N
N

N

HAL

open science

An exact algorithm for the Partition Coloring Problem

Fabio Furini, Enrico Malaguti, Alberto Santini

» To cite this version:

Fabio Furini, Enrico Malaguti, Alberto Santini. An exact algorithm for the Partition Coloring Prob-
lem. Computers and Operations Research, 2018, 92, 10.1016/j.cor.2017.12.019 . hal-02098417

HAL Id: hal-02098417
https://hal.science/hal-02098417v1

Submitted on 12 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02098417v1
https://hal.archives-ouvertes.fr

An Exact Algorithm for the Partition Coloring Problem

Fabio Furini

Université Paris Dauphine, PSL Research University, CNRS, 75016 Paris, France
fabio.furini@dauphine. fr

Enrico Malaguti!

DEI, University of Bologna, 40136 Bologna, Italy

enrico.malaguti@unibo. it

Alberto Santini

Department of Economics and Business, Pompeu Fabra University, 08005 Barcelona, Spain
alberto.santini@Qupf.edu

Abstract

We study the Partition Coloring Problem (PCP), a generalization of the Vertex Coloring
Problem where the vertex set is partitioned. The PCP asks to select one vertex for each subset
of the partition in such a way that the chromatic number of the induced graph is minimum.
We propose a new Integer Linear Programming formulation with an exponential number of
variables. To solve this formulation to optimality, we design an effective Branch-and-Price
algorithm. Good quality initial solutions are computed via a new metaheuristic algorithm
based on adaptive large neighbourhood search. Extensive computational experiments on a
benchmark test of instances from the literature show that our Branch-and-Price algorithm,
combined with the new metaheuristic algorithm, is able to solve for the first time to proven
optimality several open instances, and compares favourably with the current state-of-the-art
exact algorithm.

Keywords: Vertex Coloring, Partitioning Coloring, Selective Coloring, Column Generation,
Branch-and-Price Algorithm.

1. Introduction

Graph coloring problems are among the most studied ones in both graph theory and com-
binatorial optimization. Given an undirected graph G = (V| E) with |V| = n vertices and
|E| = m edges, the classical Vertex Coloring Problem (VCP) consists of assigning a color to

LCorresponding author

Preprint submitted to Computers and Operations Research September 20, 2017

each vertex of the graph in such a way that two adjacent vertices do not share the same color
and the total number of colors is minimized. The chromatic number of G, denoted by x(G),
is the minimum number of colors in a coloring of G.

The VCP is an AN'P-hard problem and it has a variety of applications, among which: scheduling,
register allocation, seating plan design, timetabling, frequency assignment, sport league design,
and many others (we refer the interested readers to Pardalos et al. [25], Marx [22], Lewis [17]).
The VCP and its variants are very challenging from a computational viewpoint; the best
performing exact algorithms are usually based on exponential-size Set Covering formulations,
and require Branch-and-Price techniques to be solved (see, e.g., Malaguti et al. [21], Gualandi
and Malucelli [14], Held et al. [15], Furini and Malaguti [13]). For dense graphs, good results
are obtained by advanced Integer Linear Programming (ILP) compact formulations, like the
so-called representatives formulation (see Campélo et al. [6], Cornaz et al. [7]), which are able
to remove the symmetry affecting classical descriptive compact ILP models.

In this manuscript we study the Partition Coloring Problem (PCP), a generalisation of the
VCP where the vertex set is partitioned and exactly one vertex of each subset of the partition
has to be colored. The PCP asks to select one vertex for each subset of the partition in such
a way that the chromatic number of the induced graph is minimum. The PCP is N'P-hard
since it generalizes the VCP and it is also known in the literature as the Selective Graph
Coloring Problem.

Formally, let & = {Py,..., Py} be a k-partition of the vertex set V of G. A stable set
is a subset S C V of non-adjacent vertices, i.e., Yu,v € S,uv ¢ E. A partial coloring C
of G is a partition of a subset of vertices V C V into h non-empty stable sets or colors
(C ={V4,...,Vi}), while the remaining vertices V' \ V are uncolored. Let f(v) be a function
which returns the color of a colored vertex v (v € V). The PCP consists of finding a partial
coloring C' such that:

Q) [VAP|=1fori=12,... k
(i) f(v) # f(w) for all v,w € V, vw € E;
(iii) A is minimum.

The minimum number of colors used in any optimal PCP solution is denoted in this manuscript
as Partition Chromatic Number xp(G,).

Let us introduce an example, called Exzample 1. In the left part of Figure 1, we depict a graph
G of ten vertices and thirteen edges. The graph is partitioned in five subsets (k = 5), each
subset is composed of two vertices; the dotted lines are used to identify the subsets of the
partition. In the right part of Figure 1, we depict a feasible partial coloring C' using two
colors (gray and black). For each subset of the partition exactly one vertex is colored. The
colored vertices, i.e., the vertices v € V, are colored with the corresponding color (gray or
black) while the uncolored ones are white.

The PCP models many real-world applications (see Demange et al. [9]) including: routing
and wavelength assignment, dichotomy-based constraint encoding, antenna positioning and
frequency assignment, as well as a wide variety of scheduling problems (timetabling, quality

Figure 1: Example: (left) a graph G and a partition of its vertices in 5 subsets (k = 5); (right) a feasible
partition coloring of G with two colors (gray and black).

test, berth allocation) and a variant of the classical Travelling Salesman Problem.

1.1. Literature review

The PCP was introduced by Li and Simha [18] to model wavelength routing and assignment
problems. Three heuristic algorithms for the VCP, i.e., the Largest-First, the Smallest-Last
and the Color-Degree have been adapted to tackle the PCP. In Li and Simha [18], a first set
of benchmark instances for the PCP has been described, representing mesh optical networks
and the National Science Foundation Net (called nsf in the following).

Noronha and Ribeiro [24] presented a heuristic algorithm for the PCP, again in the setting
of wavelength assignment. The authors obtain initial solutions by using an adaptation of
Color-Degree algorithm proposed by Li and Simha [18], and then try to decrease the number
of colors via Tabu Search (TS). They show how TS outperforms the previous constructive
heuristics, and investigate the relationship between algorithm performance and graph density.
This algorithm was tested on large random instances, with up to 1800 vertices. A memetic
heuristic algorithm was designed by Pop et al. [26], which combines genetic operators with a
local search phase.

Theorethical results on the complexity of the PCP on particular classes of graphs have been
obtained in Bonomo et al. [4], Demange et al. [8] and Demange et al. [10].

To the best of our knowledge, only two works described exact algorithms for the PCP:
Frota et al. [12] and Hoshino et al. [16]. The first one proposes a branch-and-cut algorithm
based on the asymmetric representatives formulation introduced by Campélo et al. [6, 5] for
the VCP. A number of valid inequalities are introduced and used within a branch-and-cut
framework. A Tabu Search heuristic algorithm has also been proposed to initialize the
formulation. Computational tests are reported on randomly generated instances (called
random), VCP instances from the literature, and instances derived from the routing and
wavelength assignment literature (including the nsf instances, and a new set of instances
called ring).

The second exact algorithm, i.e., the one presented in Hoshino et al. [16], is a branch-and-price
algorithm based on the Dantzig-Wolfe reformulation of the representatives formulation. In

the latter, each vertex is the representative of one color, and the color can be used if and only
if the associated vertex is assigned the color. In order to deal with an exponential number of
variables, a column generation scheme has been proposed which is based on a set of pricing
problems, one for each vertex. The authors show how to adapt the valid inequalities used by
Frota et al. [12] to the reformulated model. However, since the inequalities did not prove to be
computationally effective, they were not added to the model. Several heuristic algorithms have
also been presented in Hoshino et al. [16]. Computational results on the random, nsf, and
ring instances showed that the branch-and-price algorithm of Hoshino et al. [16] outperforms
the branch-and-cut algorithm of Frota et al. [12].

1.2. Paper Contribution

In Section 2 we introduce a new formulation for the PCP with an exponential number
of variables and in Section 3 we design a Brach-and-Price algorithm to solve it to proven
optimality. Based on a study of the mathematical structures of the formulation, we managed
to design a pricing phase based on a unique pricing problem. This is a main improvement with
respect to the state-of-the-art branch-and-price algorithm of Hoshino et al. [16], which requires
instead to solve several pricing problems, one for each “representative” vertex. To effectively
initialize our branch-and-price algorithm, a new metaheuristic algorithm is presented in
Section 4. Several instances of the considered test bed have been solved to proven optimality
at the root node, i.e., no branching is required, thanks to the quality of the heuristic solutions
and the strength of the lower bound provided by the linear programming relaxation of the
new formulation. In Section 5 we present extensive computational experiments comparing
the new exact algorithm with the state-of-the-art approach. Finally, in Section 6, we draw
some conclusions.

2. Integer Linear Programming Formulations

In this section we first introduce a natural ILP formulation for the PCP and then we derive a
new extended formulation based on the Dantzig-Wolfe reformulation of the natural formulation.
A trivial upper bound on the number of colors used in any optimal PCP solution is given by
the number k of subsets of the partition. We can then introduce a set of binary variables y
with the following meaning;:

c=1,2,...,k;

B 1 if color ¢ is used
Ye = 0 otherwise

and a set of binary variables x with the following meaning;:

veV,e=1,2,... k.

1 if vertex v is colored with color ¢
Lye = .
0 otherwise

The first natural ILP formulation (called ILPY) reads:

(ILPY) min Yy (1)

k
S =1 i=1,2,... .k (2)

c=1 veP;

Toe + Tue < Ye we kK, c=1,2,...,k (3)
Ty € {0,1} veV,e=1,2,...,k (4)
ye € {0,1} c=1,2,...,k, (5)

where the objective function (1) minimizes the number of used colors, constraints (2) impose
that one vertex per subset of the partition is colored, and constraints (3) impose that adjacent
vertices do not receive the same color. Finally, constraints (4) and (5) define the variables of
the formulation.

By replacing constraints (4) and (5) with

Tye > 0 veV,e=1,2,...,k (6)
Ye >0 c=1,2,...k, (7)

we obtain the Linear Programming relaxation of ILPN, that will be denoted as LPN in what
follows.

Descriptive natural models for coloring problems are known to produce weak linear program-
ming relaxations and are affected by symmetry (see Malaguti and Toth [20], Cornaz et al. [7]),
hence, in general they can be solved to optimality only for small graphs. In order to improve
the strength of the linear programming relaxation, and to remove the symmetry of model
(1)—(5), we convexify constraints (3) through Dantzig-Wolfe reformulation (see [11],[2] and
[3]). Let us introduce the following exponential-size collection . of stable sets of G which
intersect each subset of the partition at most once:

S ={SCV : wgFE Yu,veS; |SNP| <1 i=1,...,k}. (8)
A valid model for the PCP can be obtained by introducing, for each subset S € ., a binary

variable £g with the following meaning:

£y — {1 if vertices in S take the same color Se.o

0 otherwise

then the extended ILP formulation reads:

(ILP®) min Y &y (9)

Ses
Yoo =1 i=1,... .k (10)

Se7:|SnP|=1
55 € {07]-} S y7 (11>

where the objective function (9) minimizes the number of stable sets (colors), whereas
constraints (10) ensure that exactly one vertex of each subset of the partition is colored.
Finally constraints (11) impose all variables be binary. Constraints (10) can be rewritten as:

Yoo &=1 0 =1,k (12)

Se.7:|SNP;|=1

since it is always possible to transform a solution of model (9), (12) and (11) into a solution
of model (9)—(11) of same value. Constraint (12) ensures that the associated dual variables
take non negative values. The resulting formulation (9)-(12)-(11) is denoted as ILP® in the
following sections.

Finally, by relaxing the integrality of constraints (11) to
gS >0 S € ya (13)

we obtain the Linear Programming relaxation of ILPE, that is denoted as LPY in what follows.

By observing that ILPE is obtained by applying Dantzig-Wolfe reformulation of constraints
(3) of ILPN and since constraints (3) do not form a totally unimodular matrix, it follows that
the quality of the lower bound obtained solving the LP relaxation of ILPY is dominated by
its counterpart associated with ILP®:

Proposition 1. The optimal value of LPF is greater than or equal to the optimal value of
LPN.

Proof. Proving the proposition for the specific PCP models give more insight on the structure
of the LP relaxation optimal solutions of ILPN and ILP®. We first show that any feasible
solution of LPP can be converted into a feasible solution of LPN with the same objective
function value. Given a function p(v) which returns the corresponding index i (i = 1,2,...,k)
of the subset of the partition of a vertex v (v € V'), we can uniquely define the color ¢(S) of
any S € . as min,eg p(v). Let £ denote a feasible solution of LPY and assume, without
loss of generality, that no subset of the partition is covered by more than one selected subset
S € .. Let us define a solution (z*,y*) as follows: for each color ¢ set

ve=) & and al.=) & (14)
Se : c=c(S) Ses : c=c(9),
veS
Thus, inequalities (10) ensure that constraints (2) are satisfied. Observe that, by construction,
for each edge uv € E and for each color ¢ = 1,2, ...,k we have ¥+ x_, < y¥; thus, (z*,y*)
is feasible to LPY and the objective function value remains unchanged.

We then show a case where the optimal value of LP¥ is strictly larger than the optimal value
of LPN. Consider the instance of Figure 2, where we depict a graph G of ten vertices and
twenty edges. The graph is partitioned into five subsets (k = 5), and each subset is composed
of two vertices. The dotted lines define the subsets of the vertex partition. The figure report
also a numbering of the vertices of the graph. Let consider the following solution of LP¥:

§s, = &5, = &5, = &5, = &€& = 0.5 where the five stable sets are S; = {1,8}, S, = {1,9},
Ss = {2,9}, Sy = {2,10}, and S5 = {8,10}. This solution has value 2.5 and it is optimal.
Since in G all stable sets intersecting each subset at most once have at most 2 vertices, then
at least 2.5 of them are necessary to cover one vertex per subset of the partition. The optimal
solution value of LP¥ is larger than the optimal solution value of LPN, which is 1, and it is

obtained by setting y. = 0.2 (c=1,...,5) and z,., = 0.1 (v € V,e=1,...,5). O]

Figure 2: Example: a graph G of 10 vertices and a partition of its vertices in 5 subsets (k = 5).

Model ILP® has exponentially many &g variables (S € .%), which cannot be explicitly
enumerated for large-size instances. Column Generation (CG) techniques are therefore
necessary to efficiently solve ILP®. In the following section we present a new Branch-and-Price
algorithm for ILPY, and refer the interested reader to [11] for further details on CG.

3. A New Branch-and-Price Algorithm

There are two main ingredients of a Branch-and-Price algorithm, i.e., a CG algorithm to solve
the LP relaxation of the exponential-size integer model, and a branching scheme. We discuss
separately these two aspects in the next sections.

3.1. Solving the Linear Programming relazation of ILP*

Model (9), (12) and (13), initialized with a subset of variables containing a feasible solution,
is called the Restricted Master Problem (RMP). Additional new variables, needed to solve
LPF¥ to optimality, can be obtained by separating the following dual constraints:

Z 7Tz§1 SEY, (15)

i=1,2,....k :
|P;NS|=1

where 7; (1 = 1,2,...,k) is the dual variable associated with the i-th constraint (12). Accord-
ingly, the CG performs a number of iterations, where violated dual constraints are added

to the RMP in form of primal variables, and the RMP is re-optimized, until no violated
dual constraint exists. At each iteration, the so-called Pricing Problem (PP) is solved. This

problem asks to determine (if any) a stable set S* € . for which the associated dual constraint
(15) is violated, i.e., such that
Yo om>1, (16)

=12,k :

|P;NS*|=1
where 7* is the optimal vector of dual variables of RMP at the current iteration of the CG
procedure.

The pricing problem can be modeled as a Maximum Weight Stable Set Problem (MWSSP) on
an auziliary graph G = (V, E), constructed as follows: the vertex set of G coincides with the
vertex set of (G, while the edge set £ is constructed from the edge set of G and its partition

QZ{Pl,...,Pk}Z

A

E=FU{w : uyyve P, i=1,...,k}. (17)

In other words, each subset of the partition of GG is transformed into a clique in G. Given
a weight vector ¢ € R‘X', where the weight ¢, of the vertex v € P; is set to the value 7}
associated with the i-th subset of the partition, the pricing problem corresponds then to a

MWSSP in G, that is, to determine a stable set .S of G maximizing) ¢ cy.

Notice that since each partition subset has been turned into a clique, such a stable set contains
at most one vertex per subset P; and therefore collects each profit m; at most once. The
MWSS can be solved by means of a specialized combinatorial Branch-and-Bound algorithm
(see Section 5).

If a stable set S* has total weight larger than one (that is, the reduced cost is negative), the
associated column is added to the RMP and the problem is re-optimized. If, on the other
hand, the total weight is not larger than 1, by linear programming optimality conditions no
column can improve the objective function of the RMP and therefore LP is solved to proven
optimality.

3.2. Branching scheme for ILP*

The design of a branching scheme is crucial for the performance of a branch-and-price algorithm
[30]. In the following we describe the branching scheme adopted in our new Branch-and-Price
framework. Two are its main properties. Firstly, it is a complete scheme, i.e., it ensures that
integrality can be imposed in all cases. Secondly, it does not require modifications neither on
the master problem nor the pricing algorithm. The latter means that our branching does not
alter the structure of the pricing problem so that the same algorithm can be applied during
the entire search.

Consider a fractional solution £* of LP¥, at a given node of the branching tree, and let S CS
be the set of columns in the RMP at the node. We propose a branching scheme composed of
two rules applied in sequence, i.e., when the branching condition for the first rule fails, the
second is applied.

The first branching rule is designed to impose that exactly one vertex is colored for each
subset. Constraints (12) impose that the sum of the values of the variables associated with
stables sets intersecting each subset is at least one, but in a fractional solution these stable

sets can include different vertices in the same subset of the partition. A given subset P; has
more than one (partially) colored vertex if:

{oeP : Y &>04>1 (18)

Se.? veS

In case more than one of such subsets exists, we select the subset ¢ with the largest number
of (partially) colored vertices, breaking ties by size of the subsets (preferring smaller subsets
and breaking further ties randomly). We then branch on the vertex v € P; with the largest
value of » g 5 o &5 Two children nodes are created:

e in the first node we impose that v is the colored vertex for subset P;;
e in the second node, we forbid that v is the colored vertex for subset P;.

This branching rule can be enforced without any additional constraint neither for the RMP
nor for the pricing problem. To force the coloring of v in the children nodes of the branching
scheme, we remove from the graph G all other vertices u € P; (u # v); to forbid the coloring
of v, we simply remove the vertex from the graph G. This first branching rule is not complete
since it may happen that a vertex (partially) belongs to more that one stable set in the
solution &*.

If this happens for a vertex v, there must be another vertex u (belonging to a different subset
of the partition) such that:

Z &5 =, v is fractional. (19)
Sey:v,ues

We say that v and u are a fractionally colored pair of vertices.

The second branching rule is designed to impose that each pair of (colored) vertices either
takes the same color, or the two vertices of the pair take different colors. This rule has been
proposed for the VCP by Zykov [31] and used to derive several effective Branch-and-Price
algorithms for the VCP, starting from the seminal work by Mehrotra and Trick [23], see, e.g.,
[21, 14, 15]. In case more pairs of fractionally colored vertices exist, we select the pair v and
u with the largest v value. Two children nodes are then created:

e in the first node we force vertices v and u to take the same color;
e in the second node we force vertices v and wu to take different colors.

The second branching rule can also be enforced without any additional constraint neither for
the RMP nor for the pricing problem. To force different colors for a pair of vertices v and u in
the children nodes of the branching scheme, we add the edge vu to E. On the other hand, to
force v and u to take the same color, we remove v and u from the graph G and replace them
with a new vertex z; then we add edges zw for all w € V if uw € E or vw € E (or both). We
then consider a stable set containing the vertex z coloring both P,y and P,), where the
function p(v) (v € V) returns the index of the subset of the partition containing vertex v.

In our Branch-and-Price algorithm we first define the vertices for each subset of the partition
to be colored, i.e., we apply the first branching rule. Then, in case the solutions are still
fractional, we apply the second branching rule in order to obtain integer solutions.

After branching, the variables that are incompatible with the branching decision are removed
from the children nodes. The following proposition states that the two proposed branching
rules define a complete branching scheme for ILP®:

Proposition 2. The two branching rules applied in sequence provide a complete branching
scheme for model ILP".

Proof. After the application of the first branching rule, the colored vertex in each subset of
the partition is determined. In [1] it is proved that for any 0-1 constraint matrix A (as for
the case of LP¥), if a basic solution £* to A¢ = 1 is fractional, then there exist two rows i
and j such that:

0< Y &<l (20)

Se : ijes

This result allows us to conclude that if a solution is fractional then we can determine two
subsets of the partition such that (20) holds. The same holds for the case in which A¢* > 1:
in any optimal fractional solution to LP¥, the rows for which covering constraints are satisfied
with equality must be covered by at least two columns with associated fractional variables,
and the previous result applies. By picking the colored vertex from the first and the colored
vertex from the second subset, the two vertices constitute a fractionally colored pair of vertices
on which to apply the second branching rule. O

4. Initialization of the Branch-and-Price algorithm

In order to initialize the Branch-and-Price algorithm with a feasible solution of good quality
in short computational time, we devised a metaheuristic algorithm based on the Adaptive
Large Neighbourhood Search (ALNS, first introduced by Ropke and Pisinger [27]), improved
by a Local Search phase. In the following paragraphs we describe the skeleton of the ALSN
while, in Section 5, we report the details on how the algorithm has been run. In particular, we
comment on how the ALSN parameters have been tuned in Section 5.2. Finally we describe
some additional procedures which allow to improve the quality of the solutions computed by
the metaheuristic algorithm in Section 5.4.

4.1. ALNS-based heuristic

The basic idea behind the Adaptive Large Neighbourhood Search (ALNS) is to explore the
solution space using a large collection of neighbourhoods. At each iteration, the neighbourhood
to explore is chosen randomly, with a probability proportional to a given score. The score,
in turn, reflects the past performance of the neighbourhood during the solution process.
Algorithm 1 shows the general framework of ALNS. In the following, it is assumed that when
a tie is present, it is resolved randomly.

10

In line 1 and line 2 the current and best solutions are initialized. The initial solution is
created by a simple greedy procedure that constructs stable sets one at the time. Starting
from a stable set composed of a vertex from an uncolored subset, the procedure keeps adding
the least connected vertices of uncolored subsets to the current stable set. When this is not
possible anymore, it starts a new stable set. The iteration counter is initialized at line 3,
and line 4 initializes the neighbourhood scores. The algorithm is run for a given number M
of iterations. At each iteration, a neighbourhood is selected (line 6) using a roulette-wheel
selection mechanism, with probabilities proportional to the scores. Since the neighbourhood
size is often exponential, NV is not explored completely, but just sampled, in order to produce
a new solution 2’ (line 7). Next, in line 8, the new solution is evaluated and either accepted
or rejected, according to an acceptance criterion. The acceptance criterion uses a set of
parameters that can change during the solution process: for example, accepting worsening
solutions might be more likely at the beginning of the process than at the end. The current
(line 9) and best (line 12) solutions are possibly updated, and finally the scores (line 14), the
acceptance criterion parameters (line 15) and the iteration counter (line 16) are updated, and
the best known solution is returned on line 18.

In our algorithm, the set N of neighbourhoods is not explicitly enumerated. Rather, we
give a set of destroy methods and a set of repair methods. The former transform a feasible
solution into an unfeasible one, and the latter transform an unfeasible solution into a feasible
one. Each combination of a destroy method followed by a repair method gives rise to a
neighbourhood. Rather than keeping scores for the neighbourhoods, then, we keep the scores
of the individual destroy and repair methods and perform two independent roulette-wheel
selections. Notice that this approach can only work if (as in our case) all destroy and repair
methods are compatible, meaning that it is possible to repair a destroyed solution produced
by any destroy method, with any repair method.

In our implementation, we devised the destroy and repair methods described below. In
order to compact the exposition, some similar methods have been grouped together and their
distinctive elements are listed in curly braces.

e Destroy methods

1. Select {a random, the smallest, the biggest} stable set of the solution, and remove
a random vertex from that set. (Methods D1, D2, and D3.)

2. Select the colored vertex with {smallest, largest} external degree, and remove it
from the stable set it belongs to. (Methods D4, and D5.)

3. Select the colored vertex with {smallest, largest} color degree, and remove it from
the stable set it belongs to. The color degree of a vertex v is the number of vertices
w such that vw € E and w is colored in the current solution. (Methods D6, and
D7.)

4. As in items 2 and 3 but the vertex to be removed is chosen with a roulette
wheel method, in which the probability of being chosen is {directely, inversely}
proportional to its degree. (Methods from D8 to D11.)

5. Select {a random, the smallest} stable set of the solution, remove the stable set.

11

Algorithm 1: ALNS Framework

Input : Number of iterations: M

Input : Initial solution: xg

Input : List of neighbourhoods: N

Input : Neighbourhood scores: Ay for N € N
Input : Acceptance parameters: «

Input : Objective to minimize: f(-)

1T =2
2 ¥ =g

31=1

4)\]\[:1, VNEN

while : < M do

5
6 Choose neighbourhood N € N with probability proportional to Ay
7 Select 2’ € N(z)

8 if Accept new solution =’ (using parameters o) then
9 ‘ x=1a

10 end

11 if f(z) < f(z*) then

12 ‘ =z

13 end

14 Update scores A

15 Update acceptance parameters «

16 1=1+1

17 end

18 return z*

(Methods D12, and D13.)

6. As in item 5, but the criterion used to choose the set is that it has the smallest

cumulative {external, color} degree, defined as the sum of the degrees of its vertices.
(Methods D14, and D15.)

7. As in item 6, but where the set is chosen with a roulette wheel method, in which

the probability of being chosen is inversely proportional to the cumulative degree.
(Methods D16, and D17).

e Repair methods

1. For each uncolored subset, select a random vertex from the subset and add it to
{a random, the smallest, the largest} feasible stable set of the current solution. If
it is not possible to put the vertex in any existing stable set, define a new stable

set. (Methods R1, R2, and R3.)

12

2. As in item 1, but for each uncolored subset, we select the vertex with smallest
{external, color} degree. (Methods from R4 to R9.)

The scores of the destroy and repair heuristics are updated at each iteration as follows: if a
method produced a new best solution, its score is multiplied by a parameter AlnsBestMult;
otherwise, if a method produced a solution accepted by the acceptance criterion, its score is
multiplied by AlnsAcceptMult; otherwise, its score is multiplied by AlnsRejectMult.

The classical acceptance criterion used within ALNS is Simulated Annealing, in which a
solution is accepted with probability exp((f(x) — f(z'))/T), where T is a parameter (called
temperature) that decreases exponentially during the solution process. However, the objective
function f(-) we consider simply counts the number of used colors, and therefore it only
assumes a very limited range of discrete values, while moving from one value to the next
(i.e., reducing the number of colors by one) is a relatively rare occurence. For these reason,
an acceptance criterion that accepts a solution based on its objective value does not seem
particularly suited for the PCP. We, therefore, decided to use the “Worse Accept” criterion,
proposed by Santini et al. [29], which accepts a new solution z’ if either it uses strictly fewer
colors than the current one, or otherwise with a certain probability p, which starts at a high
value, and decreases linearly to reach 0 at the end of the solution process. Notice that p does
not depend on the value f(z’) of the new solution. In our implementation, the start value is
dictated by parameter AlnsInitProb.

4.2. Local Search refinement

The local search is a heuristic procedure that can be applied each time a new solution is
generated by the destroy and repair heuristics, before the solution is evaluated. Although
applying the refinement to all generated solutions certainly increases the running time of the
algorithm, it also produces solutions of higher quality, and gives an important improvement
on the overall quality of the algorithm, as outlined by the computational experiments reported
in Section 5.3.

The local search operator tries to reduce the number of colors used in a solution by one unit,
by emptying the smallest cardinality stable set in the solution. Assume the current solution
uses h colors Sy, ..., S, and, without loss of generality, that S;, is the smallest cardinality
stable set. The local search heuristic first uncolors all vertices of S},. It then considers each
uncolored partition, and tries to color any vertex (say v) of the partition by inserting it in
one of Sy,...,S5,1.

If there is a stable set S; such that S; U {v} is still a stable set, v is placed in S;. Otherwise,
the procedure tries to insert v in one stable set S; by removing all vertices wy, ..., w, in 5;
that are not compatible with v, i.e., vw; € E for j = 1,...,r. If it is possible to greedily
relocate all vertices w; in other stable sets, the vertices are relocated, and v is inserted in S;.
If there is no stable set where vertex v can be inserted, the procedure tries to color another
vertex from the same uncolored partition. The uncolored partitions, the vertices v from the
uncolored partition and stable sets S; are considered in random order.

13

If, for some uncolored partition, no vertex can be inserted in a stable set Sy, ..., S,_1, local
search is stopped. In this case the input solution is returned. On the other hand, if the local
search manages to recolor one vertex for each uncolored partition, it has reduced the number
of colors in the solution by one. In this case, the improved solution is used as the current
solution at the next iteration of ALNS.

5. Computational Results

The experiments have been performed on a single core of a computer equipped with a 3.25
GHz 4-core i5 processor and 8Gb RAM, running a 64-bit Linux operating system. For all the
tests we used a single thread.

The goal of the experiments was to assess the performance of the new B&P algorithm setting
a computing time limit of one hour.

The algorithms were coded in C++ and all the codes were compiled with gcc 6.2 and -03
optimizations. At each iteration of the Column Generation procedure (see Section 3), we used
Cplex 12.6.1 as a Linear Programming solver. The pricing MWSS subproblems were solved
using the open-source implementation of the algorithm described in Held et al. [15] and avail-
able at https://github.com/heldstephan/exactcolors. The algorithm implementation
and the instances used are available from Santini [28].

5.1. Instances

In order to compare our results with the ones present in the literature, we tested our approach
on the instance classes random, nsfnet and ring presented in Section 1.1. The entire set of
instances can be downloaded at http://www2.ic.uff.br/~celso/grupo/pcp.htm. In their
work, Hoshino et al. [16] considered a subset of 187 out of a total of 199 instances, removing
those instances solved to optimality in less than a second by either their algorithm or that of
Frota et al. [12].

We, in turn, removed 12 instances of the ring class, as we realised that they were identical
copies of the same three basic instances. In particular, instances n10_p1.0_1 to n10_p1.0.5
all correspond to the same instance (therefore only 1 out of the 5 instances has been kept),
as do the analogous instances of base type n15 and n20. This reduced the total number of
instances to 175. We used therefore 56 random, 32 nsfnet, and 87 ring instances. We also
note that in ring instances, all elements of the partition have cardinality two.

5.2. Metaheuristic algorithm parameter tuning

The metaheuristic algorithm is aimed at providing a good quality solution to initialize the
B&P algorithm in a small fraction of the available computing time of one hour. The relevant
parameters have been tuned on a subset of 28 randomly selected instances (8 random, 5
nsfnet, 15 ring) by means of the irace package (see Lépez-Ibédnez et al. [19]).

14

Since the number of vertices |V| of an instance determines the computing time for one iteration
of the heuristic algorithm, the number of iterations for an instance was set to /log, |V|,
where [is a parameter to be experimentally tuned. This way, we limited the number of
iterations for large instances, as explained below.

The ALNS with Local Search (ALNS+LS) algorithm has four input parameter to be
tuned in addition to f, i.e., the AlnsBestMult, AlnsAcceptMult, AlnsRejectMult, and
AlnsInitProb.

The parameters were tuned in two steps. First we kept the value of § fixed to a sufficiently
large number, and tuned the other four parameters. In this way, we allowed the algorithm to
reach its “plateau”, i.e., to run for many consecutive iterations without further improvement of
the objective function. In the second step, we tuned the parameter 5 by first choosing, for each
test instance, the minimum value which allowed the ALNS with Local Search (ALNS+LS)
to reach the plateau, and then taking the maximum (among all test instances) of these
values, rounded to the closest multiple of 1000. This way, we guaranteed for each instance
a sufficient number of iterations to reach its plateau but at the same time the scale factor
log, |V| limited the increase of iterations for large instances. The resulting parameter
configurations were: AlnsBestMult = 1.9307, AlnsAcceptMult = 1.3667, AlnsRejectMult
= 0.8836, AlnsInitProb = 0.8975, § = 15000. Notice that ALNS+LS parameters appeared
to diverge from common values in the literature (see, e.g., Santini et al. [29]). In particular,
we would have expected the values of AlnsBestMult, AlnsAcceptMult, and AlnsRejectMult
to be closer to 1.0, and that of AlnsInitProb to be much smaller. The flat-landscape nature
of the problem could have complicated the tuning task; however, we believe that considerable
noise was introduced by the high number of destroy and repair methods.

When tuning the parameters of ALNS+LS, in fact, all the 17 destroy and 9 repair methods
were enabled. To assess their impact and eventually reduce their number, we ran further
experiments. Let I be the set of tuning instances, and Best(i) be the best solution value
obtained by ALNS for instance ¢ € I during all the runs.

First we disabled each method one by one, and ran the algorithm on the tuning instances,
with five reruns for each instance. If there was an instance ¢ for which the ALNS without the
method did not reach Best(i) in at least one of the reruns, then i was flagged for the method.
We dropped all the methods with fewer than three (10%) of flagged instances. Using the
approach described above, we discarded the following destroy and repair methods: D5, D7,
D9, D10, D11, D15, D16, R9.

Finally, we re-tuned the ALNS+LS algorithm using the remaining destroy and repair methods.
The final parameter configuration was as follows: AlnsBestMult = 1.1488, AlnsAcceptMult
= 1.0877, AlnsRejectMult = 0.9972, AlnsInitProb = 0.1010, 5 = 21000.

Figure 3 shows the number of times, in percentage, in which each destroy method produced an
improving solution, coupled with any repair method. Figure 4 shows the analogous measure
for each repair method, coupled with any destroy method. Using the notation of Algorithm 1,
a new solution 2’ is considered improving over the current solution z if f(2') < f(z) before
applying the local search operator. Since we often accept worsening solutions, the percentages
shown in the figure are relatively high and the lowest recorded percentage, for method D8,

15

% improved solutions

D1 D2 D3 D4 De D3 D12 D13 D14 D17
destroy methods

Figure 3: Percentage of times in which each destroy method has produced an improving solution (together
with some repair method).

Difference with yp ALNS ALNS + LS
Avg Var Avg Var
99.6 2.3 1584 0.8
454 23 116 2.3
15.6 0.3 2.0 0.5
9.4 0.3 0.0 0.0
2.0 0.0 0.0 0.0

= W N — O

Table 1: Quality of the solution produced by ALNS and ALNS enhanced with local search.

is just above 2%. All methods show to be effective in improving the current solution. The
figures refer to the 28 instances used for tuning.

5.83. Metaheuristic algorithm performance

This section evaluates the initial metaheuristic presented in Section 4. Out of the 175 instances
we considered, we know the optimal result (either from our branch-and-price algorithm, or
from that of Hoshino et al. [16]) of 172 of them. For these instances, we can compute how
well the heuristic performs with respect to the optimal solution value.

Table 1 shows the number of instances for which ALNS and ALNS + LS has found: the
optimal solution; a solution with one, two, three or four colors more than the optimum. The
algorithm never produced solutions with five colors more than the optimum.

Column Awvg reports the average across five reruns; the variance is reported in column Var.
The table shows that the introduction of a local search phase greatly enhances the effectiveness
of ALNS.

Figure 5 shows computational times. The chart shows a positive correlation between the

16

% improved solutions

R1 R2 R3 R4 R5 R6 R7 R8

repair methods

Figure 4: Percentage of times in which each repair method has produced an improving solution (together
with some destroy method).

running time and the number of vertices, even if the number of iterations is scaled as explained
in Section 5.2. Furthermore, the introduction of a local search phase to ALNS increases the
computation time, but the improved solution quality definitely justifies such a choice. Several
instances of size |V| = 90 are present in the test bed and the different computing time is
explained by their different edge density. This figure affects the time necessary for an iteration
of the metaheuristic algorithm.

5.4. Branch-and-price Algorithm

In this section, we report the results obtained by our new branch-and-price algorithm with a
time limit of one hour. Since linear relaxation bounds are generally tight, the performance of
our algorithm depends on the ability to find good feasible solutions (upper bounds) early in
the branching tree. Therefore, at the root node we adopt the following approach based on
the ALSN+LS (described in Section 4), denoted as root node heuristic (RH):

1. We generate an initial solution using the ALNS+LS heuristic (the corresponding columns
are used to initialize the Restricted Master problem).

2. We expand the column pool using the POPULATE method of Hoshino et al. [16].
3. We solve the root node relaxation via column generation.

4. If the difference between the upper and lower bounds (UB and LB, respectively) is still
greater than one, we try to strengthen the UB.

(a) We solve ILPF as an integer program with a general purpose solver (Cplex 12.6.1),
where the set . only contains the generated stable sets. The solver is run with a
time limit of 30 seconds.

17

1000

i
« e *
100 ¢ *
. 1+
% + +
- M%xw +t v T +
) o T
E 10 X X:% +'_++++$‘_++— R
+
[% W%; E U
] ﬁ % + et
¥
% 4_}3":'-144
1 L+
s, +1=ﬂ'
++i+
*¢ ALNS +
o1 1 ALNS +LS ®
100 200 300 400 500 800 700

instance size |V|

Figure 5: Running time of heuristics, versus instance size (measured in number of vertices of the graph).

(b) If the difference between UB and LB is again greater than one, we restart the
ALNS+LS metaheuristic using the solution provided by the integer program as a
starting solution.

Notice that these operations are only performed at the root node, because solving the MIP
and executing the ALNS heuristic are time consuming. This is true especially for larger
instances, which tend to be the ones for which item 4 above is executed. The time spent by
the procedure described above is subtracted from the overall time budget, therefore less time
can be used exploring the rest of the Branch-and-Price tree.

The RH combines the ALNS + LS with additional procedures, and is able to improve nine
times on the feasible solution provided by the latter.

We divided the presentation of the computational results in two batches. In the first batch,
we considered those instances that we were able to solve using the RH, without having to
perform branching. In the second batch, we include those instances that required branching,
and one instance for which we were not able to fully explore the root node within the time
limit. The Branch-and-Price tree is explored according to a depth first strategy; the binary
branching scheme we used is described in Section 3.2, and the nodes are explored in the order
in which they are defined.

Table 2 presents the results relative to the instances of the first batch. Columns |V| and
|E| report, respectively, the number of vertices and edges in the graph. Column yp is the
partition chromatic number of the graph. Column Cols reports the final size of the column
pool, and column T7me is the solution time in seconds.

The first batch of instances is composed by 124 instances. The new Branch-and-Price algorithm
can solve at the root node 20 out of 56 random instances with a computing time smaller than
six seconds, all the 32 nsfnet instances with a computing time smaller than 22 seconds, and
72 out of 87 ring instances with a computing time smaller than 342 seconds. These tests

18

Instance V| |[E| xp Cols Time Instance V| |[E| xp Cols Time
n100p5t2s1 100 2515 7 208 2.89 ring n10p0.9s5 166 5497 13 255 6.95
nl100p5t2s2 100 2460 7 233 2.71 ring-nl0pl.0s1 180 6450 13 321 9.96
n100p5t2s3 100 2532 7 214 3.70 ring n15p0.3s3 130 3430 13 201 3.63
nl100p5t2s4 100 2468 7 196 2.68 ring_ nl15p0.3s4 140 3970 12 235 4.73
n100p5t2s5 100 2524 7 221 3.29 ring n15p0.3s5 150 4525 12 249 5.09
n60p5t2sl 60 924 5 100 1.58 ring_ n15p0.4s1 162 5343 15 178 6.46
n80p5t2sl 80 1616 6 195 1.58 ring n15p0.4s2 188 7099 14 324 8.72
n80p5t2s2 80 1570 6 204 1.59 ring n15p0.4s3 164 5484 15 267 7.37
n90plt2s4 90 435 2 316 5.71 ring-n15p0.4s4 180 6549 14 273 8.31
n90p2t2s2 90 821 3 254 4.91 ring n15p0.4s5 196 7761 16 330 11.19
n90p5t2s4 90 2040 7 220 2.12 ring nl15p0.5s1 208 8760 18 263 11.42
n90p5t2s5 90 2082 7 177 2.19 ring n15p0.5s2 226 10280 18 376 13.97
n90p6t2s1 90 2462 8 166 2.29 ring_ n15p0.5s3 208 8828 19 317 11.81
n90p6t2s2 90 2403 8 178 2.27 ring n15p0.5s4 210 8974 17 334 13.02
n90p8t2sl 90 3268 12 142 3.44 ring n15p0.5s5 226 10281 18 334 15.28
n90p8t2s5 90 3239 12 136 3.16 ring n15p0.6s1 250 12567 19 390 20.01
n90p9t2sl 90 3637 16 160 4.79 ring n15p0.6s3 258 13529 22 420 19.91
n90p9t2s2 90 3619 16 149 4.45 ring nl5p0.6s4 260 13724 20 435 24.42
n90p9t2s3 90 3621 16 153 4.67 ring n15p0.6s5 252 12808 21 320 18.68
n90p9t2sd 90 3640 16 151 4.51 ring_ n15p0.7s1 288 16745 21 468 28.48
nsf_p0.4_s3 101 625 6 206 1.89 ring n15p0.7s2 330 21921 25 508 36.37
nsf_p0.4_s4 99 579 7 139 2.04 ring_ n15p0.7s3 306 18974 23 479 34.35
nsf_p0.4_s5 112 769 6 262 2.52 ring n15p0.7s4 310 19455 23 505 37.54
nsf_p0.5_s1 124 1030 8 358 2.93 ring n15p0.7s5 282 16126 23 454 30.35
nsf_p0.5_s2 130 1041 8 220 3.36 ring n15p0.8s1 336 22826 24 551 46.29
nsf_p0.5_s4 118 828 7 355 2.71 ring n15p0.8s2 352 24949 25 549 43.64
nsf_p0.5_s5 132 1099 7 279 3.11 ring n15p0.8s3 338 23111 26 535 39.63
nsf_p0.6_sl 149 1506 9 373 4.66 ring n15p0.8s4 344 23984 25 543 47.18
nsf_p0.6_s2 154 1443 9 451 4.44 ring_ n15p0.8s5 328 21736 25 536 41.66
nsf_p0.6_s3 153 1404 9 353 4.06 ring n15p0.9s2 386 30115 27 651 76.92
nsf_p0.6_s4 161 1650 9 451 4.77 ring n15p0.9s3 380 29257 28 614 63.03
nsf_p0.6_s5 139 1211 9 269 3.25 ring n15p0.9s4 380 29233 27 621 64.37
nsf_p0.7_s1 180 2157 10 477 6.24 ring n20p0.2s1 128 3345 10 184 4.04
nsf_p0.7_s2 202 2718 11 471 7.79 ring n20p0.2s2 172 6040 15 288 7.74
nsf_p0.7_s3 177 1966 10 513 6.20 ring n20p0.2s3 162 5293 13 257 6.14
nsf_p0.7_s4 187 2191 11 340 6.33 ring_-n20p0.2s4 152 4727 13 258 5.45
nsf_p0.7_s5 159 1642 9 469 5.00 ring n20p0.2s5 162 5449 16 273 6.79
nsf_p0.8_s1 201 2594 11 600 8.45 ring n20p0.3s1 218 9618 18 347 13.22
nsf_p0.8_s2 221 3167 11 559 10.90 ring n20p0.3s2 246 12431 24 394 15.00
nsf_p0.8_s3 208 2743 11 604 8.45 ring n20p0.3s3 234 11068 18 369 14.98
nsf_p0.8_s4 209 2876 11 557 8.77 ring n20p0.3s4 222 10169 20 366 14.10
nsf_p0.8_s5 184 2049 11 403 6.48 ring n20p0.3s5 240 11922 21 390 18.75
nsf_p0.9_s1 216 2966 12 437 9.93 ring_-n20p0.4s1 306 18925 24 483 30.57
nsf_p0.9_s2 231 3370 12 610 10.83 ring n20p0.4s2 318 20852 28 513 31.86
nsf_p0.9_s3 217 2889 12 542 9.87 ring_ n20p0.4s3 296 17718 21 471 30.33
nsf_p0.9_s4 226 3169 12 704 15.00 ring n20p0.4s4 292 17451 25 465 25.46
nsf_p0.9_s5 234 3424 12 624 12.82 ring n20p0.4s5 330 22422 29 547 34.90
nsf_pl.0-sl 250 3996 13 730 15.11 ring_ n20p0.5s1 392 31120 32 645 55.26
nsf_pl.0_s2 251 4026 13 762 18.95 ring n20p0.5s2 396 32349 32 652 63.21
nsf_pl.0_s3 238 3465 13 735 12.78 ring n20p0.5s3 380 29251 27 608 55.95
nsf_pl.0_s4 257 4320 13 736 21.42 ring n20p0.5s4 358 26197 28 589 51.05
nsf_p1.0_s5 248 3879 13 734 14.34 ring_ n20p0.5s5 390 31285 32 640 56.36
ring n10p0.7s3 130 3353 10 190 4.08 ring n20p0.6s1 458 42545 36 703 93.05
ring n10p0.8s1 146 4221 11 177 5.84 ring n20p0.6s2 464 44339 36 769 109.62
ring n10p0.8s2 152 4605 12 227 6.16 ring n20p0.6s3 456 42134 32 762 103.11
ring n10p0.8s3 144 4115 11 212 4.76 ring n20p0.6s5 440 39665 34 710 78.43
ring n10p0.8s4 146 4233 11 218 4.85 ring-n20p0.7s1 536 58410 39 869 158.49
ring n10p0.8s5 138 3785 11 204 4.57 ring n20p0.7s2 580 68948 43 985 199.56
ring.n10p0.9s1 162 5225 12 239 6.66 ring_.n20p0.7s4 536 58641 38 944 218.01
ring n10p0.9s2 164 5360 12 238 6.77 ring n20p0.8s2 624 79813 46 1019 251.36
ring n10p0.9s3 166 5479 13 255 7.62 ring n20p0.8s3 614 76597 43 1005 216.42
ring n10p0.9s4 164 5337 12 269 7.76 ring n20p0.9s1 672 92075 48 1101 341.50
Table 2: Computational results for instances solved at the root node (RH).

B&P [16] B&P (new)
Instance V| |[El LB UB rUB LB UB Nodes rCols nCols Cols rTime Time
n120p5t2sl 120 3616 8 8 9 8 8 4992 135 1.00 5251 4.70 438.52
n120p5t2s2 120 3563 8 8 9 7 8 538 150 3.59 2223 4.79 31.40
nl120p5t2s3 120 3638 8 8 9 8 8 11993 127 0.71 8747 4.65 1148.29
n120p5t2s4 120 3565 8 8 9 7 8 490 125 3.24 1833 4.35 22.41
n120p5t2s5 120 3653 8 8 9 8 8 9020 145 1.56 3158 4.75 1626.14
n70p5t2s2 70 1204 6 6 6 5 6 21 62 8.85 302 1.23 1.52
n70p5t2s3 70 1218 6 6 6 5 6 229 66 4.53 1178 1.13 2.92
n70p5t2s4 70 1217 6 6 6 5 6 35 63 8.53 431 1.18 1.59
n80p5t2s3 80 1611 6 6 7 6 6 2998 75 1.21 3776 1.51 38.38
n80p5t2s4 80 1595 6 6 7 6 6 497 76 2.76 1536 1.47 6.02
n80p5t2s5 80 1634 6 6 7 6 6 497 68 3.17 1733 1.70 6.18
n90plt2sl 90 445 2 3 3 2 3 483 234 32.54 15981 7.75 399.67
n90p1t2s2 90 442 2 3 3 2 3 1451 211 27.28 39905 6.93 * 2082.66
n90p1t2s3 90 465 3 3 3 2 3 63 204 36.74 2635 3.93 33.64
n90p1t2s5 90 485 3 3 3 2 3 17 219 49.56 1074 5.84 20.98
n90p2t2sl 90 823 3 4 4 3 4 4881 181 6.91 34938 3.98 * 2496.60
n90p2t2s3 90 869 3 4 4 3 4 281 163 15.16 4512 3.49 73.09
n90p2t2s4 90 821 3 4 4 3 4 5133 176 9.27 47854 3.97 tl
n90p2t2s5 90 862 3 4 4 3 4 1019 178 13.28 13815 3.84 341.48
n90p3t2sl 90 1215 4 5 5 4 5 9085 126 3.21 29454 2.43 1652.40
n90p3t2s2 90 1234 4 5 5 4 5 9293 146 3.15 29573 2.32 * 2054.82
n90p3t2s3 90 1275 5 5 5 4 5 197 139 8.62 1921 2.36 18.33
n90p3t2s4 90 1211 4 5 5 4 5 11771 145 3.19 37847 2.77 tl
n90p3t2s5 90 1268 5 5 5 4 5 865 141 6.75 6072 2.42 77.84
n90p4t2sl 90 1624 5 6 6 5 6 12455 114 1.46 18361 2.01 1052.99
n90p4t2s2 90 1600 5 6 6 5 5 3498 113 2.42 8681 2.03 159.76
n90p4t2s3 90 1650 6 6 6 5 6 865 117 3.98 3661 1.99 29.44
n90p4t2s4 90 1638 6 6 6 5 6 1777 127 3.36 6182 2.05 72.11
n90p4t2sd 90 1671 6 (] 6 5 6 53 113 9.60 712 2.15 4.65
n90p5t2sl 90 2039 7 7 7 6 7 81 99 6.70 716 2.12 3.83
n90p5t2s2 90 1988 7 7 7 6 7 6357 93 1.12 7321 2.01 175.09
n90p5t2s3 90 2064 7 7 7 6 7 23 86 10.00 388 2.22 2.97
n90p6t2s3 90 2463 8 8 9 8 8 494 73 1.88 1103 2.32 5.75
n90p6t2s5 90 2478 9 9 9 8 9 1741 82 0.97 1897 2.51 13.63
n90p8t2s2 90 3200 12 12 12 11 12 49 38 4.02 327 3.11 3.35
n90p8t2s3 90 3282 12 12 13 12 12 40 37 2.79 264 3.49 3.65
ring n15p0.6s2 258 13395 19 19 20 19 19 64 83 18.22 1528 22.25 56.79
ring n15p0.9s1 370 27654 26 26 27 26 26 75 39 21.65 2217 57.94 359.13
ring n15p0.9s5 392 31121 27 27 28 27 27 84 109 21.82 2536 132.95 698.32
ring n15pl.0sl 420 35700 28 29 29 28 28 67 174 30.59 2838 287.97 1332.80
ring n20p0.6s4 452 41756 32 32 34 32 32 97 92 22.45 2976 173.14 1171.84
ring_ n20p0.7s3 534 57846 37 37 38 37 37 130 45 22.26 3796 214.32 * 2179.74
ring_ n20p0.7s5 518 55043 38 38 39 38 38 136 88 21.18 3785 250.88 * 2054.76
ring n20p0.8s1 614 76875 44 44 45 44 44 153 27 23.29 4560 262.78 * 2814.38
ring n20p0.8s4 610 76046 43 43 44 43 43 35 45 37.61 1405 268.90 936.30
ring n20p0.8s5 602 74191 43 43 44 43 43 81 18 28.11 2571 265.96 * 2088.95
ring_.n20p0.9s2 696 99162 49 49 50 49 50 40 88 12.43 1714 807.23 tl
ring_ n20p0.9s3 686 95915 — 48 48 47 47 16 147 24.56 544 851.66 1652.91
ring n20p0.9s4 686 96132 — 48 48 47 47 21 171 17.27 1091 1383.25 * 3091.55
ring_.n20p0.9s5 706 101953 49 49 51 49 51 19 125 5.16 1551 1250.69 tl
ring n20pl.0s1 760 117800 — — 51 42 50 0 — — 1482 tl tl

Table 3: Computational results for instances not solved at the root node.

20

show that the nsfnet instances are not computationally challenging. For all these instances
there is no integrality gap between the bound provided by LP¥ and the optimal solution
value. A large majority of the ring instances are solved to proven optimality and the largest
one has 672 vertices and 92075 edges. Finally less than half of the random instances can be
solved at the root node by our Branch-and-Price method, i.e., this set of instances is the
most challenging one. As far as the number of generated columns is concerned, all instances
are solved with at most 1101 columns. The large majority of the columns are generated by
the heuristic and the POPULATE method. The number of columns generated by solving the
MWSSP is approximately one tenth of the total number, on average.

Table 3 presents the results relative to the instances of the second batch. We report under
BE&P [16] the best results obtained by any of the four implementations of Hoshino et al. [16],
i.e., the final lower and upper bounds, while under New BéP the results obtained by our
algorithm. Columns rLB and rUB are the lower and upper bounds obtained at the end
of the exploration of the root node, while column UB is the final upper bound. Column
Nodes displays the number of explored Branch-and-Price nodes. Column rCols is the number
of columns generated at the root node, solving the MWSSP; column nCols is the average
number of columns generated solving the MWSSP, at nodes other than the root node. Column
Cols reports the total number of columns generated; this includes columns generated solving
the MWSSP, as well as those generated by the heuristic, and by the POPULATE method.
Finally, columns rTime and Time list, respectively, the root node and the overall solution
time (both including the initial heuristic), in seconds. The values in bold under columns UB
denote instances solved to optimality. An asterisk next to the total computation time denotes
instances solved in more than 1800s, so as to facilitate comparison with Hoshino et al. [16]
(see comments of Table 5 on the comparison of computing times on different computers).

Notice that we could not solve the root node of one instance (ring n20p1.0s1), for which we
provide a lagrangean lower bound LB = [z] pe/2viel |, Wwhere z;pr is the solution of the last
linear relaxation of the restricted master problem solved, and zy;, is the last solution value
found by the pricing problem.

The second batch of instances is composed by 51 instances. In summary, we managed to find
the optimal solution to 34 out of 36 random instances and 12 out of 15 ring instances, and
in 38 cases the solution was found in less than half an hour (1800s). In 25 out of 36 random
instances, we can notice a difference of one unit between the partition chromatic number (UB)
and the optimal solution value of LP® (rLB). To solve these instances to proven optimality,
our branch-and-price algorithm explores often several thousands of nodes (max. 12455 nodes).
For other two instances, namely, n90p2t2s4 and n90p3t2s4, we are unable to determine if
such a gap exists since the optimal solution values are not known. For all ring instances for
which the optimal solution value is known, the partition chromatic number always coincides
with the optimal solution value of LP¥. This gap for the unsolved instance ring n20p1.0s1
is not known. The table shows that our new branch-and-price algorithm is able to solve
nine unsolved random instances. As far as the remaining two unsolved random instances
are concerned (n90p2t2s4 and n90p3t2s4), also none of the Branch-and-Price algorithms
proposed in [16] were successful in solving them. Two out of the three ring instances for
which our Branch-and-Price stops at the time limit with a difference between the LB and

21

the UB of one unit, were instead solved in [16]. The largest ring instance with 760 vertices
cannot be solved to proven optimality but, while for the Branch-and-Price algorithms of [16]
neither a LB or an UB are reported, our Branch-and-Price algorithm computes a LB of 42
and an UB of 50.

At the root node, the number of columns generated by solving MWSSP never exceeds 234
(see column rCols of Table 3), with the exception of ring n20p1.0s1 for which the root node
was not solved. The average number of priced out columns in the subsequent nodes (see
column nCols of Table 3) is smaller than 50 on average. We can then conclude that stabilizing
the Column Generation phase for a such a small number of columns would not substantially
improve convergence (see e.g., [11] for a discussion of classical stabilization methods).

Table 4 reports on the impact of the root node heuristic (RH) and of the method POPULATE
on the overall performance of the Branch-and-Price algorithm. By root node heuristic we refer
to all methods used at the root node: ALNS+LS, POPULATE, solving a MIP, and (possibly)
re-launching ALNS+LS. The results refer to the 28 instances already used in Section 5.2 for
tuning. Columns under RH report results obtained when the B&P algorithm is initialized
via RH. Columns under RH without POP report results obtained when disabling method
PopruLATE. Columns under Base report results obtained disabling the RH; in this case the
column pool is initialised with one dummy column which covers all partitions, and has a very
high cost.

We can see that the use of RH has a dramatic impact in terms of nodes explored, columns
generated, and solution time. On the other hand, since we include the time used by RH
(column rTime), it is often the case that the root node times of configuration Base are lower
than those for the other two configurations. The use of method POPULATE has a positive
effect in reducing the number of column generation iterations at the root node, as can be
observed by columns rCols. The ratio between columns rCols without and with POPULATE
is on average 3.38, with median 1.77, minimum 0.78 and maximum 14.50. Concerning the
associated computing times, the ratio between the columns rTime of RH without Pop and RH
in Table 4 shows an average speedup of 2.18 with a median of 2.07, a maximum of 2.48 and a
minimum of 0.64. Only in one out of the 27 instances the method made the computation
slower. As far as the overall running time of the B&P algorithm without and with POPULATE,
the ratio between the respective Time columns is 1.92 on average with a median of 2.02, a
maximum of 4.47 and a minimum of 0.14. A decrease in performance was only observed in
5 instances and, noticeably for instance ring n15p1.0s1. Finally, notice that we solve to
optimality 27 instances with RH, 26 with RH without POPULATE, and just 22 with Base.

Table 5 concisely lists the number of instances solved to optimality, in each of the three classes,
by the best algorithm in the literature (that of Hoshino et al. [16]) and by our branch-and-price
algorithm. Column Instances lists the number of instances considered. In column [16/ (any)
we report the number of instances solved by at least one of the four implementations of
Hoshino et al. [16]. Column [16] (best) reports the number of instances solved by the best
of the four implementations, as listed in Table 5 of Hoshino et al. [16] (after removing the
duplicate instances). These results are obtained with a time limit of 1800 seconds on computer
equipped with a Pentium Core2 Quad 2.83 GHz with 8 GB of RAM. Our computer is equipped
with a 3.25 GHz 4-core i5 processor and 8 GB RAM, and is therefore faster than the one used

22

WILIOS[R 91} JO 9dURULIONDd [[RISAO A1) UO POYIOW HLVTINIOJ Y} IMOYIM Y oY) pur (H1) dIISLINSY 9pou 3001 o1} Jo joedw] :f 9[qR],

J§! §! 698 0 &} &1 87 0 &1 J§} 01¢ 0 180" Tdogu Surt
ST'¢6 I¥ oLy ger VPIL9 TSIL9 TET 1 07’ T¥Pe 0S'1FE€ 9T 1 186" 0dpgu-Sur
gzes b 8T 1€T T0CVS T6'SE€LT TET LET 8.°C9C SEVIST LT €aT1 188°0dogu Surt
¥T1 1291 €31 LS 98'8¢ 88'8¢ g 1 €L'8T GL'8T 0T 1 gsg'0dpgu-Surx
z8°0 T8 A 09 98°6C 9963 q 1 60°FT 0T ¥T ¢ T ¥s¢-0doguSutx
S0°06¢ 96°08ST 2SS €L 9%'¢8T 9¥°G8T 65T 1 L6°L8C 08°TEET VLI 19 180" TdgTu-Bur:
91°8T 621G T6C) 79°€eT 29'€Tl €8 1 I1°€9 LEF9 9 1 #86-0dgTuSuLx
06'T 11°GT VLI g9 or'ey Tr'ev 28 1 66°61 10°0% ixd 1 189-0dgTu Sur:
89°0 1401 zel1 €9 8e'1e 8¢€'I¢ 91 1 LT°GT 8z ST g 1 gsgrpdgTu-Sutr
¥€0 750 Ly €T 009 109 9T 1 A S 6 1 gsg-podgTu Sun
0€0 09°0 g9 61 06'% 06'% 6 1 8T'T 9T 4 1 zsg odgruSu
9¢°0 9¢°% 18 1€ 962T 962T eT 1 919 919 11 T zsgodoTuSunt
L1270 1670 79 LT P18 ST'8 9z 1 gLe 9L¢ 0t 1 $s.°0doTuSuLx
€70 970 97 11 06'C 06C 8T 1 G680 G680 €% 1 gsg'odoTuSuLt
0€°0 1€°0 12 L ge'1 ge'1 6 1 190 190 8 1 ¢sg'odpTu SuLx
43 05°08S 102 e1¢ 60 80°G% 86 1 TLel 8LCT 91 1 gs 0 1dysu
60 67T STT 002 0z°¢T 7T el 9g T 9%°'9 8%'9 44 T gs g pdysu
G680 G869 Pe1 71 ¥8¥HT 98°%T 9G 1) 6L°L o1 1 gs L odysu
670 vee 76 €9 299 89'9 12 T ge'e 9¢'¢ 0¢ 1 gs g odysu
€20 TL1 19 FSid T8¢ 8¢ 0t 1 68T 68T S 1 espodysu
€80 LETTS 9€T STET 0S¥ 9.°20z 911 6819 10°C 60°GLT €6 156€9 zseacdosu
18°C &} €61 1629 S6°¢ &} 16T 6667 86'¢ 09°96%¢ 18T 188¥% 1sz3zdo6u
gz €T GTe 1691 £6'F £0°ce 82% €9 £6°¢ ¥9°¢¢ 70g €9 gsgatdosu
0G0 60°LTC €aT GE00T €T'e 8¢ 20T 1 7T 209 9L L6V ¥szagdogu
70 €T'T 18 602 0% 0v'c 89 1 060 16°0 4 1 gsgagdogu
9¢°0 1%°0 i L€ 88T 88T v 1 o cvo 0¢ 1 1sgagdopu
09°'1 &8 €0% €LT90T €96 1¢°LT 1.1 c6¥ efeiid 19°2¢ st 06¥ $szgdogTu
61 JE1 91% 60989 T6'S G9°09z TLI €663 0Ly 7888y GET T66¥ 18z3gdozTu
QUL T, I QuILT, S[0DI S9PON QUL T, X elevig S[0DI SOpPON QWL QuILT, S[0DI S9PON Qour)suUT

osed dOoJ moyym [y HY

23

Class Instances [16] (any) [16] (best) B&P 3600s B&P 1800s

random 56 45 42 54 51
nsfnet 32 32 32 32 32
ring 87 83 76 84 79
Total 175 160 150 170 162

Table 5: Summary of the computational results from Hoshino et al. [16] and our branch-and-price algorithm.

in [16]. However, since it is not possible to precisely evaluate the relative speed of different
machines, we report the results with the same time limit used in [16], i.e. 1800 seconds, in
column BE&P 1800s. Finally, column B&P 3600s lists the number of instances solved by our
branch-and-price algorithm in 3600 seconds.

The new Branch-and-Price algorithm can solve twelve more instances than the best performing
implementation in Hoshino et al. [16] with the same time limit, on a faster machine. When
considering the results obtained with 3600 seconds of computing time, the new Branch-and-
Price algorithm can solve eight additional instances, showing the usefulness of the extra
computing time.

6. Conclusions

In this manuscript we have studied the Partition Coloring Problem (PCP), a generalization
of the classical Vertex Coloring Problem with several real world applications in telecommuni-
cations and scheduling. For the PCP, we propose a new ILP formulation with an exponential
number of variables and a new Branch-and-Price algorithm to effectively tackle it. Thanks to
the new exact algorithm, which exploits the solutions provided by a metaheuristic algorithm
in its initialization phase, as well as an effective method proposed in the literature to enrich
the initial column pool, we were able to solve to proven optimality 170 out of 175 PCP
instances from the literature. Extensive computational results have proven that the new
Branch-and-Price framework improves on the previous state-of-the-art exact approaches from
the literature.

7. Acknowledgments

The authors thank Stefan Held for making the source code for the MWSS problem available
online, and Edna Hoshino for providing detailed computational results for the branch-and-price
algorithm of [16]. Fabio Furini is partially supported by PGMO Gaspard Monge program.
Enrico Malaguti is partially supported by MIUR (Italy), grant PRIN 2015. Thanks are due
to two anonymous referees for careful reading and useful comments.

24

Bibliography

1]

[10]

[11]

[12]

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46(3):316-329, 1998.

M. Bergner, A. Caprara, F. Furini, M. E. Liibbecke, E. Malaguti, and E. Traversi. Partial
convexification of general mips by Dantzig-Wolfe reformulation. In O. Giinliikk and

G. J. Woeginger, editors, Integer Programming and Combinatoral Optimization: 15th
International Conference, IPCO 2011, pages 39-51. Springer, 2011.

M. Bergner, A. Caprara, A. Ceselli, F. Furini, M. E. Liibbecke, E. Malaguti, and
E. Traversi. Automatic Dantzig-Wolfe reformulation of mixed integer programs. Mathe-
matical Programming, 149(1):391-424, 2015.

F. Bonomo, D. Cornaz, T. Ekim, and B. Ries. Perfectness of clustered graphs. Discrete
Optimization, 10(4):296 — 303, 2013.

M. Campélo, R. Corréa, and Y. Frota. Cliques, holes and the vertex coloring polytope.
Information Processing Letters, 89(4):159-164, 2004.

M. Campélo, V. A. Campos, and R. C. Corréa. On the asymmetric representatives
formulation for the vertex coloring problem. Discrete Applied Mathematics, 156(7):
1097-1111, 2008.

D. Cornaz, F. Furini, and E. Malaguti. Solving coloring problems as maximum weight
stable set problems. Discrete Applied Mathematics, 217:151-162, 2017.

M. Demange, J. Monnot, P. Pop, and B. Ries. On the complexity of the selective graph
coloring problem in some special classes of graphs. Theoretical Computer Science, 540:
89-102, 2014.

M. Demange, T. Ekim, B. Ries, and C. Tanasescu. On some applications of the selective
graph coloring problem. FEuropean Journal of Operational Research, 240(2):307-314,
2015.

M. Demange, T. Ekim, and B. Ries. On the minimum and maximum selective graph
coloring problems in some graph classes. Discrete Applied Mathematics, 204:77-89, 2016.

G. Desaulniers, J. Desrosiers, and M. Solomon, editors. Column generation. Springer

US, 2005.

Y. Frota, N. Maculan, T. F. Noronha, and C. C. Ribeiro. A branch-and-cut algorithm
for partition coloring. Networks, 55(3):194-204, 2010.

F. Furini and E. Malaguti. Exact weighted vertex coloring via branch-and-price. Discrete
Optimization, 9(2):130 — 136, 2012.

25

[14]

[15]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Gualandi and F. Malucelli. Exact solution of graph coloring problems via constraint
programming and column generation. INFORMS Journal on Computing, 24(1):81-100,
2012.

S. Held, W. Cook, and E. Sewell. Maximum-weight stable sets and safe lower bounds for
graph coloring. Mathematical Programming Computation, 4(4):363-381, 2012.

E. A. Hoshino, Y. A. Frota, and C. C. De Souza. A branch-and-price approach for the
partition coloring problem. Operations Research Letters, 39(2):132-137, 2011.

R. M. Lewis. A Guide to Graph Colouring. Springer, 2015.

G. Li and R. Simha. The partition coloring problem and its application to wavelength
routing and assignment. In Proceedings of the First Workshop on Optical Networks,
page 1, 2000.

M. Loépez-Ibanez, J. Dubois-Lacoste, L. P. Caceres, M. Birattari, and T. Stiitzle. The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43-58, 2016.

E. Malaguti and P. Toth. A survey on vertex coloring problems. International Transactions
in Operational Research, 17:1-34, 2010.

E. Malaguti, M. Monaci, and P. Toth. An exact approach for the vertex coloring problem.
Discrete Optimization, 8(2):174-190, 2011.

D. Marx. Graph colouring problems and their applications in scheduling. Periodica
Polytech., Electr. Eng, 48(1-2):11-16, 2004.

A. Mehrotra and M. A. Trick. A column generation approach for graph coloring.
INFORMS Journal on Computing, 8(4):344-354, 1996.

T. F. Noronha and C. C. Ribeiro. Routing and wavelength assignment by partition
colouring. Furopean Journal of Operational Research, 171(3):797-810, 2006.

P. M. Pardalos, T. Mavridou, and J. Xue. The graph coloring problem: A bibliographic
survey. In P. M. Pardalos and D.-Z. Du, editors, Handbook of combinatorial optimization,
pages 1077-1141. Springer, 1998.

P. C. Pop, B. Hu, and G. R. Raidl. A memetic algorithm for the partition graph coloring
problem. In Fxtended Abstracts of the 14th International Conference on Computer Aided
Systems Theory, Gran Canaria, Spain, pages 167-169, 2013.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation Science, 40(4):455-472, 2006.

A. Santini. alberto-santini/selective-graph-colouring, jun 2017. URL https://doi.org/
10.5281/zenodo.806149.

26

[29] A. Santini, S. Ropke, and L. M. Hvattum. A comparison of acceptance criteria for the
adaptive large neighbourhood search metaheuristic. Submitted, 2016.

[30] F. Vanderbeck. Branching in branch-and-price: a generic scheme. Mathematical Pro-
gramming, 130(2):249-294, 2011.

[31] A. A. Zykov. On some properties of linear complexes. Matematicheskii sbornik, 66(2):
163188, 1949.

27

