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Following recent experiments on ultracold dual superflows, we model in this work the dynam-
ics of two harmonically trapped counterflowing superfluids. Using complementary analytical and
numerical approaches, we study the shedding of elementary excitations triggered by the relative mo-
tion of the two species. We exhibit two different excitation mechanisms leading to distinct threshold
velocities for the onset of dissipation: in addition to the parametric pair production present in homo-
geneous, galilean-invariant systems, we show that non-uniform motion and density inhomogeneities
allow for a Landau-like decay mechanism where single excitations are produced.

PACS numbers:

I. INTRODUCTION

In recent years, progress in manipulation of ultracold
boson/boson [1] or boson/fermion mixtures [2–5] has led
to the observation of dual-superfluid gases. In these sys-
tems, the interplay between the two species leads to a rich
physics, like the creation of spin domains [6], dark-bright
solitons [7, 8] or “liquid” droplets [9, 10]. Dual-superfluid
mixtures play a fundamental role going beyond the field
of atomic physics and quantum gases. In neutron stars,
kaon condensates are believed to coexist with neutron-
proton superfluids [11] while among the liquid Helium
community the quest for a dual 3He/4He dual superfluid
mixture has been considered as one of the holy grails
of low-temperature physics ever since the observation of
superfluidity in 3He [12].

An intriguing possibility is the existence of superfluid
counterflows where the two fluids move with different ve-
locities. This multiple-fluid hydrodynamics was consid-
ered first theoretically for Helium mixtures [13–15] and
was observed experimentally in ultracold boson/boson
[16–18] and fermion/boson mixtures [5, 19, 20]. These
experiments raised the question of the critical relative ve-
locity above which dissipation arises and suggested that
superfluid counterflows were unstable against generation
of pairs of excitations, a mechanism providing a Galilean-
invariant generalization of Landau’s celebrated scenario
[21–23].

In the experiments reported in [19], the counterflow
was obtained by releasing a dual Bose/Fermi superfluid
of 6Li and 7Li in a harmonic trap. Due to the mass dif-
ference between the two species, the motion of the two
superfluid get out of phase after a few oscillation pe-
riods. This creates a relative motion between the two
components and dissipation was only observed above a
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critical velocity confirming the superfluid nature of the
counterflow. However, the harmonic trapping confin-
ing the atoms breaks translational and Galilean invari-
ance assumptions underpinning simple dissipation mech-
anisms. In the present work, we explore theoretically
the stability of the counterflow generated by two har-
monically trapped superfluids. We first consider the case
of two weakly interacting Bose-Einstein condensates de-
scribed using coupled Gross-Pitaevskii equations. These
equations are solved numerically and the density profiles
are characterized using a Principal Component Analysis
(PCA) scheme [24] that allows for a model-free identifi-
cation of the modes triggered by the relative motion of
the two clouds. In the second part of the paper we in-
vestigate the mode-coupling mechanism using an analyti-
cal hydrodynamic approach. This approximation is valid
only for long wavelength excitations but it is complemen-
tary to the numerical simulation, since it is applicable to
any kind of superfluid (bosons or fermions, weakly or
strongly coupled, etc.). We show that the relative mo-
tion excites eigenmodes of the two clouds and we identify
two different excitation mechanisms. First, a parametric
process akin to [21] leads to the formation of pairs of ex-
citations in both superfluids. Second, the motion of the
smaller cloud excites linearly the density profile of the
larger one by the creation of single phonon-like modes,
following a process similar to Landau’s traditional sce-
nario. We show in particular that this latter process is a
direct consequence of the translation-symmetry breaking
induced by the presence of the trap.

II. NUMERICAL SIMULATIONS

A. Coupled Gross-Pitaevskii equations

We first simulate numerically the counterflow of two
harmonically trapped superfluids using a set of coupled
Gross-Pitaevskii equations describing zero-temperature
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Bose-Einstein condensates (BECs) with mean-field inter-
actions:

i~
∂ψ1

∂t
=

[
− ~2

2m1
∇2 + U(r) + Umf,1(r)

]
ψ1, (1)

i~
∂ψ2

∂t
=

[
− ~2

2m2
∇2 + U(r) + Umf,2(r)

]
ψ2, (2)

with N1 and N2 the number of particles of each species.
The wavefunctions ψ1 and ψ2 are thus normalized to
unity. To reproduce the setting used in recent experi-
ments [2], the two species are trapped using the same
cigar-shaped harmonic external potential

U(r) =
1

2
m2

[
ω2
⊥(x2 + y2) + ω2

zz
2
]
, (3)

where ω⊥ and ωz are the radial and axial trapping fre-
quencies, respectively. Finally Umf,1,2 describe the mean-
field interaction between the atoms and we have Umf,i =∑
j=1,2Njgij |ψj |2, where the gij are the s-wave coupling

constants satisfying the symmetry condition gij = gji.
The parameters are chosen to reproduce two impor-

tant features of the experiment described in [2]. First,
we consider an atomic mass ratio of m1/m2 = 7/6, such
that the bare trapping frequencies of the two clouds are
related via ωz,1 =

√
6/7ωz. Thus, by displacing the

clouds by the same distance b along the z-axis, a relative
motion between the clouds progressively sets in and a
periodic counterflow between the two superfluids is cre-
ated. In addition, the small atomic mass difference allows
for a strong coherent energy exchange, as observed in [2].
Second, we chose very different atoms numbers and inter-
species coupling constants to create a large shape asym-
metry between the two clouds. The i = 1 cloud is weakly
interacting and small while the i = 2 cloud is strongly
repulsive and is much broader (see density profiles in the
top panel of Fig. 1).

We start the numerical simulation by generating the
static density profiles of the two Bose-Einstein conden-
sates. For this purpose, we numerically solve the cou-
pled stationary Gross-Pitaevskii equations corresponding
to (1)-(2) using an imaginary-time propagation method
with Fourier spectral space accuracy [25, 26]. Then we
shift the two stationary profiles and let the system evolve
in time. The real dynamics described by (1)-(2) is com-
puted using a second-order Strang splitting method [27].
Both stationary and real-time dynamics computations
are performed using the state-of-the-art computational
code GPS (Gross-Pitaevskii-Simulator) offering various
modern numerical methods to solve GP equations on
high-performance parallel computers [28]. A typical grid
used for this study contained 1024 × 128 × 128 compu-
tational points along the z and x, y axes, respectively.
To capture the oscillations of the system for long times,
up to 400, 000 time steps were needed. Special care was
devoted to the accuracy of the time and space numeri-
cal scheme, in order to conserve the mass and energy of
the system during this long-time integration. More de-
tails on the numerical simulations are given in Appendix

A). Supplemental Material is provided with animations
depicting the oscillations of the clouds for several run
cases [29].

The influence of the coupling parameters was explored
by simulating more than 30 cases, for values in the
range 0 < g12/g22 < 0.3 and 2 ≤ b/aho ≤ 8, with

aho =
√

~/mωz.
A typical numerical result is displayed in Fig. 1.

The response of the center of mass of the two clouds
is illustrated by plotting their relative position zrel =
z2(t) − z1(t). For the case g12/g22 = 0.031, b = 2, low
amplitude oscillations of the clouds are observed and zrel
beats with the frequency difference ωz,1 − ωz,2.
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FIG. 1: Example of low amplitude oscillations of the relative
position zrel of centers of mass of the two superfluids. Case
b/aho = 2 and g12/g22 = 0.031. The small atomic mass differ-
ence (m1−m2)/m1 � 1 combined with a large atom number
ratio N2/N1 = 30 induce a strong amplitude modulation of
the small condensate oscillations (i = 1, in blue), while the
oscillations of the large condensate are mostly not affected
(i = 2, in red).
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FIG. 2: Dipole-frequency shift (ωz,1/ωz) of the oscillations
of the small cloud (i = 1) for different interspecies coupling
g12/g22: numerical simulation (blue dots), theoretical predic-
tion (black line) based on the perturbation theory Eq. (5)
and coupled-oscillator prediction (orange line).
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FIG. 3: Examples of the two nonlinear modes observed in simulations and analysed using the Principal Component Analysis
(PCA). Space structure (upper panels) and time evolution of the amplitude of the modes (lower panels) extracted using the
PCA. Blue lines are for the small cloud (i = 1) and red lines for the large cloud (i = 2). Linear forced mode (left, g12/g22 = 0.291,
b/aho = 1) and parametric modes (right, g12/g22 = 0.003, b/aho = 5). Animations depicting the oscillations of the clouds for
these regimes are provided in the Supplemental Material [29].

B. Dipole-mode frequency shift

Numerical simulations similar to that displayed in Fig.
1, allowed us to follow the evolution of the oscillation fre-
quency of the small cloud with the interspecies coupling
constant g12/g22. Figure 2 confirms the shift of the dipole
mode, as predicted by the sum-rule approach that was
previously used in [2] to measure the equation of state
of an attractive Fermi gas in the BEC-BCS crossover or
more recently in [4] to measure the Lithium-Cesium scat-
tering length and in [20] in the case of LiK mixtures. In
our case, the sum-rule associated with the shift of the
two trapping potentials predicts that the oscillation fre-
quencies of the two clouds are the eigenvalues of the sus-
ceptibility matrix M defined by

M =

 m1(1− N1

N2
χ12)

√
m1m2

√
N1

N2
χ12

√
m1m2

√
N1

N2
χ12 m2(1− χ12)

 (4)

where χ12 = ∂z1
∂b2

is the displacement of the center of
cloud i = 1 after a shift by a distance b2 of the potential
trapping of cloud i = 2. In the weak-coupling limit, this
model predicts a shift δω of the smaller cloud frequency
given by

δω1,z

ω1,z
' −g12

2

(
∂ρ2

∂µ2

)
0

, (5)

where ρ and µ are the density and the chemical potential
of the gas, respectively.

We observe in Fig. (2) that the simulation agrees with
this asymptotic regime for a weak coupling. For inter-
mediate coupling, we observe a slight departure of the
simulation results with respect to Eq. (5) but this dis-
crepancy can be cured using the exact diagonalization of
M (orange line in Fig. 2).

C. Mode coupling

To get further insight on the dynamics of the sys-
tem, we analyze the density profiles of the two clouds by
performing a Principal Component Analysis (PCA) [24].
This method allows us to identify the modes involved in
the dynamics of system without any a priori assumption
on their spacial structure [30]. When applied to cloud
images (atomic density integrated along the y axis), the
PCA extracts a set of 4000 modes together with their as-
sociated eigenvalues and their temporal evolutions. Only
a limited number of modes play a non-negligible role in
the fluctuations (at least 99% of the eigenvalues are 106

times smaller than the largest one). For each run, we
typically limited our analysis to the 10-30 most popu-
lated modes given by the PCA. Among these modes, we
could identify the following types of modes: parametric,
linear forced, filtered dipole modes and harmonic modes.
The first two types of nonlinear modes are illustrated in
Fig. 3 and additional modes are depicted in in the Sup-
plemental Material [29].

We monitor the mode coupling by plotting the evolu-
tion of the weight cik(t) of the k-th mode of the superfluid
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i unveiled by the PCA (see Fig. 3). As a first check, we
plot the Fourier spectrum of cik to extract the frequencies
of each mode. In Fig. (4) we compare the PCA-extracted
oscillations with the analytic prediction of frequencies in
elongated traps [31]. For µ � ~ω⊥ the cloud is hydro-
dynamic in all three directions and the frequency of the
k-th mode is:

ωk =
1

2

√
k(k + 3)ωz. (6)

This assumption is satisfied by the larger cloud, as illus-
trated in Fig. 4 by the agreement between the numerical
results and the predictions of Eq. (6). By contrast, 3D
hydrodynamics breaks down for the smaller cloud where
the low atom number yields a lower chemical potential.
In this regime, since µ . ~ω⊥, the transverse degrees of
freedom are frozen and the collective dynamics is one-
dimensional, leading to the following dispersion relation

ωk =

√
k(k + 3)

2
ωz, (7)

which is in very good agreement with the results of nu-
merical simulations (see the upper panel of Fig. 4) .

Likewise, we compare in the lower panel of Fig. 4 the
spatial structure of the modes unveiled by the PCA and
show that they agree with the Geigenbauer polynomials
known to describe the low-lying modes of a harmonically
trapped Bose-Einstein condensate [32].

III. HYDRODYNAMIC APPROACH

A. General formalism

To explain the excitation mechanism of the modes ob-
served in numerical simulations, we analyze their dy-
namics using the hydrodynamic approximation. This ap-
proach is rather standard and is summarized in the fol-
lowing section. The starting point of this second analysis
is the classical Hamiltonian

H =

∫
d3r
[ N∑
i=1

(
~2

2mi
ρi(r) (∇Φi)

2
+ ρiUi(r)

)
+ e(ρ1, ..., ρN )

]
,

(8)

that describes the dynamics of an ensemble of N super-
fluids. In this expression, Φi and ρi are the phase and
the density of superfluid i, while e is the energy density
of the system. Taking the phase and density as dynami-
cally conjugate variables, Hamilton’s equations of motion
yield

mi

(
∂tvi +∇v2

i /2
)

= −∇
(
∂e

∂ρi
+ Ui

)
(9)

∂tρi +∇ (ρivi) = 0, (10)
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FIG. 4: Analysis of the eigenmodes. Upper panel: Compar-
ison between PCA-extracted mode frequencies and the theo-
retical eigenmodes of an elongated Bose-Einstein condensate
(dashed line). Lower panels: space structure of modes k =5,
6, 10, and 14, and their fit using Geigenbauer polynomials.

where vi = ~∇Φi/mi is the local superfluid velocity and
∂ρie is the chemical potential of species i. In the limit of
weak interspecies-coupling, we can expand the chemical
potential versus the densities of the other components:

∂e

∂ρi
' µi(ρi) +

∑
j 6=i

gijρj ,

where µi(ρi) is species i alone’s zero-temperature equa-
tion of state. Since by definition we have gij = ∂2

ρjρie,
the interspecies coupling constants obey the symmetry
relation gij = gji.

Consider first a single species (gij = 0). In the sta-
tionary state, the phase varies as Φi,0 = µ0

i t/~ and the
density profile ρi,0(r) is time independent and satisfies a
Thomas-Fermi equation

µi(ρi,0(r)) + Ui(r) = µ0
i , (11)

where the index 0 indicates equilibrium quantities.
Low-lying excitations are obtained by considering vi

and δρi = ρi − ρi,0 as small parameters. Expanding the
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hydrodynamic equation yields after some straightforward
algebra

∂2
t δµi −

1

mi

(
∂µi
∂ρi

)
0

∇ (ρi,0∇δµi) = 0. (12)

with δµi = (∂µi/∂ρi)0 δρi.
The eigenmodes of the superfluid are found using the

ansatz δµi(r, t) = ui,k(r)e−iωi,kt, where ui,k and ωi,k are
solutions of the eigenproblem

ω2
i,kui,k = Li[ui,k], (13)

with

Li[u] = − 1

mi

(
∂µi
∂ρi

)
0

∇ [ρi,0∇u] . (14)

Li is a positive operator and is symmetric for the inner
product 〈·|·〉i defined by

〈u|v〉i =

∫
d3r

(
∂ρi
∂µi

)
0

u(r)∗v(r). (15)

The ui,k can then be chosen as an orthonormal basis for
this inner product.

In the literature, general properties of Eq. (13) were
derived for simple cases:

• ui=cte is a solution to Eq. (13) for the eigenfre-
quency ωi = 0. This solution corresponds to a shift
of the global chemical potential µ0

i in Eq. (11) and
implies that all other eigenstates uik are orthogonal
to constant functions for the inner product (15).

• For a homogenous system, the solutions to Eq. (13)
are plane waves and describe first-sound propaga-
tion. The eigenfunctions are characterized by a
wave-vector ki and obey the dispersion delation
ωi = ciki, where the sound velocity is defined by
mic

2
i = ρi,0(∂µi/∂ρi)0.

• The plane-wave structure also applies to cylindri-
cal traps [31]. In this case, the waves propagate
along the symmetry axis of the cloud at a velocity
c1D =

√
ρ̄i,0(∂µi/∂ρ̄i)0/mi], where ρ̄i is the density

integrated over the transverse degrees of freedom.

• In a harmonic trap, we recover Kohn’s theorem [33]
since the oscillation of the center of mass along the
principal direction xα of the trap corresponds to
the function uik = xα and are associated with the
eigenvalue ωi,α.

• The previous result can be generalized to any mode
for polytropic equation of state µi ∝ ργi . In this
case, the eigenmodes of Li are Gegenbauer polyno-
mials of the spatial coordinates.

Furthermore, for a harmonic (or flat) potential, the
dynamics of the cloud obeys Kohn’s theorem [33] and
the previous results can be extended to the case where

the superfluid is initially oscillating. More precisely, the
hydrodynamic equations are invariant under the trans-
formation r → r′ = r −Ri(t), vi → v′i = vi − Vi, where
Ri and Vi are the position and the velocity of the cen-
ter of mass of the cloud and obey Newton’s second law
miV̇i = −∇Ui(Ri). As a consequence, the eigenmodes
u′i,k(r, t) = ui,k(r −Ri(t)) can also be used to describe

the low-lying excitations of an oscillating superfluid [37].
We now consider an ensemble of coupled superfluids.

As before, in absence of coupling, the density in the
laboratory frame is given by ρi(r, t) = ρi,0(r − Ri(t)).
The coupling affects the density profiles which can be
expanded over the eigenmodes ui,k as

ρi(r, t) = ρi,0(r −Ri(t))

+
∑
k

ci,k(t)

(
∂ρi
∂µi

)
0

(r −Ri(t))uk,i(r −Ri(t)).

(16)

To simplify the notation, we hereafter denote with a
prime physical quantities evaluated in the moving frame.
In other words, for any function Fi(r), we define F ′i (r, t)
as F ′i (r, t) = Fi(r −Ri(t)).

Inserting this expansion in the hydrodynamic equa-
tions, we obtain the following set of coupled differential
equations for the coefficients ci,k

c̈i,k + ω2
i,kci,k

+ ω2
i,k

∑
j 6=i

gij

[
Ai,j,k(t) +

∑
k′

Bik,jk′(t)cjk′

]
= 0,

(17)

where

Aijk(t) = 〈u′i,k(r, t)|ρ′j,0(r, t)〉i (18)

Bik,jk′(t) = 〈u′i,k(r, t)|
(
∂ρj
∂µj

)′
0

u′j,k′(r, t)〉i (19)

are time-dependent coefficients (note that by definition
of the inner product, Bik,jk′ = B∗jk′,ik).

B. Homogeneous cloud

We first consider the special case of a homogeneous
system. The static density profiles are uniform, and the
eigenmodes ujk are therefore orthogonal to ρj′ . Coeffi-
cients Aijk vanish and the dynamics is set by the coupling
coefficients Bik,jk′ .

As stated earlier, the unperturbed superfluids move
at constant velocities Vi and the eigenmodes are plane
waves characterized by wave-vectors kj=1..N . We then
have

Bik,jk′(t) = gi,j

√
∂ρi
∂µi

∂ρj
∂µj

eiki(Vi−Vj)tδki,kj
. (20)
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Under these assumptions, the linearized hydrodynamic
equations (17) can be written as

c̈i,k +ω2
i,kc1,k = −ω2

i,k

∑
j 6=i

gij

√
∂ρi
∂µi

∂ρj
∂µj

cj,ke
ik·Vijt (21)

From (21), we infer that the inter-species interactions
only couple same-momentum modes and that the cou-
pling constant oscillates in time at a frequency k · (Vi −
Vj). This behaviour is reminiscent of a parametric os-
cillator characterized by a dynamical instability that we
interpret as follows: In absence of coupling, the free solu-
tions of Eq. (21) are ci,k ∝ exp(±iωi,kt). To the leading
order of the perturbation, we can insert this solution in
the right-hand side of Eq. (21) which is now equivalent
to an ensemble of N harmonic oscillators driven at fre-
quencies k · Vij ± ωj,k. We notice that when

|k · Vij | ' ωi,k + ωj,k, (22)

the drive is resonant and leads to the instability of the
system. We prove the existence of this instability in the
the appendix B for a mixture of N = 2 superfluids.

For 3D phonons characterized by a velocity cj , excita-
tions can propagate in any direction and the instability
criterion (22) can be reformulated as Vij ≥ ci+ cj , which
is the extended Landau criterion [21]. For an elongated
harmonic trap, this argument is still valid but phonons
can only propagate along the trap axis. In this case the
instability criterion selects a velocity window centered on
ci + cj (see for instance [23] and Appendix B).

C. Trapped superfluids

We consider now the case of a harmonically trapped
mixture of superfluids. The parametric mechanism dis-
cussed in the case of a homogeneous system is still
present. Consider for simplicity a situation where the
trapping frequencies of the two clouds are equal. In this
case, the relative position and the coefficients Bik,jk′ os-
cillate with frequency ωz. After expanding these coeffi-
cients, the qualitative argument put forward for homoge-
neous systems predicts that the parametric amplification
of pairs of spatially-matching modes occurs when their
frequencies meet the resonance conditions

ω1,k + ω2,k = nωz, (23)

where n is an integer. In Apppendix C we present a toy
model leading to this resonance condition. This paramet-
ric mechanism is illustrated in the right panel of Fig. 3
where we notice that the modes excited in the two clouds
share approximately the same wavelength.

Another specific feature of the trap is the inhomogene-
ity of the density profiles allowing for non-zero coupling
coefficients Aijk. Qualitatively, this mechanism can be
interpreted as an excitation of the superfluid i by the
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FIG. 5: Spectral weight of the breathing mode (k = 2) of
the large cloud. Numerical results (blue solid line) are fitted
using a driven oscillator model (black dashed line).

mean-field potential gijρj,0(r − Rj(t)). Moreover, this
coupling affects only the large cloud. Indeed, at the scale
of the small cloud j, the density profile of a larger cloud
i is approximately flat and the overlap between ρi,0 and
any mode ujk is therefore vanishingly small according to
the general properties of the operator L.

To interpret the result of the simulation displayed in
Fig. 3, we consider the case N = 2, with, for simplicity,
Bik,jk′ = 0. We note that Eq. (17) is formally equiva-
lent to that of a driven linear oscillator. Moreover, if we
expand the driving term with the relative displacement
zij = (Ri(t)−Rj(t)) · uz, we obtain [38]

Aij,k =

∞∑
n=1

(−1)nznij〈ui|∂nz ρj〉i. (24)

In Fig. (5), we assess the accuracy of this model us-
ing the first two harmonics (n = 1 and n = 2) of the
dynamics of the breathing mode (k = 2) obtained from
numerical simulations. We consider the amplitudes and
the frequencies of the breathing mode as free parameters
and we find ω2,2 = 1.580(3)ωz, in agreement with the

expected value ω2,2/ωz =
√

5/2 ' 1.581.
Finally, we note that in the case of the dipole mode k =

1, the excitation is resonant with the mode-frequency and
triggers a slow divergence of the amplitude of the mode.
In Appendix D we show that this resonant behaviour
gives rise to the dipole-mode frequency shift, expressed
in Eq. 5.

IV. CONCLUSION AND IMPLICATIONS FOR
THE SUPERFLUID CRITICAL VELOCITY IN

TRAPPED SYSTEMS

Both numerical and analytical approaches conclude to
the existence of two mechanisms for the coupling of the
center of mass motion to low-lying excitation modes. The
parametric scenario is associated with the formation of
pairs of excitations in both superfluids. By contrast, the



7

linear mechanism can be interpreted as the resonant cre-
ation of excitation in the large cloud. This mechanism is
the analogous to the motion of a potential in the larger
superfluid and is consequently very similar to Landau’s
argument. Our zero-temperature approach predicts a
coherent mode-coupling. At finite temperature, these
modes are damped and will pump energy out of motion
of the center of mass of the two clouds, as observed ex-
perimentally [34–36].

The resonance condition for the parametric instability
can be reinterpreted in terms of relative velocity of the
two clouds. By analogy with the homogeneous case, the
instability is triggered when the relative velocity cross
the instability window centered on c1 + c2. This scenario
is supported by the toy model presented in Appendix C
and is validated by our numerical simulations (see Fig. 3,
where we observe that the amplitude of the mode grows
only inside narrow time windows). By contrast, the linear
coupling predicts a critical velocity equal to the sound
velocity of the large cloud. In an imbalanced system
as in [19], c1 � c2 and the two velocities are similar.
Experimentally, the critical velocity reported in [19] is
therefore compatible with both scenarios.
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Appendix A: Details of numerical simulations

Numerical simulations are performed using dimension-
less variables. We take the usual scaling:

x→ x

xs
, t→ t

ts
, u1 =

ψ1

x
−3/2
s

, u2 =
ψ2

x
−3/2
s

. (A1)

with

ts =
1

ω
, xs = aho, aho =

√
~

m2ωz
. (A2)

The non-dimensional form of Eqs. (1)-(2) becomes:

i
∂u1

∂t
=

[
−∇

2

2d1
+ Ua(r) + β11|u1|2 + β12|u2|2

]
u1,(A3)

i
∂u2

∂t
=

[
−∇

2

2d2
+ Ua(r) + β21|u1|2 + β22|u2|2

]
u2,(A4)

with u1 and u2 normalized to unity:∫
R3

|u1|2 = 1,

∫
R3

|u2|2 = 1. (A5)

The non-dimensional trapping potential takes into ac-
count the initial shift b (in aho units) of the clouds:

Ua(r) =
d2

2

[
γ2
⊥(x2 + y2) + γ2

z (z − b(t))2
]
, (A6)

where γ⊥ = (ω⊥/ω) , γz = (ωz/ω) and b(t) = 0 for
t > 0. Dimensionless parameters in Eqs. (A3)-(A4) are
expressed by:

β11 = 4π
1

d1

N1a11

aho
, β12 = 2π

d1 + d2

d1d2

N2a12

aho
, (A7)

β22 = 4π
1

d2

N2a22

aho
, β21 = 2π

d1 + d2

d1d2

N1a12

aho
. (A8)

Each run is identified by the value of the parameter
g12/g22 = β12/β22 and the value of b, the initial shift
of the clouds. The explored values of these parameters is
depicted in Fig. 6. The long-time integration for these
30 cases requested over 50000 hours of CPU time and
generated teraoctets of data.

FIG. 6: Summary of parameters for which simulations were
performed (blue dots). The red dashed line shows the am-
plitude above which the critical velocity is expected to be
reached in the limit of a vanishing coupling between the su-
perfluids.

To avoid clouds coming close to the boundaries during
oscillations, the dimensions of the computational domain
were fixed as Lx = Ly = 8 aho and Lz = 64 aho. This
allowed us to capture amplitude oscillations up to 16 aho
along the z direction, which is more than enough to ob-
tain a relative velocity larger than the sum of the central
sound velocities of the condensates (typically reached for
5.5 aho). The grid resolution was δx = δy = δz = aho/16,
resulting in computational grids of 128×128×1024 points
following x, y and z directions, respectively.

To capture both fast and slow dynamics present dur-
ing the oscillations of the clouds, we used a refined time
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resolution δt = 5 · 10−4/ωz and a large number of steps
Nt = 4 · 105. This allowed us to simulate at least 32
periods of oscillations for each run case.

Appendix B: Parametric instability criterion for a
mixture of two homogeneous superfluids

We prove here the existence of parametric instability
for a mixture of N = 2 superfluids. In this case, Eq. (21)
reduces to a set of decoupled two-dimensional problems
governed by the following equations

c̈1,k + ω2
1,kc1,k = −ω2

1,kg12

√
∂ρ1

∂µ1

∂ρ2

∂µ2
c2,ke

ik·V12t(B1)

c̈2,k + ω2
2,kc2,k = −ω2

2,kg12

√
∂ρ1

∂µ1

∂ρ2

∂µ2
c1,ke

−ik·V12t(B2)

with V1,2 = V1 − V2. These equations are solved by

taking c1,k = c̃
(0)
1,k exp[(γk + ik · V12/2)t] and c2,k =

c̃2,k(t) exp[(γk− ik ·V12/2)t]. The amplification rate γ is
thus solution to the eigenvalue equation[(

γ − ik · V12

2

)2

+ ω2
1,k

][(
γ + i

k · V12

2

)2

+ ω2
2,k

]

= g2
12ω

2
1,kω

2
2,k

(
∂ρ1

∂µ1

)(
∂ρ2

∂µ2

)
(B3)

We recover the equations derived in [23] showing that
for a small coupling, the acoustic modes become dynam-
ically unstable when the velocity satisfies the condition

|V · u− Vc| ≤ g12

√
ω1,kω2,k

∂ρ1
∂µ1

∂ρ2
∂µ2

, (B4)

with Vc = c1 + c2 and u = k/k.

Appendix C: A toy model for the parametric
instability in a trap

We describe the parametric mode-coupling in a trap
using the following assumptions. First, we approximate
the space structure of the mode by local plane waves
characterized by a wave-vector k = ωk/ci (this is true for
high frequency mode at the center of the trap, following
the WKB approximation [32]). Second, we assume that
the trap frequencies of the two clouds are identical and
that the initial displacement of the two clouds are differ-
ent. As a consequence, the relative distance between the
centers of the two clouds evolves as R cos(Ωt), where Ω
is the common trapping frequency.

With these assumptions, the amplitudes of two match-
ing modes will satisfy equations similar to Eqs. (B1)-
(B2), where the relative displacement V12t is replaced by
R cos(Ωt).

c̈1,k + ω2
1,kc1,k = ω2

1,kεc2,ke
ikR cos(Ωt) (C1)

c̈2,k + ω2
2,kc2,k = ω2

2,kεc1,ke
ikR cos(Ωt). (C2)

We can repeat the qualitative argument developed for
the homogeneous cloud by noting that exp(ikR cos(Ωt))
can be expanded as

eikR cos(Ωt) =
∑
n

inJn(kR)enΩt, (C3)

where Jn are Bessel functions of the first kind. As before,
each harmonic of the sum will give rise to a parametric
instability when the resonance condition nΩ = ω1,k+ω2,k

is met and, in this case, the effective coupling is propor-
tional to Jn(kR). Consider now the case of a coupling
with a high-frequency phonon mode, as in Fig. 3). In
this case, Ω � ωα,k and n � 1. But, at a given kR,
Jn(kR) is vanishingly small for large n and, to maintain
a significant coupling, we need to take kR & n. Indeed,
from Eq. (C3), we infer that

Jn(kR) =
1

2inπ

∫ 2π

0

dθe−i(nθ+kR cos θ)

For large values of n, the exponential term oscillates
rapidly, unless the phase is stationary. The integral will
therefore be dominated by values of θ close to θ∗, defined
by the stationary phase condition kR sin θ∗ = n, imply-
ing that kR ≥ n. Since nΩ = ωk,1 + ωk,2, this condition
can be recast as

ΩR ≥ ωk,1 + ωk,2
k

= c1 + c2 (C4)

We therefore recover that, even for an oscillatory motion,
dissipation occurs when the maximal relative velocity ΩR
is above the sum of the sound velocities of the two su-
perfluids.

Appendix D: Dipole mode frequency shift

We consider here the linear coupling to the mode k = 1
corresponding to the dipole mode along the direction z.
As mentioned in the general properties of the linearized
hydrodynamic equations, this mode is associated with
the eigenvector ui,1 = z/‖z‖i, with eigenfrequency ωi,1 =
ωz,i. We assume that the larger superfluid (i = 2) is
at rest while the smaller one (i = 1) oscillates with an
amplitude A.

The time-evolution of the dipole-mode amplitude c1,1
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is therefore driven by the coupling coefficient

A12,1 =

∫
d3r

(
∂ρ1

∂µ1

)
0

ρ2,0(r +A cos(ωz,1t)uz)
z

‖z‖1

' −m2ω
2
z,2A cos(ωz,1t)

∫
d3r

(
∂ρ2

∂µ2

)
0

(
∂ρ1

∂µ1

)
z2

‖z‖1
,(D1)

where we assumed that the amplitude A of the motion is
smaller than the size of the larger (i = 2) cloud. Using
the fact that the size of the static cloud is larger than
that of the moving one and that the trapping potentials
are identical for the two species, we can further simplify
this expression as

A12,1 ' −m1ω
2
z,1A

(
∂ρ2

∂µ2

)
0

(r = 0)‖z‖1 cos(ωz,1t)

(D2)
We note that the driving term A12,1 oscillates at the res-
onance frequency ωz,1 of the dipole mode. The solution
to the equation

c̈11 + ω2
z,1c11 = −g12ω

2
z,1A12,1 (D3)

is therefore characterized by a linearly divergent be-
haviour in long time, and we obtain in the steady state

regime

c11(t) ∼ g12

2
m1ω

3
z,1A

(
∂ρ2

∂µ2

)
0

(r = 0)‖z‖1t sin(ωz,1t).

(D4)

The onset of this divergence in a perturbation expan-
sion is usually the signature of a shift of the natural os-
cillation frequency of the system. Let us indeed assume
that the oscillation is shifted by δΩ. The density pro-
file of species i = 1 now evolves as ρ1(r, t) = ρ1,0(z −
A cos((ωz,1 + δΩ)t)). Using the fact that in the station-
ary regime, the density profile of the unperturbed system

is given by the LDA expression ρ1,0(r) = ρ1(µ
(0)
1 −V (r)),

expanding the density profile to first order in δΩ yields

ρ1(r, t) = ρ2,0(z −A cos(ωz,1t))

−
(
dρ1

dµ1

)
0

m1ω
2
z,1zAδΩt sin(ωz,1t)

(D5)

We recover the frequency shift expressed in Eq. (5) by
comparing Eq. (D5) to the general expansion (16), where
c1,1 is given by Eq. (16).
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