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ABSTRACT: Using grafted -cyclodextrin as targeting sites, Pluronic polymers have been 

introduced on the surface of cellulose nanocrystals by means of inclusion interaction between -

cyclodextrin and hydrophobic segment of the polymer. Because of steric stabilization effect, 

surface poly(ethylene glycol) chains facilitate the dispersion and compatibility of nanocrystals, 

which also enhance the loading levels of nanocrystals in the hydrogel system. Meanwhile, 

uncovered poly(ethylene glycol) segments render the participating inclusion of α-cyclodextrin 

for the architecture of in situ hydrogels. Surface grafting and inclusion reactions were proved by 

solid 13C NMR and FTIR. Grafting efficiency of -cyclodextrin and inclusion efficiency of 

Pluronic on the surface of nanocrystals were confirmed by UV spectroscopy and elemental 

analysis. A significant enhancement of the structural and thermal stability of in situ hydrogels 

with high loading levels of modified nanocrystals (>5.77 wt%) was observed by rheological 

analysis. Further study reveals the performance and behavior of hydrogels under different pH 

environment. Finally, in situ hydrogels were used as drug carrier for in vitro release of 

doxorubicin, and exhibit the behavior of prolonged drug release with special release kinetics. 
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INTRODUCTION 

Cellulose nanocrystal (CN) has attracted a great deal of interest in material science due to its 

appealing intrinsic properties including nano-dimensions, high surface area, unique morphology, 

low density and mechanical strength, as well as availability, renewability and biodegradability.1 

Abundant hydroxyl groups on the surface of CN are suitable for physical adsorption or diverse 

chemical modifications including esterification, etherification, oxidation, silylation, and polymer 

grafting.2–4 Modified nanocrystals with alterative surface properties were not only widely used as 

nanofiller to enhance various matrices through the development of composites,5,6 but also for the 

exploration of advanced functional nanomaterials.7,8 Recently, much more attention focused on 

the application of CN in the field of biomaterials, such as fluorescent labels for bioimaging,9,10 

labeled carriers for DNA detection11 and photodynamic therapy,12 enzyme immobilization,13,14 

photobactericidal material,15,16 biomedical scaffold17,18 and hydrogels.19,20 Hydrogel materials 

have shown wide potential applications in the biomaterial field, such as drug delivery, because of 

their safety, biocompatibility and biodegradability. Among hydrogel systems, hydrogels based 

on supramolecular self-assembly between cyclodextrin (CD) and polymeric chains are most 

widely studied, and have promising application prospects. Particularly, supramolecular hydrogels 

formed with the host-guest inclusion between polymer and CD molecules, exhibit reversible 

thixotropism, making them suitable for syringeable drug delivery application.21 Although CN has 

attracted wide attention in the utilization as physical reinforcing filler in various hydrogel 

matrices, such as cyclodextrin,22 agarose,23,24 poly(vinyl alcohol),25 poly(N-isopropyl 

acrylamide),26 poly(2-hydroxyethylmethacrylate),27 to the best of our knowledge, only one 

example of pristine CN in cyclodextrin-based hydrogel has been reported.22 However, in this 

study, due to the strong hydrophilicity and easy self-assembling property of this highly-
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crystalline nanoparticle, the loading level of CN in cyclodextrin hydrogel was quite low (< 2.5 

wt%).22 Recently, it was shown that a weak reinforcing percolating network from surface 

modified CN can be formed in aqueous gels.28 If only introducing CN with extremely low 

contents, it is believed that the rigid network formed by the linkage of these nanoparticles cannot 

be obtained, and even weaken the promising nano-reinforcing effect for ensuing materials. 

Herein, with the strategy of surface chemical modification of CN with Pluronic polymers 

(poloxamer), the loading level of CN was elevated, and the dispersion of the nanoparticles was 

improved. As shown in Figure 1A, -cyclodextrin (-CD) was first covalently grafted on the 

surface of CN using epichlorohydrin (EPI) as coupling agent, which is a typical strategy for the 

synthesis of cyclodextrin derivatives. Afterwards, Pluronic polymer was immobilized on 

modified CN by inclusion of the hydrophobic polymeric segments in grafted -CD (Figure 1B). 

This process was performed with the assistant of ultrasonic treatment to induce the inclusion. 

Pluronic polymers used here were tri-block copolymers with different molecular weights 

(Pluronic F68 or F108), both bearing hydrophobic poly(propylene glycol) (PPG) and hydrophilic 

poly(ethylene glycol) (PEG) segments (PEG-b-PPG-b-PEG). The inclusion of the hydrophobic 

PPG chain segments in the inner cavity of -CD allows closely connecting the polymer and the 

nanoparticle, contrarily to surface physical adsorption of polymers on CN. Finally, with the in 

situ “host-guest” inclusion of uncovered PEG chains in smaller size α-cyclodextrin (α-CD) 

molecules, the architecture of supramolecular hydrogel based on modified CN can be formed 

(Figure 1C). This work is an attempt to design a novel hydrogel with the construction of 

participating CN in hydrogels via the interactions between compatible grafted chains and 

polymeric matrix. The key factor of this strategy emphasized on the use of block copolymer and 

cyclodextrin with different sizes and selected inclusive interactions. Pluronic polymers were 
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semi-chemically immobilized on the surface of CN, which provided the possibility of good 

dispersion, and in situ inclusion of nanocrystals in the hydrogel system. Moreover, the similar 

structure of CN and CD both from polysaccharide preserved the biocompatibility and 

biodegradability of ensuing materials, which endowed a “green” note to the hydrogel with 

promising mechanical property, thermal stability and sustained-drug release behavior. These 

supramolecular hydrogels formed with rigid nanocrystals can promote the potential application 

of nanocellulose in the field of biomedical technology and nanoscience. 

MATERIALS AND METHODS 

Materials. 

Native cotton fibers were obtained from Whatman filter paper. α-Cyclodextrin (α-CD), -

Cyclodextrin (-CD), Pluronic polymers F68 (PEG76-b-PPG30-b-PEG76, Mn=8400), Pluronic 

polymers F108 (PEG133-b-PPG50-b-PEG133, Mn=14600), phenolphthalein and sodium carbonate 

(Na2CO3) were reagent grade from Sigma–Aldrich. Epichlorohydrin (99%) was obtained from 

Acros Organics. Sodium hydroxide (NaOH) and sulfuric acid (H2SO4, 98%) of laboratory grade 

were purchased from Carl-Roth and used without further treatment. Doxorubicin hydrochloride 

(DoxHCl) was chosen as the model drug, and purchased from Sigma–Aldrich. 

Extraction of cellulose nanocrystals (CN). 

Cellulose nanocrystals (CN) were prepared by H2SO4 hydrolysis of native cotton fiber, according 

to our previous literature.29 The fiber was milled with a laboratory milling device to obtain a fine 

particulate substance and extracted in 2 wt% aqueous NaOH solution (12.5 g fibers for 500 mL 

solution) for 12 h at room temperature and then filtered and rinsed with distilled water. Acid 
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hydrolysis was performed at 45 °C with 65 wt% H2SO4 (preheated), for 45 min under 

mechanical stirring (12.5 g fibers for 250 mL solution). Amorphous or paracrystalline regions of 

cellulose were preferentially hydrolyzed, whereas crystalline regions that have higher resistance 

to acid attack remained intact. The suspension was diluted with ice cubes to stop the reaction and 

washed until neutrality by successive centrifugations at 10000 rpm (rotation per minute) for 10 

min each step and dialyzed against distilled water for five days. After dialysis, the CN dispersion 

was completed by ultrasonic treatment using a Branson sonifier, and finally the released CN 

powder was obtained by freeze-drying. 

Synthesis of  -cyclodextrin-grafted cellulose nanocrystals [( )CD-g-CN (1)]. 

The grafting reaction of -cyclodextrin on the surface of cellulose nanocrystals was 

accomplished using epichlorohydrin (EPI) as coupling agent through a one-step procedure 

(Figure 1A).30 Firstly, 4.0 g NaOH was dissolved in 20 mL distilled water as the aqueous NaOH 

solution. -CD (10.351 g, 9.12 mmol) was dissolved in the prepared NaOH solution. At the same 

time, 1.0 g CN was dispersed in another 20 mL distilled water as homogeneous suspension, 

added in the -CD alkaline solution and stabilized for 30 min. The desired amount of EPI (5.96 

mL, 76 mmol) was thus added into the reaction medium, and the reaction was allowed to proceed 

at 40 °C for 6 h. It should be pointed out that the EPI/CD molar ratio was controlled at about 8.3 

(below 10) to avoid self-crosslinking of -CD. Meanwhile, the effective NaOH solution 

concentration was controlled at about 16 wt%, to facilitate the grafting reaction.30 After 

modification, the suspension was centrifuged at 10000 rpm for 15 min, and washed with distilled 

water repeatedly until neutrality to remove both ungrafted -CD and residual NaOH. Finally, the 

grafted product [()CD-g-CN (1)] was obtained as powder by freeze-drying for 2 days. 
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The grafting efficiency of -CD on the surface of CN was confirmed with the methods of weight 

measurement and photometric titration. Three grafting experiments were repeated for weight 

measurement. After grafting -CD, the weights of products ()CD-g-CN were 1.1579 g, 1.1684 

g and 1.1368 g, corresponding to a grafting efficiency of 15.79 wt%, 16.84 wt% and 13.68 wt%, 

respectively. According to the results of weight measurement, the average -CD grafting 

efficiency was 15.44 wt%. Further accurate measurement from photometric titration was also 

used to investigate the -CD grafting efficiency (GE%) for ()CD-g-CN. 

Inclusion complex of ( )CD-g-CN/Pluronic polymers (2). 

Theoretically, due to the dimensions as well as hydrophilic and hydrophobic property of -CD 

and Pluronic polymers, one grafted -CD host one guest Pluronic chain for the inclusion. In this 

work, expecting for complete inclusion, the molar ratio between grafted -CD and Pluronic 

polymer was regulated as 1:2. The protocol for the preparation of inclusion complex [()CD-g-

CN/Pluronic (2)] was as follow: 500 mg powdered ()CD-g-CN (74.4 μmol grafted -CD 

according to the 16.89 wt% grafting efficiency from photometric titration analysis) was  

dispersed in 10 mL distilled water under mechanical stirring for 12 h and then ultrasonicated for 

30 min. Meanwhile, 1.25 g (148.8 μmol) Pluronic F68 (PEG76-b-PPG30-b-PEG76) was dissolved 

in another 40 mL distilled water.  It should be pointed out that because of the hydrophobic 

interactions among PPG chains, Pluronic polymers may self-associate in water to form 

micelles.31 To avoid it, a dilute aqueous solution of Pluronic polymer (45.7 mg/mL) was used for 

the inclusion between ()CD-g-CN and Pluronic polymers. The Pluronic solution was protected 

against light by an aluminum foil and weakly stirred for 12 h at room temperature. Then, the 

aqueous suspension containing ()CD-g-CN was added dropwise into the Pluronic solution and 
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the mixture was submitted to mild ultrasonic assistant treatment for 20 min and mechanical 

stirring for 72 h at room temperature. During the reaction, the hydrophobic PPG chains can insert 

into the hydrophobic cavity of -CD and form the stable inclusion complex resulting from the 

physical crosslinking interaction.32 As for Pluronic F108 (PEG133-b-PPG50-b-PEG133), due to 

different molecular weight, 2.173 g F108 polymer was mixed with 500 mg ()CD-g-CN 

suspension. 

The suspension of inclusion complex was centrifugated at 10000 rpm for 10 min to collect the 

precipitate and the supernatant. The powdered ()CD-g-CN/Pluronic precipitate was washed 

with distilled water and the supernatant was analyzed with FTIR tracing method. Because of the 

hydrophilic property of PEG chains, free Pluronic polymer dissolves in water, but inclusive 

Pluronic polymer forms stable suspensions. This process of successive solubilization- 

centrifugation was performed repeatedly until the disappearance of the characteristics bands of 

Pluronic from the result of FTIR. The content of inclusive Pluronic was confirmed by elemental 

analysis as shown in Table S1. 

Supramolecular hydrogels via in situ inclusion [()CD-g-CN/Pluronic]-[α(CD)/Pluronic] (3). 

The architecture of in situ supramolecular hydrogel was realized with the “host-guest” inclusion 

between α-CD, Pluronic polymer and modified CN. The preparation method of in situ hydrogels 

CN-CD/F68 (3) was adapted from previous literature.33,34 The powdered ()CD-g-CN/F68 was 

dispersed in 3.5 mL water, with specific F68 polymer content according to the inclusion 

efficiency from the result of elemental analysis. Another controlled weight of pure F68 was 

added in the suspension of modified CN under mild stirring at 4 C until a stable suspension was 

obtained. It was reported that the viscosity of Pluronic aqueous solution remains unchanged 
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under such temperature conditions.33 Another saturated solution of α-CD (1.5 mL water) was 

added in the mixture of modified CN and pure F68, in which the concentrations of Pluronic F68 

and α-CD were 13 w/v and 9.7 w/v, respectively. The mixture was ultrasonicated for 10 min and 

then conditioned overnight at room temperature for gelation. A similar method was used for the 

preparation of supramolecular hydrogels CN-CD/F108. Neat hydrogels of F68/α-CD and 

F108/α-CD were also prepared with the same approach and concentration as the reference. The 

composition, concentration and codification of the various hydrogels are summarized in Table 

S2. 

To prove the capability of inclusion between ()CD-g-CN/Pluronic and α-CD, the complex of 

()CD-g-CN/Pluronic-α(CD) was prepared independently, isolated by centrifugation and washed 

with a limited amount of water to remove free α-CD.35 

Characterization and Analyses 

Solid state 13C cross polarization-magic angle spinning spectroscopy (13C CP-MAS NMR). 

13C CP-MAS NMR experiment for the proof of grafting of -CD on the surface of CN was 

performed on a AVANCE400 solid instrument spectrometer with a MAS rate of 6 kHz, at 75.5 

MHz carbon frequency and at room temperature. The contact time for CP was 1 msec with a 

proton 90 pulse of 5.5 μsec and decoupling power of 45 kHz. The delay time after the acquisition 

of the FID signal was 2 sec. The chemical shifts were calibrated with the hexamethylbenzene 

standard methyl resonance at 17.3 ppm. 

UV-Vis spectroscopy. 
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The content of grafted -CD in ()CD-g-CN (I) was analyzed with a Shimadzu UV 2401-(PC) 

UV-Vis spectrophotometer. Phenolphthalein (phe) was used as indicator to detect the change of 

absorbency. Firstly, together with sodium carbonate solution, pure phe solution, phe solution 

containing 50 mg unmodified CN, and phe solution containing 50 mg ()CD-g-CN were well 

dispersed and stabilized for 20 h. The phe absorption experiment was performed on the UV 

spectrophotometer using 1 cm thick quartz cuvette with wavelengths ranging from 450 nm to 

650 nm to confirm the characteristic absorbed wavelength (λmax) of phe solution. 

The standard curve for the weight of -CD and absorbency of phe solution was quantified with 

the photometric titration method. 2 mL phe solution and 2 mL sodium carbonate solution were 

added in #1 volumetric flask (25 mL), and set the volume to the mark with distilled water. 1 mL, 

2 mL, 3 mL, 4 mL, 5 mL -CD solutions were added in #2, #3, #4, #5, and #6 volumetric flask 

(25 mL), respectively; and then 10 mL distilled water was added in each flask. After that, both 2 

mL phe solution and 2 mL sodium carbonate solution were added in each flask (except #1), and 

finally set the volume to the mark with distilled water. All solutions were submitted to absorption 

analysis at the wavelength of 552 nm (λmax), and the standard curve and equation from the weight 

of -CD (W, mg) and absorbency of phe (A) was determined. 

Similar experiments were carried out for the measurement of grafted -CD content. Five samples 

of 5 mg, 10 mg, 20 mg, 30 mg, 40 mg ()CD-g-CN in 10 mL distilled water were added in 

another #7, #8, #9, #10, and #11 volumetric flask (25 mL), respectively, and then both 2 mL phe 

solution and 2 mL sodium carbonate solution were added. All mixtures were set the volume to 

the mark of volumetric flask with distilled water and stabilized for 20 h. The absorbency at the 

wavelength of 552 nm was recorded and corresponded to the weight content of grafted -CD 
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according to the standard equation. Finally, the -CD grafting efficiency of CN-g-()CD (I) can 

be calculated. 

Fourier transform infrared spectroscopy (FTIR). 

Infrared spectra were recorded at room temperature on a FTIR Perkin-Elmer Spectrum One 

spectrometer to characterize CN, ()CD-g-CN, ()CD-g-CN/Pluronic and -CD. Freeze-dried 

powders were analyzed as KBr pellets (1 wt% in anhydrous KBr) using a spectral width ranging 

from 4000 to 400 cm-1 with a 2 cm-1 resolution and an accumulation of 20 scans. On the other 

hand, during the preparation of inclusion complex ()CD-g-CN/Pluronic), the supernatants 

containing free Pluronic polymers were collected from the process of successive solubilization-

centrifugation. The supernatant was carefully dropped on the surface of neat KBr compressing- 

tablet， and water was vaporized at room temperature for 12 h. The KBr tablet together with 

Pluronic polymers on the surface were also characterized by FTIR. 

Elemental analysis. 

Elemental analysis was performed at Analysis Central Service of the Centre National de la 

Recherche Scientifique (Vernaison, France). The carbon, oxygen and hydrogen element contents 

for both ()CD-g-CN/F68 and ()CD-g-CN/F108 samples were measured. The results from 

elemental analysis were used to determine the content of inclusive Pluronic polymers for ()CD-

g-CN/Pluronic (IE%) according to formula (1): 

( ) ( ) /% (1 %)Pluronic CN g CD CN g CD PluronicIE C IE C C        (1) 
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where C is the relative carbon content in the sample; IE% is the inclusion efficiency for inclusive 

Pluronic polymers for grafted -CD. The precision of the measurement is considered to be 0.3% 

for C and H elements and 0.5% for O element. 

X-ray diffraction analysis (XRD). 

XRD was used to prove the possibility of inclusion interactions between ()CD-g-CN/Pluronic 

and α-CD, which was recorded on a Philips PW 1720 X-ray generator operated at 30 kV and 20 

mA with Cu Kα radiation (λ = 0.154 nm) in a range of 2θ = 3–50° using a fixed time mode with 

a step interval of 0.02°. 

Transmission electron (TEM) and optical microscopy. 

The dimensions and morphologies of pristine CN were observed by TEM. Drops of 0.001 wt% 

cellulose suspensions were deposited on glow-discharged carbon-coated TEM grids. The 

specimens were then negatively stained with 2% uranyl acetate. After complete drying under 

room conditions, specimens were observed using a Philips CM200 electron microscope 

operating at 80 kV. 

The morphology of hydrogel crystals was directly observed by optical microscop y. The hydrogel 

was dropped on the glass slide, and formed after standing a period of time in aqueous solution.  

Excess water was removed carefully with the absorption by the edge of filter paper, and the 

morphology was observed after the complete dryness. 

Rheological analysis. 
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Viscoelastic behavior of hydrogels was evaluated on a Rheolyst Physica MCR-301 rheometer. 

Viscosity of the hydrogel was recorded applying a flow cycle consisting in a continuously 

increasing shear rate ramp at 20 C from 0.05 to 10 s-1 for 4 min. The storage (G') and the loss 

(G'') moduli were recorded under the shear stress of 100 Pa in the range of 0.5–100 rad/s angular 

frequency interval using a cone-plate geometry (diameter 20 mm, angle 1). The dependence of 

G' and G'' on temperature was evaluated at 20 rad/s and 50 Pa in the range of 20–70 C.  

The influence of pH conditions on the property of hydrogel was investigated to determine the 

loss (G'') and storage (G') moduli with different pH ranging from 1 to 11. The adjustment of pH 

conditions was achieved by the addition of HCl and NH4OH, which was a negligible amount. 

Tests were conducted in triplicate at a fixed frequency of 1 Hz with 50 Pa shear stress at 20 C. 

In vitro release of doxorubicinHCl from hydrogels. 

DoxorubicinHCl (1.0 mg) was dissolved in 2 mL distilled water, and then ()CD-g-CN/Pluronic 

and controlled amount of Pluronic was added. The mixture was kept at 4 C overnight in order to 

obtain a homogeneous suspension. Afterwards, α-CD was added to induce in situ host-guest 

inclusion and form stable hydrogel. The study of in vitro drug release was performed in water at 

37 C. The hydrogel was placed in a test tube with 20 mL water, and then incubated in a shaking 

water bath. Solution of 3 mL aliquots containing released drug was withdrawn from the testing 

tube periodically. The volume of solution in the tube was kept constant by adding another 3 mL 

water after each sampling. The cumulative release ratio of doxorubicinHCl from hydrogels was 

measured by UV/Vis spectrophotometer (Shimadzu UV 2401-(PC)) at the absorbency of 481 

nm. The experiment for in vitro drug release was performed in triplicate. 
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RESULTS AND DISCUSSION 

Chemical grafting of  -CD on the surface of CN. 

The 13C CP-MAS spectra of CN, -CD and ()CD-g-CN are shown in Figure 2. The chemical 

shifts of carbon atoms from original CN were assigned to C1 (105 ppm), C4 (88 ppm), C2,3,5 

(71―75 ppm), and C6 (65 ppm). Possessing the same glucose structure units, the characteristic 

chemical shifts related to C2',3',5' for -CD superimpose with cellulose. However, because of 

different monomer unit quantity and molecular conformations, the presence of -CD can be 

determined by the position shifts of C1' (102 ppm), C4' (81 ppm), and C6' (64 ppm). As shown 

in the spectrum of ()CD-g-CN, all carbon characteristics from both CN and -CD can be 

identified, which indicates the surface grafting of -CD and integrity of CN. 

Under pH>10 condition, phenolphthalein (phe) aqueous solution shows red color, which darkens 

when increasing phe concentration. It was reported that the hydrophobic group of phe molecule 

can insert into the hydrophobic cavity of -CD, which reduce the free phe concentration in 

solution, and finally cause the decline of absorbency from light color solution. As shown in the 

UV-Vis spectra of Figure 3A, the impact of pristine CN was negligible on phe molecule, which 

showed tiny absorption and slight decrease of absorbency in comparison with neat phe solution. 

However, the introduction of ()CD-g-CN caused a sharp reduction of absorbency, which 

indicates that the hydrophobic cavity of -CD includes plentiful phe molecules. Based on Beer–

Lambert law, within a range of controlled concentration, the content of grafted -CD on the 

surface of CN can be detected according to the absorbency of alkaline phe solution. The 

absorbency of phenolphthalein (A) showed a negative correlation with the concentration of 
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grafted -CD (C-CD, mg/mL), which was in agreement with the weight of grafted -CD (W-CD, 

mg) because of the same volume of solution (25 mL) used in the experiment. The standard curve 

and equation between A and W-CD are shown in Figure 3B. Different quantities of ()CD-g-CN 

(5, 10, 20, 30, 40 mg) were added in the phe solution, and the content of grafted -CD was 

calculated from absorbency according to the equation reported in Figure 3B. As shown in Figure 

3C, the average value of -CD grafting efficiency (GE%) was determined as 16.89 wt% using 

this photometric titration method, which is almost in agreement with the result of weight 

measurement (15.44 wt%). 

Inclusion of Pluronic polymers in grafted  -CD. 

Although possessing similar glucose unit structure, the grafting and inclusion reaction between 

CN, -CD and Pluronic polymers can be investigated by the change of peak intensity for specific 

bond stretching bands. Figure 4 (A and B) shows the FTIR spectra of CN before and after 

grafting or inclusion reaction. With the surface grafting of -CD on CN, the intensity of three 

peaks located at 1163, 1113, and 1059 cm-1 decreased, which are ascribed to antisymmetric 

bridge oxygen stretching, antisymmetric in-phase ring stretching and C-O stretching for 

cellulose, respectively. Furthermore, another C-O stretching band at 1031 cm-1 broadened after 

surface grafting. These results are in agreement with other reports for cyclodextrin-EPI 

cellulose.30 By comparing the spectra for ()CD-g-CN and ()CD-g-CN/Pluronic, it is 

interesting to note that the intensity of the peaks located at 1031 and 898 cm-1 slightly increased, 

which can be attributed to the emerging C-O groups and antisymmetric out-of-phase stretching 

carbon from the inclusive PEG-PPG-PEG polymer. However, it was very important to confirm 

the inclusion reaction between grafted -CD and Pluronic polymers, and prove the complete 
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removal of free and surface physically adsorbed Pluronic polymers on nanocrystals. An 

experiment of FTIR tracing was designed to investigate the effect of the process of successive 

solubilization-centrifugation during the preparation of inclusion complex (()CD-g-

CN/Pluronic). As shown in Figure 4(C), after the post-treatment of purification for three times, 

the spectra for the supernatant (F3) from washed ()CD-g-CN/Pluronic did not exhibited any 

characteristics of Pluronic polymers, which proved the availability of free Pluronic removal 

using this method. On the other hand, the physical mixture of CN/Pluronic was also prepared 

using the same concentration, and treated with the same purification treatment. By comparing the 

spectra of CN(R-Pluronic) and pure CN, it was observed that they are nearly similar (as shown in 

Figure 4D), which indicates that the purification treatment can also effectively remove the 

polymer physically adsorbed on the surface of nanocrystals. It should be pointed out that because 

the main body of ()CD-g-CN is cellulose (only 16.89 wt% grafted -CD), the possible physical 

adsorption of Pluronic was supposed to mainly occur on the surface of CN. Consequently, the 

above comparative experiments were carried on CN to prove the effect of purification. 

The content or inclusion efficiency (IE%) of Pluronic polymer on the surface of ()CD-g-

CN/Pluronic complexes was determined by elemental analysis. As shown in Table S1, with the 

similar glucose unit structure (C6H10O5), CN and -CD have the same theoretical values for the 

three element contents (C, O and H), resulting in small change of element contents for the 

grafted nanocrystals [()CD-g-CN]. On the other hand, although presenting different molecular 

weights and polymer segments, there is a little difference in theoretical values for element 

contents between the two Pluronic polymers. Regarding experimental values of these original 

materials, because of the instrumental error and influence of hydrophily of cellulose and -CD, 

some variance of the experimental values was inevitable for CN and -CD, which was mainly 



 17 

attributed to the adsorption of moisture (H2O) during the delivery and experiment. Therefore, the 

values of inclusion efficiency were confirmed mainly based on the data from carbon element, 

and calculated according to Equation (1). As shown in Table S1, the inclusion efficiency (IE%) 

of Pluronic polymers for ()CD-g-CN/F68 and ()CD-g-CN/F108 complexes were 12.25 wt% 

and 15.57 wt%, respectively. 

Crystalline structure of inclusive complexes. 

The inclusion of polymeric chains in cyclodextrin can also be investigated with XRD analysis. 

The crystalline diffraction patterns of original materials and various inclusive complexes are 

presented in Figure 5. As shown in panel A, the characteristic diffraction peaks of cellulose, -

CD and α-CD, on one hand, and Pluronic polymers on the other hand were assigned to the 2θ 

angles at 22.6°, 12.9°, 14.3°, and 19.1°, 23.2°, respectively. The sharp diffraction peak for 

inclusive complexes located at about 20.0° strongly supports the channel-type crystalline 

structure of the obtained polyrotaxanes (Figure 5B), which indicated that cyclodextrin underwent 

a solid-state phase transformation as it formed an inclusion compound with polymeric chains.36 

Pluronic F108 with longer polymeric chains can include more α-CD molecules than short 

Pluronic F68, which is reflected through the higher intensity for ()CD-g-CN/F108-α(CD) 

complex at 20.0°. On the other hand, by comparing the diffraction patterns of ()CD-g-

CN/Pluronic and ()CD-g-CN/Pluronic-α(CD) complexes, the crystalline feature of α-CD 

appeared  with the emergence of a weak peak at 14.3°. In general, the inclusive complexes or 

hydrogels of cyclodextrin and polymers do not present the obvious crystalline features of 

cyclodextrin. However, in this case, the inclusion between α-CD and PEG chains occurred at the 

surface of nanocellulose, which may induce the arrangement of inclusive chains (PEG/α-CD), 
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and cause the slight exhibition of α-CD crystalline feature. This phenomenon also indicates the 

capability of inclusion between ()CD-g-CN/Pluronic and α-CD, which ensured the future in situ 

formation of hydrogels. In addition, the crystalline character of cellulose was covered in these 

patterns, which induced the broadening of the peak observed between 18° and 25°. By 

magnifying the patterns, the traces of crystalline cellulose can be observed with a ill-defined 

peak located at about 22.6°, as shown in Figure 5C. 

Morphology and dimensions of CN and hydrogels. 

TEM was used to observe the morphology and dimensions of cellulose nanocrystals, as shown in 

Figure 6. Nanocrystals exhibited a typical rod- like morphology with a length of 200−400 nm and 

a diameter of 10−20 nm with an aspect ratio (L/d) of about 18. This result was in accordance 

with our previous report for the morphological observation of cellulose nanocrystals using 

atomic force microscopy (AFM).29 Generally, during the process of observation, the inclusion 

complex of α-CD/PEG hydrogel recrystallizes in water, and forms crystals of regular shapes with 

facets on microscope grid at room temperature.35 As shown in Figure 7, both in situ hydrogels 

derived from Pluronic F68 and F108 exhibited the regular appearance with rectangular 

morphology in the size range of ca. 10−20 μm long and 2−4 μm wide. In comparison with the 

F68-hydrogels (panels A and B), F108-hydrogels (panels C and D) show higher length (> 15 μm) 

and much coarser surface, which may be attributed to the longer PEG chains of Pluronic F108 in 

the hydrogel system. 

Rheological behavior of hydrogels. 

When modified CN were introduced into the architecture of hydrogels, these nanoparticles can 

participate to the in situ inclusion between polymers and cyclodextrin via the surface grafted 
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polymeric chains, which endowed strong coupling between nanocrystals and hydrogel. On the 

other hand, if the loading level of added nanoparticles reaches a critical content, such as the 

percolation threshold (νRc), the strong interactions (such as hydrogen bonding) among 

nanoparticles should force them to associate/interact with each other for supporting the tri-

dimensional percolating network.37 It is believed that both interactions are beneficial for the 

performance of the hydrogel, and should strengthen and improve the structural stability and 

rheological behavior of ensuing hydrogels. Before the discussion of rheological properties of in 

situ hydrogels, the value of νRc can be calculated with the dependence upon the aspect ratio (L/d) 

of rod-like CN according to Equation (4): 

0.7

/
Rc

L d
   (4) 

The νRc value is therefore inversely proportional to the aspect ratio of CN. According to the 

observations from TEM, the value of νRc in this case was close to 3.89 vol% (6.09 wt% with the 

density of cotton cellulose 1.565 g/mg). 

The rheological behavior of hydrogels was investigated on the basis of three aspects, including 

change of viscosity as a function of the shear rate, dependence of storage moduli (G') and loss 

moduli (G'') as a function of angular frequency and temperature. When subjected to flow 

experiments, all hydrogels exhibited the physical nature of gelation and were found to be 

thixotropic and reversible, as shown in Figure 8 (A and A'). Even for in situ hydrogel with the 

highest initial viscosity (CN-CD/F108-3), the viscosity of the hydrogel greatly reduced when 

increasing the shear rate. This property makes the hydrogels syringeable, which is useful and 

important for drug delivery systems. Two different effects on the rheological behavior of in situ 

hydrogels as a function of angular frequency were observed depending on the CN content as 
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shown in Figure 8 (B and B'). With the addition of only 50 mg modified CN, the improvement of 

the mechanical properties of the hydrogel was unobvious (CN-CD/Pluronic-1) in comparison 

with the neat hydrogel (Pluronic/α-CD). However, when the loading level increased above 100 

mg, the moduli of both F68- and F108-hydrogels were enhanced significantly. Meanwhile,  with 

the introduction of enough modified CN, the in situ hydrogels can maintain better structural 

stability in contrast to the sharp decrease of moduli observed for neat hydrogels under high 

angular frequency. The dependence of the hydrogel moduli as a function of temperature is shown 

in Figure 8 (C and C'). The effect of introducing modified CN in hydrogels was more evident, 

and induced the promising thermal stability for in situ hydrogels contrarily to the strong variation 

induced by sol-gel transition for neat hydrogels. It should be pointed out that the F108-hydrogels 

commonly presented better mechanical properties and thermal stability than F68-hydrogels, 

which may be attributed to the longer polymeric chains with more inclusive cyclodextrin 

molecules for Pluronic F108. In addition, based on the rheological behavior of in situ hydrogels, 

it was interesting that the mechanical properties of CN-CD/Pluronic-2 was similar to that of CN-

CD/Pluronic-3, which indicates that the introduction of CN in the hydrogel CN-CD/Pluronic-2 

may be a critical point for the support of some special structure. According to the results of 

elemental analysis reported in Table S2, the true contents of CN in hydrogels CN-CD/F68-2 and 

CN-CD/F108-2 were 5.96 wt% and 5.77 wt%, which was very close to the previously calculated 

percolation threshold (νRc, 6.09 wt%). It was believed that cellulose nanoparticles with adequate 

loading level could form the percolating network in the architecture of hydrogels, and properly 

improved the performance of in situ hydrogels. 

The influence of different pH values on the properties (G' and G'') of hydrogels was investigated 

under acidic, neutral and alkaline conditions. As shown in Figure 9A, under acidic conditions, in 
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situ hydrogels CN-CD/F68-2 and CN-CD/F68-3 kept high moduli and stability, which was about 

5 times higher than for neat hydrogels. The maximum values of G' for all hydrogels appeared in 

neutral condition (pH=7). However, when increasing the pH values to alkaline environment, the 

moduli for all hydrogels dropped sharply, which may be attributed to the higher solubility and 

dissolution of cyclodextrin in alkaline condition. Similar results can also be observed for the CN-

CD/F108 hydrogel system (Figure 9B). However, it was interesting that different from other 

hydrogels, hydrogel CN-CD/F108-3 preserved a storage moduli (G') at high levels, and seemed 

to possess the ability of alkaline resistance. Further study will focus on this interesting 

phenomenon. 

Drug release and mechanism study. 

Doxorubicin is an anticancer drug, which is widely used in the resistant of solid tumors, 

including breast cancer, ovarian carcinoma, transitional cell bladder carcinoma, and thyroid 

carcinoma. However, the non-negligible side effect, primarily the cardiotoxicity resulting from 

high concentration of drug in blood, demands ideal carrier for this drug for effective drug 

controlled release.38 As shown in Figure 10A, in situ hydrogels formed with participating 

modified CN (CN-CD/F68-2-Dox and CN-CD/F108-2-Dox) exhibited promising controlled 

release behavior with sustained release for about one week, whereas neat hydrogels (F68/α-CD 

and F108/α-CD) displayed an initial burst release and shortened release period (only 2.5 days). 

The prolonged drug release for in situ hydrogels upon modified CN introduction was supposed to 

result from two factors. As reported in our previous literature,39 rigid CN has been proved to 

induce physical “obstruction effect” in alginate-based microsphere for controlled drug release 

property. On the other hand, in this study, if the loading level of nanocrystals reaches the 

percolation threshold inducing a network structure with linkage among nanoparticles, it may 
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provide another “locking effect” to delay the diffusion of doxorubicin molecules (as shown in 

Figure 10B). Both effects from modified nanocrystals led to the sustained drug release of in situ 

hydrogels. It is worth noting that when comparing the hydrogels formed with different Pluronic 

chains, there was no significant relation between the length of chains used in the hydrogel and 

drug release behavior. However, the final cumulative release ratio depended on the length of 

used Pluronic for hydrogels, which indicates the lower final cumulative release for hydrogels 

with longer Pluronic chains. 

To prove the different release mechanisms for hydrogels, Ritger-Peppas equation was used to 

analyze the results of drug release: 

    ( ' )nQ kt InQ k nInt    (5) 

where Q is the amount of drug released at time t; k is a constant associated with the structural 

and geometrical characteristics of dosage form; n is the release (diffusion) exponent, which 

depends on the release mechanism. It was reported that n values approximating to 0.50 indicates 

a Fickian diffusion release; whereas n value in the range of 0.50 to 0.85 represents both diffusion 

controlled release and non-Fickian diffusion release (anomalous transport).40 Estimated 

parameters and fitted equations for the various hydrogels with different compositions are shown 

in Table S3. It was shown that neat hydrogels (Pluronic/α-CD-Dox) underwent the common 

Fickian diffusion, but in situ hydrogels (CN/CD-Pluronic-Dox) exhibited an anomalous transport 

release mechanism. These results revealed the different effects and changes of in situ hydrogels 

with the introduction of modified nanocrystals compared to neat hydrogels. 

CONCLUSIONS 
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This work was an attempt to use chemical modification methods to promote the compatibility 

and enhance the loading levels of cellulose nanocrystals in hydrogel materials. Meanwhile, 

uncovered polymeric chains render the participating inclusion of α-cyclodextrin for the 

architecture of in situ hydrogels. Grafting efficiency of -cyclodextrin on the surface of 

nanocrystals was confirmed by UV spectroscopy as 16.89 wt%, and inclusion efficiency of 

Pluronic F68 and F108 polymers were measured by elemental analysis as 12.25 wt% and 15.57 

wt%, respectively. With the introduction of high loading levels of modified nanocrystals (>5 

wt%), a significant enhancement of structural and thermal stability of in situ hydrogels was 

observed from rheological analysis. Further study revealed the performance of hydrogels as drug 

carrier for in vitro release of doxorubicin, and exhibited the behavior of prolonged drug release 

with special release kinetics, which was attributed to the “obstruction effect” and “locking 

effect”. Based on their performances and properties, these in situ hydrogels as syringeable drug 

delivery provide a scientific example for the application of biomass nanocrystals in the field of 

biomedical materials. 
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Figure 1. Synthesis pathway for (A) -cyclodextrin grafting on cellulose nanocrystal 

()CD-g-CN; (B) inclusion complex of ()CD-g-CN and Pluronic polymers; (C) 

supramolecular hydrogels from in situ inclusion between ()CD-g-CN/Pluronic and 

α-CD: (a) hydrogel CN-CD/F68-2, (b) hydrogel CN-CD/F108-2, (c) water, (d) drug-

loaded hydrogel CN-CD/F108-2-Dox. 
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Figure 2. 13C(CP/MAS) solid-state NMR spectra of CN, -CD and ()CD-g-CN. 
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Figure 3. (A) UV absorption spectra for pure phenolphthalein solution (phe), phe solution treated with pristine CN (CN/phe), and phe solution 

treated with -CD grafted CN (()CD-g-CN/phe); (B) standard curve and equation from -CD content and phe absorbency; (C) -CD grafting 

efficiency from ()CD-g-CN samples with different quantities.
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Figure 4. FTIR spectra for (A and B) cellulose nanocrystals before and after chemical 

modifications: (a) -CD (b) CN (c) ()CD-g-CN (d) ()CD-g-CN/F68 (e) ()CD-g-

CN/F108; (C) pure Pluronic polymers and supernatants from the preparation of 

()CD-g-CN/Pluronic complexes with the treatment of successive solubilization- 

centrifugation (F1 and F3 represent the supernatant after the treatment for one and 

three times); (D) comparisons between pristine CN, CN/F108 with physically 

adsorbed Pluronic F108, and CN(R-Pluronic) from the purification of CN/Pluronic 

with the removal of adsorbed Pluronic using successive solubilization-centrifugation 

method. 
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Figure 5.  X-ray diffraction patterns of (A) original materials: CN, -CD, α-CD, Pluronic F68 and F108; (B and C) inclusive complexes of (a) 

()CD-g-CN/F68, (b) ()CD-g-CN/F108, (c) ()CD-g-CN/F68-α(CD), (d) ()CD-g-CN/F108-α(CD). 
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Figure 6. TEM micrographs of cellulose nanocrystals. 



 34 

 

 

Figure 7. Optical microscopy images of in situ supramolecular hydrogels of (A and 

B) CN-CD/F68-2, (C and D) CN-CD/F108-2. 
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Figure 8. Rheological behavior of hydrogels: (A and A') viscosity vs. shear rate; (B 

and B') storage modulus (G', filled symbols) and loss modulus (G'', open symbols) vs. 

angular frequency; (C and C') G' (filled symbols) and G'' (open symbols) vs. 

temperature at a fixed frequency of 20 rad/s and 50 Pa shear stress in the range of 20–

70 C.  
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Figure 9. Evolution of G' (filled symbols) and G'' (open symbols) for various hydrogels under different pH conditions at a fixed frequency of 1 

Hz with 50 Pa shear stress at 20 C. 
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Figure 10. (A) In vitro release profiles of doxorubicinHCl for hydrogels with different 

compositions; (B) possible “locking effect” from the linkage between nanoparticles. 
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