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Thermal diffusivity identification by 2 nde derivative analysis of transient temperature profile

The thermal diffusivity defines the ability of a material to transfer the heat in transient conditions. This parameter depends on the thermal conductivity λ and on the ability of the material to store the heat, represented by the product of the specific heat cp by the material density ρ. In some applications, the knowledge of the thermal diffusivity is essential to solve local heating problems. For example, increasing the thermal diffusivity of thin layer thickness on electronic components can help to decrease local heating and reduce the maximum temperature reached.

Methods have been proposed over the last decades to identify this value. The photoacoustic technique is based upon the measurement of a photoacoustic signal as a function of the modulation frequency in the region where the thermal diffusion length equals to the sample thickness [START_REF] Charpentier | Photoacoustic measurements of thermal diffusivity description of the "drum effect[END_REF]. The Thermal Wave Interferometry also uses a periodical heating of a sample, typically by a modulated laser beam. This technique is particularly adapted for coatings and thin slabs. The thermal waves are partially reflected at the materials interface and the signal analysis allows identifying the thermal thickness [START_REF] Cernuschi | Thermal wave interferometry for measuring the thermal diffusivity of thin slabs[END_REF]. Complementary photothermal techniques have been recently investigated [START_REF] Dadarlat | Complementary photothermal techniques for complete thermal characterization of porous and semi-transparent solids[END_REF] combining photopyroelectric calorimetry and infrared lock-in IR thermography. These allow identifying simultaneously the thermal effusivity and the thermal diffusivity of porous and semi-transparent solids.

Nowadays, the flash method is the most commonly used technique to identify the thermal diffusivity of isotropic solids but is also suitable to determine specific heat for metals [START_REF] Kövér | Determination of the specific heat using laser flash apparatus[END_REF]. Most of commercial equipments are based on this method and the standards recommend its application to measure the thermal diffusivity [5][6].

This consists of imposing a very short heat flux on a sample surface and recording the temporal evolution of the temperature on the rear surface. This signal is easily usable compared to the temperature evolution on the front face which presents singularities on shorter times. Parker has suggested to identify the thermal diffusivity from a characteristic time t 1/2 [START_REF] Parker | Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity[END_REF]. This is the time to reach the half of the temperature variation T lim and is linked to the thermal diffusivity α and to the sample thickness es by the equation (Eq.1).

α = 0.139 * e 2 s t 1/2 (1) 
This characteristic time t 1/2 is suitable because the sensibility function ∂T ∂α reaches its maximum for a time very close to this value. This mean that an error on the temperature value has less influence on the α estimated value and then the noise on the thermogram does not affect significantly the response. As various materials are sensitive to oxygen and moisture in ambient conditions, Pohlmann [START_REF] Pohlmann | Novel approach for thermal diffusivity measurements in inert atmosphere using the flash method[END_REF] recently develops an apparatus to perform the flash method in inert atmosphere.

This also reduces the convective heat losses during measurements.

In practice some experimental problems induce a bias in the parameter identification. The duration of the impulsion can be very short with laser beam but not enough regarding the model boundary condition. Degiovanni has suggested corrections [START_REF] Degiovanni | Correction de longueur d'impulsion pour la mesure de la diffusivité thermique par méthode flash[END_REF], especially in growing the sample thickness at the cost of the signalnoise ratio. Using a thermally thick sample allows also reducing the influence of the non-uniformity of the flash spot [START_REF] Donaldson | Radial conduction effects in the pulse method of measuring thermal diffusivity[END_REF]. Measuring a mean temperature on the entire rear surface surface can also help to bypass the non-uniformity problem.

One limitation in the flash method is the necessity to use a high heat flux to get a usable thermal response on the rear surface because of the short duration. This induces high thermal gradient on the front surface and then a high temperature in the first moments. The temperature gradient can cause variations on thermal properties along the sample thickness. Their influence have been studied by Soilihi [START_REF] Soilihi | Influence de la non-linéarité dans la mesure de la diffusivité thermique par la méthode flash[END_REF] and he shows that a model with constant thermal properties corresponding to the limit temperature T lim . To take into account these experimental uncertainties, the quadripole method [START_REF] Carslaw | Conduction of heat in solids[END_REF] has been applied by several author who identifies α by parameter estimation methods [START_REF] Gembarovič | Using the least square method for data reduction in the flash method[END_REF][14] [START_REF] Gounot | Thermal diffusivity identification and measurement noise[END_REF].

Here we develop a method based on a constant heat flux heating on the front face of a sample and the analysis of the 2 nd order time derivative of the temperature profile on the rear surface. The resolution of the 1D transient heat equation by Green's function leads to a new characteristic time t c2 which is also proportional to the sample thickness and the thermal diffusivity. Experiments are performed on a calibrated material, ARMCO Iron, to demonstrate the feasibility to identify α from a thermogram and the accuracy of this new method. Then the method is applied to a ceramic and resins to illustrate that it is suitable for insulation materials.

Using a constant heat flux allows getting a lower thermal gradient compared to the flash method. Some rules are given to choose the appropriate sample thickness and heat flux intensity regarding the studied material. (∆T/ sample ) 0.25 mW.m -2 .K -1 [START_REF] Sacadura | Initiation aux transferts thermiques[END_REF] and is then lower than 12*10 3 mW.m -2 .K -1 .

For the same temperature elevation of 50K, the equivalent radiative coefficient h rad is lower than 8*10 3 mW.m -2 .K -1 if we consider an emissivity ϵ=1, a background temperature of 293K and a surface temperature of 343K. This seems that the total heat loss on the heated surface is lower than 10 6 W.m -2 and are then 100 times lower compared to the heating intensity. On the lateral face, the heat losses are lower because the maximum temperature elevation is lower compared to the heat surface. Then the plate's temperature field is assumed unidirectional in the following model during the heating period.

Before heating, the whole sample is at ambient temperature T∞ and no convective and radiative exchanges exist. The temperature difference θ(x,t) defines the gap between the sample temperature T(x,t) and the ambient temperature T∞.

The heat equation, the boundary conditions and the initial condition can be expressed by the system (Eq.2). On the heated surface (x=es), φ(t) is equal to 0 for t<0 and takes a constant value φ 0 for t≥0. The convective and radiative transfer are considered by an equivalent coefficient h which is assumed to be constant with the sample temperature.

                           1 a ∂θ(x, t) ∂t - ∂ 2 θ(x, t) ∂x 2 = 0 θ(x, 0) = 0 ∂θ ∂x (x, t)|x=e = φ(t) λ ∂θ ∂x (x, t)| x=0 = h λ * θ(0, t) (2) 
The system (Eq.2) can be expressed using the Green's function theory giving the system (Eq.3)(a) and Laplace transforms are applied (Eq.3)(b) to solve it easily. In the equation (Eq.3)(b), the parameter q is defined according to the Laplace Transporm parameter p and the thermal diffusivity α (q = √ p/α).

(a)

                           1 a ∂G(x, ξ, t) ∂t - ∂ 2 G(x, ξ, t) ∂x 2 = δ(x -ξ)δ(t) G(x, ξ, 0) = 0 if t < 0 ∂G ∂x (x, ξ, t)|x=e = 0 ∂θ ∂x (x, t)| x=0 = h λ * G(0, ξ, t) → (b)                            q 2 G - ∂ 2 G ∂x 2 = δ(x -ξ) G(x, ξ, 0) = 0 ∂G ∂x |x=e = 0 ∂G ∂x | x=0 = h λ * G(0, ξ, p) (3) 
The solution G of the equation (Eq.3)(b) is expressed as a sum of 2 functions as denoted by the equation (Eq.4). Then the 1 rst and the 2 nde derivative of G are given by (Eq.5) considering that

x -ξ |x -ξ| = 2E(x -ξ) -1 and the property of the Heaviside function (

∂ ∂x (E(x -ξ)) = δ(x -ξ)). G(x, ξ, p) = F (p)e -q|x-ξ| + D(x, ξ, p) (4) 
         ∂G(x, ξ, p) ∂x = -q x -ξ |x -ξ| F (p)e -q|x-ξ| + ∂D ∂x ∂ 2 G(x, ξ, p) ∂x 2 = q 2 F (p)e -q|x-ξ| -2qδ(x -ξ)F (p)e -q|x-ξ| + ∂ 2 D ∂x 2 (5) 
This leads to the following equations :

         F (p) = 1 2q q 2 D(x, ξ, p) - ∂ 2 D(x, ξ, p) ∂x 2 = 0 (6) 
The differential equation based on D has a general solution expressed in (Eq.7)

inducing a general solution for the Green function G(x, ξ, p).

         D(x, ξ, p) = A(ξ, p)e -qx + B(ξ, p)e qx G(x, ξ, p) = 1 2q e -q|x-ξ| + A(ξ, p)e -qx + B(ξ, p)e qx (7) 
Then the boundary conditions terms can be expressed according to A and B as denoted in (Eq.8). The deduced terms A and B in can be obtained (Eq.9).

         e -qξ 2q (q -H) = (H + q)A(ξ, p) + (H -q)B(ξ, p)
e -q(es-ξ) 2q = -A(ξ, p)e -qes + B(ξ, p)e qes (8)

           A(ξ, p) = -(H -q) [ e -q(es -ξ) 2 + e -q(ξ-es ) 2 ] q [(H + q)e qes + (H -q)e -qes ] B(ξ, p) = -(H -q) e -q(es+ξ) 2 + (H + q) e -q(es-ξ) 2 q [(H + q)e qes + (H -q)e -qes ] (9) 
The Green function can then be expressed regarding p, α and the sample thickness (Eq.10) and its value on the free surface (x=0) becomes (Eq.11).

G(x, ξ, p) =   (H -q) * ( e -q(x-ξ) -e q(ξ-x) -e -q(ξ-x) -e q(2ew-x-ξ)

)

+ (H + q) * ( e q(x+ξ) + e -q(x-ξ-2ew) ) (2q((H -q) + (H + q) * e 2qew )   (10) 
G(0, 0, p) = e -2qew + 1 (H -q) * e -2qew + (H + q) ( 11 
)
The Laplace transform of the temperature difference θ on the non-heated surface is then deduced in (Eq.12). Considering that p is very large, this form behaves like θ * (0,p) given in (Eq.13)

θ(0, p) = 2 φ 0 λp [ 1 (H -q) * e -qew + (H + q) * e qew ] ( 12 
) θ(0, p → ∞) : θ * (0, p) = 2 φ 0 λ e -ewq pq (13) 
According to a theorem cited in [START_REF] Hladik | La Transformation de Laplace à plusieurs variables: résolution des équations différentielles intégrales et aux dérivées partielles[END_REF], for time close to 0, the inverse Laplace transform of the function θ(0, p) can be assumed equal to the inverse Laplace transform of θ * (0, p). The approached temperature function θ * (0, t) is given in the equation system (Eq.14). The first and the second derivative with time are also given.

                     θ * (0, t) = 2 φ 0 λ [ 2 √ αt π e -e 2 w 4αt -ew * erf c ( ew 2 √ αt ) ] dθ * dt (0, t) = 2 * ϕ 0 λ * √ a πt * exp( -e 2 s 4at
)

d 2 θ * dt 2 (0, t) = ϕ 0 λ * √ a πt 3 * exp( -e 2 s 4at ) * ( e 2 s 2at -1) (14) 

Analysis of the theoretical solution

Let us define the characteristic time tc (Eq. [START_REF] Gounot | Thermal diffusivity identification and measurement noise[END_REF].

tc = e 2 s 2 * α ( 15 
)
The approximated temperature variation θ * can be expressed regarding tc. Besides θ * can be also adimensioned by dividing the expression by The θ curves divergence is highlighted by the 1 rst derivative. The derivative of the numerical solution tends to an asymptotic curve for β >2. Regarding the ana-lytical solution, the 1 rst derivative reaches its maximum at β = 1. In other words, the characteristic time tc defines the time at which the slope of θ * is maximum.

A second characteristic time can be defined regarding the second derivative of θ and θ * . Graphically, it can be observed a maximum value close to β = 0.18.

Contrary to the 1 rst derivative, the maximum of the two curves are reached for the same β value. This means that the 2 nde derivative of θ * and of a temperature measurement will reach a maximum at the same time. Regarding the 3 rd derivative of θ * with time, the expression (Eq.16) is obtained and the polynomial term allows finding the exact value of β when

∂ 2 θ * ∂t 2 is maximum. d 3 θ * dt 3 (0, t) = ϕ 0 λ * √ a πt 9 * exp( -e 2 s 4at ) * ( 3 2 β 2 -3tcβ + t 2 c 2 ) ( 16 
)
This leads to the solutions

β = 1 - √ 6 3 and β = 1 + √ 6 3
. The first one is on interest corresponding to a β value close to 0.18. The second characteristic time tc 2nde , proportional to tc, can then be defined (Eq.17).

tc 2nde = (1 - √ 6 
3 )

e 2 s 2 * a ( 17 
)
This leads to the possibility to identify directly the thermal diffusivity from the second derivative of an experimental profile. Finding its maximum, α is then obtained by the expression (Eq.18). The thermal diffusivity can be identified without the exact knowledge of the imposed heat flux and the thermal conductivity of the sample. The only required term prior to the measurement is the sample thickness. However the time tc 2nde can be very short especially for thin sample and metallic materials. Equipments with high frequency in temperature measurement are required and the measure have to be well synchronized with the heating start to get workable data.

α = (1 - √ 6
3 )

e 2 s 2tc 2nde (18) 
3 Experimental validation

Experimental setup

An experiment is designed to validate this method. The figure Fig. 4 shows the experimental device used to heat the sample and record the temperature profile. 

Data processing

Here is described the procedure to obtain the characteristic time from raw data acquired with the IR camera. To illustrate this procedure, the temperature data from an ARMCO Iron sample chosen as reference material are used. More details are given in the following part on the samples and on the testing conditions. A temporal temperature profile is determined by meaning the values measured on an area on the rear surface for each time. The figure Fig. 5 shows four frames extracted from the IR measurement at 4 different times : before heating (t=0s), 0.15s before an identified characteristic time tc 2nde , at this identified characteristic time tc 2nde and 0.15s after this characteristic time tc 2nde . The chosen area is a square of approximately 2mm in side corresponding to 144 pixels on the IR detector as represented on the thermograms. The sample is placed on an insulation material but heat diffusion still exists. To avoid the influence of this phenomenon on our measurement, the temperature is averaged on an area on the center of the sample.

Meaning the temperature on the 2mm square area allows reducing a part of the noise but insufficiently to get directly a suitable 2nde derivative from the temperature data. Deriving two times a vector of noisy signal is not practicable because the effect of the noise is accentuated in the derivative. Consequently, the data need to be fitted with suitable functions. Then these functions can be derived analytically.

Before fitting the raw temperature profile, a 50Hz low pass filter is applied to remove the fluctuations from AC current and surrounding lights. Several functions have been tested on our following measurements and polynomial functions have been retained first because of their simplicity. The fitting of the experimental data are performed on these polynomial functions and on a custom function with a linear regression algorithm. The used custom function (Eq. [START_REF] Morikawa | Thermal diffusivity of thermosetting materials by temperature-wave analysis[END_REF]) is defined according to the analytical solution (Eq.14) of θ * . A and B are the two parameters to be identified.

θ * (0, t) = A * ( √ t * e -B 2 t -B √ π * erf c ( B t )) (19) 
The figure Fig. 6a shows the raw data obtained on the ARMCO iron sample and the fitting temperature obtained with a 7th order polynomial function. 

Thermal diffusivity of a standard material : ARMCO IRON

The method is firstly validated on ARMCO Iron samples because the thermal diffusivity of this material is well known. These thermal properties can be found in [START_REF] Shanks | Thermal Properties of Armco Iron[END_REF] regarding the temperature. An empiric model is given for temperatures in the range 20-770 

)
The method is applied on 4 samples with different thicknesses given in Table 1.

The used micrometer has an accuracy of 0.01mm. For each sample, 25 heating process are applied to check the reproducibility of the method. 

Table 1 Armco Iron samples

The initial sample temperature is closed to the room temperature around 293K.

Before each test, the sample is cooled by natural convection and the next heating is applied when the temperature on the rear surface is nearly constant. In practice it corresponds to a difference between the sample temperature and the room temperature lower than 1K.

The heating power of the LASER is adjusted according to the thickness. The imposed heat flux densities are close to the values given in Table 1. Knowing pre-cisely the imposed heat flux is not necessary to determine tc 2nde . However choosing the LASER power is a compromise between a non negligible noise to signal ratio for a low heat flux density and a high temperature gradient in the sample for an important heat flux density.

An analytical analysis is performed in the discussion to help in the choice of the power to apply. The theoretical characteristic time tc 2nde are also given in Table 1 for each ARMCO iron sample. They are calculated for a thermal diffusivity of 2.04*10 5 m 2 .s -1 corresponding to a temperature of 293K and for their respective thicknesses.

The figure Fig. 7 shows the temperature evolution for three tests among twentyfive and for the four samples from A1 to A4. For each test, the raw data are plotted with the fitting curve obtained with the 7th order polynomial function.

A good match is found between the data and the fitting function. Similar results are generally found on all the tests performed and for the other fitting functions.

The identified characteristic times are also mentioned on the curves. These are obtained by derivating two times the 7th order polynomial functions. The results given in Table 2 present the mean time tc 2nde and the standard deviation calculated for 25 tests performed. These are presented for the 4 fitting functions used. Generally the choice of the function has a minor influence on the results. The characteristic times obtained with the 6th order polynomial function don't give as good results as the other functions but the difference is slight. Poly-nomial functions with a smaller order were also tested but were not sufficient to fit the temperature signal and then determined a consistent characteristic time.

The standard deviation on tc 2nde is higher on A3 and A4 in absolute value. This can be explained by a lower temperature gradient versus time on the thicker samples and then a lower sensitivity. However the relative standard deviation is finally lower for the samples A3 and A4. This implies a best reproducibility on the calculation of α. For A3 and A4, the mean estimated values αmean are closer to the theoretical value than the mean estimated values for the thinner samples.

Sample

On αmean, the relative difference is lower than 4% for these two samples whichever the fitting function. For these two thick samples, a standard deviation σα around 4% is also found on the estimated thermal diffusivity. The relative difference grows with the sample A2 on the mean thermal diffusivity identified but stays inferior to 10%. The error on αmean is maximum (18%) for the sample A1 using the 6th order polynomial function. The standard deviation σα doesn't exceed 6.5% for A1 and A2 whichever the fitting function.

Measurements on low diffusivity materials

Thermal diffusivity identifications are performed on non-metallic materials which are under interest : 3 resins and alumina. The resins are materials currently developed for electrical and thermal insulation. These samples come from an industrial supplier and are around 4mm in thickness. The exact composition is unknown but the measured values are in the same range of the thermal diffusivity found on unreinforced epoxy resin [START_REF] Morikawa | Thermal diffusivity of thermosetting materials by temperature-wave analysis[END_REF]. The thermal diffusivity has also been calculated from the respective thermal conductivity, specific heat and density. The thermal conductivity is obtained from a ANTER UNITHERM 2021. The density is determined through the Archimede's principle on a weighing scale KERN AET500. The specific heat is calculated from a equilibrium with hot water in a Dewar calorime-ter.

The alumina sample is a material used as grinding tool [20] [21] in our previous studies. The thermal diffusivity of sintered α-alumina is given at 1.11 -5 m 2 .s -1

with an uncertainty of 2 -7 m 2 .s -1 in the literature [START_REF] Munro | Evaluated Material Properties for a Sintered alpha-Alumina[END_REF].

The mean value of the identified thermal diffusivity and the standard deviation are presented on Table 3 for the four materials. Ten tests have been performed per material and the characteristic time tc 2nde is identified using a 7th order polynomial function. For the 4 tested materials, the identifications are also quite reproducible. The standard deviation on the thermal diffusivity is higher than those obtained on ARMCO Iron samples. This is in the range of 4-9% depending on the tested materials. For the resins samples, the thermal diffusivities obtained show a difference between 10 and 15% compared to the values calculated with the thermal conductivity, the specific heat and the material density. This can be explained by the cumulative effect of the uncertainties on the three identified properties. For alumina, the mean value identified of 1.02 -5 m 2 .s -1 is closed to the thermal diffusivity found in the literature. This shows that the proposed method is also suitable to identify low thermal diffusivities.

Sample

Based on a new theoretical approach, our method allows identifying the thermal diffusivity of an isotropic material from a thermogramm. However the identification of a material property is always dependent on some experimental conditions and on the experimental setup. The BNM-LNE (France) [START_REF] Hay | Uncertainty of Thermal Diffusivity Measurements by Laser Flash Method[END_REF] and the Austrian

Research Centers [START_REF] Vozár | Uncertainty of Thermal Diffusivity Measurements Using the Laser Flash Method[END_REF] have used the GUM method [START_REF] Iso | Guide to the Expression of Uncertainty in Measurement[END_REF] to characterize the uncertainties of their equipments to identify the thermal diffusivity by the flash method.

This technique is used by laboratories developing metrology devices to estimate the accuracy of identified materials properties [START_REF] Kessel | Measurement uncertainty according to ISO/BIPM-GUM[END_REF]. Here the method is not fully developed but some rules are proposed to choose the operating conditions which will reduce the uncertainty on the identified value with our equipment.

Regarding the propagation of uncertainty, the uncertainty on the thermal diffusivity is given by the equation (Eq.21) considering the equation (Eq.18). However 

Choice of the sample thickness

The sample thickness should be the first parameter to be chosen for a given material. Having a priori knowledge of the material thermal diffusivity, the sample thickness has to be fixed to obtain the characteristic time tc 2nde in the range of one second. To ensure the accurateness of the identification, the infrared signal recording is triggered with the beginning of the laser heating. However, some delay exist because of the equipment. The recording frequency can not be higher than 500Hz because of the integration time and the size of the sample measured area. This induces a time delay which can reach 2ms between the laser heating start and the first temperature map of the sample. Finally, a time delay exists on the camera between the command of recording and the effectiveness of the operation. Nevertheless this time is lower than 1ms. Then a minimum time error of 3ms can be assumed.

There exist two source of error on the sample thickness. First, the measurement of this length is performed with a certified micrometer with an uncertainty of 20µm. Regarding the tested samples, this lead to a relative error inferior to 2%

for samples with a thickness superior to 1mm. Secondly, the thickness is growing with the sample heating due to the thermal expansion.

In the case of the ARMCO iron, the thermal expansion is 12.10 -6 K -1 in the range 273-373 • C. Considering that the maximum temperature increase of the sample will be around 50K , the sample thickness increase is overestimated considering an uncertainty of 0.06% which is negligible and independent of the thickness.

The thermal expansion does not reach an increase of 1% of the volume for common materials in the same temperature variation. Then the suggested thickness according to the thermal diffusivity is given in the Table 4 for a characteristic time tc 2nde =1s. 

Imposed heat flux

The imposed heat flux on the sample is one of the most critical parameter. Using a high power allows measuring a noticeable temperature variation on the rear surface and reducing the ratio noise/signal on the thermogram. However this induces a high thermal gradient between the heated surface and the rear surface. In case of a non negligible thermal diffusivity variation or material transformation in the temperature range, the identified value will be wrong or not usable. If the temperature variation is too small (low heat flux), the identification of the characteristic time is difficult due to the noise.

The equations (Eq.22), (Eq.23) and (Eq.24) are suitable to define the heat flux to impose for a given sample thickness and a priori knowledge of the material thermal conductivity.

θ(es, tc 2nde ) = 2φ 0 * es λ * ( √ 2tc 2nde π * exp ( -1 tc 2nde ) -erf c (√ 1 tc 2nde )) (22) θ(es, 3tc 2nde ) = 2φ 0 * es λ * ( √ 6tc 2nde π * exp ( -1 3tc 2nde ) -erf c (√ 1 3tc 2nde )) (23) θ(0, 3tc 2nde ) = φ 0 * es λ * √ 6tc 2nde π ( 24 
)
The equation (Eq.22) and (Eq.23) gives the temperature value at the rear surface for the characteristic time tc 2nde and for 3tc 2nde . 3tc 2nde is chosen because it is used as the upper limit of the time interval for the fitting process. These are directly obtained from (Eq.14). The equation (Eq.24) gives an approximation of the temperature reached on the heated surface for t=3*tc 2nde . This equation gives the temperature variation for a semi-infinite wall with a constant heat flux [START_REF] Baehr | Heat and Mass Transfer[END_REF]. Comparisons have been performed with a 1D finite difference model on several materials (ARMCO, alumina, phenolic resin). The temperature difference between the analytical model (Eq.24) and the finite difference model for a sample with a thickness es is negligible after 3tc 2nde .

Then the equation (Eq.25) gives an approximation regarding the difference in the order of magnitude for θ 0 (3tc 2nde ), θe s (3tc 2nde ) and θe s (tc 2nde ). This is suitable to choose the imposed heat flux. It allows choosing a value leading to a sufficient temperature variation at the thickness position and and getting a reasonable temperature variation on the heated surface. 

In our tests, the imposed heat flux is calibrated to reach around 0.4 • C on the rear surface at tc 2nde in the presented tests. This leads theoretically to a temperature elevation of 40 • C at 3tc 2nde on the heated surface. Depending to the material, the imposed heat flux could be higher but some problems may occur. Firstly the temperature elevation may cause a structural modification in the material. Secondly the assumption of constant thermal parameter becomes false because of the dependence with the temperature. However other experiments have been per-formed with lower imposed heat flux on ARMCO Iron (θ * ≈ 0.18 o C at tc 2nde ) and the error on the identified thermal diffusivity was higher compared to the theoretical value. Using a low heating leads to increase the noise to signal ratio and then the standard deviation on the results grows.

Conclusion

An alternative method is proposed to the identification of the thermal diffusivity of isotropic material. An analytical solution is developed to get the temperature evolution of a sample surface, heating the opposite face at constant power. This solution is only valid in the first instant after the beginning of the sample heating but the analysis of its 2 nde derivative in the valid time domain leads to a new characteristic time tc 2nde . Like the characteristic time given by Parker for the flash method, tc 2nde is proportional to the thermal diffusivity and the sample thickness.

Compared to the flash method, there are two main advantages regarding the experimental setting up. First, the flash method is based on a heating pulse which is considered infinitely short in the analytical solution. In experimental condition, most of laser equipments does not allow reaching heating time shorter than 1ms.

In our method, the analytical solution is based on constant heating and there is no uncertainty regarding the pulse duration. Secondly, there is no need to know exactly the heat flux imposed on the surface. However this value has to be chosen in order to avoid a high thermal gradient and to be sufficient to limit the errors due to the noise on the thermogram. Concerning the heat losses and thermal noise, our experimental setup is embedded in an hermetic chamber to reduce convective phenomena and surrounding radiations. Developing a room with inert atmosphere and controlled temperature is under investigation to improve the accuracy of the identification and to allows measurement at different temperatures.

Some good practice are given regarding the choice of the sample thickness and the heat flux density to impose. These are also based on analytical solutions but require to have an a priori knowledge on the material's thermal properties. The sample thickness is first chosen regarding the a priori diffusivity and a targeted characteristic time tc 2nde which should be around 1s. This limits the uncertainties due to the synchronization's error of heating and measurement. Then the heat flux imposed has to be chosen large enough so as to obtain a suitable ratio noise/signal.

However the experimenter must pay attention that the thermal gradient in the sample has to be restricted in a temperature range where the thermal properties can be considered constant. This temperature range will change regarding the material and the transformations occurring at certain temperatures (phase change, chemical reaction,...) . 
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 12231122322337389 Fig. 7 Fitting of three temperature profiles per ARMCO Iron sample -Zoom close to tc 2nde

  the thickness of the sample and the characteristic time tc 2nde are not the only parameters to control. The heat flux imposed and the temperature gradient in the sample can have an non negligible influence on the estimation if the thermal diffusivity varies highly in a temperature range.

  • C in (Eq.20) for T in • C. This leads to thermal diffusivity values from 2.04*10 5 m 2 .s -1 at 293K to 1.89*10 5 m 2 .s -1 at 353K. Armco = -2.058.10 -17 * T 4 + 3.449.10 -11 * T 2 -4.057.10 -8 * T + 2.116.10 -5 (20

α

Table 2

 2 Identified values for Armco Iron samples -α = 2.05 * 10 -5 m 2 .s -1 at 293K

Table 3

 3 Mean values identified on resins and alumina

		Resin 1	Resin 2	Resin 3	Alumina
	Thermal diffusivity (m 2 .s -1 )	1.30*10 -7	1.87*10 -7	4.55*10 -7	1.02*10 -5
	Standard deviation (%)	4.3	6.9	9.1	8.3

Table 4

 4 Suggested thickness for a characteristic time tc 2nde of 1 second

	Thermal diffusivity	10 -4	10 -5	10 -6	10 -7
	(m.s -2 )				
	Suggested Thickness 33	10.5	3.3	1.05
	(mm)				
	Corresponding	Or, Copper,	Ferrous metals,	Glasses,	Wood, Resins,
	materials	Aluminium	Bronze, Lead	Minerals	Thermoplastics
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