Donsker's theorem in {Wasserstein}-1 distance - Archive ouverte HAL
Journal Articles Electronic Communications in Probability Year : 2020

Donsker's theorem in {Wasserstein}-1 distance

Abstract

We compute the Wassertein-1 (or Kantorovitch-Rubinstein) distance between a random walk in $R^d$ and the Brownian motion. The proof is based on a new estimate of the Lipschitz modulus of the solution of the Stein's equation. As an application, we can evaluate the rate of convergence towards the local time at 0 of the Brownian motion.
Fichier principal
Vignette du fichier
donskerLipschitz.pdf (180.03 Ko) Télécharger le fichier
lipschitz_slides.pdf (1.72 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02098892 , version 1 (13-04-2019)

Identifiers

Cite

Laure Coutin, Laurent Decreusefond. Donsker's theorem in {Wasserstein}-1 distance. Electronic Communications in Probability, 2020, 25, pp.1--13. ⟨hal-02098892⟩
246 View
341 Download

Altmetric

Share

More