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Abstract. Hyper-heuristics are high-level methods, used to solve various optimization problems. Some of them are capable of
learning and adapting their behavior throughout the solving process. Selection hyper-heuristics evaluate low-level heuristics and
determine which of them to be applied at a given point in the search process. However, it has been shown that the additive learning
process becomes inefficient in hard problems where the probability of fitness improvement is less than 1

2
. Other alternative learn-

ing mechanisms have been proposed however they don’t take into account the synergy between the low-level heuristics. Moreover
they haven’t been tested on large NP-hard problems. In this work, we propose a new hyper-heuristic which we called the Mul-
tilevel Synergy Thompson Sampling Hyper-Heuristic. The proposed method includes both the probabilistic learning mechanism
and the multilevel paradigm. The latter refers to the process of creating hierarchically smaller sub-problems from large problem
instances. The proposed hyper-heuristic is applied on very large industrial Max-SAT instances from the latest Max-SAT compe-
tition. The numerical results are promising and demonstrate the benefits of our method. The proposed method outperforms the
other four types of hyper-heuristics: Random, Choice Function, Stochastic Choice Function and the simple Thompson Sampling
Hyper-Heuristics.

Keywords: Selection hyper-heuristic, Max-SAT, Thompson sampling, choice-function, random, multilevel paradigm

1. Introduction1

In practice, several real world optimization prob-2

lems are difficult to solve and most of them are “NP-3

hard”. Due to their exponential nature, exact algo-4

rithms fail to solve them efficiently. In this case, an-5

other category of methods is used: inexact algorithms6

which include heuristics, metaheuristics and hyper-7

heuristics. Hyper-heuristics are problem independent8

high level methods that create a collaboration between9

different search methods in order to fill the weaknesses10

of each other. The term hyper-heuristic was first intro-11

duced by Cowling et al. [1].12

Given a set of low-level heuristics, a selection hyper-13

heuristic tries to predict which heuristic is the most14

suitable to apply at a given point during the search15

∗Corresponding author: Mourad Lassouaoui, LRIA, USTHB,
BP 32 El-ALIA Beb-Ezzouar, Algiers 16111, Algeria. E-mail:
lassouaoui.mourad@gmail.com.

process. Reinforcement learning is a general machine 16

learning technique based on a system of reward and 17

punishment. A reinforcement learning algorithm learns 18

by interacting with its environment and aims to max- 19

imize its reward and to minimize its penalty by per- 20

forming correctly. 21

A reinforcement learning hyper-heuristic needs to 22

gather information about the performances of low- 23

level heuristics to learn their behavior then to predict 24

which one will be the most efficient in the next itera- 25

tion. The most common hyper-heuristics use simple re- 26

inforcement learning mechanisms such as random gra- 27

dient, greedy, and most importantly, the additive rein- 28

forcement learning mechanism such as the well-known 29

choice function. 30

An additive learning hyper-heuristic, attributes a 31

weight to each low-level heuristic, then increases the 32

weight of the selected heuristic if its application led to 33

an improvement in the candidate solution with respect 34

to a given fitness function, or decreases the weight 35
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otherwise. Recently, authors in [2] have presented the36

first theoretical study evaluating the performance of37

the reinforcement learning mechanisms and compared38

them to a uniform random selection hyper-heuristic.39

This study has shown the limits of the additive rein-40

forcement learning mechanism, then proposed to use41

Thompson sampling mechanism as an alternative.42

In this paper, we discuss how the Thompson sam-43

pling mechanism do not take into account the syn-44

ergy between the low-level heuristics, which is an im-45

portant feature of any hyper-heuristics. On the other46

hand, we are interested in solving very large indus-47

trial instances from the latest Max-SAT competition.48

We propose then, an algorithm that integrates the mul-49

tilevel paradigm with an adaptive learning selection50

hyper-heuristic which we called the multilevel Synergy51

Thompson Sampling Hyper-Heuristic. The multilevel52

paradigm is an interesting technique that has been used53

to deal with large instances of different problems. It54

involves recursive coarsening to create a hierarchy of55

approximations to the original problem. In the case of56

Max-SAT, the coarsening phase consists in merging57

variables together into clusters to create smaller sam-58

ples from the original instance for each level. At the59

coarsest level, an initial solution is computed, and then60

iteratively refined at each level, coarsest to finest, using61

a search algorithm [3].62

In the rest of the paper, we summarize in Section 2,63

the maximum satisfiability problem (Max-SAT), the64

hyper-heuristics, the proposition of Alanazi [2] regard-65

ing the limits of additive learning hyper-heuristics, the66

simple Thompson Sampling Hyper-Heuristic and the67

multilevel paradigm. In Section 3 we explain the com-68

ponents of our approach. Section 4 exposes and dis-69

cusses the experimental results. Finally, we conclude70

the work in Section 5 and give some research perspec-71

tives.72

2. State of the art73

The maximum satisfiability problem (Max-SAT) has74

a central importance in various areas of computer sci-75

ence, including theoretical computer science, artificial76

intelligence, optimization, hardware design and verifi-77

cation.78

2.1. Max-SAT79

An instance of the satisfiability problem (SAT) is
a propositional formula in a conjunctive normal form

(CNF). Given a set of N Boolean variables, A CNF
formula F is the conjunction of M clauses. Each
clause is a disjunction of r literals representing its
length. A literal is a Boolean variable that occurs in its
positive or negative form.

F =
M
∧
i=1
Ci where Ci =

r

∨
i=1
lj , lj =

{
xj
¬xj

, j = 1..N

}
The SAT problem is to decide whether an assign- 80

ment of truth values to theN variables, such that all the 81

clauses of F are simultaneously satisfied exists or not. 82

It is known in complexity theory that SAT is the canon- 83

ical NP-complete problem [4]. The maximum satis- 84

fiability problem (Max-SAT) is an optimization vari- 85

ant of SAT. It requires a variable truth assignment that 86

maximizes the number of satisfied clauses of F . It has 87

been proven to be a NP-hard problem, even when each 88

clause has no more than two literals, while SAT with 89

two literals per clause can be solved in polynomial 90

time. Various exact and non-exact methods have been 91

developed to address the Max-SAT problem. 92

Because of their exponential complexity, the ex- 93

act methods can be applied only on small instances. 94

Among the well-known methods for SAT, the method 95

SATO [5], the solver Satz [6], the method Chaff [7] 96

that are all SAT solvers based on the Davis Putnam 97

method [8]. There are also exact methods such as 98

the Branch and Bound algorithms [9,10], the Max- 99

Solver [11], and the method MiniMaxSat [12] that are 100

used to solve the optimization variant Max-SAT 101

On the other hand, approximation methods (or non- 102

exact methods) make a local exploration in the search 103

space. They can tackle large Max-SAT instances and 104

could find good solutions in a reasonable time. Among 105

them, we can find the local search and metaheuristic 106

methods such as: the CCLS: an efficient local search 107

algorithm [13], the GSAT procedure [14], the sim- 108

ulated annealing [15], the WALKSAT method [16], 109

the scatter search algorithm [17], the genetic algo- 110

rithm [17–19], the GASAT algorithm [20], the nov- 111

elty method [21], the adaptnovelty method [22], the 112

guided local search method [23], the tabu search 113

algorithm [24,25], the G2wSAT method [26], the 114

memetic algorithm [27,28], and the variable neighbor- 115

hood search (VNS) based Genetic algorithm [29]. 116

A hyper-heuristic can be viewed as a non-exact 117

method that makes several metaheuristics and/or spe- 118

cific heuristic algorithms interact with each other. To 119

our knowledge, hyper-heuristics have not been tested 120

on the large industrial Max-SAT instances. 121
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2.2. Hyper-heuristics122

A hyper-heuristic is a problem independent search123

method and a learning mechanism for selecting or124

generating heuristics to solve computational search125

problems [30]. During the search process, the hyper-126

heuristic selects the (meta) heuristic that should be ap-127

plied to improve the fitness function and avoid local128

optima. These (meta) heuristics are called low-level129

heuristics. In other words, hyper-heuristics perform the130

search over the space of the low-level heuristics, and131

not directly on the problem search space [30–32].132

Hyper-heuristics have been used in many optimiza-133

tion problems, such as, the frequency assignment prob-134

lem in cellular networks [33,34], the winner deter-135

mination problem [35], the problem of examination136

timetabling problem [32,36–41], the planning prob-137

lem [1], the flow shop problem [42] and so on.138

2.2.1. Classification of hyper-heuristics139

Hyper-heuristics can be classified using several cri-140

teria describing the nature of the hyper-heuristic, the141

nature of the low-level heuristics and the use or not of142

a learning mechanism.143

Selective or generative hyper-heuristics. Generative144

hyper-heuristics combine several components to gen-145

erate themselves the low-level heuristics. The most146

known generative techniques are based on genetic pro-147

gramming [43–46]. Selective hyper-heuristics aim to148

choose the right (meta) heuristics to be executed in the149

search process. The set of low-level heuristics should150

include methods with different strategies that allow a151

better exploration of the problem search space. Selec-152

tive hyper-heuristics attempt to combine these methods153

to compensate the weaknesses of some heuristics by154

the strength of some other one’s [47,48].155

Constructive or perturbative low-level heuristics. A156

constructive low-level heuristic starts with an empty157

solution and tries to complete it at each step. On the158

other hand, a perturbative low-level heuristic starts159

with a complete initial solution and tries to find better160

ones by improving it during the search process.161

Hyper-heuristics with or without a learning mecha-162

nism. Hyper-heuristics that do not use learning mecha-163

nism can be random or exhaustive [30]. In this case the164

selection mechanism does not benefit from the feed-165

back that can be collected during the search phase.166

To improve the performances of hyper-heuristics, two167

types of learning mechanisms can be used: on-line168

or off-line learning. In the on-line case, the hyper-169

heuristic uses feedback information to learn while 170

solving the problem. In the off-line learning case, it 171

trains first to get information from the considered prob- 172

lem (under resolution) that could be used to solve un- 173

seen instances of the problem. 174

For example, we can cite the work given in [42] 175

which is based on a multi-agent system where a hyper- 176

heuristic agent manages the low-level heuristic agents 177

by using a reinforcement learning mechanism. The 178

system was applied on the flow shop problem. In [49], 179

authors propose a method based on Q-learning to au- 180

tomatically design the high-level heuristic of a hyper- 181

heuristic model. In [50], a deterministic learning selec- 182

tion strategy based on the Multi-Armed Bandit prob- 183

lem is used. It has been implemented using the HyFlex 184

framework. 185

In our work, we are interested in selective-pertur- 186

bative hyper-heuristics with an on-line learning mech- 187

anism. 188

2.2.2. The architecture of a selective-perturbative 189

hyper-heuristic 190

A selective hyper-heuristic is composed of two mod- 191

ules: a selection module and a move acceptance mod- 192

ule. The selection module chooses which low-level 193

heuristic will be called in the next iteration. Such se- 194

lection could be done randomly or by using a learning 195

mechanism. The acceptance module decides whether 196

the current solution will be accepted or not. This de- 197

cision can be deterministic (all moves will be ac- 198

cepted [1], only improvement moves are accepted [35, 199

51]) or non-deterministic (Monte Carlo move accep- 200

tance [36] simulated annealing [52], . . . ). For more 201

details about the selection strategies and move accep- 202

tance module, the reader could refer to [30]. 203

The hyper-heuristic process works as follows: given 204

an instance of a problem, the selection module picks an 205

adequate low-level heuristic according to a given strat- 206

egy at each iteration. Then, the acceptance module de- 207

cides whether to accept or reject the solution returned 208

by the low-level heuristic. The process continues un- 209

til the termination criterion is met. The hyper-heuristic 210

process is depicted in Fig. 1. One of the well-known 211

selection strategies is the Choice-Function method. 212

2.3. The choice function selection strategy 213

The Choice function is a score based selection strat- 214

egy that uses on-line learning to decide which low- 215

level heuristic to be called for the next execution. It 216

measures the effectiveness of the low-level heuristics 217
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Fig. 1. The architecture of a hyper-heuristic [36].

based on their performances. It assigns a weight to218

each low-level heuristic according to three parameters,219

which are: the CPU time consumed by a heuristic dur-220

ing the search process, the quality of the solution and221

the elapsed time since the heuristic has been called.222

The modified score based choice-function is described223

in [53] as follows:224

∀i, g1(hi) =
∑
n

φn−1 In(hi)

Tn(hi)

∀i, g2(hID, hi) =
∑
n

φn−1 In(hID, hi)

Tn(hID, hi)

∀i, g3(hi) = elapsed Time(hi)

∀i, score(hi) = φg1(hi) + φg2(hID, hi)

+δg3(hi)

where hi is a low-level heuristic and hID is the last
low-level heuristic recently launched. In(hi) (respec-
tively, In(hID, hi)) represents the change in the evalu-
ation function after the nth execution of the heuristic
hi (respectively, nth execution of the heuristic hi af-
ter hID). Tn(hi) (respectively, Tn(hID, hi)) represents
the execution time of the heuristic hi after his nth call
(respectively, the execution time of the nth call of hi
following hID). The value of φ depends on the perfor-
mances of the low-level heuristics during the search
process. If there is an improvement, then φ receives it’s
maximum value (0.99), otherwise, it takes the maxi-
mum between φ−0.01 and 0.01. δ is closely related to
φ. its value is defined by the following equation:

φt =

{
0.99 if improvement
max{φt−1 − 0.01, 0.01} otherwise

}
and δt = 1− φt. 225

2.4. Additive reinforcement learning hyper-heuristics 226

behavior and Thompson sampling 227

The reinforcement learning mechanisms iteratively 228

choose the appropriate heuristic by trial and error inter- 229

actions with the search space. Each low-level heuris- 230

tic is associated with a weight, initially the same. The 231

adaptation module, determine how the weights should 232

be updated. The additive weights adaptation scheme 233

is the most frequently used one. If the selected low- 234

level heuristic improves the solution, its weight is in- 235

creased by a certain value; otherwise, the weight is de- 236

creased. An example is the choice-function mechanism 237

described above. Among recent works using choice 238

function mechanism we can cite: [54] where a choice 239

function hyper-heuristic has been applied on the allo- 240

cation of maintenance tasks problem in Danish rail- 241

ways. In [55,56] an artificial bee colony algorithm is 242

combined with a modified choice function for the trav- 243

eling salesman problem. In [57] a hyper-heuristic with 244

a parameter free choice function strategy has been ap- 245

plied on pairwise test generation. In [58] a modified 246

choice function heuristic selection strategy has been 247

proposed for the multidimensional knapsack problem. 248

In [59], a Choice Function-based Constructive Hyper- 249

Heuristic is used for generating personalized healthy 250

menu recommendations. 251
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In [2], the limitations of learning in additive rein-252

forcement learning hyper-heuristics are shown. They253

have proven theoretically that if the success probabil-254

ities of the low-level heuristics are less than 1
2 , then255

these hyper-heuristics will have the same performance256

as a simple random mechanism. In their experimen-257

tal analysis, an additive learning mechanism on the258

HyFlex framework has been implemented then applied259

on the bin-packing problem and the permutation flow-260

shop problem. The results show that the estimated suc-261

cess probabilities of the low-level heuristics are in fact262

much smaller than a half, and consequently, both the263

additive reinforcement learning hyper-heuristic and the264

simple random hyper-heuristic have asymptotically the265

same behavior. This shows that additive reinforcement266

learning mechanisms are not necessarily capable of267

distinguishing between the performances of the heuris-268

tics, in other words, they don’t adapt themselves to269

cope with the dynamic change in the success probabil-270

ities of low-level heuristics.271

Since the additive learning mechanism is not effi-272

cient in these cases, [60] propose using a probabilistic273

selection approach called Thompson sampling.274

2.5. The Thompson sampling hyper-heuristic275

In 1933, Thompson introduced a reinforcement276

learning mechanism for the multi-armed bandit prob-277

lem referred to as Thompson sampling [61].278

Despite the fact that it was absent from the arti-279

ficial intelligence literature, recently it has attracted280

considerable interest. Several studies have empiri-281

cally demonstrated the efficiency of Thompson sam-282

pling [62–65]. It has also been successfully applied to283

several real-world problems [66–68].284

As shown in Algorithm 1, Thompson sampling is285

a reinforcement learning mechanism that uses prob-286

abilities to predict the most suitable heuristic to be287

called. It also uses a sliding time window to adapt its288

behavior according to recent observations about the289

performance of the low-level heuristics. This enables290

to discard past and potentially irrelevant observations.291

In this case, the low-level heuristics are divided into292

two sets: MU (mutation heuristics) and LS (simple lo-293

cal search heuristics). The hyper-heuristic chooses a294

heuristic from the MU set then chooses a heuristic from295

LS set at each iteration. To each low-level heuristic296

i, we attribute a beta distribution with two parameters297

α
(t)
i and β(t)

i which represent the number of successes298

and failures observed within a time window at the tth299

iteration. These parameters are initialized to one and300

Algorithm 1 The thompson sampling hyper-heuristic.
Require: a Max-SAT instance, a set H of m low-level heuristics (a

subset “MU” of mutational heuristics and another subset “LS”
of local search heuristics), the maxiter parameter, the sliding
window w ∈ N.

Ensure: a solution S.
1: Generate an initial random solution S having a quality F .
2: Evaluate the quality of the solution S.
3: S′ := S; F ′ := F ; //F ′ is the quality of the best solution S′

found
4: t := 0;
5: ∀i ∈ [m], set the parameters α(0)

i := 1, and β(0)
i := 1

6: ∀i ∈ [m], let U(0)
i the utility score of the low-level heuristic i

7: while (t < maxiter) do
8: //heuristic selection Method
9: ∀i ∈ [m], Sample U(t)

i from Beta(α(t)
i , β

(t)
i )

10: hi := a mutational heuristic with the maximum utility score
U

(t)
i from MU

11: hj := a local search heuristic with the maximum utility score

U
(t)
j from LS

12: Apply the heuristic hi on S to obtain new solution S′ with a
quality F ′

13: Apply the heuristic hj on S′ to obtain new solution S′′ with
a quality F ′′

14: if F ′′ > F then
15: αi

(t+1) := αi
(t) + 1

16: αj
(t+1) := αj

(t) + 1
17: else
18: βi

(t+1) := βi
(t) + 1

19: βj
(t+1) := βj

(t) + 1
20: end if
21: if t > w then
22: -∀i ∈ [m] if at iteration (t− w), hi has been called then

improved the solution, then
αi

(t+1) := αi
(t+1) − 1

23: -∀i ∈ [m] if at iteration (t− w), hi has been called then
not improved the solution, then
βi

(t+1) := βi
(t+1) − 1

24: end if
25: //the acceptance method.
26: if (f(S′′) > f(S)) then
27: S := S′′;F := F ′′;
28: end if
29: end while
30: return the best solution found.

updated during the search process. In the case of suc- 301

cess, meaning the low-level heuristic has improved the 302

best solution found with respect to the objective func- 303

tion, α(t)
i is incremented, β(t)

i is incremented other- 304

wise. In order to select the next low-level heuristic to 305

be called, a random variable U (t)
i called utility score 306

is drawn from the beta distribution of each low-level 307

heuristic. The one with the maximum utility score is 308

then selected. The hyper-heuristic only keeps the ob- 309

servations about the low-level heuristics in the last w 310

iterations. 311

The Thompson Sampling Hyper-Heuristic focuses 312

on choosing, at each iteration, the low-level heuristic 313
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Fig. 2. The multilevel process.

that will potentially improve the candidate solution,314

without taking into account the synergy between the315

low-level heuristics. We mentioned earlier that hyper-316

heuristics attempt to compensate the weaknesses of317

some low-level heuristics by the strength of the others.318

But, the Thompson Sampling Hyper-Heuristic fails to319

do that. We propose, in this paper, a new approach that320

adds the synergy aspect to the Thompson Sampling.321

It also combines the hyper-heuristic with the multi-322

level paradigm in order to deal with large Max-SAT323

instances.324

2.6. The multilevel paradigm325

The multilevel paradigm is inspired from the multi-326

grid methods used in physics since the 1970’s to327

solve differential equations. This method has been ap-328

plied essentially on the graph partitioning problem329

(GPP) [69,70]. This method has proven to be very ef-330

ficient and has replaced the spectral methods used in331

GPP in 1990’s. In early 2000, Chris Walshaw used the332

multilevel paradigm on other combinatorial optimiza-333

tion problems such as the traveling salesman problem334

(TSP) [71], the graph coloring problem (GCP) [72], the335

vehicles routing problem (VRP) [73], or the clustering336

problem [74]. It has also been used to solve the SAT337

problem [75] then the Max-SAT problem [51,76,77].338

The multilevel paradigm goes through three phases, as339

shown in Fig. 2.340

2.6.1. The coarsening phase341

In this step, a hierarchical sequence of progressively342

smaller problems P0, P1, P2, . . . , PL is defined, where343

Pi is a coarser approximation of Pi−1. Thus, the orig-344

inal problem is successively shrunk until the size of 345

the smallest problem falls below a certain coarsen- 346

ing threshold. There is no general coarsening strat- 347

egy; it depends mainly on the nature of the problem. 348

For example, in the graph partitioning problem, most 349

of the proposed multilevel methods use a progressive 350

and uniform reduction. It is generally based on merg- 351

ing groups of variables into one cluster for the next 352

level. The coarsening phase seems to hold three prin- 353

ciples [3]: 354

– A solution (even if it is not the optimal one) found 355

in any of the coarsened spaces could simply be 356

extended through all the problem levels to form a 357

solution of the original problem. This requirement 358

ensures that the coarsening is truly filtering the 359

solution space. 360

– The number of levels in the coarsening phase does 361

not need to be determined beforehand, however 362

the coarsening should cease when any further it- 363

eration would render the initialization degenerate. 364

– Any solution in a coarsened space should have the 365

same cost with respect to the objective function as 366

its extension to the original space. This principal 367

ensures that the coarsening algorithm samples the 368

solution space without altering it. In this case we 369

say that the coarsening is exact. 370

2.6.2. The initialization phase 371

The initial phase is very simple. It produces an initial 372

solution of PL (the problem at the coarsest level). This 373

could be done using a simple random assignment or a 374

specific heuristic. 375
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Fig. 3. The coarsening phase.

Fig. 4. Illustration of the coarsening phase.

2.6.3. The extension and refinement phase376

This phase is an iterated combination of two steps:377

– The extension step: The extension algorithm is the378

unversed process of the coarsening algorithm. It379

extends the solution found at the previous level380

to give an initial solution to the problem at the381

current level.382

– The refinement step: builds a better solution from383

the initial one at each level. It can be a simple384

local search or a more sophisticated heuristic or385

metaheuristic. In this paper, we have used a hyper-386

heuristic.387

3. The multilevel synergy thompson sampling388

hyper-heuristic389

In the following, we introduce our method called390

the Multilevel Synergy Thompson Sampling Hyper-391

Heuristic (ML-SyTS-HH). We first describe the mul-392

tilevel (ML) framework. Then we detail the Synergy393

Thompson Sampling Hyper-Heuristic (SyTS-HH)394

components.395

3.1. The multilevel framework396

The multilevel framework has four basic compo-397

nents described as follows:398

3.1.1. The coarsening process399

In the coarsening phase, the algorithm reduces400

the problem size recursively until reaching a desired401

threshold. In the case of a SAT problem instance, the402

algorithm merges pairs of variables chosen randomly 403

to create what we call clusters, which reduces the size 404

of the problem by half at each iteration, as illustrated 405

in Fig. 3. In this case, the complexity of the coarsening 406

algorithm is log2N , N being the number of variables. 407

These clusters are then used to define a coarser and 408

smaller sample of the problem in the next iteration as 409

shown in Fig. 4. The remaining variables that have not 410

been merged are simply copied to the next level. Merg- 411

ing more than two variables at once, results in a too fast 412

coarsening and lower quality samples. This coarsening 413

technique is exact: indeed, at any stage after initializa- 414

tion the current solution could simply be extended to 415

form a legitimate solution of the original problem, with 416

the same cost (see the extension and refinement phase 417

of Fig. 7). 418

3.1.2. The initialization process 419

The search process starts by computing an initial so- 420

lution at the coarsest level. The truth/false values will 421

be assigned randomly to the clusters. As a cluster rep- 422

resents one variable, to compute the cost of a solution, 423

all the variables that compose the cluster will be as- 424

signed the same value. 425

3.1.3. The extension process 426

When going from one level to another, the exten- 427

sion strategy should guarantee that the number of sat- 428

isfied clauses by the solution will remain the same be- 429

fore and after the extension. The extension algorithm 430

being the reverse procedure of the coarsening, it splits 431
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Fig. 5. Illustration of the initialization phase.

up each cluster into the clusters that compose it and432

assigns them the same value as the original cluster.433

3.1.4. The refinement process434

At each generated level, after the extension process,435

the refinement algorithm is applied to search the best436

solution for the problem sample corresponding to the437

current level. In this paper, we have used the Synergy438

Thompson Sampling that we describe later (for the439

refinement). In the coarse levels, the hyper-heuristic440

works on smaller and easier versions of the initial prob-441

lems until reaching level 0. We had to make a few ad-442

justments to the hyper-heuristic to make it deal with443

the clusters directly instead of the variables. Algo-444

rithm 2 shows how SyTS-HH is integrated in the mul-445

tilevel framework. The main benefit of the multilevel446

paradigm is that, when going through the lower levels,447

it guides the search to a very promising area. When the448

original level (level 0) is reached, the initial solution449

is one of very good quality. In this case, in order to450

keep this advantage, the intensification/diversification451

mechanisms are managed by the low-level heuristics.452

Algorithm 2 The ML-SyTS-HH.
Require: a problem P0, a maximum of level L.
1: Level = 0;
2: //Coarsening Phase
3: while (Level < L) do
4: Plevel+1 = Coarsen (Plevel);
5: Level = Level + 1;
6: end while
7: //Initialization Phase
8: SL = Initial Solution (PL);
9: //Extension and refinement Phase

10: while (Level > 0) do
11: //Extend problem and project previous level’s solution
12: Sstart (PLevel−1) = Extend (Sfinal, PLevel);
13: //Refine the initial solution (call the hyper-heuristic plat-

form)
14: Sfinal (PLevel−1) = STS-HH (Sstart, PLevel−1);
15: Level = Level − 1;
16: end while

3.2. The components of the SyTS-HH 453

The proposed hyper-heuristic uses the method of so- 454

lution acceptance based on the all moves acceptance 455

strategy. In the following we explain how a solution is 456

represented, how the fitness is calculated, then discuss 457

the low-level heuristics that we use and finally describe 458

the Synergy Thompson Sampling process. 459

3.2.1. The solution representation 460

A solution is represented as a vector X with size 461

n. Each element Xi receives the value 0 (False) or 1 462

(True). X represents an assignment of truth values to 463

the n Boolean variables of the Max-SAT instance. 464

3.2.2. The objective function 465

The quality of a solution (fitness) is measured by us- 466

ing an objective function. In the Max-SAT problem, it 467

consists in maximizing the number of satisfied clauses 468

of the considered instance. The goal of a search method 469

is to find an assignment to the variables that maximizes 470

the number of satisfied clauses. Given a solution X , 471

the objective function f that we want to maximize is 472

expressed as follows: 473

f(X) =

n∑
i=0

Ci, Where the clause

Ci =

1 when Ci is satisfied

0 otherwise.

3.2.3. The low-level heuristics for Max-SAT 474

Six perturbative low-level heuristics are used in this 475

paper. We have chosen some of the best state of the art 476

Max-SAT search methods. After each execution, the 477

selected low-level heuristic returns the solution found 478

to the hyper-heuristic. We give in the following a con- 479

cise description of each of the considered low-level 480

heuristics. 481

– The heuristic h1: GSAT [14]. 482

This method chooses to flip the variable with the 483

highest net gain (the number of satisfied clauses 484

minus the number of unsatisfied clauses if the 485

variable will be flipped). In the case of having 486

many variables with the highest net gain, we 487

choose one randomly. 488

– The heuristic h2: HSAT [78]. 489

This algorithm is similar to GSAT. However, in 490

the case of having many variables with the high- 491

est net gain, we choose the oldest one (the vari- 492

able’s age represents the number of iterations 493

spent since the last time it was flipped). 494
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Fig. 6. An example of the extend/refine phase.

Fig. 7. The extension and refinement phase.

– The heuristic h3: SLS [17]495

it is the stochastic local search method, which496

explores the neighborhood of a candidate solu-497

tion with three strategies managed by two walking498

probabilities.499

– The heuristic h4: WalkSat [16]500

It’s an algorithm that starts by choosing randomly501

an unsatisfied clause. If there is a variable with502

negative gain equals 0 in the selected clause, then503

this variable is flipped. The negative gain of a504

variable is the number of clauses that will be bro-505

ken if the variable is flipped. It means that the said506

clause can be satisfied without breaking another507

clause. If no such variable exists, then depend-508

ing on the walk probability, the variable with the509

minimum negative gain is selected or a variable is510

simply picked randomly from this clause.511

– The heuristic h5: Novelty [21]512

In Novelty, after choosing a broken clause, the513

variable to be flipped is selected as follow. If514

the variable with the highest net gain does not515

have the minimum age among the other variables516

within the selected clause, it is always selected.517

Otherwise, it is only selected with the probability 518

1 − p, else the variable with the next lower net 519

gain is selected. 520

– The heuristic h6: VNS [79] 521

The variable neighborhood search (VNS) is a 522

metaheuristic that explores several neighborhoods 523

for better diversification, and uses a local search 524

for the intensification. The VNS starts by defining 525

a set of neighborhood structures N1, N2, . . . , Nk 526

that will be explored during the search. Starting 527

with an initial solution, VNS calls a local search 528

method to explore the first neighborhood N1 of 529

the said solution. If the solution is improved, then 530

the same neighborhood is further explored with 531

the local search method, otherwise, VNS switches 532

to the next neighborhood N2, and so on. In VNS, 533

a solution is only accepted if there is an improve- 534

ment in the fitness function. 535

3.2.4. The synergy thompson sampling 536

hyper-heuristic 537

The SyTS-HH has a probabilistic learning approach 538

to handle the set of perturbative heuristics described 539
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above, to solve the considered Max-SAT problem.540

It uses the historical performances of the low-level541

heuristics to update its learning mechanism based on542

the Beta probability law. The Beta probability law is543

usually used to model the uncertainty about the prob-544

ability of success of an experiment. It is a continuous545

probability distribution defined on the interval [0, 1],546

and has two positive parameters α and β that control547

the shape of the distribution. For example, to predict548

the success of an experiment, we sample a random549

variable x from it’s beta distribution where the parame-550

ter α represents the number of successes from previous551

experiments and β represents the number of failures. In552

this case, the Beta distribution is used to understand the553

synergy between two low-level heuristics i and j, by554

learning the behavior of the sequence within a certain555

window throughout the execution. In order to do that,556

to each combination of heuristics (i, j), we will assign557

a beta distribution Beta(α(t)
ij , β

(t)
ij ). At iteration (t), the558

α
(t)
ij parameter is increased in the case of success. Oth-559

erwise, the β(t)
ij parameter is increased. By success we560

mean an improvement of the fitness function after the561

execution of the sequence heuristic i then heuristic j.562

By doing that, the beta distribution will capture (ap-563

proximately) the behavior of the sequence (i, j). In this564

case, knowing that in the current iteration the heuristic565

i was called, we can predict the success of the heuris-566

tic j by sampling a random variable from the distribu-567

tion called the utility score Uij . We can say that the568

utility score represents the potential score of success569

of the sequence (i, j), when the heuristic i was pre-570

viously called. The couples (αij , βij) are stored in a571

matrix (L*L), where L is the number of the low-level572

heuristics. In our case, we do not need to split the low-573

level heuristics into two sets as it has been done in al-574

gorithm 1, since we will be using well known state of575

the art Max-SAT metaheuristics instead of simple mu-576

tation and local search methods.577

As shown in Algorithm 3, first, a heuristic i is cho-578

sen randomly. Then, to select the low-level heuristic579

that will be used in the next execution, utility scores580

are sampled from the beta distributions of (i, j), ∀581

j ∈ [1, L]. The heuristic j with the maximum util-582

ity score is then selected. After the call of heuristic j,583

the α(t+1)
ij and β(t+1)

ij are updated: when the selected584

heuristic improves the quality of the candidate solu-585

tion, the Alpha of its associated Beta distribution is586

increased, otherwise, the Beta parameter is increased.587

After that, the heuristic j becomes the heuristic i of588

the next iteration and so on. This allows to implicitly589

aim for the best sequence of all the low-level heuristics590

at each stage of the search. In our case, the all moves 591

acceptance strategy is used. The Thompson sampling 592

mechanisms are used with a sliding time-window to 593

only keep recent and potentially relevant observations 594

about the behaviors of the low-level heuristics. The 595

sliding time-window has a size w iterations and re- 596

spects the First in/First out principle. The size w is a 597

parameter of the algorithm and it should be tuned cor- 598

rectly. If w is too large it may include irrelevant in- 599

formation, however if it is too small, the observations 600

kept may not be sufficient to capture the behavior of 601

the low-level heuristics. In the algorithm, at each iter- 602

ation, the beta distributions changes need to be kept in 603

order to update the beta distributions when it is sliding. 604

Algorithm 3 The SyTS-HH.
Require: a Max-SAT instance, a set H of m low-level heuristics,

the maxiter parameter, the sliding window w ∈ N.
Ensure: a solution S.
1: Generate an initial random solution S having a quality F .
2: t := 0;
3: ∀i, j ∈ [m], set the parameters α(0)

ij := 1, and β(0)
ij := 1

4: ∀i, j ∈ [m], let U(0)
ij the utility score of the sequence of the

low-level heuristics i, j
5: hi:= a random low-level heuristic from H
6: Apply the heuristic hi on S, and update the candidate solution

(S′) with quality (F ′).
7: while (t < maxiter) do
8: //heuristic selection Method
9: ∀j ∈ [m], Sample U(t)

ij from Beta(α(t)
ij , β

(t)
ij )

10: hj := a low-level heuristic with the maximum utility score

U
(t)
ij

11: Apply the heuristic hj on S′ to obtain new solution S′′ with
a quality F ′′

12: if F ′′ > F then
13: α

(t+1)
ij := α

(t)
ij + 1

14: else
15: β

(t+1)
ij := β

(t)
ij + 1

16: end if
17: if t > w then
18: -∀j ∈ [m] if at iteration (t − w), hj has been called

after the heuristic hi and improved the solution, then
α
(t+1)
ij := α

(t+1)
ij − 1

19: -∀i ∈ [m] if at iteration (t − w), hi has been called af-
ter the heuristic hi and not improved the solution, then
β
(t+1)
ij := β

(t+1)
ij − 1

20: end if
21: //the acceptance method: All moves accepted.
22: S := S′;F := F ′; S′ := S′′;F ′ := F ′′;
23: if (F ′′ > Fbest) then
24: Sbest := S′′;Fbest := F ′′;
25: end if
26: i := j
27: end while
28: return Sbest.
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Table 1
ML-TS-HH vs TS-HH

Benchmark Variables Clauses ML-TS HH TS-HH
c2_DD_s3_f1_e2_v1-bug-fourvec-gate-0.dimacs.seq 400085 1121810 2553 5754
i2c-problem.dimacs_25 521672 1581471 2091 4726
rsdecoder1_blackbox_KESblock-problem.dimacs_30 707330 1106376 2323 5123
mrisc_mem2wire-problem.dimacs_29 844900 2905976 3951 6978
mem_ctrl1.dimacs 1128648 4422185 1982 4145
rsdecoder-problem.dimacs_36 1220616 3938467 7737 10642
sudoku-debug.dimacs 1304121 1554820 967 3023
rsdecoder-problem.dimacs_37 1513544 4909231 4060 7321
mem_ctrl2_blackbox_mc_dp-problem.dimacs_28 1974822 6795573 3052 8740
mem_ctrl-problem.dimacs_27 4426323 15983633 28805 39654

4. The experiments605

All experiments were run on an Intel Core (TM) i7606

2 GHz with 8 GB of RAM under Linux operating sys-607

tem. The source code is written in the C language.608

We have implemented five variants of the hyper-609

heuristics for the Max-SAT problem corresponding to610

five different selection strategies:611

– Random (R-HH): corresponding to the simple612

random strategy.613

– Choice-function (CF-HH): corresponding to the614

choice function described above.615

– Stochastic choice-function (SCF-HH): is a com-616

bination between the random strategy and the617

choice function strategy [35,80].618

– Tompson Sampling (TS-HH): corresponding to619

the original method described above.620

– Synergy Thompson Sampling (SyTS-HH): corre-621

sponding to our method.622

Due to the non-deterministic nature of the proposed623

methods, 10 runs have been considered for each in-624

stance and for each method. Also, an empirical study625

has been conducted to fix the parameters values. The626

coarsening phase of the multilevel paradigm will stop627

when reaching a level with 500 clusters.628

– For the TS-HH and the SyTS-HH there is only629

one parameter which is the size of the sliding win-630

dow w. It has been fixed to 30.631

– For the CF-HH, there are two parameters: φ starts632

with the value 0.99, and it changes according to633

the search performance, whilst δ, its value de-634

pends on φ, as described in Section 2.3.635

– For the SCF-HH, in addition to the φ and δ pa-636

rameters, it has also a walk probability (wp) that637

is fixed to 0.3.638

There are other parameters which concerns the low-639

level heuristics:640

– Walksat: The walk probability W = 0.3,641

– SLS: The walk probabilities of the low-level 642

heuristic SLS are: WALK1= 0.3 and WALK2=0.6, 643

– VNS: The number of neighborhoods k is fixed to 644

10, 645

– Novelty: The walk probability W = 0.4. 646

4.1. The obtained results 647

In the following, we give the numerical results found 648

by the implemented methods. 649

4.1.1. TS-HH VS ML-TS-HH 650

The effectiveness of the multilevel paradigm has 651

been proven several times as previously discussed in 652

Section 2.6. To further investigate the impact of the 653

multilevel paradigm, we have selected The TS-HH and 654

we have chosen the largest ten instances from the Max- 655

SAT competition industrial benchmarks. The results 656

in Table 1 indicate that the ML-TS-HH is more ro- 657

bust than the simple TS-HH. The results reported in 658

Table 1 represent the number of not satisfied clauses. 659

From Fig. 8, we can see that the larger the instance, 660

the bigger the difference. This can be explained by the 661

fact that the multilevel approach successively approx- 662

imates the problem with smaller, and hence easier to 663

solve, versions. The coarsening algorithm filters the so- 664

lution space by placing restrictions on solutions which 665

the refinement algorithm can visit. Flipping the value 666

of one cluster in a coarsened space is equivalent to 667

changing the values of several variables in the origi- 668

nal solution space. This allows exploring efficiently the 669

search space with a good balance between diversifica- 670

tion, by visiting different regions, and intensification, 671

by exploiting the solutions from previous levels in or- 672

der to reach better solutions. When reaching the level 673

0 (the original instance), the search starts with an ini- 674

tial solution of a good quality, which usually helps the 675

search method to get closer to the global optimum. 676
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Fig. 8. ML-TS-HH vs TS-HH.

Table 4
Statistical summary on Max-SAT 2016 ’benchmarks (a-b)

Methods Min 1st. Qu Median Mean 3rd Qu Max
ML-SyTS-HH 99.4823% 99.8506% 99.9353% 99.8987% 99.9802% 99.9993%
ML-TS-HH 99.3651% 99.785% 99.8693% 99.8378% 99.9641% 99.9985%
ML-SCF-HH 99.448% 99.7924% 99.9128% 99.8543% 99.9699% 99.9989%
ML-CF-HH 99.448% 99.7739% 99.9076% 99.8369% 99.9690% 99.9985%
ML-R-HH 96.6631% 99.7574% 99.9002% 99.7218% 99.9687% 99.9985%

Table 5
ANOVA test for the five hyper-heuristics

Hyper-heuristic methods df SS MS F -value P -value
ML-R-HH Vs ML-CF-HH 1 9.61e+10 9.61e+10 27.07 3.52e-6
ML-R-HH Vs ML-SCF-HH 1 8.157e+10 8.157e+10 21.27 2.71e-5
ML-R-HH Vs ML-TS-HH 1 7.566e+10 7.566e+10 19.15 5.99e-5
ML-R-HH Vs ML-SyTS-HH 1 4.225e+10 4.225e+10 9.174 3.85e-3
ML-CF-HH Vs ML-SCF-HH 1 1.406e+9 1.406e+9 975.06 < 2.0e-16
ML-CF-HH Vs ML-TS-HH 1 1.074e+9 1.074e+9 134.80 6.21e-16
ML-CF-HH Vs ML-SyTS-HH 1 1.316e+9 1.316e+9 409.00 < 2.0e-16
ML-SCF-HH Vs ML-TS-HH 1 1.137e+9 1.137e+9 127.10 1.84e-15
ML-SCF-HH Vs ML-SyTS-HH 1 1.428e+9 1.428e+9 442.70 < 2.0e-16
ML-TS-HH Vs ML-SyTS-HH 1 2.028e+9 2.028e+9 138.30 3.85e-16
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Fig. 9. Box-plot of the four methods on Max-SAT 2016 benchmarks.

4.1.2. Comparison between the five hyper-heuristics677

Since we are interested in very large industrial Max-678

SAT benchmarks, we applied the multilevel paradigm679

on all of them to boost the search. The obtained re-680

sults on the industrial benchmarks are given in Tables 2681

and 3, where the best results obtained for each instance682

are in bold font. Once again, the results are expressed683

by the number of the remaining unsatisfied clauses. To684

better expose the results, Table 4 gives some statisti-685

cal measures calculated from the percentages of sat-686

isfaction of clauses (number of satisfied clauses/total687

number of clauses in the instance). For each method,688

we give the minimum (Min), the maximum (Max), the689

average (Mean), the midway (Median), the first quar-690

tile (1st Qu) and the third quartile (3rd Qu). Also, the691

box-plot diagram is given in Fig. 9 to better visualize692

the distribution of values of the rate of satisfied clauses693

given by the different considered methods.694

As shown in the box-plot depicted in Fig. 9, we695

can clearly see that the ML-CF-HH is almost similar696

(slightly better) than the ML-R-HH. This indicates that697

the additive learning mechanism of the choice func-698

tion stagnates especially when approaching the global699

optima, and thus the probability of improving a can-700

didate solution becomes low. However we can see701

a serious improvement concerning the ML-SCF-HH.702

This can be explained by the fact that the randomness703

helps changing the values of the additive weights of704

the choice function, in a way that improves its perfor-705

mance. This conclusion is further confirmed when see-706

ing the results of the ML-TS-HH.707

The ML-TS-HH performed better than the ML-CF-708

HH. This shows that the probabilistic selection strategy709

outperforms the additive learning mechanism. How-710

ever, the ML-SCF-HH is better than the ML-TS-HH.711

We can say in this case, that the stochastic mech- 712

anism really improves the additive learning selection 713

strategy, that takes into account the synergy between 714

the low-level heuristics. On the other hand the Thomp- 715

son sampling selection method is based on the individ- 716

ual performances of the low-level heuristics. 717

Finally, the experimental results indicate that the 718

ML-SyTS-HH is the most robust among all five exper- 719

imented hyper-heuristics. In our opinion, this is mainly 720

due to the fact of having an adaptive probabilistic se- 721

lection strategy and on the other hand to the fact of 722

taking into account the synergy between the low-level 723

heuristics. This confirms the fact that cooperation can 724

allow the weaknesses of one low-level heuristic to be 725

compensated by the strengths of another. 726

4.2. ANOVA statistical analysis 727

To show statistically the significance of our results, 728

we used the ANOVA (Analysis of variance) statistical 729

tool. Table 5 presents the results of the ten ANOVA 730

tests where the column df represents the degree of free- 731

dom, the column SS represents the Sum of squares, the 732

column MS represents the mean square, the F-value 733

represents the F-statistic, and the P -value in bold font 734

expresses the interpretation and result analysis. The P - 735

value is lower than 0.05 in all of the ten tests. This 736

indicates that the values produced by the five meth- 737

ods are highly significantly different one from another. 738

This means that our proposed hyper heuristic is statis- 739

tically better than the other methods and confirms the 740

conclusions drawn from Table 4. 741

5. Conclusion 742

In this paper, we proposed a new hyper-heuristic 743

that combines the multilevel paradigm and a modi- 744

fied Thompson Sampling selection strategy that takes 745

into account the synergy between the different low- 746

level heuristics. This method is called the Multilevel 747

Synergy Thompson Sampling Hyper-Heuristic (ML- 748

SyTS-HH) and it has been applied to solve the Max- 749

SAT problem. The set of perturbative low-level heuris- 750

tics used in this work, contains some of the best state- 751

of-the-art Max-Sat heuristics such as: GSAT, Walksat, 752

HSAT, SLS, VNS and Novelty methods. 753

The work presented in [2] has shown the limitations 754

of the additive learning mechanism such as choice 755

function, especially when the probability of success is 756

less than 1
2 . The Thompson Sampling Hyper-Heuristic 757

has been proposed as an alternative and has been tested 758
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on personnel Scheduling, Permutation Flow-shop, and759

the Traveling Salesman problem. Thompson Sampling760

Hyper-Heuristic assesses the individual performances761

of the low-level heuristics and tries to learn it by using762

the beta probability distribution and it’s two shaping763

parameters Alpha and Beta. The Alpha parameter rep-764

resents the number of successes and the Beta parame-765

ter represents the number of failures. The kept values766

of alpha and beta are within a certain sliding window767

that insures keeping only relevant information with re-768

spect to the current phase of the search. However, this769

selection strategy does not take into consideration the770

synergy between the low-level heuristics. Since dif-771

ferent low-level heuristics have different strengths and772

weaknesses, we believe that cooperation can allow the773

weaknesses of one low-level heuristic to be compen-774

sated by the strengths of another.775

On the other hand we integrated in the proposed776

method the multilevel paradigm that has shown its effi-777

ciency when dealing with large instances of a problem.778

It coarsens the initial instance into smaller ones that779

are generally easier to solve. This is done by putting780

variables into clusters, then using the solution of the781

current level as an initial solution to the next level. At782

any level, the current solution can be extended to the783

original problem instance.784

For the experimental study, we implemented the785

proposed method and four other hyper-heuristics that786

are the Random Hyper-Heuristic, the Choice Func-787

tion Hyper-Heuristic, the Stochastic Choice Function788

Hyper-Heuristic and the original Thompson Sampling789

Hyper-Heuristic. All of these methods have been com-790

bined with the Multilevel framework, and have been791

evaluated on very large instances representing the in-792

dustrial benchmarks of the latest Max-sat competi-793

tions. The obtained results show that the new proposed794

method outperforms all other experimented hyper-795

heuristics.796

In the future, we will try other coarsening meth-797

ods that will merge the variables in a more intelligent798

way by taking into account the instance structure. We799

will also focus on finding other probabilistic learning800

mechanisms that will take into account other feedback801

information and that will capture better the low-level802

heuristics behaviors.803
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