of L? forms. We just saw that for abelian groups R, the pairing is well defined
for £ =1 and all finite exponents ¢q. Here is a more general result.

Theorem 1.1. Let G be a Carnot group. In each degree 1 < k < n, there is an explicit exponent
q(G,k) > 1 (see Definition 3.2) such that the averaging pairing is defined on (4YH*(G) for q €
(L, q(G, k)].

We shall see that q(R", k) = n’ = L+ in all degrees. For Heisenberg groups, ¢(H*™*! k) =

ﬁﬁ if k#m+1, and q(}l—]IQ”“”rl,mJr 1) = 27;7:2.

1.4. Vanishing of the averaging pairing. The second question we want to address is whether
the averaging pairing is trivial or not.

Question 1.2. Given a Lie group G, for which exponents ¢ and which degrees k& does the averaging
pairing (*'H*(G) ® H"*(g) — R vanish?

The pairing is always nonzero in top degree k& = n. Indeed, there exist L' n-forms (even
compactly supported ones) with nonvanishing integral. However, this seems not to be the case in
lower degrees.

Theorem 1.2. Let G be an abelian group or a Heisenberg group of dimension n. In each degree
1 < k < n, the averaging pairing vanishes on (' H*(G) for q € [1,q(G, k).

In combination with results of [2], Theorem 1.2 implies a vanishing theorem for %} cohomology.

Corollary 1.1. Let G be an abelian group or a Heisenberg group of dimension n. In each degree
0<k<n, t'H*(G) =0 for ¢ > q(G, k).

This is sharp. It is shown in [6] that (21 H*(G) # 0 if ¢ < ¢(G, k). Also, in top degree, not
only is 4G [™(G) # 0, but the kernel of the averaging map (4G ™)1 H™(G) — R = H%(g)*
does not vanish. This is in contrast with the results of [1] concerning ¢*? H™(G) for p > 1, where
nothing special happens in top degree. The results of [2] rely in an essential manner on analysis
of the Laplacian on L!, inaugurated by J. Bourgain and H. Brezis, [3], adapted to homogeneous
groups by S. Chanillo and J. van Schaftingen, [4].

1.5. Methods. The Euclidean space R” is n-parabolic, meaning that there exist smooth compactly
supported functions £ on R™ taking value 1 on arbitrarily large balls, and whose gradient has an
arbitrarily small L™ norm. If w is a closed L' form and /3 a constant coefficient form, and if w = di,
¢ € L, Stokes theorem gives

| [ewnsi=1 [0 nds A8l < [l ldelall Bl

which can be made arbitrarily small.

This argument extends to Carnot groups of homogeneous dimension @, which are Q-parabolic.
For this, one uses Rumin’s complex, which has better homogeneity properties under Carnot dila-
tions than de Rham’s complex. When Rumin’s complex is exactly homogeneous (e.g. for Heisen-
berg groups in all degrees, only for certain degrees in general), one gets a sharp exponent ¢(G, k).
This leads to Theorem 1.1.

In Euclidean space, every constant coefficient form S has a primitive o with linear coefficients
(for instance, dxy A- - - Adxy = d(x1 dza A--- Adxy)). On the other hand, there exist cut-offs which
decay like the inverse of the distance to the origin. Therefore

|/§w/\6| = |/W/\d§/\0<| < [wll 21 supp(as))

which tends to 0. This argument extends to Heisenberg groups in all but one degree. To complete
the proof of Theorem 1.2, one performs the symmetric integration by parts, integrating w instead
of 8. For this, one produces primitives of w on annuli, of linear growth.
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1.6. Organization of the paper. In section 2, the needed cut-offs are constructed. Theorem 1.1
is proven in section 3. In order to integrate w A 8 by parts, one needs understand the behaviour of
wedge products in Rumin’s complex on Heisenberg groups, this is performed in section 4. Section
5 exploits the linear growth primitives of left-invariant forms. In section 6, controlled primitives
of L' forms are designed, completing the proof of Theorem 1.2.

2. CUT-OFFS ON CARNOT GROUPS

2.1. Annuli. We first construct cut-offs with an L* control on derivatives. In a Carnot group G,
we fix a subRiemannian metric and denote by B(R) the ball with center e and radius R. We fix an
orthonormal basis of horizontal left-invariant vector fields Wy, ..., W, . Given a smooth function
u on G, and an integer m € N, we denote by V™u the collection of order m horizontal derivatives
Wi, Wi, (i1, -y im) € {1,...,n1}™, and by |[V™u|? the sum of their squares.

Lemma 2.1. Let G be a Carnot group. Let A > 1. There exists C = C(\) such that for all R > 0,
there exists a smooth function &g such that

(1) ér =1 on B(R).

(2) &r = 0 outside B(AR).

(3) For allm e N, |V™¢g| < C/R™.

Proof. We achieve this first when R = 1, and then set {gr = &§; 0 d1/R. |

Lemma 2.2. Given f a (vector valued) function which is homogeneous of degree d € N under
dilations, then V f is homogeneous of degree d — 1.

Proof. Given f: G — R homogeneous of degree d under dilations, we have that f(5xp) = A%f(p).
By applying a horizontal derivative to the left hand side of the equation, namely V = W; with
je{l,...,n1}, we get

VIf(8xp)] = W;LF (0ap)] = df © dox(W;), = df (NW))s,p) = A~ df (W)
If we now apply V to the right hand side, we get
VN ()] = WX f ()] = AT df (W),

We have therefore proved that df | Sap = XL qf }p when restricted to horizontal derivatives, so

[V

we finally get our result

V(@éap) = XTIV (p).
O

2.2. Parabolicity. Second, we construct cut-offs with a sharper L% control on derivatives.
Let r be a smooth, positive function on G\ {e} that is homogeneous of degree 1 under dilations
(one could think of a CC-distance from the origin, but smooth) and let us define the following

function
log(AR/r)  log(AR/r)
(1) x(r) = =
log(AR/R) log(X)
One should notice that x(AR) =0, x(R) = 1, and that x is smooth.

Definition 2.1. Using the smooth function x introduced in (1), we can then define the cut-off
function ¢ as follows

1, on B(R)
§(r) = { x(r), on B(AR)\ B(R)
0, outside B(AR).

Lemma 2.3. The cut-off function £ defined above has the following property: for every integer
m e N, [V q/m — 0 as X — occ.

Proof. We compute

_ @% if R<r < AR,
VE = .
0 otherwise.
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Let f be the vector valued function f = % on G\ {e}. Then f is homogeneous of degree —1.

According to Lemma 2.2, V™! f is homogeneous of degree m. It follows that

Q/m AR
/ <cf
B(AR)\B(R)

R

— rQ-1lqy
r

Q/m
1
Vm lf '

AR Q-1
C’/R 0 dr = C'log()).

Therefore
IV €| jm < C (log A)~1F™/@)

tends to 0 as A tends to infinity, provided m < ). Let us stress that, in general, for values of m
greater than or equal to @, the final limit will not be zero. However, the values of m which we will
be considering are very specific.

This estimate will in fact be used in the proof of Proposition 3.1, and in that setting the degrees
m that can arise will be all the possible degrees (or equivalently weights) of the differential d. on
an arbitrary Rumin k-form ¢ of weight w. If we denote by M the maximal m that could arise in
this situation, then one can show that M < Q.

Let us first assume that the maximal order M for the d. on k-forms (which is non trivial
for 0 < k < n) is greater or equal to Q. Then, given ¢ a Rumin k-form of weight w, then
deop = Zi\il Buw+i, where each B,4; is a Rumin (k + 1)-form of weight w + i. If we consider the
Hodge of the 8,4+ with @ < i < M, then these forms are Rumin (n — k — 1)-forms of weight
Q—-(w+i)=Q—-w—-1i<Q—w—Q < —w <0, which is impossible.

Therefore M < @, which means that indeed in all the cases that we will take into consideration,
the LQ/™ norm of V"¢ will always go to zero as A — 0.

a

Remark 2.1. One says that a Riemannian manifold M is p-parabolic (see [7]) if for every compact

set K, there exist smooth compactly supported functions on M taking value 1 on K whose gradient

has an arbitrarily small LP? norm. The definition obviously extends to subRiemannian manifolds.
Lemma 2.3 implies that a Carnot group of homogeneous dimension @ is QQ-parabolic.

3. THE AVERAGING MAP IN GENERAL CARNOT GROUPS DESCENDS TO COHOMOLOGY

Definition 3.1. Let G be a Carnot group of dimension n and homogeneous dimension ). For
k=1,...,n, let W(k) denote the set of weights arising in Rumin’s complex in degree k. For a
Rumin k-form w, let

b= Y

weW (k)

be its decomposition into components of weight w.
Let d. = > _; d.,; be the decomposition of d. into weights/orders. Let J (k,w) denote the set of
weights/orders j such that d. ; on k-forms of weight w is nonzero, in other words,

J(k,w) :={j € N|d jw, # 0 for some w of degree k}.
We will denote by J (k) the set of all the possible weights/orders, that is
Jky = U Ikw).
weW(k)
Let us define LX*) as follows

W ={p= > bueE|VjeT(k-1w), ¢, € LY}
weW(k—1)

and if J(k —1,%) = 0 for some 1, then we don’t require anything on ¢ .

Lemma 3.1. Let G be a Carnot group. Fiz a left-invariant subRiemannian metric making the
direct sum g = @ g; orthogonal. The L*-adjoint d* of d. is a differential operator. Fix a degree k.

Let
de= Y de;

JET (k)
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be the decomposition of d. into weights (d.; increases weights of Rumin forms by j, hence it has
horizontal order j). Then the decomposition of &% on a (k + 1)-form into weights/orders is
Z:d
JET*(k
In other words, the adjoint dy ; of de,; decreases weights by j and has horizontal order j. In

fact, if we denote by J*(k + 1,0) the set of weights/orders j such that d ; on (k + 1)-forms of
weight W s non-zero, that is

T (k+1,0)={j e N|d jay #0 for some a of degree k + 1},

then there is a clear relationship between the sets of indices J (k,w) and J*(k + 1,%), namely

Tk+1,0) = ] {jeTkw) |w+tj=b}.

weW(k)

And from this relationship, we get directly the following identity:
Jk+1)= |J Tk+1,0)=Jk).

HEW (k+1)

Moreover, since the formula d = (—1)”(’”1)Jrl xdox applies to any Rumin k-form, we also have
the equality J*(n — k,Q —w) = J(k,w).
Let us stress that this also implies J (k) = T*(n—k)=T(n —k—1).

Proposition 3.1. If w, ¢, B are Rumin forms with w € L' of degree k, B left-invariant of
complementary degree n — k, ¢ € LX*) and d.¢ = w, then

[wna=o

Proof. Without loss of generality, one can assume that 5 has pure weight @) — w for some
w € W(k). Then its Hodge-star * has pure weight w. Let ¢ be a smooth cut-off. By definition of
the L2-adjoint, we have

| eorns= [ osepyavol = [ el = 3 [ (0umydzy(565) duol

JET*(k,w)

Since ¢ € LX) for any j € J*(w — j) we have Puw—j € LR/Q=7 by definition of LX(*), Hence,
applying Hoélder’s inequality, we obtain

fenesls X loussllone-n Vel Bl
¢ jeT* (kw)
It is therefore sufficient to take £ as the cut-off function introduced in Definition 2.1, so that by
Lemma 2.3 we get that [,w A S =0.

Example 3.1. Euclidean space R”. Then W(k) = {k} and J(k) = {1} in all degrees. Theorem

3.1 states that the averaging map descends to L%'-cohomology, where ¢ = P

Example 3.2. Heisenberg groups H?*"*1. We have that W(k) = {k} for k < m, and W(k) =
{k+ 1} when £ > m + 1. J(k) = {1} in all degrees but k& = m, where J(m) = {2}, so that

Theorem 3.1 states that the averaging map descends to L%!-cohomology, where g = & in degree

m+1and ¢ = % in all other degrees.

3.1. Link with /%! cohomology. Let 1 < p < ¢ < co. According to Theorem 3.3 of [6], every
{%P cohomology class of a Carnot group contains a form w which belongs to L? as well as an
arbitrary finite number of its derivatives. If the class vanishes, then there exists a primitive ¢
of w which belongs to L? as well as an arbitrary finite number of its derivatives. There exists a
homotopy between de Rham and Rumin’s complex given by differential operators, therefore the
same statement applies to Rumin’s complex. In particular, Rumin forms can be used to compute
£9P cohomology.

Let w be a Rumin k-form which belongs to L' as well as a large number of its horizontal
derivatives. Assume that w represents the trivial cohomology class. Then there exists a Rumin
(k — 1)-form ¢ which belongs to L? as well as its horizontal derivatives up to order @), and such
that d.¢ = w. By Sobolev’s embedding theorem, ¢ belongs to L, hence to L7 for all q' > q. This
suggests the following notation.
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Definition 3.2. Let G be a Carnot group of dimension n and homogeneous dimension ). Let
1 < k < n. Define
j(k) = min U J(k—1,w).
weW (k)
and 0
B ETa)
Proof of Theorem 1.1.

Proof. Let G be a Carnot group. Let w be a Rumin k-form on G, which belongs to L! as well as
a large number of its derivatives. Assume that w = d.¢ with ¢ € L9 Then

Vw e W(k),Vj € T(k—1,w), ¢, € LY O,

therefore ¢ € LX(¥) Proposition 3.1 implies that averages f w A B vanish. This completes the proof
of Theorem 1.1.
O

Example 3.3. Euclidean space. Then j(k) =1 in all degrees.

Example 3.4. Heisenberg groups H?™*1. Then j(k) = 1 in all degrees but k = m + 1, where
jm+1)=2.

For these examples, as we saw before, one need not invoke [6] since [J (k) has only one element
in each degree.

Example 3.5. Engel group E*. Then j(k) = 1 in degrees 1 and 4, j(k) = 2 in degrees 2 and 3.
One concludes that the averaging map is well-defined in 9! cohomology for ¢ < 503 in degrees 1

and 4, and for ¢ < & in degrees 2 and 3. Here, Q = 7.

3.2. Results for Heisenberg groups H?™*1. In [2], it is proven that every closed L' k-form,

k < 2m, whose averages [w A 3 vanish, is the differential of a form in L9, where ¢ = q(k) = %

unless when & =m + 1, where g¢(m + 1) = & In other words,

Theorem 3.2 ([2]). Let G = H>"+! and let k = 1,...,2m. The averaging map LI*)1HF(G) —
H2mH1=k(g)* is injective.

The goal of subsequent sections is to prove that the image of averaging map is 0 in all degrees
k < 2m. This will prove that L)1 H*(G) = 0. Note that for & = 2m + 1, both facts fail: the
averaging map is not zero (one can check with compactly supported forms) and it is not injective
either (see [2]).

4. WEDGE PRODUCTS BETWEEN RUMIN FORMS IN HEISENBERG GROUPS

We shall rely on Stokes formula on Heisenberg groups H2™+!. We need a formula of the form
d(p A B) = (dep) A B £ ¢ AdeS. This does not always hold in general for Carnot groups. In fact,
the complex of Rumin forms E§ equals the Lie algebra cohomology H*(g), and therefore carries a
natural cup product induced by the wedge product, but which in general differs from the wedge
product.

Let us take into consideration the original construction of the Rumin complex in the (2m + 1)-
dimensional Heisenberg group H?>™*! as appears in [8].

Given 2° the algebra of smooth differential forms, one can define the following two differential
ideals:

o 7° :={a =1 AT+ y2 Adr}, the differential ideal generated by the contact form 7, and
o J*:={BeQ | BAT=LBANdr =0}

Remark 4.1. By construction, the ideal [J° is in fact the annihilator of Z°. In other words, given
two arbitrary forms a € J°® and g € Z°, we have a A 5=0.

One can quickly check that the subspaces J" = J°* N Q" are non-trivial for h > m + 1, whereas
the quotients Q" /Z" are non-trivial for h < m, where I = Z°* N Q".

Moreover, the usual exterior differential descends to the quotients Q°/Z°® and restricts to the
subspaces J* as first order differential operators:

de: Q°/I° = Q*/T° and d,: J° = J°.



AVERAGES AND THE ¢?!'-COHOMOLOGY OF HEISENBERG GROUPS 7

In [8] Rumin then defines a second order linear differential operator
de : Q™ )T™ — gt

which connects the non-trivial quotients 2 /Z® with the non-trivial subspaces J* into a complex,
that is d. o d. = 0,

d, d, d. de de de de
Q070 Loyt S L Loy Sey gt Loy gmA2 Loy Sey g2mAl

Proposition 4.1. In H?>™*!, the wedge product of Rumin forms is well-defined and satisfies the
Leibniz rule

de(anB)=dea B+ (—1)'and.p
if either h>m+1 ork>m+1 or h+k <m, where h = deg(a) and k = deg(B).

Proof. In order to study whether the wedge product between Rumin forms is well-defined, we will
consider this differential operator d. in the following two cases:

i de: Qr/Th — QML ThL where h < m,

i. d.: J" = J"! where h > m.
Let us first stress that in the first case, given a € Q" /Z" we have that

dea =da mod Z'M?! for h<m.

Since 7 is an ideal, if h + k < m, a A B € QMF/Th*F is well defined.

If h + k < m, the identity d(a A B) = (da) A B+ (—1)"a A dB passes to the quotient.

It is important to notice that, however, if h +k = m, h > 0, k > 0, dea A B+ (—=1)"a A d.f3
involves only first derivatives of o and 3, and thus cannot be equal to d.(a A 8). If h = 0 and
k = m, d.(a A ) involves second derivatives of «, and therefore cannot be expressed in terms of
de.o.

On the other hand, in the second case, given 3 € J", the Rumin differential coincides with the
usual exterior differential,

d.f=dB for h>m.

Therefore, given a € Q"/T" and 8 € J* with h < m and k > m, the wedge product a A 3 is
well-defined and belongs to J"1*, and the usual Leibniz rule also applies:

de(anB)=danB)=(da)AB+ (—1)"aA(dB) =dcax A B+ (—1)"and.fB.

Ifh=mand k>m+1, h+k > 2m + 1, so the identity between differentials holds trivially.
To conclude, the wedge product of Rumin forms is well defined and satisfies the Leibniz rule
de(aAB) =dea A B+ (—=1)"a Ad.S if either h >m +1,0or k>m+1,0or h+k < m.
O

5. AVERAGES ON HEISENBERG GROUP: GENERIC CASE

5.1. Primitives of linear growth.

Lemma 5.1. Let 3 be a left-invariant Rumin h-form in the Heisenberg group H*™ 1. If h # m+1,
B admits a primitive o of linear growth, i.e. at Carnot-Carathéodory distance r from the origin,
la] < Cr.

Proof. Let 8 € El be a left-invariant form. Then d.8 = 0, and 3 has weight w = h (if h < m) or
h+1 (if h > m 4 1). We know that the Rumin complex is locally exact, that is 3o € Ep ! such
that d.a = B.

Let us consider the Taylor expansion of a at the origin in exponential coordinates, and let us
group terms according to their homogeneity under dilations d;:

a:a0+...+aw71+aw+aw+1+...

where we denote by a4 the term with homogeneous degree d, i.e. §fay = t%ay.
Since d. commutes with the dilations ¢y, the expansion of d.« is therefore

dca = dcaO +-+ dcawfl + dcaw + dcau}Jrl + -

The expansion of 3 is given instead by § = (3, given it is a left-invariant form, hence homogeneous
of degree w, so that 8 = d.ow,.
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Let us notice that c,, has degree h — 1 and h # m + 1, so it has weight w — 1. Since it is
homogeneous of degree w under ¢y, its coefficients are homogeneous of degree 1, that is they are
linear in horizontal coordinates, hence a,, has linear growth, that is |a| < C'r. |

Proposition 5.1. Given w € Ef an L', d.-closed Rumin form in H2>™+1  then the integral

/ wApB
H2m+1

vanishes for all left-invariant Rumin forms B of complementary degree, f €
k # m.

Egmﬂ*k , provided

Proof. Let w be an L', d.-closed Rumin k-form, k # m. Let 3 be a left-invariant Rumin h-form,
with h = 2m+1—k # m + 1. Let a be a linear growth primitive of 3, |a] < C R. Let £ be a
smooth cut-off such that £ =1 on B(R), £ = 0 outside B(AR) and |d.£| < C’/R. Since, according
to Proposition 4.1,
d(fw A @) = de(bw A @) = do(Ew) A a4 (—1)*ew A dea
=dfAwha+ (—1)kewA B,

Stokes formula gives

’/ Ew/\ﬁ}:’/ de& Nw A«
H2m+1 B(AR)\B(R)

< / det] o] o]
B(AR)\B(R)

< )\CCIHW||L1(H2”+1\B(R))-
On the other hand,

[ 0= 098] < IBllllzsgmeramy,
Both terms tend to 0 as R tends to infinity, thus szmH EwNp=0. O

This proves Theorem 1.2 except in degree kK = m. The argument collapses in this case, since
primitives of left-invariant (m + 1)-forms have at least quadratic growth.

6. AVERAGES ON HEISENBERG GROUP: SPECIAL CASE

We now describe a symmetric argument: produce a primitive of the L' form w with linear
growth. It applies for all degrees but m + 1, and so covers the special case k = m.

Since w is not in L™ but is L', linear growth needs be taken in the L' sense: the L' norm of
the primitive in a shell of radius R is O(R). It is not necessary to produce a global primitive with
this property. It is sufficient to produce such a primitive ¢ in the R-shell B(AR) \ B(R). Indeed,
Stokes formula leads to an integral

/ §w/\ﬂ:j:/ A& NONB
H2n+1 B(AR)\B(R)

which does not depend on the choice of primitive ¢.

6.1. ¢! cohomology of bounded geometry Riemannian and subRiemannian manifolds.
By definition, the ¢ cohomology of a bounded geometry Riemannian manifold is the ¢4P coho-
mology of every bounded geometry simplicial complex quasiisometric to it. For instance, of a
bounded geometry triangulation.

Combining results of [2] and Leray’s acyclic covering theorem (in the form described in [5]), one
gets that for ¢ = =5, the ¢91_cohomology of a bounded geometry Riemannian n-manifold M is
isomorphic to the quotient

LY H (M) = LY (M) Nker(d)/(L* NdL(M))
of closed forms in L' by differentials of forms in L4. In particular, if M is compact, for all p < P

LPYH (M) is isomorphic to the usual (topological) cohomology of M.
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Similarly, if M is a bounded geometry contact subRiemannian manifold of dimension 2m + 1
(hence Hausdorff dimension @ = 2m +2), for ¢ = Q/(Q — 1) (respectively ¢ = Q/(Q — 2) in degree
m + 1), the £% cohomology of M is isomorphic to the quotient

LY H (M) = LY (M) Nker(d.)/(L* Nd.L9(M))

of d.-closed Rumin forms by d.’s of Rumin forms in L4.

This applies in particular to Heisenberg groups H?>™+!, and also to shells in Heisenberg groups,
but with a loss on the width of the shell.
6.2. L'-Poincaré inequality in shell B(\)\ B(1).
Lemma 6.1. There exist radii 0 < u < 1 < X\ < y’ such that every d.-exact L' Rumin k-form w
on B(p') \ B(p) admits a primitive ¢ on B(X) \ B(1) such that

el sonsay = C - lwllcrBensw)-

In Euclidean space, the analogous statement can be proved as follows. Up to a biLipschitz change
of coordinates, one replaces shells with products [0,1] x S"~1. On such a product, a differential
form writes w = a; + dt A by where a; and b; are differential forms on S”~!. w is closed if and only

if each a; is closed and
Gat

o

Given r € [0, 1], define

t
¢r =es+dt A fy  where et:/bsds, ft =0.

Then d¢, = w — a,. Set

1 1
(b:/ ¢rdr, sothat dp=w—& where CJ:/ a, dr.
0 0
Note that each a,, and hence @, is an exact form on S™~!. Since
ol zrsn—1y < llwllzrco,11xsm-1s
according to Subsection 6.1, there exists a form ¢ on S”~! such that d¢ = @ and
||QEHL1(STL71) <C ||@||L1(Sn71).

Hence ¢ — ¢ is the required primitive.

The Heisenberg group case reduces to the Euclidean case thanks to a smoothing homotopy
constructed in [2]. In fact, since ¢ merely needs be estimated in L! norm (and not in the sharp L4
norm), only the first, elementary, steps of [2] are required, resulting in the following result.

Lemma 6.2. For every radii p < 1 < XA < p/, there exists a constant C with the following property.
For every d.-exact L* Rumin form w on the large shell B(p')\ B(p) of H2™+1 there exist L' Rumin
forms Tw and Sw on the smaller shell B(A)\ B(1) such that w = d.Tw+ Sw on the smaller shell,
17wz zonsay) + [Swllwiionsay < CllwlleBense)-
Here, the WY1 norm refers to the L' norms of the first horizontal derivatives.
Proof. Pick a smooth function x; with compact support in the large shell A. According to Lemma
6.2 of [2], there exists a left-invariant pseudodifferential operator K such that the identity
X1 =deKx1 + Kdexa
holds on the space of Rumin forms
L*nd'L' .= {a € L*(A); dea € L' (A)}.

K is the operator of convolution with a kernel & of type 1 (resp. 2 in degree n 4+ 1). Using a
cut-off, write k = k; + k2 where k; has support in an e-ball and ko is smooth. Since k; = O(r' @)
or O(TQ_Q) € L', the operator K of convolution with k; is bounded on L'. Hence T = Kix is
bounded on L' forms defined on A. Whereas S = d.K>x1 is bounded from L' to W*! for every
integer s. If 4/ > A+2¢ and p < 1—2¢, the multiplication of w by x1 has no effect on the restriction
of d.Kiw or Kid.w to the smaller shell, hence, in restriction to the smaller shell,

dCTw = dClelw = (dCKl + Kldc)w.
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It follows that
Sw = chgxlw = (dCKQ + Kgdc)w,

and finally, in restriction to the smaller shell,

w=dJw+ Sw.

Proof of Lemma 6.1.

Proof. Using the exponential map, one can use simultaneously Heisenberg and Euclidean tools.
Pick A, u, ¢t such that the medium Heisenberg shell B(p' — 2¢) \ B(p + 2€) contains the Euclidean
shell Acuer = Beuet(2) \ Beuer (1), which in turn contains the smaller Heisenberg shell B(\) \ B(1).
Apply Lemma 6.2 to a d.-closed L' form w defined on the larger Heisenberg shell. Up to d.Tw,
and up to restricting to the medium shell, one can replace w with Sw which has its first horizontal
derivatives in L'. Apply Rumin’s homotopy Il = 1—ddy ! —dy Ldto get a usual d-closed differential
form 8 = IIgSw belonging to L'. Use the Euclidean version of Lemma 6.1 to get an L' primitive
7, dy = B, on the Euclidean shell A.,.. Apply the order zero homotopy g, = 1 —dody ' — dy ' do
to get a Rumin form ¢ = Ilg,v. Its restriction to the smaller Heisenberg shell satisfies d.¢ = w
and its L' norm is controlled by [|w||;. O

6.3. L'-Poincaré inequality in scaled shell B(AR) \ B(R). Let 0 < u <1 < XA < p/. Let w
be a Rumin k-form on the scaled annulus B(p/'R) \ B(uR). Assume that there exists a Rumin
(k — 1)-form ¢ on the thinner shell on B(AR) \ B(R) such that w = d.¢ on that shell.
Let’s denote the dilation by R as
0r: B(A\)\ B(1) = B(AR) \ B(R)
then we can consider the pull-back of both forms:
e wp:=0p(w)on B(A\)\ B(1), and
o ¢p:=05(¢) on B(A) \ B(1).
Since 07 commutes with the Rumin differential d., we have
wr = 0p(w) = 0k (dcd) = de(0p9) = dedr -
Then, for wr we have

1

[6Rwll L1 (B :/ lw(0r(z))| - Rdx = Rw/ lwl(y) - 55—y
I EONEID = sy S omem) Re-!
g

:R“(Qfl)/ |wl(y)dy = R*~ @D - |wl L sarpBx) »
B(AR)\B(R)
so that

(2) lwrllLsonsay = BV wll L1 sarnsr)
where w is the weight of the k-form w.

Likewise, for the (k — 1)-form ¢ we get
(3) 1678l L1 BBy = B C V6l (Bor)\ER) -

where in this case w is the weight of the form ¢.
Since we are working on H?>™*+! and w = d.¢ (and likewise wg = d.dR), we have

e w=w-—1,if k#m+1, and
e w=w-—2,ifk=m+ 1.
According to Lemma 6.1, one can find a (k — 1)-form ¢r on B(A) \ B(1) such that
lorllzr BB < C - lwrllLr(B\BW)
so, using the equalities (2) and (3) we get the following inequality:

Il BornBm) < C - R lwllLi B m\BR)
which divides into the following two cases
o |8llrBor\BR) < C - R-|lwlL1Bwr\BMLR) if K #m+1, and
o [dlrsornsm) < C - R - |wlLi s rypr) if k=m+1.
Only the first case is useful for our purpose.
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6.4. Independence on the choice of primitive. Let us consider the exact Rumin form w € E{f
and let ¢, ¢ € Ef~! be two primitives of w on B(AR) \ B(R), i.e. d.t) = d.¢ = w. Let 3 be an
arbitrary left-invariant Rumin form S of complementary degree 2m + 1 — k.

If k # 2m, then H*(B(AR) \ B(R)) = 0, which means that there exists a Rumin (k — 2)-form
« such that d.a = 1 — ¢.

If kK # m+ 1, the degree of B is 2m+1—k £ m, so d.(§8) = (d&) A B+ Edef = (d€) A B, thus
v = (d:€) A B is a well-defined d.-closed Rumin form (this is a special case of Proposition 4.1).

If on top we also assume k # m + 2, given v = d.(£8) = d.£ A B, we have that the form a A~y
has degree 2m > m + 1, so we can apply Proposition 4.1 and obtain the following equality

d(a/\ly) = dc(a/\’y)ia/\dc'y = (dca) Ny = (¢—¢)/\ (dcg)/\ﬁ
Since by construction d.£ has compact support in B(AR) \ B(R),

/Hmﬂdcﬁ/\(w—(b)Aﬁ:O-

Therefore, when k # m+ 1, m+ 2, 2m, we can replace a given primitive ¢ with any other arbitrary
primitive ¢ of w on the scaled shell B(AR) \ B(R).

6.5. Vanishing of averages.

Proposition 6.1. Given w € E(’f an L', d.-closed Rumin form in H?™T1, then the integral

/ wAp
H2m+1

vanishes for all left-invariant Rumin forms B of complementary degree, f €
k#m+1,m+2,2m.

Proof. We assume that kK #m + 1, m + 2,2m.
Let 9 be a global primitive of w on H?™*!. Let us first analyse the following identities

EwA B =Edcp) NB = —de§ Nb A B+ d(§Y A B).

Let ¢ be the primitive of w on B(AR) \ B(R) introduced in Section 6.3. We can then replace
Jizmsr de& N A B with [ia,,00 de& A ¢ A B, and by applying Stokes’ theorem, we get

‘/ gww’: / dc«sww’
H2m+1 B(AR)\B(R)

- ‘ / det N A /3}
BOR)\B(R)
< el ool BllocllPll L (B RN B(R)) -

Egmﬂ_k , provided

Finally, knowing that ||d.£||c < C’/R and applying the Poincaré inequality on the shell

0l soarnBr) < C- B wlLi B r)\B1uR)
found in Subsection 6.3, we finally get

/Hzn+1 W 6’ < CC/HWHLI(B(#'R)\B(#R)) :

Using the cut-off function € introduced in Definition 2.1, we have

H2m+1 B(R) B(AR)\B(R)

‘/ w/\ﬁ‘ﬁ’/ Ew/\ﬁ‘—i—’/ fw/\ﬁ’
B(R) H2n+1 B(AR)\B(R)

< CC' el mwmymum + [ 18ee - o
BOR)\B(R)

Hence

< C"|wll L1 (B r)\B(uR)-

Since [|w||z1(B(w R)\B(uR)) — 0 as R — 0o, we get our result

/ wAB=0.
H2m+l
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This completes the proof of Theorem 1.2.

Remark 6.1. Let us notice that this method would not work in the case where £k = m + 1, since
we would obtain the following inequality

/ wABZC- Rl|lwlyBar)\B(R))
B(R)
which is not conclusive.
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