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Abstract

We propose an improvement of the Approximated Projected Perspective Reformulation (AP2R)
of [1] for the case in which constraints linking the binary variables exist. The new approach requires
to solve the Perspective Reformulation (PR) once, and then use the corresponding dual information
to reformulate the problem prior to applying AP2R, thereby combining the root bound quality of the
PR with the reduced relaxation computing time of AP2R. Computational results for the cardinality-
constrained Mean-Variance portfolio optimization problem show that the new approach is competitive
with state-of-the-art ones.

Keywords: Mixed-Integer NonLinear Problems, Semi-continuous Variables, Perspective Reformula-
tion, Projection, Lagrangian Relaxation, Portfolio Optimization

1 Introduction

We study solution techniques for convex separable Mixed-Integer NonLinear Programs (MINLP) with n
semi-continuous variables xi ∈ R for i ∈ N = {1, . . . , n}. That is, each xi either assumes the value 0, or
lies in some given compact nonempty interval Xi = [xi, x̄i] (−∞ < xi < x̄i <∞): this can be expressed,
introducing yi ∈ {0, 1} for i ∈ N , as

(P) min h(z) +
∑
i∈N fi(xi) + ciyi (1)

A(x) +By + C(z) = b (2)

(x, z) ∈ O (3)

xiyi ≤ xi ≤ x̄iyi , yi ∈ {0, 1}n , xi ∈ Rn i ∈ N. (4)

We assume the functions fi to be closed convex, one time continuously differentiable and finite in the
interval (xi, x̄i); w.l.o.g. we also assume fi(0) = 0. In (P) we single out the linking constraints (2) that
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link the binary variables yi with anything except the corresponding xi, the latter being done by (4).
These are the “problematic” constraints in [1, 7], and the aim of this paper is to deal with them in
the a cost-effective way. For our approach to work they must have a compatible structure with that
of (1); we initially assume linearity in x for simplicity (A(x) = Ax), but extensions are discussed in
§3. Linearity in y can be assumed without loss of generality, as long as separability holds. Because our
approach hinges on availability of dual information, we assume that the functions h(·) and C(·) in the
“other variables z” and the “other constraints (3)” are convex, i.e., (P) is a convex MINLP. Actually, in
many applications everything but (1) is linear. When we can ignore the structure of (2), we just refer to
(3)–(4) as “(x, y, z) ∈ P”.

Often, the most pressing issue in solving (P) is to derive tight lower bounds on its optimal value
ν(P), which is typically done by solving its (convex) continuous relaxation (P) (we denote by ν(X) and
(X), respectively, the optimal value and the continuous relaxation of any problem (X)). However, often
ν(P)� ν(P), making solution approaches inefficient. The presence of semi-continuous variables has been
exploited to propose reformulations (P′) of (P) such that ν(P′) � ν(P), and that therefore are better
suited for enumerative approaches. This starts from considering (1) as h(z) +

∑
i∈N fi(xi, yi), where

fi(xi, yi) = fi(xi) + ci if yi = 1 and xi ≤ xi ≤ x̄i, fi(0, 0) = 0, and fi(xi, yi) = ∞ otherwise. The
convex envelope of fi(xi, yi) is known [4] to be f̃i(xi, yi) = yifi(xi/yi) + ciyi—the perspective function of
fi—which suggests the Perspective Reformulation of (P)

(PR) min
{
h(z) +

∑
i∈N f̃i(xi, yi) : (2) , (x, y, z) ∈ P

}
.

As fi is convex, f̃i is convex for yi ≥ 0; since xi = 0 if yi = 0, f̃i can be extended by continuity assuming
0fi(0/0) = 0. Hence, (PR) is a convex MINLP if (P) is. Its continuous relaxation (PR)—the Perspective
Relaxation of (P)—usually has ν(PR) � ν(P), making (PR) a more convenient formulation [8, 9]. If fi
is SOCP-representable then so is f̃i, hence the PR of a Mixed-Integer Second-Order Cone Program (MI-
SOCP) is still a MI-SOCP. Hence, (PR) is not necessarily more complex to solve—and, sometimes, even
less so [2]—than (P). Alternatively, one can consider a Semi-Infinite MINLP (SI-MINLP) reformulation
of (PR), where Perspective Cuts [4]—linear outer approximations of f̃i—are dynamically added. This is
often the best approach [6], in particular for “general” (P) where no other structure is available. It is
appropriate to remark that the (PR) approach also applies if the xi are vectors such that yi = 0 =⇒ xi = 0
and yi = 1 =⇒ xi ∈ Xi, with Xi a polytope; yet, here, as in [1, 7], each xi must be a single variable.

It is clearly useful that solving (PR) be not too much more time consuming than solving (P), despite
the fact that f̃i is “more complex” than fi, in order not to negate the advantage corresponding to a
tighter bound. This trade-off is nontrivial, in particular if fi is “simple”. For instance, if fi is quadratic
and everything else is linear, (P) is a Mixed-Integer Quadratic Program (MIQP) whereas (PR) is a MI-
SOCP; hence, (P)—a QP—can be significantly cheaper to solve than (PR)—a SOCP. The Projected PR
(P2R) idea underpinning the approach studied here was indeed proposed in [7] for the quadratic case,
and xi ≥ 0. It was then extended in [1] to a more general class of functions, and allowing xi < 0.
However, xi < 0 < x̄i renders some of the arguments significantly more complex, hence for the sake
of simplicity we will only deal here with the case where xi ≥ 0, the extension to the more general one
being immediate. The P2R idea is to analyze f̃i as a function of xi only, i.e., projecting away yi: under
appropriate assumptions, and if there are no linking constraints (2), this turns out to be a piecewise-
convex functions with a “small” number of pieces, that can be characterized by just looking at the data
of (P). Hence, (PR) can be reformulated in terms of piecewise-convex objective functions, which makes
it easier to solve, especially when O has some valuable structure (e.g., flow or knapsack) [7]. However, in
several applications (2) are indeed present. Furthermore, since the binary variables yi are removed from
the formulation, branching has to be done “indirectly” in P2R, which rules out off-the-shelf solvers. To
overcome these two limitations, in [1] the Approximated P2R (AP2R) reformulation has been proposed
whereby the yi, after having been eliminated, are re-introduced in the formulation in order to encode the
piecewise nature of f̃i. This is possible even if (2) are present, and it has the advantage that (AP2R)
still is a MIQP if (P) is. However, ν(AP2R) = ν(PR) only if (2) is empty; otherwise, it yields weaker
bounds (whence the “Approximate” moniker). This is advantageous in some cases, but it may happen
that the weaker bounds outweigh the faster solution time, making the approach not competitive with
more straightforward implementations of the PR [1].

Aim of this paper is to improve the AP2R by presenting a simple and effective way to ensure that
ν(AP2R) = ν(PR) even if (2) is nonempty, while keeping the shape of the formulation—and therefore,
hopefully, the cost of (AP2R)—exactly the same. Since the bound at intermediate nodes of the enumera-
tion tree can be weaker that that of (PR), it is not obvious that the approach, despite the quicker solution
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times of (AP2R), is competitive. However, this is shown to be true in at least one relevant application,
the Mean-Variance problem (with min buy-in and cardinality constraints) in portfolio optimization.

2 A quick overview of AP2R

We now quickly summarize the analysis in [1], albeit limited to the case xi ≥ 0, in order to prepare the
ground for the new extension. Since we only consider one pair (xi, yi) (and the corresponding constraints)
at a time, we drop the index “i” and we consider the problem

min
{
f(x) + cy : xy ≤ x ≤ x̄y , y ∈ {0, 1}

}
. (5)

The analysis starts by recasting the (PR) of (5) as

minx
{
p(x) = miny

{
f̃(x, y) : xy ≤ x ≤ x̄y , y ∈ [0, 1]

}
: x ∈ [0, x̄]

}
, (6)

i.e., first minimizing f̃(x, y) with respect to y, and then minimizing the resulting function p(x) with
respect to x. This is particularly attractive if y does not appear anywhere but in (4), for then the bound
remains the same. This happens in some relevant applications [7]; however, the reformulation is possible
also when (2) is not empty, even if at the cost of a weaker bound [1]. The function p(x) is convex, and
can be characterized by studying the optimal solution y∗(x) of the inner problem in (6). Differentiability
of f now yields that y∗(x) can be easily found by assuming that the first-order optimality conditions

c+ f(x/y)− f ′(x/y)x/y = 0 (7)

only have (at most) one solution, whose dependency on y is easy:

Property 1 (7) has at most one solution for x ≥ 0, which has the form ỹ(x) = gx.

In Property 1, g ≥ 0 is a constant that can be determined by the data of the problem. For instance,
(7) for the quadratic case f(x) = ax2 + bx is c − ax2/y2 = 0, whence ỹ(x) = |x|

√
a/c if c > 0, and

there is no solution otherwise. Property 1 is satisfied by a surprisingly large set of functions, and a more
general version can be stated for the case x < 0 [1]. If (7) has a solution then y∗(x) can be found by
projecting ỹ(x) over the feasible set [x/x̄ , min{ 1 , x/x } ]; if no solution exists then y∗(x) is in one of the
two extremes. In all cases one can then write p(x) = f̃(x, y∗(x)). All this gives that there exists some
x ≤ x̌ ≤ x̄ such that

p(x) =
{

( f(x̌)/x̌+ c/x̌ )x if 0 ≤ x ≤ x̌ , f(x) + c if x̌ ≤ x ≤ x̄
}
. (8)

Thus, p(x) is piecewise-convex with at most two pieces (although these become four if x < 0), one of which
is linear and the other is the original objective function. The crucial breakpoint x̌ can be determined
a-priori: in particular, x̌ = 1/g if (7) has a solution and 1/g ∈ [x, x̄], and x̌ ∈ {x , x̄ } otherwise [1]. For
a numerical illustration, the quadratic case

min
{

2x2 + 8y : y ≤ x ≤ 10y , y ∈ {0, 1}
}

(9)

has ỹ(x) = x
√
a/c = x/2, g = 1/2, and therefore 1/g = 2: hence,

p(x) =
{

8x if 0 ≤ x ≤ 2 , 2x2 + 8 if 2 ≤ x ≤ 10
}
. (10)

Writing (8) as the objective function is typically done with the “variable splitting” approach [7], whereby
two new variables 0 ≤ x′ ≤ x̌ and 0 ≤ x′′ ≤ x̄ − x̌ are introduced such that x = x′ + x′′ (although a
different form is sometimes preferable [3]): x′ gets the linear cost, while x′′ has cost f(x′′). This yields
a reformulation with the same form of the original problem (say, a MIQP if (P) was one), with at most
(and, often, less than) twice as many variables. Such a reformulation might be more efficient to solve,
especially if (P) has some structure that allows application of specialized approaches [7].

However, removing the yi variables from the formulation prevents from using off-the-shelf software to
solve the integer problem. This is why in [1] it was proposed to “lift back” (8) in the original (x, y) space
by using y in place of x′ as follows:

p(x) =

{
miny,x′′ yp(x̌) + f(x′′ + x̌) + c− p(x̌)

(x− x̌)y ≤ x′′ ≤ (x̄− x̌)y , x = x̌y + x′′ , y ∈ [0, 1]
. (11)
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Adding an integrality constraint y ∈ {0, 1} to (11) yields a reformulation of (5): for integer values of y
the two are equivalent, but typically ν(11) � ν(5). For illustration, consider (9): plugging (10) into (11)
gives {

min [ 2(x′′ + 2)2 + 8 ] + 16y − 16 = 2(x′′)2 + 8x′′ + 16y

−y ≤ x′′ ≤ 8y , x = 2y + x′′ , y ∈ {0, 1}
. (12)

It can be verified that ν(12) ≥ ν(9) for any fixed x. For instance, for x = 2 the optimal solution to (9)
is y = 1/5, yielding ν(9) = 9 + 3/5, while the optimal solution to (12) is (y, x′′) = (1, 0), yielding ν(12)
= 16. This latter estimate is the same as the one provided by the (PR) (for x = 2): in fact,

ν(PR) = min
{

2x2/y + 8y : y ≤ x ≤ 10y , y ∈ [0, 1]
}

= 16

since min{ 8y + 8/y : y ∈ [1/5, 1] } has optimal solution y = 1.

We will denote by (AP2R) the reformulation of (P) where (11) is separately applied to each block
i ∈ N . If (2) is empty, ν(AP2R) = ν(PR), whereas in presence of linking constraints (6) is a relaxation
of the true projection problem, which, besides on x, also depends on all the other variables that y is
linked with. Hence, ν(AP2R) < ν(PR) can happen, and it does in practice. For illustration consider the
problem

(P) min 2x21 + 2x22 + 8y1 + 8y2 (13)

y1 ≤ x1 ≤ 10y1 , y2 ≤ x2 ≤ 10y2 (14)

y1 ∈ {0, 1} , y1 + y2 = 1 , y2 ∈ {0, 1} , x1 + x2 = 8 (15)

obtained by “duplicating” (9) and adding the linking constraint y1 + y2 = 1. The optimal solution of (P)
is x1 = x2 = 4, y1 = y2 = 1/2, yielding ν(P) = 72� ν(P) = 136, the latter obtained by setting x1 = 8,
y1 = 1, x2 = y2 = 0 (or the symmetric solution). The (PR), obtained by replacing (13) with

min 2x21/y1 + 2x22/y2 + 8y1 + 8y2

has the same optimal solution as (P): however, that same solution yields the much stronger (in fact,
exact) bound of 136. The (AP2R) is instead

min 2(x′′1)2 + 2(x′′2)2 + 8x′′1 + 8x′′2 + 16y1 + 16y2

− y1 ≤ x′′1 ≤ 8y1 , −y2 ≤ x′′2 ≤ 8y2 , x1 = 2y1 + x′′1 , x2 = 2y2 + x′′2 , (15)

(cf. (12)). The optimal solution of (AP2R) is x1 = x2 = 4, y1 = y2 = 1/2, x′′1 = x′′2 = 3, yielding ν(P)
= 72 � ν(AP2R) = 100 � ν(PR) = 136. In the next section we modify the AP2R to increase its lower
bound, avoiding the bound disadvantage with the (PR)—at least at the root node—while retaining the
simpler (hence, cheaper) model shape.

3 Improving AP2R using dual information

The idea is to reformulate (P) to include information about the linking constraints (2) in the objective
function (1), so that it can be “processed” by the AP2R. This hinges on the availability of dual infor-
mation: assuming for simplicity that C(z) = Cz is linear, the Lagrangian relaxation of (P) w.r.t. (2)

min
{
h(z) +

∑
i∈N fi(xi) + ciyi + λ

(
Ax+By + Cz − b

)
: (x, y, z) ∈ P

}
(16)

has an objective function that is still separable in the xi

[−λb+ ] h(z) + λCz +
∑
i∈N

(
fi(xi) + λAixi + (ci + λBi)yi

)
. (17)

Hence one can apply PR to (16), which simply yields the modified objective

[−λb+ ] h(z) + λCz +
∑
i∈N

(
yifi(xi/yi) + λAixi + (ci + λBi)yi

)
(18)

(note that the perspective function does not change linear functions). Thus, the (PR) of (16) is

φ(λ) = min
{

(18) : (3) , (4) , y ∈ [0, 1]n , x ∈ Rn , z ∈ Rq
}

[−λb ] . (19)

It is well known that the corresponding Lagrangian dual satisfies maxλ{φ(λ) } = ν(PR), due to convexity.
In particular, the optimal dual solution λ∗ satisfies φ(λ∗) = ν(PR), and it is available at the cost of solving
(PR), since any solver provides dual information at termination. Also, (17) clearly satisfies Property 1
if fi does: (7) for fi(xi) + λAixi only differs from (7) for fi for the constant λAi. Hence one can apply
AP2R to (19), for which the following result holds:
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Theorem 2 With λ = λ∗, consider the reformulation of (P)

min
{

(17) : (2) , (x, y, z) ∈ P
}

[−λ∗b ] (20)

and denote by (AP2R+) its AP2R; then, ν(AP2R+) = ν(PR).

Proof. First of all, (20) is a valid reformulation of (P). In fact, unlike (16), it contains (2); hence, the
Lagrangian term λ∗

(
Ax + By + Cz − b

)
is always null. Therefore, ν(P) = ν(AP2R+). However, note

that (1) and (17) are different (for λ 6= 0): in fact, the equivalence between the two optimal values only
holds when taking into account the constant term −λ∗b. Since (16) is a relaxation of (20), the same
holds for their (AP2R), and hence for their (AP2R). Therefore, ν(AP2R+) ≥ φ(λ∗): in fact, for any λ
the (AP2R) and the (PR) of (16) are equivalent. Hence ν(AP2R+) ≥ ν(PR), and the inverse inequality
is obvious.

To illustrate Theorem 2, consider again (13)–(15). The optimal dual multiplier of the linking constraint
y1 + y2 = 1 in the (PR) is λ∗ = 120. Hence, (16) is

min
{

2x21 + 2x22 + 128y1 + 128y2 : (14) , (15)
}

[−120 ] .

In its AP2R, c = 128 gives g =
√
a/c =

√
2/128 = 1/8, i.e., x̌ = 8. Hence,

p(x) = yp(x̌) + f(x′′ + x̌) + c− p(x̌) = 256y + 2(x′′)2 + 32x′′ ,

and the (AP2R+) is

min 2(x′′1)2 + 2(x′′2)2 + 32x′′1 + 32x′′2 + 256y1 + 256y2

− 7y1 ≤ x′′1 ≤ 2y1 , −7y2 ≤ x′′2 ≤ 2y2 , x1 = 8y1 + x′′1 , x2 = 8y2 + x′′2 , (15)

The optimal solution is x1 = x2 = 4, y1 = y2 = 1/2, x′′1 = x′′2 = 0, giving an optimal value of 256:
counting the constant −λ∗b = −120, this finally gives ν(AP2R+) = 136: (much) better than ν(AP2R)
= 100, and in fact precisely equal to ν(PR) as predicted.

We end this section by remarking that the assumptions that (2) is an equality constraint and that
A(x) = Ax and C(z) = Cz are linear can be relaxed somewhat:

1. Inequality linking constraints Ax+By+Cz ≤ b can be transformed into equalities by the addition
of slack variables: Ax + By + Cz + s = b, s ≥ 0. However, note that this has to be done in
(20), so that after the reformulation they will have cost λ∗s in the objective function (i.e., they no
longer will be slack variables). In this case nothing prevents C(z) from being a (convex) nonlinear
function.

2. If A(x) is nonlinear in x it needs to have the same structure as (1), i.e., A(x) =
∑
i∈N A

i(xi) with
each Ai(·) convex. In order for (2) to be convex they necessarily have to be inequalities; hence,
the optimal dual multipliers λ∗ will be non-negative, and therefore λ∗Ai(xi) will also be convex.
Assuming that Property 1 holds for fi(xi) + λ∗Ai(xi), the approach readily extends.

4 Computational results

In this section we report results of computational tests of the proposed approach for the Mean-Variance
cardinality-constrained portfolio optimization problem on n risky assets

(MV) min
{
xTQx :

∑
i∈N xi = 1 ,

∑
i∈N µixi ≥ ρ ,

∑
i∈N yi ≤ k , (4)

}
,

where µ is the vector of expected unitary returns, ρ is the prescribed total return, Q is the variance-
covariance matrix, and k ≤ n is the maximum number of purchasable assets. Without the cardinality
constraint (k = n), (MV) is well suited for AP2R: the bound is the same as that of the PR, and the
computation time per node is greatly reduced with respect to the Perspective Cut (P/C) technique.
While AP2R is competitive also for k � n, it becomes less so as the quality of the bound significantly
deteriorates [1]. Hence, (MV) is a promising application for AP2R+. Since (MV) is a non-separable
MIQP, a diagonal matrix D has to be determined such that Q − D is positive semidefinite: the PR
technique is applied to

∑
i∈N Diix

2
i , leaving the remaining part xT (Q−D)x untouched. Choosing D is

nontrivial: one can use e.g., a “small” SDP as advocated in [5], or a “large” SDP as proposed in [10]. We
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denote these two by Ds and Dl. Although Dl provides a better root node bound, it is not necessarily the
best choice throughout the enumeration tree: sometimes a convex combination between the two, denoted
by Dc, works better [10].

For our tests we used the 90 randomly-generated instances, 30 for each value of n ∈ {200, 300, 400},
already employed in [1, 4, 5, 6, 10] to which the interested reader is referred for details. Here we
only remark that “+” instances are strongly diagonally dominant, “0” ones are weakly diagonally dom-
inant, and “−” ones are not diagonally dominant; the less diagonally dominant, the harder an instance
is. We have set k = 10, as in [1, 10]; this is a “tight” value, since the maximum number of as-
sets that the model can choose, due to the lower limits xi > 0, without the cardinality constraint
is ≈ 20 for all n. The (MV) instances and the diagonals used in the experiments are available at
http://www.di.unipi.it/optimize/Data/MV.html.

The experiments have been performed on a computer with a 3.40 Ghz 8-core Intel Core i7-3770
processor and 16Gb RAM, running a 64 bits Linux operating system. All the codes were compiled
with g++ (version 4.8.4) using -O3 as optimization option. We have tested AP2R+ vs. AP2R using
Cplex 12.6.0, single-threaded, with all default parameters (save for one explicitly described below, and
only for the tests with the Dl diagonal). We have obtained the (PR) root node bound with the P/C
technique, implemented through callbacks, which is typically the best choice when AP2R is not available
[5]; hence, for completeness we also report results for the full B&C using P/C. Since we are not interested
in comparing the cost/effectiveness of the different diagonal choices, this having been done in [10], we
don’t report detailed SDP times beyond saying that the “small” SDP requires on average about 0.2, 0.7,
and 1.6 seconds while the “large” SDP requires 9, 21 and 47 seconds, respectively for n = 200, 300 and
400 (with little variance for the same n).

The results are reported in Table 1, 2 and 3 for the three diagonals Ds, Dc, and Dl, respectively. In
the tables we report the (average) total B&C time and root time when using P/C. For AP2R and AP2R+
we report the (average) total number of B&C nodes, total B&C time, root node time and root gap (in
percentage). As predicted by Theorem 2 the root node gap of AP2R+ and P/C was identical, which is
why we do not report it for P/C. The total time of AP2R+ already includes the P/C root time, since it
is needed to compute λ∗ prior to performing the reformulation, and therefore starting the AP2R+ B&C.

P/C AP2R AP2R+

time nodes time root nodes time root

tot root tot root gap tot root gap

200+ 3.68 0.27 212 0.43 0.19 0.77 116 0.59 0.20 0.51
2000 153.75 0.27 24868 22.01 0.21 3.14 9423 9.40 0.20 2.75
200− 674.13 0.29 173844 157.54 0.23 4.75 40225 38.47 0.18 4.17
300+ 18.02 0.74 1303 2.66 0.81 1.08 322 1.79 0.65 0.49
3000 824.02 0.83 69706 109.02 0.83 2.91 20006 33.77 0.78 2.34
300− 3409.24 0.74 440656 704.32 0.82 3.92 85997 143.66 0.89 3.57
400+ 28.39 1.65 985 3.68 1.75 0.85 184 3.17 1.62 0.41
4000 3608.04 1.70 329242 849.38 1.25 3.00 48967 129.54 1.90 2.34
400− 27824.09 1.70 1821932 4769.89 1.28 4.53 334612 856.08 1.38 3.80

Table 1: Results with diagonal Ds

Tables 1 and 2 show that AP2R+ is highly competitive with AP2R, and a fortiori with P/C, reducing
total time of up to an order of magnitude. While the exact ratio depends on n, the type of instance and
the diagonal, the trend is clear: the improvement is due to the much reduced number of nodes, itself a
consequence of the much improved bound, while the computing time per node remains the same. The
results are somewhat different for Dl, which therefore requires separate discussion. In Table 3, although
the nodes count does decrease, the running time does not nearly as much, and can actually increase.
While the average time per node of AP2R and AP2R+ is almost identical for Ds and Dc, for Dl that of
AP2R+ is roughly an order of magnitude larger. Investigating the issue showed that Dl causes Cplex to
change the (automatic) selection of the relaxation algorithm at the nodes, settling to one that turns out
to be much less efficient. Tests determined that setting CPX PARAM SUBALG = 5, i.e., using the “sifting”
approach, restored an average time per node similar to that of AP2R. This is why Table 3 reports, besides
AP2R+, also “AP2R++” which is just obtained changing that parameter. To save on space, root times
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P/C AP2R AP2R+

time nodes time root nodes time root

tot root tot root gap tot root gap

200+ 3.07 0.27 131 0.37 0.13 0.59 75 0.55 0.12 0.27
2000 41.80 0.28 6693 7.08 0.13 1.91 1831 2.50 0.11 1.44
200− 176.34 0.29 43940 40.66 0.14 3.01 6031 6.78 0.12 2.33
300+ 8.84 0.80 539 1.73 0.35 1.02 121 1.52 0.32 0.23
3000 128.95 0.81 21354 38.47 0.33 1.86 3229 7.13 0.32 1.14
300− 783.38 0.83 130738 229.55 0.37 2.49 16870 31.58 0.36 2.00
400+ 12.62 1.69 512 2.78 0.75 0.88 56 2.86 0.71 0.21
4000 442.64 1.79 88124 240.84 0.72 2.01 7071 22.71 0.72 1.19
400− 2663.34 1.87 368468 1060.82 0.72 2.97 38104 108.04 0.75 2.00

Table 2: Results with diagonal Dc

for AP2R∗ are not reported; they are, however, similar, even between AP2R+ and AP2R++, since it was
subproblem time at the inner nodes that made a difference. The table shows that AP2R++ is competitive
w.r.t. AP2R, albeit with a somewhat smallest ratio. This is due to another frankly unfathomable—but
not unheard-of with today’s complex MIP solvers—phenomenon: just by changing the relaxation solver,
the number of nodes significantly increases w.r.t. AP2R+. Yet, on the largest and hardest instances
AP2R++ enumerates a third of the nodes of AP2R, with the corresponding time advantage.

P/C AP2R AP2R+ AP2R++

time nodes time root nodes time nodes time root
tot root tot gap tot tot gap

200+ 3.81 0.51 129 0.83 0.93 65 1.79 480 1.76 0.09
2000 8.24 0.63 873 2.34 1.52 168 3.52 947 3.28 0.38
200− 20.68 0.77 5944 9.36 2.12 473 4.94 2324 6.33 0.77
300+ 9.70 2.34 749 4.60 1.89 14 3.91 217 3.92 0.03
3000 22.33 2.93 2091 9.30 2.00 195 14.75 1520 11.58 0.18
300− 49.85 2.87 13011 38.05 2.04 1403 55.34 9704 42.69 0.64
400+ 23.30 5.85 1116 11.01 1.94 14 9.05 190 8.61 0.06
4000 150.04 6.62 10420 60.60 2.22 364 59.95 3092 32.84 0.26
400− 393.69 7.92 21143 131.86 2.65 1921 254.94 6430 64.97 0.48

Table 3: Results with diagonal Dl, default and with option CPX PARAM SUBALG = 5

5 Conclusions

The main advantage of the proposed AP2R+ technique is its simplicity: just solving (PR)—possibly even
approximately with a dual approach—produces the dual solution λ∗ which can be used to first construct
(20) and then compute its AP2R (an inexpensive task). Yet, this improves many-fold the performances
over plain AP2R, and even more so over P/C. Notably, AP2R+ is quite general and applies to a much
larger class than MIQP. It may be worth contrasting 27824 seconds (P/C in Table 1) with 65 seconds
(AP2R++ in Table 3) for 400−: this is over two orders of magnitude difference for solving the same
instances with the same underlying solver, and the gap with the standard MIQP formulation would be
even more humungous. This nicely illustrates the power of reformulation techniques like AP2R+.
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