Mourad Lassouaoui
email: lassouaoui.mourad@gmail.com

Dalila Boughaci

Belaid Benhamou

A multilevel synergy Thompson sampling hyper-heuristic for solving Max-SAT

Keywords: Selection hyper-heuristic, Max-SAT, Thompson sampling, choice-function, random, multilevel paradigm

Hyper-heuristics are high-level methods, used to solve various optimization problems. Some of them are capable of learning and adapting their behavior throughout the solving process. Selection hyper-heuristics evaluate low-level heuristics and determine which of them to be applied at a given point in the search process. However, it has been shown that the additive learning process becomes inefficient in hard problems where the probability of fitness improvement is less than 1 2 . Other alternative learning mechanisms have been proposed however they don't take into account the synergy between the low-level heuristics. Moreover they haven't been tested on large NP-hard problems. In this work, we propose a new hyper-heuristic which we called the Multilevel Synergy Thompson Sampling Hyper-Heuristic. The proposed method includes both the probabilistic learning mechanism and the multilevel paradigm. The latter refers to the process of creating hierarchically smaller sub-problems from large problem instances. The proposed hyper-heuristic is applied on very large industrial Max-SAT instances from the latest Max-SAT competition. The numerical results are promising and demonstrate the benefits of our method. The proposed method outperforms the other four types of hyper-heuristics: Random, Choice Function, Stochastic Choice Function and the simple Thompson Sampling Hyper-Heuristics.

Introduction

In practice, several real world optimization prob- 12 Given a set of low-level heuristics, a selection hyper-13 heuristic tries to predict which heuristic is the most 14 suitable to apply at a given point during the search process. Reinforcement learning is a general machine learning technique based on a system of reward and punishment. A reinforcement learning algorithm learns by interacting with its environment and aims to maximize its reward and to minimize its penalty by performing correctly.

A reinforcement learning hyper-heuristic needs to gather information about the performances of lowlevel heuristics to learn their behavior then to predict which one will be the most efficient in the next iteration. The most common hyper-heuristics use simple reinforcement learning mechanisms such as random gradient, greedy, and most importantly, the additive reinforcement learning mechanism such as the well-known choice function.

An additive learning hyper-heuristic, attributes a weight to each low-level heuristic, then increases the weight of the selected heuristic if its application led to an improvement in the candidate solution with respect to a given fitness function, or decreases the weight ISSN 1872-4981/19/$35.00 c 2019 -IOS Press and the authors. All rights reserved otherwise. Recently, authors in [START_REF] Alanazi | Limits to learning in reinforcement learning hyper-heuristics[END_REF] have presented the first theoretical study evaluating the performance of the reinforcement learning mechanisms and compared them to a uniform random selection hyper-heuristic.

This study has shown the limits of the additive reinforcement learning mechanism, then proposed to use Thompson sampling mechanism as an alternative.

In this paper, we discuss how the Thompson sampling mechanism do not take into account the synergy between the low-level heuristics, which is an important feature of any hyper-heuristics. On the other hand, we are interested in solving very large industrial instances from the latest Max-SAT competition.

We propose then, an algorithm that integrates the multilevel paradigm with an adaptive learning selection hyper-heuristic which we called the multilevel Synergy Thompson Sampling Hyper-Heuristic. The multilevel paradigm is an interesting technique that has been used to deal with large instances of different problems. It involves recursive coarsening to create a hierarchy of approximations to the original problem. In the case of Max-SAT, the coarsening phase consists in merging variables together into clusters to create smaller samples from the original instance for each level. At the coarsest level, an initial solution is computed, and then iteratively refined at each level, coarsest to finest, using a search algorithm [START_REF] Walshaw | Multilevel refinement for combinatorial optimization: Boosting metaheuristic performanceIn[END_REF].

In the rest of the paper, we summarize in Section 2, the maximum satisfiability problem (Max-SAT), the hyper-heuristics, the proposition of Alanazi [START_REF] Alanazi | Limits to learning in reinforcement learning hyper-heuristics[END_REF] regarding the limits of additive learning hyper-heuristics, the simple Thompson Sampling Hyper-Heuristic and the multilevel paradigm. In Section 3 we explain the components of our approach. Section 4 exposes and discusses the experimental results. Finally, we conclude the work in Section 5 and give some research perspectives.

State of the art

The maximum satisfiability problem (Max-SAT) has a central importance in various areas of computer science, including theoretical computer science, artificial intelligence, optimization, hardware design and verification.

Max-SAT

An instance of the satisfiability problem (SAT) is a propositional formula in a conjunctive normal form (CNF). Given a set of N Boolean variables, A CNF formula F is the conjunction of M clauses. Each clause is a disjunction of r literals representing its length. A literal is a Boolean variable that occurs in its positive or negative form.

F = M ∧ i=1 C i where C i = r ∨ i=1 l j , l j = x j ¬x j , j = 1..N
The SAT problem is to decide whether an assign-80 ment of truth values to the N variables, such that all the 81 clauses of F are simultaneously satisfied exists or not. 82 It is known in complexity theory that SAT is the canon-83 ical NP-complete problem [START_REF] Cook | The complexity of theorem proving procedures[END_REF]. The maximum satis-84 fiability problem (Max-SAT) is an optimization vari-85 ant of SAT. It requires a variable truth assignment that 86 maximizes the number of satisfied clauses of F . It has 87 been proven to be a NP-hard problem, even when each 88 clause has no more than two literals, while SAT with 89 two literals per clause can be solved in polynomial 90 time. Various exact and non-exact methods have been 91 developed to address the Max-SAT problem.

92

Because of their exponential complexity, the ex-93 act methods can be applied only on small instances. 94 Among the well-known methods for SAT, the method 95 SATO [START_REF] Zhang | An efficient propositional prover[END_REF], the solver Satz [START_REF] Li | Heuristics based on unit propagation for satisfiability problems[END_REF], the method Chaff [START_REF] Moskewicz | Chaff: Engineering an efficient SAT solver[END_REF] 96 that are all SAT solvers based on the Davis Putnam 97 method [START_REF] Davis | A machine program for theorem-proving[END_REF]. There are also exact methods such as 98 the Branch and Bound algorithms [START_REF] Alsinet | Improved exact solvers for weighted max-SAT[END_REF][START_REF] Mneimneh | A branch-and-bound algorithm for extracting smallest minimal unsatisfiable formulas[END_REF], the Max-99 Solver [START_REF] Xing | MaxSolver: An efficient exact algorithm for (Weighted) maximum satisfiability[END_REF], and the method MiniMaxSat [START_REF] Heras | MiniMaxSat: A new weighted max-SAT solver[END_REF] that are 100 used to solve the optimization variant Max-SAT 101 On the other hand, approximation methods (or non-102 exact methods) make a local exploration in the search 103 space. They can tackle large Max-SAT instances and 104 could find good solutions in a reasonable time. Among 105 them, we can find the local search and metaheuristic 106 methods such as: the CCLS: an efficient local search 107 algorithm [START_REF] Luo | CCLS: An efficient local search algorithm for weighted maximum satisfiability[END_REF], the GSAT procedure [START_REF] Selman | A new method for solving hard satisfiability problems[END_REF], the sim-108 ulated annealing [START_REF] Hansen | Algorithms for the maximum satisfiability problem[END_REF], the WALKSAT method [START_REF] Selman | Noise strategies for improving local search[END_REF], 109 the scatter search algorithm [17], the genetic algo-110 rithm [17][START_REF] Boughaci | IGA: An improved ge-874 netic algorithm for MAX-SAT problems[END_REF][START_REF] Hao | Evolutionary computing for[END_REF] nism can be random or exhaustive [START_REF] Burke | Hyper-heuristics: A survey of the state of the art[END_REF]. In this case the 164 selection mechanism does not benefit from the feed-165 back that can be collected during the search phase.

166

To improve the performances of hyper-heuristics, two 167 types of learning mechanisms can be used: on-line 168 or off-line learning. In the on-line case, the hyper-169 heuristic uses feedback information to learn while solving the problem. In the off-line learning case, it trains first to get information from the considered problem (under resolution) that could be used to solve unseen instances of the problem.

For example, we can cite the work given in [START_REF] Shi | An asynchronous reinforcement learning hyper-heuristic algorithm for flow shop problem[END_REF] which is based on a multi-agent system where a hyperheuristic agent manages the low-level heuristic agents by using a reinforcement learning mechanism. The system was applied on the flow shop problem. In [START_REF] Choong | Automatic design of hyperheuristic based on reinforcement learning[END_REF], authors propose a method based on Q-learning to automatically design the high-level heuristic of a hyperheuristic model. In [START_REF] Ferreira | A multi-armed bandit selection strategy for hyper-heuristics[END_REF], a deterministic learning selection strategy based on the Multi-Armed Bandit problem is used. It has been implemented using the HyFlex framework.

In our work, we are interested in selective-perturbative hyper-heuristics with an on-line learning mechanism.

The architecture of a selective-perturbative hyper-heuristic

A selective hyper-heuristic is composed of two modules: a selection module and a move acceptance module. The selection module chooses which low-level heuristic will be called in the next iteration. Such selection could be done randomly or by using a learning mechanism. The acceptance module decides whether the current solution will be accepted or not. This decision can be deterministic (all moves will be accepted [START_REF] Cowling | A hyperheuristic ap-805 proach to scheduling a sales summit[END_REF], only improvement moves are accepted [START_REF] Lassouaoui | A choice function hyper-heuristic for the winner determination problem[END_REF][START_REF] Lassouaoui | A multilevel hyper-heuristic for solving max-SAT[END_REF]) or non-deterministic (Monte Carlo move acceptance [START_REF] Burke | Monte carlo hyperheuristics for examination timetabling[END_REF] simulated annealing [START_REF] Bai | An investigation of automated planograms using a simulated annealing based hyper-heuristic[END_REF], . . .). For more details about the selection strategies and move acceptance module, the reader could refer to [START_REF] Burke | Hyper-heuristics: A survey of the state of the art[END_REF].

The hyper-heuristic process works as follows: given an instance of a problem, the selection module picks an adequate low-level heuristic according to a given strategy at each iteration. Then, the acceptance module decides whether to accept or reject the solution returned by the low-level heuristic. The process continues until the termination criterion is met. The hyper-heuristic process is depicted in Fig. 1. One of the well-known selection strategies is the Choice-Function method.

The choice function selection strategy

The Choice function is a score based selection strategy that uses on-line learning to decide which lowlevel heuristic to be called for the next execution. It measures the effectiveness of the low-level heuristics The modified score based choice-function is described 223 in [START_REF] Drake | A modified choice function hyper-heuristic controlling unary and binary operators[END_REF] as follows:

224 ∀i, g 1 (h i) = n φ n-1 I n (h i) T n (h i) ∀i, g 2 (h ID , h i) = n φ n-1 I n (h ID , h i) T n (h ID , h i) ∀i, g 3 (h i) = elapsed Time(h i) ∀i, score(h i) = φg 1 (h i) + φg 2 (h ID , h i) +δg 3 (h i)
where h i is a low-level heuristic and h ID is the last low-level heuristic recently launched. I n (h i) (respectively, I n (h ID , h i)) represents the change in the evaluation function after the n th execution of the heuristic h i (respectively, n th execution of the heuristic h i after h ID). T n (h i) (respectively, T n (h ID , h i)) represents the execution time of the heuristic h i after his n th call (respectively, the execution time of the n th call of h i following h ID). The value of φ depends on the performances of the low-level heuristics during the search process. If there is an improvement, then φ receives it's maximum value (0.99), otherwise, it takes the maximum between φ -0.01 and 0.01. δ is closely related to φ. its value is defined by the following equation:

φ t = 0.99 if improvement max{φ t-1 -0.01, 0.01} otherwise and δ t = 1 -φ t .

Additive reinforcement learning hyper-heuristics behavior and Thompson sampling

The reinforcement learning mechanisms iteratively choose the appropriate heuristic by trial and error interactions with the search space. Each low-level heuristic is associated with a weight, initially the same. The adaptation module, determine how the weights should be updated. The additive weights adaptation scheme is the most frequently used one. If the selected lowlevel heuristic improves the solution, its weight is increased by a certain value; otherwise, the weight is decreased. An example is the choice-function mechanism described above. Among recent works using choice function mechanism we can cite: [START_REF] Pour | A choice function hyperheuristic framework for the allocation of maintenance tasks in danish railways[END_REF] where a choice function hyper-heuristic has been applied on the allocation of maintenance tasks problem in Danish railways. In [START_REF] Choong | An artificial bee colony algorithm with a modified choice function for the traveling salesman problem[END_REF][START_REF] Choong | An artificial bee colony algorithm with a modified choice function for the traveling salesman problem[END_REF] an artificial bee colony algorithm is combined with a modified choice function for the traveling salesman problem. In [START_REF] Din | A parameter free choice function based hyper-heuristic strategy for pairwise test generation[END_REF] a hyper-heuristic with a parameter free choice function strategy has been applied on pairwise test generation. In [START_REF] Drake | Modified choice function heuristic selection for the multidimensional knapsack problem[END_REF] a modified choice function heuristic selection strategy has been proposed for the multidimensional knapsack problem. In [START_REF] Chifu | Choice function-based constructive hyper-heuristic for generating personalized healthy menu recommendations[END_REF], a Choice Function-based Constructive Hyper-Heuristic is used for generating personalized healthy menu recommendations.

In [START_REF] Alanazi | Limits to learning in reinforcement learning hyper-heuristics[END_REF], the limitations of learning in additive reinforcement learning hyper-heuristics are shown. They have proven theoretically that if the success probabilities of the low-level heuristics are less than 1 2 , then these hyper-heuristics will have the same performance as a simple random mechanism. In their experimental analysis, an additive learning mechanism on the Since the additive learning mechanism is not efficient in these cases, [START_REF] Alanazi | Adaptive thompson sampling for hyper-heuristics[END_REF] propose using a probabilistic selection approach called Thompson sampling.

The Thompson sampling hyper-heuristic

In 1933, Thompson introduced a reinforcement learning mechanism for the multi-armed bandit problem referred to as Thompson sampling [START_REF] Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF].

Despite the fact that it was absent from the artificial intelligence literature, recently it has attracted considerable interest. Several studies have empirically demonstrated the efficiency of Thompson sampling [START_REF] Granmo | Solving two-armed bernoulli bandit problems using a bayesian learning automaton[END_REF][START_REF] Scott | A modern bayesian look at the multi-armed bandit[END_REF][START_REF] May | Simulation studies in optimistic bayesian 1069 sampling in contextual-bandit problems[END_REF][START_REF] Agrawal | Further optimal regret bounds for 1072 thompson sampling[END_REF]. It has also been successfully applied to several real-world problems [START_REF] Chapelle | An empirical evaluation of thompson sam-1076 pling[END_REF][START_REF] Graepel | Web-scale 1080 bayesian click-through rate prediction for sponsored search 1081 advertising in microsoft's bing search engine[END_REF][START_REF] Tang | Automatic ad for-1086 mat selection via contextual bandits[END_REF].

As shown in Algorithm 1, Thompson sampling is a reinforcement learning mechanism that uses probabilities to predict the most suitable heuristic to be called. It also uses a sliding time window to adapt its behavior according to recent observations about the performance of the low-level heuristics. This enables to discard past and potentially irrelevant observations.

In this case, the low-level heuristics are divided into two sets: MU (mutation heuristics) and LS (simple local search heuristics). The hyper-heuristic chooses a heuristic from the MU set then chooses a heuristic from LS set at each iteration. Apply the heuristic h i on S to obtain new solution S with a quality F 13:

Apply the heuristic h j on S to obtain new solution S with a quality F 14:

if F > F then 15: (GPP) [START_REF] Hendrickson | A multi-level algorithm for parti-1091 tioning graphs[END_REF][START_REF] Karypis | Analysis of multilevel graph partition-1095 ing[END_REF]. This method has proven to be very ef- (TSP) [START_REF] Walshaw | A multilevel approach to the traveling salesman 1099 problem[END_REF], the graph coloring problem (GCP) [START_REF] Walshaw | A multilevel approach to the graph colouring 1101 problem[END_REF], the 335 vehicles routing problem (VRP) [START_REF] Rodney | Multilevel refinement for 1104 the vehicle routing problem[END_REF], or the clustering 336 problem [START_REF] Bouhmala | A multilevel genetic algorithm for the cluster-1108 ing problem[END_REF]. It has also been used to solve the SAT 337 problem [START_REF] Bouhmala | A multilevel memetic algorithm for large sat-1111 encoded problems[END_REF] then the Max-SAT problem [START_REF] Lassouaoui | A multilevel hyper-heuristic for solving max-SAT[END_REF][START_REF] Bouhmala | A variable neighborhood walksat-based algo-1113 rithm for MAX-SAT problems[END_REF][START_REF] Bouhmala | A multilevel learning automata for MAX-SAT[END_REF].

α i (t+1) := α i (t) + 1 16: α j (t+1) := α j (t) + 1 17: else 18: β i (t+1) := β i (t) + 1 19: β j (t+1) := β j (t

338

The multilevel paradigm goes through three phases, as 339 shown in Fig. 2. In this step, a hierarchical sequence of progressively 342 smaller problems P 0 , P 1 , P 2 , . . . , P L is defined, where 343 P i is a coarser approximation of P i-1 . Thus, the orig-344 inal problem is successively shrunk until the size of the smallest problem falls below a certain coarsening threshold. There is no general coarsening strategy; it depends mainly on the nature of the problem. For example, in the graph partitioning problem, most of the proposed multilevel methods use a progressive and uniform reduction. It is generally based on merging groups of variables into one cluster for the next level. The coarsening phase seems to hold three principles [START_REF] Walshaw | Multilevel refinement for combinatorial optimization: Boosting metaheuristic performanceIn[END_REF]:

-A solution (even if it is not the optimal one) found in any of the coarsened spaces could simply be extended through all the problem levels to form a solution of the original problem. This requirement ensures that the coarsening is truly filtering the solution space.

-The number of levels in the coarsening phase does not need to be determined beforehand, however the coarsening should cease when any further iteration would render the initialization degenerate. -Any solution in a coarsened space should have the same cost with respect to the objective function as its extension to the original space. This principal ensures that the coarsening algorithm samples the solution space without altering it. In this case we say that the coarsening is exact.

The initialization phase

The initial phase is very simple. It produces an initial solution of P L (the problem at the coarsest level). This could be done using a simple random assignment or a specific heuristic. 3. In this case, the complexity of the coarsening algorithm is log 2 N , N being the number of variables. These clusters are then used to define a coarser and smaller sample of the problem in the next iteration as shown in Fig. 4. The remaining variables that have not been merged are simply copied to the next level. Merging more than two variables at once, results in a too fast coarsening and lower quality samples. This coarsening technique is exact: indeed, at any stage after initialization the current solution could simply be extended to form a legitimate solution of the original problem, with the same cost (see the extension and refinement phase of Fig. 7).

The initialization process

The search process starts by computing an initial solution at the coarsest level. The truth/false values will be assigned randomly to the clusters. As a cluster represents one variable, to compute the cost of a solution, all the variables that compose the cluster will be assigned the same value.

The extension process

When going from one level to another, the extension strategy should guarantee that the number of satisfied clauses by the solution will remain the same before and after the extension. The extension algorithm being the reverse procedure of the coarsening, it splits //Extend problem and project previous level's solution 12:

Sstart (P Level-1) = Extend (S f inal , P Level); 13:

//Refine the initial solution (call the hyper-heuristic platform) 14:

S f inal (P Level-1) = STS-HH (Sstart, P Level-1); 15:

Level = Level -1; 16: end while

The components of the SyTS-HH

The proposed hyper-heuristic uses the method of solution acceptance based on the all moves acceptance strategy. In the following we explain how a solution is represented, how the fitness is calculated, then discuss the low-level heuristics that we use and finally describe the Synergy Thompson Sampling process.

The solution representation

A solution is represented as a vector X with size n. Each element X i receives the value 0 (False) or 1 (True). X represents an assignment of truth values to the n Boolean variables of the Max-SAT instance.

The objective function

The quality of a solution (fitness) is measured by using an objective function. In the Max-SAT problem, it consists in maximizing the number of satisfied clauses of the considered instance. The goal of a search method is to find an assignment to the variables that maximizes the number of satisfied clauses. Given a solution X, the objective function f that we want to maximize is expressed as follows:

f (X) = n i=0 C i , Where the clause C i =    1 when C i is satisfied 0 otherwise.

The low-level heuristics for Max-SAT

Six perturbative low-level heuristics are used in this paper. We have chosen some of the best state of the art Max-SAT search methods. After each execution, the selected low-level heuristic returns the solution found to the hyper-heuristic. We give in the following a concise description of each of the considered low-level heuristics.

-The heuristic h 1 : GSAT [START_REF] Selman | A new method for solving hard satisfiability problems[END_REF].

This method chooses to flip the variable with the highest net gain (the number of satisfied clauses minus the number of unsatisfied clauses if the variable will be flipped). In the case of having many variables with the highest net gain, we choose one randomly.

-The heuristic h 2 : HSAT [START_REF] Gent | Towards an understanding of hill-climbing 1118 procedures for SAT[END_REF]. This algorithm is similar to GSAT. However, in the case of having many variables with the highest net gain, we choose the oldest one (the variable's age represents the number of iterations spent since the last time it was flipped). -The heuristic h 3 : SLS [17] it is the stochastic local search method, which explores the neighborhood of a candidate solution with three strategies managed by two walking probabilities.

-The heuristic h 4 : WalkSat [START_REF] Selman | Noise strategies for improving local search[END_REF] It's an algorithm that starts by choosing randomly an unsatisfied clause. If there is a variable with negative gain equals 0 in the selected clause, then this variable is flipped. The negative gain of a variable is the number of clauses that will be broken if the variable is flipped. It means that the said clause can be satisfied without breaking another clause. If no such variable exists, then depending on the walk probability, the variable with the minimum negative gain is selected or a variable is simply picked randomly from this clause.

-The heuristic h 5 : Novelty [21] In Novelty, after choosing a broken clause, the variable to be flipped is selected as follow. If the variable with the highest net gain does not have the minimum age among the other variables within the selected clause, it is always selected. Otherwise, it is only selected with the probability 518 1 -p, else the variable with the next lower net 519 gain is selected.

520

-The heuristic h 6 : VNS [START_REF] Mladenović | Variable neighborhood search[END_REF] 521

The variable neighborhood search (VNS) is a 522 metaheuristic that explores several neighborhoods 523 for better diversification, and uses a local search 524 for the intensification. The VNS starts by defining 525 a set of neighborhood structures N 1 , N 2 , . . . , N k 526 that will be explored during the search. Starting 527 with an initial solution, VNS calls a local search 528 method to explore the first neighborhood N 1 of 529 the said solution. If the solution is improved, then 530 the same neighborhood is further explored with 531 the local search method, otherwise, VNS switches 532 to the next neighborhood N 2 , and so on. In VNS, 533 a solution is only accepted if there is an improve-534 ment in the fitness function. and has two positive parameters α and β that control the shape of the distribution. For example, to predict the success of an experiment, we sample a random variable x from it's beta distribution where the parameter α represents the number of successes from previous experiments and β represents the number of failures. In this case, the Beta distribution is used to understand the synergy between two low-level heuristics i and j, by learning the behavior of the sequence within a certain window throughout the execution. In order to do that, to each combination of heuristics (i, j), we will assign a beta distribution Beta(α

(t) ij , β (t) ij). At iteration (t), the α (t)
ij parameter is increased in the case of success. Otherwise, the β (t) ij parameter is increased. By success we mean an improvement of the fitness function after the execution of the sequence heuristic i then heuristic j.

By doing that, the beta distribution will capture (approximately) the behavior of the sequence (i, j). In this case, knowing that in the current iteration the heuristic i was called, we can predict the success of the heuristic j by sampling a random variable from the distribution called the utility score U ij . We can say that the utility score represents the potential score of success of the sequence (i, j), when the heuristic i was previously called. The couples (α ij , β ij) are stored in a matrix (L*L), where L is the number of the low-level heuristics. In our case, we do not need to split the lowlevel heuristics into two sets as it has been done in algorithm 1, since we will be using well known state of the art Max-SAT metaheuristics instead of simple mutation and local search methods.

As shown in Algorithm 3, first, a heuristic i is chosen randomly. Then, to select the low-level heuristic that will be used in the next execution, utility scores are sampled from the beta distributions of (i, j), ∀ j ∈ [1, L]. The heuristic j with the maximum utility score is then selected. After the call of heuristic j, the α (t+1) ij and β (t+1) ij are updated: when the selected heuristic improves the quality of the candidate solution, the Alpha of its associated Beta distribution is increased, otherwise, the Beta parameter is increased.

After that, the heuristic j becomes the heuristic i of the next iteration and so on. This allows to implicitly aim for the best sequence of all the low-level heuristics at each stage of the search. In our case, the all moves 591 acceptance strategy is used. The Thompson sampling 592 mechanisms are used with a sliding time-window to 593 only keep recent and potentially relevant observations 594 about the behaviors of the low-level heuristics. The 595 sliding time-window has a size w iterations and re-596 spects the First in/First out principle. The size w is a 597 parameter of the algorithm and it should be tuned cor-598 rectly. If w is too large it may include irrelevant in-599 formation, however if it is too small, the observations 600 kept may not be sufficient to capture the behavior of 601 the low-level heuristics. In the algorithm, at each iter-602 ation, the beta distributions changes need to be kept in 603 order to update the beta distributions when it is sliding. 604 Algorithm 3 The SyTS-HH. Require: a Max-SAT instance, a set H of m low-level heuristics, the maxiter parameter, the sliding window w ∈ N. Ensure: a solution S.

1: Generate an initial random solution S having a quality F . 2: t := 0;

3: ∀i, j ∈ [m], set the parameters α (0) ij := 1, and β (0)
ij := 1 4: ∀i, j ∈ [m], let U (0)
ij the utility score of the sequence of the low-level heuristics i, j 5: h i := a random low-level heuristic from H 6: Apply the heuristic h i on S, and update the candidate solution (S) with quality (F). 7: while (t < maxiter) do 8:

//heuristic selection Method

9: ∀j ∈ [m], Sample U (t) ij from Beta(α (t) ij , β (t)
ij) 10:

h j := a low-level heuristic with the maximum utility score

U (t) ij 11:
Apply the heuristic h j on S to obtain new solution S with a quality F 12:

if F > F then 13:

α (t+1) ij := α (t) ij + 1 14: else 15: β (t+1) ij := β (t) ij + 1 16: end if 17:
if t w then 18:

-∀j ∈ [m] if at iteration (t -w), h j has been called after the heuristic h i and improved the solution, then α

(t+1) ij := α (t+1) ij - 1 19:
-∀i ∈ [m] if at iteration (t -w), h i has been called after the heuristic h i and not improved the solution, then β We have implemented five variants of the hyperheuristics for the Max-SAT problem corresponding to five different selection strategies:

(t+1) ij := β (t+1) ij - 1
-Random (R-HH): corresponding to the simple random strategy.

-Choice-function (CF-HH): corresponding to the choice function described above.

-Stochastic choice-function (SCF-HH): is a combination between the random strategy and the choice function strategy [START_REF] Lassouaoui | A choice function hyper-heuristic for the winner determination problem[END_REF][START_REF] Boughaci | Stochastic hyper-heuristic for the 1124 winner determination problem in combinatorial auctions[END_REF].

-Tompson Sampling (TS-HH): corresponding to the original method described above.

-Synergy Thompson Sampling (SyTS-HH): corresponding to our method.

Due to the non-deterministic nature of the proposed methods, 10 runs have been considered for each instance and for each method. Also, an empirical study has been conducted to fix the parameters values. The coarsening phase of the multilevel paradigm will stop when reaching a level with 500 clusters.

-For the TS-HH and the SyTS-HH there is only one parameter which is the size of the sliding window w. It has been fixed to 30.

-For the CF-HH, there are two parameters: φ starts with the value 0.99, and it changes according to the search performance, whilst δ, its value depends on φ, as described in Section 2.3.

-For the SCF-HH, in addition to the φ and δ parameters, it has also a walk probability (wp) that is fixed to 0.3.

There are other parameters which concerns the lowlevel heuristics:

-Walksat: The walk probability W = 0.

647

In the following, we give the numerical results found 648 by the implemented methods. The effectiveness of the multilevel paradigm has 651 been proven several times as previously discussed in 652 Section 2.6. To further investigate the impact of the 653 multilevel paradigm, we have selected The TS-HH and 654 we have chosen the largest ten instances from the Max-655 SAT competition industrial benchmarks. The results 656 in Table 1 indicate that the ML-TS-HH is more ro-657 bust than the simple TS-HH. The results reported in 658 Table 1 represent the number of not satisfied clauses. 659 From Fig. 8, we can see that the larger the instance, 660 the bigger the difference. This can be explained by the 661 fact that the multilevel approach successively approx-662 imates the problem with smaller, and hence easier to 663 solve, versions. The coarsening algorithm filters the so-664 lution space by placing restrictions on solutions which 665 the refinement algorithm can visit. Flipping the value 666 of one cluster in a coarsened space is equivalent to 667 changing the values of several variables in the origi-668 nal solution space. This allows exploring efficiently the 669 search space with a good balance between diversifica-670 tion, by visiting different regions, and intensification, 671 by exploiting the solutions from previous levels in or-672 der to reach better solutions. When reaching the level 673 0 (the original instance), the search starts with an ini-674 tial solution of a good quality, which usually helps the 675 search method to get closer to the global optimum.

Table 2 The results of the four methods on some Max-SAT 2016 benchmarks The ML-TS-HH performed better than the ML-CF-

708

HH. This shows that the probabilistic selection strategy 709 outperforms the additive learning mechanism. How-710 ever, the ML-SCF-HH is better than the ML-TS-HH.

711

We can say in this case, that the stochastic mechanism really improves the additive learning selection strategy, that takes into account the synergy between the low-level heuristics. On the other hand the Thompson sampling selection method is based on the individual performances of the low-level heuristics.

Finally, the experimental results indicate that the ML-SyTS-HH is the most robust among all five experimented hyper-heuristics. In our opinion, this is mainly due to the fact of having an adaptive probabilistic selection strategy and on the other hand to the fact of taking into account the synergy between the low-level heuristics. This confirms the fact that cooperation can allow the weaknesses of one low-level heuristic to be compensated by the strengths of another.

ANOVA statistical analysis

To show statistically the significance of our results, we used the ANOVA (Analysis of variance) statistical tool. Table 5 presents the results of the ten ANOVA tests where the column df represents the degree of freedom, the column SS represents the Sum of squares, the column MS represents the mean square, the F-value represents the F-statistic, and the P -value in bold font expresses the interpretation and result analysis. The Pvalue is lower than 0.05 in all of the ten tests. This indicates that the values produced by the five methods are highly significantly different one from another. This means that our proposed hyper heuristic is statistically better than the other methods and confirms the conclusions drawn from Table 4.

Conclusion

In this paper, we proposed a new hyper-heuristic that combines the multilevel paradigm and a modified Thompson Sampling selection strategy that takes into account the synergy between the different lowlevel heuristics. This method is called the Multilevel Synergy Thompson Sampling Hyper-Heuristic (ML-SyTS-HH) and it has been applied to solve the Max-SAT problem. The set of perturbative low-level heuristics used in this work, contains some of the best stateof-the-art Max-Sat heuristics such as: GSAT, Walksat, HSAT, SLS, VNS and Novelty methods.

The work presented in [START_REF] Alanazi | Limits to learning in reinforcement learning hyper-heuristics[END_REF] has shown the limitations of the additive learning mechanism such as choice function, especially when the probability of success is less than 1 2 . The Thompson Sampling Hyper-Heuristic has been proposed as an alternative and has been tested

2

 lems are difficult to solve and most of them are "NP-3 hard". Due to their exponential nature, exact algo-4 rithms fail to solve them efficiently. In this case, an-5 other category of methods is used: inexact algorithms 6 which include heuristics, metaheuristics and hyper-7 heuristics. Hyper-heuristics are problem independent 8 high level methods that create a collaboration between 9 different search methods in order to fill the weaknesses 10 of each other. The term hyper-heuristic was first intro-11 duced by Cowling et al. [1].

Fig. 1 .

 1 Fig. 1. The architecture of a hyper-heuristic [36].

 222

 HyFlex framework has been implemented then applied on the bin-packing problem and the permutation flowshop problem. The results show that the estimated success probabilities of the low-level heuristics are in fact much smaller than a half, and consequently, both the additive reinforcement learning hyper-heuristic and the simple random hyper-heuristic have asymptotically the same behavior. This shows that additive reinforcement learning mechanisms are not necessarily capable of distinguishing between the performances of the heuristics, in other words, they don't adapt themselves to cope with the dynamic change in the success probabilities of low-level heuristics.

Fig. 2 .

 2 Fig. 2. The multilevel process.

324 2 . 6 .

 26 The multilevel paradigm 325 The multilevel paradigm is inspired from the multi-326 grid methods used in physics since the 1970's to 327 solve differential equations. This method has been ap-328 plied essentially on the graph partitioning problem 329

 330 ficient and has replaced the spectral methods used in 331 GPP in 1990's. In early 2000, Chris Walshaw used the 332 multilevel paradigm on other combinatorial optimiza-333 tion problems such as the traveling salesman problem

 334

340 2 . 6 . 1 .

 261 The coarsening phase 341

Fig. 3 .

 3 Fig. 3. The coarsening phase.

Fig. 4 .

 4 Fig. 4. Illustration of the coarsening phase.

2. 6 . 3 .-- 3 . 1 .

 6331 The extension and refinement phase 376 This phase is an iterated combination of two steps: 377 The extension step: The extension algorithm is the 378 unversed process of the coarsening algorithm. It 379 extends the solution found at the previous level 380 to give an initial solution to the problem at the 381 current level. 382 The refinement step: builds a better solution from 383 the initial one at each level. It can be a simple 384 local search or a more sophisticated heuristic or 385 metaheuristic. In this paper, we have used a hyper-The multilevel synergy thompson sampling 388 hyper-heuristic 389 In the following, we introduce our method called 390 the Multilevel Synergy Thompson Sampling Hyper-391 Heuristic (ML-SyTS-HH). We first describe the mul-392 tilevel (ML) framework. Then we detail the Synergy 393 Thompson Sampling Hyper-Heuristic (SyTS-HH) The coarsening process 399 In the coarsening phase, the algorithm reduces 400 the problem size recursively until reaching a desired 401 threshold. In the case of a SAT problem instance, the algorithm merges pairs of variables chosen randomly to create what we call clusters, which reduces the size of the problem by half at each iteration, as illustrated in Fig.

Fig. 5 .

 5 Fig. 5. Illustration of the initialization phase. up each cluster into the clusters that compose it and 432

433 3 . 1 . 4 .Algorithm 2 1 :

 31421 The refinement process 434 At each generated level, after the extension process, 435 the refinement algorithm is applied to search the best 436 solution for the problem sample corresponding to the 437 current level. In this paper, we have used the Synergy 438 Thompson Sampling that we describe later (for the 439 refinement). In the coarse levels, the hyper-heuristic 440 works on smaller and easier versions of the initial prob-441 lems until reaching level 0. We had to make a few ad-442 justments to the hyper-heuristic to make it deal with 443 the clusters directly instead of the variables. Algo-444 rithm 2 shows how SyTS-HH is integrated in the mul-445 tilevel framework. The main benefit of the multilevel 446 paradigm is that, when going through the lower levels, 447 it guides the search to a very promising area. When the 448 original level (level 0) is reached, the initial solution 449 is one of very good quality. In this case, in order to 450 keep this advantage, the intensification/diversification 451 mechanisms are managed by the low-level heuristics. 452 The ML-SyTS-HH. Require: a problem P 0 , a maximum of level L. Level = 0; 2: //Coarsening Phase 3: while (Level < L) do 4: P level+1 = Coarsen (P level); 5: Level = Level + 1; 6: end while 7: //Initialization Phase 8: S L = Initial Solution (P L); 9: //Extension and refinement Phase 10: while (Level > 0) do 11:

Fig. 6 .

 6 Fig. 6. An example of the extend/refine phase.

Fig. 7 .

 7 Fig. 7. The extension and refinement phase.

535 3 . 2 . 4 .

 324 The synergy thompson sampling 536 hyper-heuristic 537 The SyTS-HH has a probabilistic learning approach 538 to handle the set of perturbative heuristics described 539 above, to solve the considered Max-SAT problem. It uses the historical performances of the low-level heuristics to update its learning mechanism based on the Beta probability law. The Beta probability law is usually used to model the uncertainty about the probability of success of an experiment. It is a continuous probability distribution defined on the interval [0, 1],

649 4 . 1 . 1 .

 411 TS-HH VS ML-TS-HH650

Fig. 8 .

 8 Fig. 8. ML-TS-HH vs TS-HH.

Fig. 9 .

 9 Fig. 9. Box-plot of the four methods on Max-SAT 2016 benchmarks.

 707

 , the GASAT algorithm[20], the nov-111 elty method [21], the adaptnovelty method [22], the 112 guided local search method [23], the tabu search 113 algorithm [24,25], the G2wSAT method [26], the 114 memetic algorithm [27,28], and the variable neighbor-115 hood search (VNS) based Genetic algorithm[29]. heuristic can be viewed as a non-exact 117 method that makes several metaheuristics and/or spe-118 cific heuristic algorithms interact with each other. To 119 our knowledge, hyper-heuristics have not been tested 120 on the large industrial Max-SAT instances. solution and tries to complete it at each step. On the

	158	
	159	other hand, a perturbative low-level heuristic starts
	160	with a complete initial solution and tries to find better
	161	ones by improving it during the search process.
	162	Hyper-heuristics with or without a learning mecha-
	163	nism. Hyper-heuristics that do not use learning mecha-

116

A hyper-

 during the search process. In the case of suc-301 cess, meaning the low-level heuristic has improved the 302 best solution found with respect to the objective func-303 tion, α called utility score 306 is drawn from the beta distribution of each low-level 307 heuristic. The one with the maximum utility score is 308 then selected. The hyper-heuristic only keeps the ob-309 servations about the low-level heuristics in the last w 310 iterations.

) + 1
	20:	end if	
	21:	if t w then	
	22:	-∀i ∈ [m] if at iteration (t -w), h i has been called then
		improved the solution, then
		α i	(t+1) := α i	(t+1) -1
	23:	-∀i ∈ [m] if at iteration (t -w), h i has been called then
		not improved the solution, then
		β i	(t+1) := β i	(t+1) -1
	24:	end if	
	25:	//the acceptance method.
	26:	if (f (S) f (S)) then
	27:	S := S ; F := F ;
	28:	end if	
	29: end while	
	30: return the best solution found.
		(t) i	is incremented, β	(t) i	is incremented other-304
	wise. In order to select the next low-level heuristic to 305 (t) be called, a random variable U i

updated 311

The Thompson Sampling Hyper-Heuristic focuses 312 on choosing, at each iteration, the low-level heuristic 313

 3, -SLS: The walk probabilities of the low-level 642 heuristic SLS are: WALK1= 0.3 and WALK2=0.6, 643 -VNS: The number of neighborhoods k is fixed to 644 10, The walk probability W = 0.4.

	646
	4.1. The obtained results

645

-Novelty:

Table 4

 4 Statistical summary on Max-SAT 2016 'benchmarks (a-b)

	Methods	Min	1st. Qu	Median	Mean	3rd Qu	Max
	ML-SyTS-HH 99.4823% 99.8506% 99.9353% 99.8987% 99.9802% 99.9993%
	ML-TS-HH	99.3651% 99.785%	99.8693% 99.8378% 99.9641% 99.9985%
	ML-SCF-HH	99.448%	99.7924% 99.9128% 99.8543% 99.9699% 99.9989%
	ML-CF-HH	99.448%	99.7739% 99.9076% 99.8369% 99.9690% 99.9985%
	ML-R-HH	96.6631% 99.7574% 99.9002% 99.7218% 99.9687% 99.9985%

Table 5

 5

	ANOVA test for the five hyper-heuristics		
	Hyper-heuristic methods	df	SS	MS	F -value	P -value
	ML-R-HH Vs ML-CF-HH	1	9.61e+10	9.61e+10	27.07	3.52e-6
	ML-R-HH Vs ML-SCF-HH	1	8.157e+10 8.157e+10	21.27	2.71e-5
	ML-R-HH Vs ML-TS-HH	1	7.566e+10 7.566e+10	19.15	5.99e-5
	ML-R-HH Vs ML-SyTS-HH	1	4.225e+10 4.225e+10	9.174	3.85e-3
	ML-CF-HH Vs ML-SCF-HH	1	1.406e+9	1.406e+9	975.06	< 2.0e-16
	ML-CF-HH Vs ML-TS-HH	1	1.074e+9	1.074e+9	134.80	6.21e-16
	ML-CF-HH Vs ML-SyTS-HH	1	1.316e+9	1.316e+9	409.00	< 2.0e-16
	ML-SCF-HH Vs ML-TS-HH	1	1.137e+9	1.137e+9	127.10	1.84e-15
	ML-SCF-HH Vs ML-SyTS-HH	1	1.428e+9	1.428e+9	442.70	< 2.0e-16
	ML-TS-HH Vs ML-SyTS-HH	1	2.028e+9	2.028e+9	138.30	3.85e-16

M. Lassouaoui et al. / A multilevel synergy Thompson sampling hyper-heuristic for solving Max-SAT

File: idt-1-idt180036.tex; BOKCTP/xhs p. 12