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Introduction

Discrete nonlinear systems have mainly been studied at dimension 2 or 3. Any system of dimension 4 or above should be welcome, even if it only corroborates results already known, all the more if it presents original properties. At least, the existence of many more attractors may be expected. The system studied in this paper, thanks to its origin in 2-D geometry, can be operated backwards. That means the map is invertible, though not at any point. A singularity of this system is that it generates paths which seems to fall into attractors but escape after a few or many iterations, that we will name eddies, by reference to phenomenons usually described in continuous nonlinear dynamics. We try to understand this feature, aware that the study of nonlinear system is often rather a description of simulation results than a demonstration.

This paper begins with the operation performed on a quadrangle (section 2). Using bilinear forms (subsection 2.1) in order to get free of location and orientation, and dimensionless variables (subsection 2.5) to get free of scale, we obtain the equations of the forward (subsection 2.4) and backward (subsection 2.6). The reader may go directly to the end of these subsections, before looking at the results (sections 4 and 7.1) of orbits of either the centre of the quadrangle or the dimensionless quadruplet. The observation of instability of some attractors leads to study a subset of initial values. Many cycles of period 4 are found and studied by inspecting the Jacobian matrix of the transform (section 5). A complementary brief exploration of a geometrical parameter of the system exhibits chaos (section 7.2). Eventually, we discuss long-term reversibility in section 8.

A simple transform of a quadrangle

The objects under study are quadrangles. Let us start from a quadrangle ABCD (Figure 1).We design a rectangle (not necessarily a square) EFGH such that A belongs to straight line EH, B to FG, C to EF and D to GH. We ignore that there are several solutions, and are happy with a solution satisfying some algebraïc equations. We define I,J,K,L as the (other) intersections of the sides of the rectangle with straight lines CD and AB. Eventually we apply a permutation A + B + C + D + = KILJ so that the same transform applied to A + B + C + D + doesnot yield ABCD (nor a permutation keeping A + B + and C + D + on straight lines AB and CD).

Bilinear forms

It is convenient to use a basis of orthogonal unit vectors ( -→ p , -→ q ) and write them as function of --→ AB and --→ CD. We introduce a unit vector -→ 1 orthogonal to the plan of the quadrangles in order to operate rotations of π/2 , a parameter u and a normalizing factor s which will not be used in most calculations.

s -→ p = --→ CD + u( -→ 1 ∧ --→ AB) (1) 
s -→ q = -→ 1 ∧ --→ CD -u --→ AB (2) 
x = s -→ p .

--→ AB = --→ CD.

--→ AB

s -→ q .

--→ CD = -u --→ AB.

--→ CD = -ux (4)

--→ AB ∧ s -→ q = --→ AB ∧ ( -→ 1 ∧ --→ CD) = --→ AB. --→ CD = x (5) s --→ CD ∧ -→ p = u --→ CD ∧ ( -→ 1 ∧ --→ AB) = u --→ CD. --→ AB = ux (6) 
y = -s -→ q . --→ AB = -s( -→ 1 ∧ -→ p ). --→ AB = s --→ AB ∧ -→ p = --→ AB ∧ --→ CD + u AB 2 (7) 
z = s -→ p . --→ CD = ( --→ CD + u -→ 1 ∧ --→ AB). --→ CD = CD 2 + u --→ AB ∧ --→ CD = -s -→ 1 ∧ -→ q . --→ CD = --→ CD ∧ -→ q (8) t = s( --→ BD + -→ AC) ∧ -→ p = ( --→ BD + -→ AC) ∧ --→ CD + u -→ 1 ∧ --→ AB = -s( --→ BD + -→ AC) ∧ ( -→ 1 ∧ -→ q ) = -s( --→ BD + -→ AC). -→ q (9) v = s( --→ BD + -→ AC) ∧ -→ q = ( --→ BD + -→ AC) ∧ -→ 1 ∧ --→ CD -u --→ AB = s( --→ BD + -→ AC). -→ p (10) 
The variable s is not independent and given by:

s 2 = --→ CD + u( -→ 1 ∧ --→ AB) 2 = CD 2 + u 2 AB 2 + 2u --→ AB ∧ --→ CD = z + u y (11)
Other expessions of x to v, more symmetrical, will be given in subsection 3.2. Note that a quadrangle is of dimension 8 and that the bilinear forms (representing angles) are invariant by translation and rotation. We have therefore 5 bilinear forms, what is the right number to characterize the transform. Note that if we consider the invariance by homothecy, we need only 4 independent variables.

2.2

Coordinates of A,B,C,D and I, J, K, L in function of bilinear forms and coefficients.

Let be λ I , λ J coefficients of I, J with respect to C, D and λ K , λ L coefficients of K, L with respect to A, B such that in any base :

x I = λ I x C + (1 -λ I )x D y I = λ I y C + (1 -λ I )y D (12) 
and similar expressions for other points. Using coordinates of E in base ( -→ p , -→ q ) and introducing the bilinear form y yields:

y K = λ K y A + (1 -λ K ) y B y A -y E = y A -y K = (1 -λ K )(y A -y B ) (13) -→ EA = (λ K -1) --→ AB. -→ q -→ q = (1 -λ K )y -→ q (14)
In the same way, all points A to D and I to K can be written in the base ( -→ p , -→ q ):

A 0 (1 -λ K )y B x -λ K y C (λ I -1)z 0 D λ I z -ux (15) 
I 0 (λ I -1)ux J x (λ J -1)ux K (1 -λ K )x 0 L (1 -λ L )x -ux (16) 
From coordinates of J and L, u appears to be the ratio length/width of the rectangle.

2.3 Calculation of coefficients λ in function of bilinear forms x, y . . .

Due to orthogonality

-→ IJ. -→ p = --→ AB. -→ p
Multiplying each term by s and developing yields

(λ I -λ J )z = x (17) Similarly, from --→ KL. -→ q = --→ CD. -→ q -ux = (λ K -λ L )(-y) (18) 
Expressions λ K + λ L and λ I + λ J are obtained in developing t and v.

t = s --→ BG + -→ AE ∧ -→ p v = s --→ GD + --→ EC ∧ -→ q (19) y BG = λ L (y A -y B ) x GD = λ J (x c -x D ) (20) y AE = (λ K -1)(y A -y B ) x EC = (λ I -1)(x C -x D ) (21) t = s (λ K + λ L -1) - --→ AB ∧ -→ p v = -s (λ I + λ J -1) --→ CD ∧ -→ q (22) t = -(λ K + λ L -1) y v = (λ I + λ J -1) z (23)
which yields:

2λ I = 1 + x + v z 2λ J = 1 + v -x z (24) 2λ K = 1 + ux -t y 2λ L = 1 - ux + t y (25)

Equations of the transform

Let be A + = K, B + = I, C + = L, D + = J and X, Y, Z, T, V bilinear forms in A + , B + , C + , D + , corresponding to x, y, z, t, v X = -→ KI. -→ LJ (26) X = --→ KE + -→ EI . -→ LG + -→ GJ = --→ KE. -→ LG + -→ EI. -→ GJ (27) with --→ KE = (λ K -1)( --→ AB. -→ p ) -→ p = (λ K -1) x -→ p (28) -→ LG = λ L ( --→ AB. -→ p ) -→ p = λ L x -→ p (29) -→ EI = (λ I -1)( --→ CD. -→ q ) -→ q = (λ I -1) (-ux) -→ q (30) -→ GJ = λ J ( --→ CD. -→ q ) -→ q = λ J (-ux) -→ q (31) X = (λ K -1)λ L + u 2 (λ I -1)λ J x 2 (32) 
and with analogous calculations omitted:

Y = (λ K -1)λ J -(λ I -1)λ L ) + u (λ K -1) 2 + (λ I -1) 2 x 2 (33) 
Z = λ 2 L + u 2 λ 2 J + u ( (λ K -1) λ J -(λ I -1) λ L ) x 2 (34) 
As the expressions of T and V share common parts, we do not develop completely:

T = -→ IJ + --→ KL ∧ -→ LJ + u( -→ 1 ∧ -→ KI) (35) V = -→ IJ + --→ KL ∧ -→ 1 ∧ -→ LJ -u -→ KI (36) with -→ IJ x (λ J -λ I )ux --→ KL (λ K -λ L )x -ux -→ LJ λ L x λ J ux -→ KI (1 -λ K ) x (λ I -1) ux (37) 
and

-→ IJ + --→ KL (λ K -λ L + 1)x (λ J -λ I -1)ux -→ LJ + u -→ 1 ∧ -→ KI (λ L + (1 -λ I )u) x (λ J + λ K -1)ux -→ 1 ∧ -→ LJ -u -→ KI ) (-λ J u -(λ K -1)) x (λ L + (1 -λ I ) ux

Dimensionless variables

From equations 24, 25 and 23 in sub-section 2.2, we can write coefficients λ as functions of bilinear forms of the input quadrangle, more accurately of quotients of bilinear forms. From sub-section 2.4, we can write the bilinear forms of the output quadrangle as functions of the same coefficients. It is convenient to take these quotients as new variables:

ϵ = -ux y , η = x z , θ = t y , φ = v z (38) 
The coefficients λ can be rewritten:

λ I = (1 + η + φ)/2 λ J = (1 -η + φ)/2 λ K = (1 -ϵ -θ)/2 λ L = (1 + ϵ -θ)/2 (39) 
In order to have formulas depending only on ϵ to φ and an arbitrary scale factor, we can also write x to z:

x = s 1 η -u 2 ϵ y = - ux ϵ z = x η (40) 
These expressions can be exported into coordinates of points A to D and I to J (equations 15 and 16).

The new variables of the output quadrangle ϵ + to φ + are easily calculated as quotients of bilinear forms X to V , which are functions of the variables of the input quadrangle through the λ by equations 32 to 36 of section 2.4. Reporting equations 39 into equations 32 to 36 yields:

4X = (1 + ϵ -θ)(-ϵ -θ -1) + u 2 (1 -η + φ)(φ + η -1) (41) 4Y = (-(1 + ϵ -θ)(1 -η -φ) + (1 -η + φ)(1 + ϵ + θ)) u + u (-1 + ϵ -θ) 2 + (φ + η -1) 2 (42) 4Z = (-ϵ -θ -1) 2 + u 2 (1 -η + φ) 2 + (-(1 + ϵ -θ)(1 -η -φ) + (1 -η + φ)(1 + ϵ + θ)) u (43) 2T = 1 -ϵ -η -1 ∧ (1 + ϵ -θ + u 2 (1 -η -φ) u(-ϵ -η -θ + φ) (44) 2V = 1 -ϵ -η -1 ∧ -u(-ϵ -η -θ + φ) 1 + ϵ -θ + u 2 (1 -η -φ) (45) ϵ + = -uX Y , η + = X Z , θ + = T Y , φ + = V Z (46) 
These new variables are not defined if Y or Z are equal to zero. The computer will give a warning in case of division by zero or a very small value but there is a more subtle case if X is also close to zero. It may happen since X Y can be in the form a-b c-d where b differs from a and d differs from c by some quantities about the numerical precision, so that the result has a reasonable magnitude but is totally meaningless. Note that the geometric construction may still be valid in this case.

Backward transform

The geometrical definition of the transform enables to perform the backward transform. As the direct (or forward) transform is composed of a (not far from self-inverse) transform followed by a permutation, the backward transform must operate these transform the other way round. It cannot be simply obtained by changing some parameters.

Backward transform on quadruplets

The permutation is done on the points of the quadrangle. The difficulty is that there is no straightforward relationship between the bilinear forms or the dimensionless variables ϵ to φ of a quadrangle before and after a permutation. A solution is to reconstruct a quadrangle from these variables. Note that we cannot and do not need to reconstruct the quadrangle from which ϵ to φ should have been calculated. The following calculations (referring to Figure 1) can be done in a row: -The parameters λ + function of ϵ + to φ + with equation transposed of equation 39; -The coordinates of points I,J,K,L= B + , D + , A + , C + in basis ( -→ p , -→ q ), using equations 16; -The bilinear forms of IJKL (which are independent of the basis), then coefficients λ I to λ L using 39 (which are also independent of the basis); -The coordinates of points A,B,C,D using coefficients λ I to λ L and coordinates of points I,J,K,L (by inversion of the linear equations of barycentres); -The bilinear forms of ABCD, then the parameters ϵ to φ through equation 38.

Note that algebraïc simplification can be done at some steps before doing numerical calculation.

Backward transform on quadrangles

The problem of finding a square with its summits on the four sides of a quadrangle has several solutions but the transform under consideration yields a unique solution IJKL function of ABCD. Then we made an arbitrary choice to determine A + B + C + D + = KILJ. We have so far neglected permutations on the input or output which give other solutions. We can wonder if there is a permutation, which comes back to the input quadrangle. If we mean obtain ABCD in the same order, the answer is no, but we can achieve this result with a second permutation.

As the purpose of calculating backwards is to do it on many iterations, the " second "permutation is run only at both ends of the chain, and it could be confusing to design notations for only one transform. The notations will be developed in subsection 4.1.

Backward transform on quadruplets using backward transform on quadrangles

The calculation of the unique geometric transform defined in figure 1 and followed by the permutation A + B + C + D + = KILJ can be generalized to any permutation, in particular

A + B + C + D + = LJKI. 4X = (-1 -ϵ + θ)(-ϵ -θ -1) + u 2 (1 -η + φ)(φ + η -1) 4Y = ((1 + ϵ -θ)(1 -η -φ) -(1 -η + φ)(1 + ϵ + θ)) u + (1 + ϵ -θ 2 ) + u 2 (-1 + η + φ) 2 4Z = ((1 + ϵ -θ)(1 -η -φ) -(1 -η + φ)(1 + ϵ + θ)) u + (1 + ϵ + θ) 2 + (1 -η -φ) 2 u 2 2T = 1 -ϵ -η -1) ∧ (1 + ϵ + θ + u 2 (1 -η + φ) (-ϵ -η + θ -φ)u 2V = 1 -ϵ -η -1) ∧ (ϵ + η -θ + φ)u 1 + ϵ + θ + u 2 (1 -η + φ) (47) 
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Cases of undetermination

Sections above enable to calculate a quadrangle from a quadruplet ϵ, η, θ, φ or a quintuplet x, y, z, t, v and reciprocally, but for some cases of infinity or undetermination with occurence of quotient 0 / 0 .

Undetermination of the coordinates of the quadrangle as a function of bilinear forms

We must first find another way to design quadrangles compatibles with ϵ, η, θ, φ and ϵ + , η + , θ + , φ + . In this case, the coordinates of A + B + C + D + cannot be calculated using equations 15 (transposed to values with superscript + ). However, these coordinates can be multiplied by any scaling factor and their apparently undefined values when ϵ or η equal zero may be transformed into dependency on ϵ + η + . Let be

β = Z Y = - 1 u ϵ + η + (48) 
Let us divide all terms of (transposed) equation 15 by y 2 :

A + 0 2(1 -λ K ) B + 2 X Y -2λ K C + 2(λ I -1)β 0 D + 2λ I β -2u
or

A + 0 1 + ϵ + + θ + B + -2 ϵ + u -1 + ϵ + + θ + C + (-1 + η + + φ + )β 0 D + (1 + η + + φ + )β -2ϵ + (49) 
For any value of β, a quadrangle which satisfies a given set of ϵ + to φ + can be built. That means that in order to satisfy the original quadrangle A + B + C + D + , β must also be given from the geometry of A + B + C + D + or ABCD. The map is not invertible within the meaning that there are several preimages. This can be corroborated by the Figure 8 which shows two quadruplets tending to cycle 22.

Undetermination of bilinear forms function of the coordinates of a quadrangle

That happens when all bilinear forms x to v tend to zero (or equal zero), which is equivalent to x p and y p of -→ p tend to zero (or equal zero). In order to get given values of ϵ to φ, (known for instance from the forward map when processing the backward map), it is necessary to introduce another information such as a finite value γ of the quotient yp xp . Remember that we need bilinear forms modulo any multiplicative factor. Instead of using y = x AB y py AB x p we can define y = x AB γy AB .

Generalisation to all bilinear forms in equations 3 to 10 yields:

x = x CD γ -y CD (50) z = x CD + γ y CD t = (x BD + x AC ) γ -(y BD + y AC ) v = (x BD + x AC ) + γ (y BD + y AC )
All values ϵ to φ fraction of these bilinear forms are now defined and finite. Note that γ has not the same status as β of subsection 3.1: The case is encountered when x = 0 so that γ can be calculated using equation 50.

Iteration of the transform can be done in two ways: A -as originally designed, on the very quadrangles. We can draw the quadrangles or the rectangle, or both, at each iteration, what can be aesthetic, but confusing. In this paper, we will be interested only in the walk of the centre of the quadrangle. B -in the space of ϵ, η, θ, φ. Method B is expected to give insight into more properties of the dynamic nonlinear system. Another advantage is that it is less likely to fall without return into very small or very large values. Method B clearly produces a map of dimension 4, with 4 dimensionless variables. Method A works on 5 variables X,Y,Z,T,V plus initial location of the quadrangle which can be omitted as an arbitrary translation and rotation of the whole map. We will consider it gives a map of dimension 5. Note that we can decide at some iteration to change method. However, if we move from A to B, then come back to A, we will continue on a portion of map different from that we would have walked on if we had stayed with method A. The difference would affect the location and size, but not the shape of the quadrangles.

Reversibility

The permutations necessary to run the system backwards are given in figure 2. The quadrangles on the backward path have the same summits, not in the same order as their equivalents in the forward path, but are always transformed by the same permutation (not represented except at the end). It is noteworthy that the permutation necessary at each step is different on forward and backward paths. Is this feature universal ? No : If we had chosen another permutation in the design of A + B + C + D + , we could have a perfect symmetry between past and future (Figure 2).

It can be easily checked numerically and graphically (Figure 3) whether the system comes back to its origin when changing the direction at half time. The test is of course always positive for a few iterations but may diverge at larger (or not that larger) times. Different examples will be shown in section 8 after some results on stability thanks to the study of Jacobian matrices.

Attractors with radial symmetry

For many sets of initial parameters, the centre of the quadrangle draws a spiral or a figure of limited extension with radial symmetry divided in 4, 6, 7 (Figures in gallery at the end of this paper), more astonishing 11 or more sectors. Other figures are given in section 4.4 and in the gallery. It is an illustration that a simple dynamic system is able to generate complex and highly structured patterns.

Though the system might stay for many iterations on a circle, a spiral or a more complex pattern, it can escape. millions and the spiral after thousands of iterations. For this reason, the orbits walked on before escape do not fulfill the definition of attractors. We must look at the path after escaping but for practical reasons will consider cases in which the escape happens with less iterations.

Eddies

A wonderful property of the system is that for some initial values it can repeat entering and escaping spiral shaped pathways that we will call eddies, with the hope that the definition of the word is flexible enough (Figure 5). As the orbit does not look like an ordinary random walk, the average distance to the point of departure was calculated and plotted versus the number of iterations (Figure 6). The distance as elevated at power 2/3 by reference fo fractional exponents embedded in theories of turbulence [3] and smoothed by a ratio 1/1000 of new value against previous averaged value. The distance between trajectories starting from the same point with initial small perturbation was also plotted (a method of measuring chaos after Lyapunov).

Comparison of direct and backward maps

Different examples show that the forward and backward maps starting from the same quadrangle or quadruplet are different, but offer some similarities (Figure 7).

Jacobian matrix of cycles.

The equation 46 giving ϵ + , η + , θ + , φ + from ϵ, η, θ, φ use intermediate variables X, Y, Z, T, V . All functions embedded are very basic functions, polynomials of second degree and rational fractions (quotients of these polynomials). So the algebraïc calculation of derivatives is rather long and fastidious, but with no other difficulty than the undetermination already dealt with. The corresponding procedure for the backward transform implies more steps and intermediate variables, but is basically the same. The results are commented only for a subset described in next section.

6 Exploration of a subspace with integer values of ϵ, η, θ, φ and u=1

Calculation was done with a numerical precision of about 10 -16 in language Javascript. The results of a complete exploration of initial integer values in a 4-D parrallelepiped around (0,0,0,0) are synthetized in three 3-D parrallelepipeds for φ = -1, 0, 1 (Figures 8 and9). Points with no symbol means that the system seems to converge towards a cycle which does not contain the initial state (seems because it is not possible to check the long term stability of so many cycles). The results are first divided into cases of divergence, cycles of period 1, 2 or 4 and (a few) more complex attracting sets. Results of cycles are separated according to the characteristic of the Jacobian matrix of the composed transform at iteration 4. Each case labeled by a number refers to a table containing an enumeration of the cycle, its Jacobian matrix, forward and backward, and, if the matrix is diagonalisable, its eigenvalues calculated online ( ([2], [1]).

• triangular matrix: such a matrix is non diagonalisable, with diagonal terms equal to 1. Raised at increasing powers, it stays non diagonalisable with diagonal not changed and triangular terms slowly growing.

• matrix identity: found for all cycles of period 2 and a few cycles of period 4 with θ = 0 and φ= 0 listed in tables pages 21-28;a small perturbation is kept along the cycle.

• 4 roots equal to 1, both forward and backward, but no unit matrix -cycles 1,3,6,8,9,15,30,32,36,38.

• at least 1 e.v. < 1, no e.v. > 1: the cycle should gain stability -cycles 2,5,10,18,19,21.

• at least 1 e.v. > 1, no e.v. < 1: an amplification of the perturbation may occur each time a cycle is run. It must be noted that finite numerical precision does not always generates a perturbation. For instance the cycle labeled 20 has 1 eigenvalue equal to 100. Without perturbation forced on initial states, the calculation done with integer or rational numbers is perfectly stable. Of course, a perturbation added to the system reveals unstability -cycles 20,39.

The case at least 1 e.v. < 1 in forward mode and at least one e.v. > 1 in backward mode is more frequent than the other way round. In That pairs of maps, the backward map can be said less stable than the forward map. When the forward Jacobian matrix is the identity matrix, the backward Jacobian matrix is also the identity matrix. The weaker property that the roots of the characteristic polynomial are all equal to 1, even if the rank of the matrix is lower then 4, is true for the backward map if it is true for the forward map (this is an empirical observation, not a theorem). In the few remaining cases, all roots are either smaller or equal, or greater or equal to 1 (another empirical observation). The number of eigenvectors associated with the eigenvalue 1 is generally lesser than the order of multiplicity of the root. The matrix of the forward and backward map contain the same elements in a different order, some with sign changed. This complex symmetry may transform an eigenvalue in its inverse, but not always.The generally and always aforementioned suggest that it is not straightforward to get theoretical explanations of empirical observations. 
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1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ⇢ 1 1 1 0 1 1 8 0 1 0 0 0 0 1 0 0 3 0 1 0 2 0 0 1 ⇢ 1 1 1 1 1 1 4 4 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 ⇢ 1 1 1 1 1 1 4 4 1 0 0 0 0 1 0 0 3 2 1 0 2 1 0 1 ⇢ 1 1 0 1 1 1 0 8 1 0 0 0 0 1 0 0 0 2 1 0 0 1 0 1 ⇢ 1 1 0 1 1 1 0 8 1 0 0 0 0 1 0 0 0 2 1 0 0 3 0 1 ⇢ 1 1 1 1 1 1 4 4 1 0 0 0 0 1 0 0 1 2 1 0 2 3 0 1 ⇢ 1 1 1 1 1 1 4 4 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 ⇢ 1 1 1 0 1 1 8 0 1 0 0 0 0 1 0 0 1 0 1 0 2 0 1 0 not in f igures ⇢ 1 1 3 3 1 1 4 3 4 3 1 0 0 0 0 1 0 0 1 2 1 0 2 5 0 1
Table 1: Cycles with Jacobian matrix equal to Identity for direct and backward map > > : 

i1 8 > > > > > < > > > > > : 1 1 1 1 1 3 3 0 0 1 1 1 1 3 1 3 0 0 i2 8 > > > > > < > > > > > : 3 1 0 0 1 1 2 6 1 3 1 0 0 1 1 2 10 i3 8 > > > > > < > > > > > : 2 1 0 0 1 1 0 0 74 3 1 0 0 1 1 2 14 i4 8 > > > > > < > > > > > : 1 3 0 0 1 1 0 2 1 1 3 0 0 1 1 4 2 i5 8 > > > > > < > > > > > : 1 2 0 0 1 1 2 3 2 1 1 2 0 0 1 1 10 3 2 i6 8 > > > > > < > > > > > : 1 2 0 0 1 1 10 2 1 1 2 0 0 1 1 14 2 i7 8 > > > > > < > > > > > :
8 > > > > > < > > > > > : 1 0 1
8 > > > > > < > > > > > :
9 8 > > > > > < > > > > > : 2 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2
8 > > > > > < > > > > > : 1 0 1 1 2 3 2 1 2 1 0 1 1 5 6 5
8 > > > > > < > > > > > : 0 0 1 0 1 3 1 0 4 1 2 1 2 1 2 1 3 1 0 4 1 2 1 2 0 0 1 2 1 2 0 0 0 0 1 0 1 2 1 2 0 
8 > > > > > < > > > > > : 1 1 0 3 1 4 2 4 3 2 3 1 3 1 2 0 1 2
8 > > > > > < > > > > > : 2 1 0 1 0 0 1 5 1 2 1 0 1 3 3.
0 0 2 1 1 3 4 3 0 1 2 1 2 0 3 2 1 1 3 4 3 0 1 2 1 2 0 0 1 2 1 2 0 0 1 2 1 2 1 0 1 1 0 1 special 0 0 0 0 0 0 1 3 2 3 2 9 1, 1, 1, 0 36 (sym32) 8 > > > > > < > > > > > : 2 0 1 3 4 2 1 5 1 3 1 3 2 3 1 1 
8 > > > > > < > > > > > :
1 1 1 1 1 1 3 4 0 ... cycle34 38 
8 > > > > > < > > > > > : 2 1 1 2 1 1 1 2 1 2 1 2 1 2 1 2

Special cases in backward calculation

This section adresses two cases when the general procedure fails in the backward calculation whereas the direct calculation is successful. In both cases (details below), another calculation of ABCD from A + B + C + D + can be adapted to the specific geometry, in order to write ϵ, η, θ, φ in function of ϵ + , η + , θ + , φ + and the derivatives of the formers with respect to the latters. First of all, one or two of the points among ABCD are identical to points among A + B + C + D + . The other points can be found by one of the following methods:

• One point has obvious barycentric coefficients with respect to already known points;

• One of the point is the intersection of two straight lines (given by two points or by one point and a straight line perpendicular to an already known straight line);

We now separate the case of failure of the general procedure which happens either from a quadruplet with ϵ + and η + equal to zero or to a quadruplet with ϵ and η equal to zero. The geometry is characterized in both cases by the alignment of 3 out of 4 summits of the input and output quadrangle. This property in maintained all along the cycle, included elements of the cycle with no problem of undetermination.

6.1.1 Special cases from ϵ + and η + = 0

The design of a quadrangle by equations 15 is not possible. Calculation of ABCD in function of A + B + C + D + is written below for some cycles numbered as in section 5.

cycle 21 (Figure 10)

β = - 1 3 A = B+ B = middle(A + C + ) ---→ CB + ∧ ----→ B + D + = 0 ---→ CA + . ---→ BD + = 0 (→ A) ---→ DC + ∧ ----→ B + D + = 0 ---→ DC + . ---→ BD + = 0 (→ C) (51) 
cycle 22(Figure 11)

β = -3 C + = middle(A, A + ) B = D + ---→ DB + ∧ ----→ B + D + = 0 ---→ DB + . ---→ AB + = 0 (→ D) ---→ CB + ∧ ----→ B + D + = 0 ---→ CA + . ---→ AB + = 0 (→ C) (52) 
cycle 23 (Figure 11)

β = 1 D = C+ C + = middle(CB + ) ---→ AC + ∧ ----→ C + A + = 0 ---→ AB + . ---→ CA + = 0 (→ A) ---→ BC + ∧ ----→ C + A + = 0 ---→ BC + . ---→ CA + = 0 (→ B) (53) 
cycle 35 (Figure 12)

β = 1 A = B+ B + = middle(DD + ) ---→ BC + ∧ ----→ A + C + = 0 ---→ BD + . ---→ DC + = 0 (→ B) ---→ CD + ∧ ----→ B + D + = 0 ---→ CA + . ---→ BD + = 0 (→ C) (54) 
It can be noticed that all these cases are not equivalent by a mere circular permutation of points A + B + C + D + .

6.1.2 Special cases backward to ϵ and η = 0

The failure is more subtle since the general procedure does not detect infinity but delivers wrong results, due to the undetermination of the quotient of two very small and inaccurate terms. The figures are omitted in this subsection which delivers only the calculation of points A to D as function of A + to D + . cycle 21, element 4 of the cycle

γ = - 1 3 x A = 2x A + -x B + y A = y B + x B = 2x A + -x D + y B = y D + x C = x A + y C = y A + x D = x C + y D = 2y A + -y C + (55) 
A 

I = B + L = C + K = A + J = B = D + C D A, B, C , D : ϵ = 1 3 , η = -7 9 , θ = 0, φ = 20 9 A + , B + , C + , D + : ϵ = 0, η = 0, θ = -1, φ = 0
K = A + J = D + A = I = B + L = C + C B D A, B, C , D : ϵ = -1, η = 2, θ = 1, φ = 0 A + , B + , C + , D + : ϵ = 0, η = 0, θ = -5, φ = 1 A K = A + J = D + I = B + C L = D = C + B F H G E A, B, C , D : ϵ = 3, η = 1, θ = 0, φ = -4 A + , B + , C + , D + : ϵ = 0, η = 0, θ = 1, φ = 0
I = A =B + K = A + B C D J = D + L = C + A, B, C , D : ϵ = -1, η = -1 3 , θ = -4 3 , φ = 0 A + , B + , C + , D + : ϵ = 0, η = 0, θ = 2, φ = 1
Figure 12: transform extracted from the cycle number 35 cycle 22, element 4 of the cycle, from 1 3 , -1 7 , 8 3 , 4 7 back to 0, 0, -1, 0 γ = -1

A = B + x D = 3x D + -x B + 2 y D = 3y D + -y B + 2 x D = 3x D + + 5x B + 2 y D = 3y D + + 5y B + 2 ---→ BD + . ---→ DC + = 0 ---→ BA + ∧ ----→ A + C + = 0 (56)
cycle 23, element 4 of the cycle

x B = x D + y B = y D + x A = 2x A + -x B + y A = y B + x C = x B + + x D + 2 y C = y B + + y D + 2 x D = 2x D + -x C y D = 2y D + -y C (57) 
cycle 35, element 4 of the cycle γ = -1

x A = x A + - 3 2 (x C + -x A + ) y A = y A + - 3 2 (y C + -y A + ) x B = x A + - 1 2 (x C + -x A + ) y B = y A + - 1 2 (y C + -y A + ) x C = x A + y C = y A + x A = x B + + x D + 2 y C = y B + + y D + 2 (58)

Stability of special cases

The dynamics of special 4-cycles combine forward and backward transform to quadruplets with ϵ = η = 0 and ordinary transform (without this constraint). The Jacobian matrix of the 4-cycle contains many zeros and the stability can be guessed without calculating eigenvalues from the last line: cycles 21, 22 and 23 are very instable, and cycle 35 is perfectly stable, which can be confirmed by numerical calculation.

7 Sensitivity to parameter u 7.1 Walk in the space of ϵ, η . . . for different u

It is difficult to represent the 4-dimension orbit of quadruplets, but pairs (ϵ, η) and (θ, φ) follow similar and apparently correlated paths. Different initial values of the quadruplet lead to (loosely speaking) similar patterns, always unbounded, (represented for one quadruplet with several values of u in Figure 13) but some orbits have a dense part of apparent fractal dimension greater than 1 (Figure 14). There is no continuity on the range of u: between the values represented there are some cycles of period multiple of 4 It provides an opportunity to wonder if there are 8-cycles. None was found starting from this quadruplet, which does not mean it does not exist. One 8cycle was found as limit set of a map from the initial quadruplet (ϵ = 2, η = 7, θ = -8, φ = -1/2 and u = 1.15) but not containing this quadruplet. An open question is the existence of 8-cycle containing a quadruplet of integer values with u=1.

Continuous variation of u, chaos

This point was not deeply investigated, simply by plotting ϵ after 20000 iterations against u. Note that ϵ may have not reached a limit (which may not exist). This is different from a classical Feigenbaum tree which plots a variable obtained after convergence but seems sufficient to display several ranges of chaotic (or very large period) and non chaotic values along the variation of parameter u. The Figure 15 to 17 reveal different dynamics. A zoom of Figures 16 and 17 is given in Figure 18 8 Long term reversibility

We now run the test of reversibilty from initial quadrangles chosen to encompass the variability of stability assessed by the Jacobian matrices of 4-cycles. We complete with orbits which are not cycles.

Matrix Identity Remind that all 2-cycles and a few 4-cycles have a matrix identity for Jacobian matrix at iteration 4. The 2-cycle tested starting from ϵ = -1; η = 1; θ = 1; φ = -1 and the 4-cycle number i1 and i2 are perfectly reversible after 2 10 7 iterations, even with numerial initial perturbation. The plotting of the quadrangles of the 2-cycle (not represented) shows a translation of equal steps.

Other cases with roots of characteristic polynomial equal to 1 The 4-cycles number 1, 6, 9 , 30 and 32 are stable as far as 10 7 iterations, but only without initial perturbation. With a perturbation, they all tend to more complex sets. The cycle number 7, with a triangular matrix, is reversible without perturbation only till about 200000 iterations, which is coherent with the slow growth of the triangular part of the matrix. With perturbation, it stays a 4-cycle and moves not far from its initial value. Cases with some eigenvalues not equal to 1 The remaining cycles have 1 eigenvalue > 1 either in the forward matrix or in the backward matrix. In keeping with this observation, the cycle are reversible only till a few iterations, about 25 for cycle 20, about 70 for cycle 2.

Attracting sets The Jacobian matrices are useless for (false or true) attracting sets (or should be calculated for any number of iterations studied, therefore not predictive). What we can do is choose samples qualitatively different with respect to the shape of the orbit. Let us begin with the maps starting with integer values, found in figures 8 and 9. initial quadruplet u iteration of apparent loss of reversibility

ϵ = -1, η = -3, θ = 1, φ = -1 1 2700 ϵ = 1, η = -3, θ = 0, φ = 1 1 3700 ϵ = -1, η = 1, θ = -5, φ = 5.0001 1 600000 ϵ = -0.9η = 0.9, θ = 3, φ = 0.998 1 80000 ϵ = -1η = 1.006, θ = 2, φ = -5 1 590000
What happens when the map is not reversible ? Generally, the backward trajectory deviates at the beginning slowly from the forward path, but the change of direction within an eddy may be more complex. The map may escape from an eddy in forward mode and not in backward mode (or vice versa but it was not observed). The way the reversibility is broken is rather to be expulsion of an eddy in a different direction, due to a high sensitivity to data of a particular quadrangle. It is not necessary to invoke noninvertibility, a source of chaos [4], since the expulsion happens in a different quadrangle.

The graphical test applied to the spiral of figure 4 says that the map cease to be reversible at about the 3150 th iteration. When the backward direction is triggered at a later iteration, it can generate different futures depending on how far from the focus of the spiral it starts, as shown in Figure 19. Many eddies can however be run through back and forth during many iterations. Figure 20 superposes a forward and backward map at about one million iterations. There are still little differences (which are not visible at 600000 iterations, not represented) but hiding all points but the 1000 first and last shows that the process comes back to a neighbouring eddy for 1 million iteration, and escape for a few iterations more, though the final eddy is closer to the initial one.

Reversibility the exception, Irreversibility the rule ? Of course, an ideal mathematical transform which is everywhere locally reversible is reversible at any scale. The problem arises for calculated transform, and hoped to give some clue to physical processes (issue referred as time's arrow), though physics is rather a question of continuous time. Intuitively we should have thought finite cycles more likely to be reversible than more complex attractors (or false attractors). But our findings is that in a graduation of reversibility, attracting sets lie in the middle, between cycles of low (a few Figure 19: forward map trapped in a decreasing spiral (in red) and backward map (in blue) run the same number of iterations tenths) and high (at least ten millions) iterations. For cycles, a key role is played by the eigenvalues of the Jacobian matrix. Though our findings are not a proof, they are in keeping with the theory of stability about eigenvalues smaller or greater than 1, but the case of eigenvalues equal to 1, unable to predict stability or unstability [START_REF] Pac | Systèmes dynamiques-2e ed: Cours et exercices corrigés. chapter Systèmes à temps discret : équilibres et cycles[END_REF], is a quasi condition to allow reversibility, since it is dubious that all eigenvalues could be inferior to 1 both forward and backward. Some limit cycles of the map have a matrix identity for Jacobian matrix, what we can conjecture a condition sufficient for irreversibility for the family of maps under study, and assess as a condition for practical reversibility under 10 millions iterations. When the roots of the characteristic polynomial are equal to 1 but the matrix is not the matrix identity, say is not diagonalisable, the cycle cannot be expected stable, and probable never is. If the forward map is defined as the combination of the transform and a permutation, in a given order, and the quadrangles also in a given order of their points, the backward map formally does not belong to the same family. If the definition of the family is extended to allow a second permutation not taken into account before the next transform, in other words if we do not distinguish two quadrangles which have the same summits, then the forward and backward maps belong to the same family. So, any map of this family can be considered forward or backward, and the breaking of symmetry observed on a particular map, or a set of maps sharing the same permutation (through the number of eigenvalues smaller than 1) cannot be generalized to the whole family. However, within this family, some maps are " more symmetrical "than others, those which 

Brief inspection of a symmetrical map

Symmetry is here the property that the same permutation is used in the forward and in the backward map (Figure 2). That implies that the combined transform+permutation, which is iterated, is the same backward and forward or respect time symmetry, a property stronger than to be invertible and at the heart of the arrow of time issue. Of course, some action must me taken to change direction. Several permutations own this property. Only one was briefly studied, namely A + B + C + D + = LJKI , associated with the permutation A + B + C + D + = IJKL used once when changing direction. The symmetrical map working on quadrangles generally converges towards a very small one then stops. No pretty radial patterns nor eddies were found (not very actively sought). Working on quadruplets, it presents similarities with the asymmetrical map, generating fixed points, cycles, eigenvalues of the Jacobian matrix often equal to 1 and more complex sets. A major difference is that it generates 2cycles instead of 4-cycles. Some examples are listed below.

( 1 , -1 , 0 , 0 ) is a fixed point with the matrix identity for Jacobian matrix. It is stable at 10 -3 until about iteration 1100000.

( 2 , -2 , -1 , -1 ) is a fixed point with eigen values (-4, 1, 1 , -1) is only stable while calculated with integer values but unstable with numerical perturbation. It tends to the fixed point (- 1 2 , 1 2 , 3 2 , 3 2 ) which is stable with eigenvalues, ( 14 , 1, 1, -

( 1 , -2 , 0 , -1 ) is not stable and approaches the quadruplet ϵ = -0.72077, η = -ϵ, θ = 1ϵ, φ = 1ϵ without being stabilized at 10 8 . The map also admits attracting sets of large period and chaotics, the calculation of quadruplets being possible even when the calculation of quadrangles fails. The attractors are different from those provided by the non symmetrical maps (Figures 21 and22).

The property of symmetry, as such, does not provide long-term reversibility. It is nonetheless interesting: whereas a non symmetrical map must have all eigenvalues equal to 1 to be reversible (since an eigenvalue < 1 triggers an eigenvalue >1 in the other direction), which let the reversibility undetermined (but empirically satisfied for a large number of iterations), a symmetrical map can have eigenvalues smaller than 1, which enhances stability even if it is not a proof when other eigenvalues are equal to 1. The fixed point (-1 2 , 1 2 , 3 2 , 3 2 and the 2-cycle based on (1 , -1 , 4 , 4) which have an eigenvalues < 1, are stable and reversible till 2 10 6 iterations, with 10 -5 perturbation. Of course, this was shown on a 2-cycle of limited representativeness. One must remember that the question of long-term reversibility is not relevant for the 5-D maps which have a short expectation of life (life meaning numerical tractability). So the price for reversibility is the loss of eddies and radial symmetrical sets. 

Conclusion

Though the nonlinear system presented was designed in its full generality with a parameter u representing the ratio width/length of the rectangle, a great part of the work was done with u = 1, and may give a skewed vision of the full system. Nonetheless, it would be an error to think that u = 1 yields cycles and u ̸ = 1 yields more complex attracting sets. An outcome of this work was to find false attracting sets, apparently stable for a very large number of iterations, but which are finally escaped from. A variant consists in even less stable patterns, more or less similar to the eddies of continuous time nonlinear dynamics, which are quitted sooner and visited one after another. Though it is observed mainly with parameter u close to 1 but non equal, it was connected with the eigenvalues of the Jacobian matrix calculated for u = 1. This matrix is in some cases the identity matrix, otherwise may have one or several values equal to 1. This heterogeneity precludes an obvious general theoretical explanation. This map was not designed to represent a physical process. However a model may be useful when sharing only some properties observed in the real word, or because it suggests questions and investigations. On the mathematical side, prospects of deeper theoretical insight could begin with all permutations possible and would be fostered if the map were found to belong to a wider class. Meanwhile, please visit the gallery.

Gallery

Note that for aesthetic purpose, calculation may have been stoped before achievement of the complete set. 
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 1 Figure 1: transform of the quadrangle ABCD to A + B + C + D +

Figure 4 Figure 2 :

 42 Figure 2: diagram of transformations (T) and permutations (P) in forward (left) and backward (right) maps. Asymmetrical (top) and symmetrical (bottom) cases

Figure 3 :

 3 Figure 3: Just fails to come back to origin. Left : first quadrangle in red, quadrangles 2 to 10 in blue ; Right : backwards from iteration 20, superposition of quadrangles 30 to 40 in cyan.
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 4 Figure 4: escape out of a circle and of a spiral
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 5 Figure 5: orbit visiting many eddies
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 6 Figure 6: distance (at power 2/3 and heavily smoothed) in function of iteration. top: different trajectories -midddle: average -down: distance between trajectories

Figure 7 :

 7 Figure 7: direct (left) and backwards (right), (top) from (1.0025,-1), (4,0) u=1, (down) from (1.004,-1), (4,0) u=1

Figure 8 :Figure 9 : 1 cycle

 891 Figure 8: behaviour of the map according to integer values of ϵ, η, θ for φ = -1, φ = 0 and φ = 1

Figure 10 :

 10 Figure 10: transform extracted from the cycle number 21, output corresponding to the first element of the cycle

Figure 11 :

 11 Figure 11: transform extracted from the cycles number 22 and 23

Figure 13 :

 13 Figure 13: 1000000 points from ϵ, η, θ, φ = 2 , 2 , 1 , -1 , u = 0.45 , 0.65, 0.92, 1.24 , 1.54, 2.08

Figure 15 :

 15 Figure 15: u=[0.4,1.6]

  (a) ϵ, η, θ, φ = 2, 2, 1, -1 , u = [0.4 , 0.8] (b) ϵ, η, θ, = 2, 2, 1, -1 , u = [0.8 , 1.2] (c) ϵ, η, θ, φ = 2, 2, 1, -1 , u = [1.2 , 1.6]

Figure 16 :

 16 Figure 16: u=[0.4,1.6]

  (a) ϵ, η, θ, φ = 0, -1, 2, 3 , u = [0.4 , 0.8] (b) ϵ, η, θ, = 0, -1, 2, 3 , u = [0.8 , 1.2] (c) ϵ, η, θ, φ = 0, -1, 2, 3 , u = [1.2 , 1.6]
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 17 Figure 17: u=[0.4,1.6]

  inversion at 4500 (d) inversion at 4800

Figure 20 :

 20 Figure 20: left: backward map superposed to forward map on 1000150 iterations -middle: 1000000 iterations with 1000 first points plotted. right: idem with 1000150 iterations

Figure 21 :

 21 Figure 21: ϵ, η, θ, φ == -3, 1, -1, -1

Figure 22 :

 22 Figure 22: φ=-1 , u=1
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 112 Figure 1: a very dense center

Figure 3 : 2 Figure 4 : rings 3 Figure 5

 32435 Figure 3: decorative sets with empty center

Figure 7 :

 7 Figure 7: small initial perturbation deviate trajectories but keep overall shape

  

4-and 

5-dimension mapsIteration of the transform yields different pictures: but for unfrequent case of exceeding capacity limits of encoding large or small numbers, the map generally tends toward cycles of short period (1, 2, 4) or attractors.
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