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1. Introduction 

The world population is expected to reach 9.3 billion in 2050 (UN, 2010). To feed this 
population, the Food and Agriculture Organization last global projection exercise forecasted 
that the world’s agricultural production will need to increase by approximately 70% by 2050, 
compared with the 2005 production levels (FAO, 2011). Approximately 80% of the increased 
agricultural production will need to come from yield increases, and higher cropping intensities 
such as increased multiple cropping and/or shortening of fallow periods. 

Such evolutions must cope with climate change (characterized by changing rainfall patterns and 
an increasing number of extreme weather events) and its consequences (changing distributions 
of plant and vector-borne diseases, and increased crop yield variability), more competition for 
land (increased competition between food and bioenergy production), and the associated 
increased environmental pressures (e.g., over-exploitation of ground water resources, water 
quality degradation, and soil degradation). As a consequence, in addition to the need to increase 
crop production, another major agricultural challenge is the task of improving the management 
of natural resources, especially through the adoption of more environmental-friendly practices, 
such as ecological intensification or conservation agriculture. Major agricultural powers such 
as Europe and Brazil have launched ambitious programs, e.g., the GAP (Good Agricultural 
Practice) guidelines and the ABC Program (Brazilian Low Carbon Agriculture Program), 
respectively. These programs give a special role to multifunctional landscapes to establish 
sustainable agriculture. Landscapes must be considered a whole land use system at the heart of 
human-nature relationships that need to be efficiently managed to preserve and restore 
ecosystem services (DeFries and Rosenzweig, 2010), and to contribute to sustainable solutions, 
especially regarding food security challenges (Verburg et al., 2013). In view of these global 
challenges, there is an urgent need to better characterize agricultural systems at the regional and 
global scales, with a particular emphasis on the various pathways towards agricultural 
intensification. Those systems are the key to understanding land use sustainability in 
agricultural territories.  

Although everyone agrees on the need to qualify agricultural systems at the regional scale, few 
examples exist in the literature. Leenhardt et al. (2010) reviewed cropping system descriptions 
and locations at the regional scale, and concluded that both remain highly unclear for most 
world regions. The FAO continental farming system maps (Dixon et al., 2001) and the U.S. 
Agency for International Development (USAID) Famine Early Warning Systems Network 
(FEWS NET) national livelihood maps for Africa (USAID, 2009) are produced at very broad 
scales. More detailed, the regional maps of rice areas in Southeast Asia (Bridhikitti and 
Overcamp, 2012) or sugarcane areas in Brazil (Adami et al., 2012) have recently been produced 
using remote sensing data only. But these simple approaches, based on the dominant crop type 
with limited consideration of land management, are insufficient to draw a complete picture of 
coupled human-environment systems (Verburg et al., 2009).  

So, evolving from traditional remote sensing land cover mapping to land use system mapping 
is not straightforward and requires processing new data, implementing new methods and, above 
all, an enhanced integration between land science research disciplines (Verburg et al., 2009; 
Koschke et al., 2013). Vaclavik et al. (2013) derived a global representation of land use systems 
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using land use intensity datasets, environmental conditions and socio-economic indicators. 
Land use intensity was derived from satellite-based land cover maps and sub-national statistics. 
The authors noted that the scope of the study was limited because the quality of the statistical 
data sets they used was geographically distributed unevenly worldwide. Kuemmerle et al. 
(2013) proposed a review of the current input (crop type, cropping frequency, capital and labor 
intensity, etc.) and output (yields and carbon stock, etc.) land intensity metrics that could be 
provided directly or indirectly by satellite remote sensing. They concluded that satellite-based 
approaches are still experimental in that domain and cannot readily be applied across large 
areas. Despite these issues, new opportunities are arising.  

The objective of the present study is to give an overview of remote sensing-based approaches 
for regional mapping of agricultural systems and to illustrate the diversity of these approaches 
through case studies. To do this, we propose and introduce a general framework, including 
satellite data and land mapping approaches, to characterize agricultural systems at different 
scales. These approaches are illustrated by three case studies representing a wide diversity of 
agricultural systems across the tropical world. Based on these case studies and a literature 
review, the opportunities and challenges for agricultural systems mapping at regional and global 
scales are discussed, and further research is proposed. 

2. Roles of remote sensing in the assessment of agricultural systems 

2.1. Diversity of the agricultural systems in the world 

To our knowledge, the most complete global agricultural map is the map produced by the Food 
and Alimentation Organization (FAO) and the World Bank (Dixon et al., 2001) which covers 
the six main regions of the developing world. This map represents 72 farming systems (Figure 
1a) that were defined according to (i) the available natural resource base (water, land, climate, 
altitude…), (ii) the dominant pattern of farm activities and household livelihoods, including 
relationship to markets, and (iii) the intensity of production activities. These detailed farming 
systems are grouped in eight broad categories (Figure 1b; Erreur ! Source du renvoi 
introuvable.). It is interesting to note that seven out of the eight broad farming systems 
categories are based on smallholder producers (less than 2 hectare land, according to FAO).   
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Figure 1. Farming system maps of the developing regions of the world (Dixon et al., 2001): a) 
the original FAO 72-class map (see Dixon et al., 2001 for legend), and b) the FAO 8-broad 
categories (see Erreur ! Source du renvoi introuvable. for legend). Black dots in b) correspond 
to the location of the three case studies. 

 

 

 

Figure 2. The conceptual framework used in this study. 
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Table 1. Broad category of farming systems (Dixon et al., 2001). 

#  Farming system name Characteristics 

1 
 

Irrigated farming systems 
Dominated by smallholder 
producers 

2 
 

Wetland rice based 
Dominated by smallholder 
producers, dependent upon seasonal 
rains supplemented by irrigation 

3 

 
Rainfed farming systems in humid (and 
subhumid) areas  

Dominated by smallholder 
producers, characterized by specific 
dominant crops or mixed crop-
livestock systems 

4 
 

Rainfed farming systems in steep and 
highland areas 

Dominated by smallholder 
producers, often mixed crop-
livestock systems 

5 

 

Rainfed farming systems in dry or cold areas 

Dominated by smallholder 
producers, with mixed crop-
livestock and pastoral systems 
merging into systems with very low 
current productivity 

6 
 

Mixed large commercial and small holder 
Dualistic, across a variety of 
ecologies and with diverse 
production patterns 

7 
 

Coastal artisanal fishing mixed 
Dominated by smallholder 
producers, incorporates mixed 
farming elements 

8  Urban based 

Dominated by smallholder 
producers, typically focused on 
horticultural and livestock 
production 

 

 

2.2. A conceptual framework based on land mapping issues  

Remote sensing-based information can play different roles in the assessment of agricultural 
systems. Figure 2 illustrates how satellite images can help derive “land maps” (land cover, land 
use, and land use system maps; � in Figure 2) using various processing approaches (� in 
Figure 2). In the case of agriculture-dominated landscapes, these “land maps” can be interpreted 
as “agricultural system” maps (cropland, cropping system, and farming system; � in Figure 2).  
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Figure 3. The conceptual framework used in this study. 

 

Based on this framework, monitoring and mapping agricultural systems using remote sensing 
require clearly defined concepts and objects, i.e., which “land maps” to monitor which 
“agricultural systems”? In the proposed conceptual framework (Figure 2), we tried to build 
bridges between the land maps (land cover, land use, and land use system), that can be obtained 
with the contribution of remote sensing data, and the agricultural systems (cropland, cropping 
system, and farming system respectively) that are addressed in this chapter. These bridges are 
based on a set of definitions and hypotheses that are presented hereafter.  

• Land cover addresses the description of the land surface in terms of soil and vegetation 
layers, including natural vegetation, crops, and human structures (Burley, 1961). Land 
use refers to the purpose for which humans exploit the land cover (Lambin et al., 2006), 
including land management techniques (Verburg et al., 2009). In remote sensing-
derived maps, mixed LULC (land use/land cover) legends are often used because 
concepts concerning land cover and land use activities are closely related and, in many 
cases, can be used interchangeably (Anderson et al., 1976). Cropping systems are 
defined, at least, by the dominant crop type. Crop types, or at least crop groups (e.g., 
winter and summer crops; Atzberger and Rembold, 2013), are often represented in these 
satellite-derived LULC maps. More recently, information on the intensification mode, 
such as the use of irrigation (e.g., Thenkabail et al., 2010) or the adoption of multiple 
cropping (e.g., Arvor et al., 2011), appears in the LULC maps, improving the 
characterization of the cropping systems using remote sensing data.  

• Land use system can be defined as a coupled human-environment system. It describes 
how land, as an essential resource, is being used and managed by. Remote sensing data 
do not record human activities and thus cannot be directly used for land use system 
mapping. Photo-interpreters historically used patterns, tones, textures, shapes, and site 
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associations to derive initial land cover information into land use information (Anderson 
et al., 1976). This approach is consistent with Verburg et al. (2009) who proposed 
obtaining land use system maps from land cover maps supplemented by observations, 
inferred from landscape structures. Farming systems, defined by most experts as a 
combination of biophysical, socio-economic and human elements of a farm, can be seen 
as the land use system version for agriculture. 

To conclude, LCLU mapping can be obtained by classifying satellite images, while land use 
system mapping needs a larger view and must be approached on a larger scale (landscape scale). 

 

2.3. Processing approaches 

A large panel of methods and tools to produce agricultural system maps from remote sensing 
data are described in the literature. The methods can be grouped in three types: radiometric-
based method, landscape approach and allocation models.  

Radiometric-based methods 

Radiometric-based methods are largely used for cropland and crop type mapping. Most of the 
publications report pixel or object based classifications, and photo-interpretation methods. 
Examples are discussed in Chapter 4, and this topic will not be further discussed in this paper.  

Beyond crop type, many examples concerning remote sensing and cropping practices are found 
in the literature. Most of the methods are based on statistical relationships between surface 
variables and image variables (reflectance, spectral index, texture index, etc.), while others use 
signal processing techniques. The examples listed in Erreur ! Source du renvoi introuvable. 
show that there is a strong link between the type of cropping practice and the sensor. High 
resolution image primarily identifies inter- and mixed-cropping, and agroforestry composition 
and structure. High image acquisition frequency usually helps to identify double cropping 
practices, crop types or groups of crop types, and sowing/harvest dates, while spectral richness 
is used to distinguish cultivars. Irrigation, crop residues, and tillage practices are mainly 
obtained through multispectral image analyses conducted at different scales depending on the 
structure of the fields.  

 

Table 2. Literature examples of use of remote sensing for mapping cropping practices. 
References in bold are review papers. 

 

 

Cropping practice 

 

Crop (sensor) Example of studies 
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Crop variety Sugarcane (Hyperion) 

Sugarcane (Landsat) 

Galvao et al., 2005  

Fortes and Dematte, 2006 

Double-cropping Soybean & others (MODIS) 

Cereals (MODIS) 

Arvor et al., 2011 

Qiu et al., 2014  

Harvest date Sugarcane (SPOT) 

Sugarcane (SPOT) 

Lebourgeois et al., 2007 

El Hajj et al., 2007 

Sowing date  Soybean (MODIS) Maatoug et al., 2012 

Harvest mode Sugarcane (Landsat, DMC) 

Sugarcane (Landsat, CBERS) 

Aguiar et al., 2011 
Goltz et al., 2009 

Irrigation Various crops (MODIS) 

Wheat (FORMOSAT, ASAR) 

Review 

Gumma et al., 2011 
Hadria et al., 2009 

Ozdogan et al., 2010 

Crop residue Various crops (Landsat) 

Review 

Pacheco et al., 2006 

Zhang et al., 2011 

Tillage Wheat (FORMOSAT, ASAR) 

Various crops (Landsat) 

Hadria et al., 2009 
Sullivan et al., 2008 

Row orientation and width Vineyard (aerial photos) 

Olive groves (QuickBird) 

Orchards (Ikonos) 

Vineyard, cereals (aerial 
photos) 

Delenne et al., 2008 

Amoruso et al., 2009 

Aksoy et al., 2012 

Lefebvre et al., 2011 

 

A detailed analysis of the publications on cropping practices and remote sensing shows that, 
even if the proportion of publications addressing this issue is increasing (4% of the total remote 
sensing and agriculture publications in the ‘90s, and 9% currently), these publications primarily 
concern only one cropping practice at a time, and the analyses are generally conducted at local 
scale. Literature on the cropping system itself is still limited in terms of the number of 
publications (2% of the total published remote sensing and agriculture papers), and does not 
progress significantly.  

Landscape approach 

Cropland and crop type maps can be viewed as a mosaic of patches, where the patches are the 
landscape elements. In that case, landscape metrics can be used to characterize the agricultural 
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system. The term “landscape metrics” refers to indices developed for categorical map patterns 
(McGarigal, 2014). Landscape metrics exist at the patch, class (patch type), and landscape level. 
At the class and landscape level, some of the metrics quantify the landscape composition (the 
relative abundance of crop patch types, for instance), while others quantify the landscape 
configuration (the position, connectivity or the edge-to-area ratios of the cropland, for 
example). 

Although very few articles use landscape metrics to characterize agrosystems compared to 
ecosystems (see review by Uuemaa et al., 2013), some of them use crop class metrics as an 
input for ecological studies (e.g., Pocas et al., 2011), and a few use landscape research for 
agricultural perspectives. The aim of these latter is generally to evaluate different policies on 
agricultural landscapes or to assess the sustainability of the agricultural systems. For example, 
Plexida et al. (2014) discussed the role of modern cultivation methods on the simplification of 
landscape patterns in central Greece. They showed that the landscape in the agricultural 
lowlands was characterized by connectedness (high values of Patch Cohesion Index) and simple 
geometries (low values of fractal dimension index), whereas the landscape pattern of the 
pastoral uplands was found to be highly diverse (high Shannon Diversity index). Panigrahy et 
al. (2005) and Panigrahy et al. (2011) used landscape composition metrics to assess and evaluate 
the efficiency and sustainability of the agricultural systems in India. They proposed and 
calculated three indices, namely the Multiple Cropping Index (MCI), Area Diversity Index 
(ADI), and Cultivated Land Utilization Index (CLUI), using three satellite-derived seasonal 
land cover maps. The MCI measures the cropping intensity as the number of crops grown 
temporally in a particular area over a period of one year, the ADI measures the multiplicity of 
crops or farm products planted in a single year, and the CLUI measures how efficient the 
available land area has been used over the year (see Panigrahy et al., 2005) for formula). The 
indices were categorized as high, medium, and low to evaluate the cropping system 
performance in each of the districts. 

An example of landscape metrics based on the spatial configuration of the classes is given in 
Colson et al. (2011). They used eight landscape metrics to quantify and investigate the spatial 
patterns of cattle pasture and cropland throughout the states of Pará, Mato Grosso, Rondônia, 
and Amazonas, and concluded that these metrics showed evidence of a possible measure for 
discerning the patterns of agriculture attached to a certain state.  

 

Spatial allocation modeling 

Global cropping system maps (crop type and irrigation) are emerging at coarse resolution (see 
Anderson et al. (2014) for the description and comparison of these products). They are based 
on statistical data downscaled at the administrative level into grid-cell specific values. An 
illustrative example of spatial allocation is the SPAM model (SPatial Allocation Model), 
developed at the meso-scale by You and Wood (2006) and You et al. (2009), to spatially 
disaggregate crop production data (acreage and yield) within geopolitical units (e.g., countries 
or sub-national provinces and districts), using a cross-entropy approach. The pixel-scale 
allocations are performed by compiling and merging relevant spatially-explicit data, including 
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production statistics, satellite-derived land cover data, biophysical crop suitability assessments, 
and population density. In such models, remote sensing is mainly used to locate cropland at 
regional scales as an input for the allocation models (to spatially disaggregate statistics data for 
instance), while the crop determining factors are generally established by expertise or statistical 
analyses (Leenhardt et al., 2010). Recent examples showed that satellite images can also be 
used to understand and model the environmental drivers of cropping systems. For example, 
Jasinski et al. (2005) used a multiple logistic regression to model the role of environmental 
variables (vegetation type, soil type, altitude, slope, rainfall) on the Southern Amazonian 
cropland dynamics previously assessed using remote sensing data. More recently, Arvor et al. 
(2014) showed that the adoption of intensive double-cropping practices was related to the 
spatial variability of rainfall regimes and favored by a high annual rainfall, a long rainy season 
and a low variability of the onset date.     

However, a major drawback of the spatial allocation models approach is that it is not always 
possible to obtain deterministic relations between easily accessible factors (climate, soil, etc.) 
and cropping system elements, especially in “intensive systems” compared to “traditional 
systems”, which are more dependent on environmental factors (Figure 4). According to Jouve 
(2006), in southern countries where traditional systems are important and make little use of 
modern means of production (mechanization, fertilization), the farmers capacity to artificialize 
their environment and get rid of the environmental constraints is limited. In those cases, the 
relationship between the cropping systems and environmental conditions is strong, and the 
spatial distribution of the cropping systems reflects more the environmental differences than 
the farming differences. Additionally, the relationship can be identified at the rural community 
scale. Inversely, in intensive systems, the determining factors approach is more difficult to set 
up and the spatial allocation models can be more difficult to implement. 

 

Figure 4. Relative weights of the determining factors in the traditional and intensive 
agricultural systems. 
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3. Examples of Agricultural Systems Studies using Remote Sensing 

Three case studies - agroforestry in Bali (Indonesia), double cropping in Southern Amazon 
(Brazil), and traditional rainfed agriculture in Mali - were selected to illustrate the use of remote 
sensing for mapping agricultural systems. Two of them, Bali and Mali, are characterized by 
smallholder agriculture, while the Brazilian case is characterized by commercial agriculture 
(Figure 1b). These case studies are far from representing all of the possible uses of remote 
sensing, but they illustrate a diversity of technical and scientific approaches, while addressing 
some worldwide agricultural issues (geographic certification, agricultural system sustainability, 
food security, etc.).  

 

3.1. Presentation of the case studies  

Agro-forestry in Bali 

In tropical regions, small stakeholders’ agroforestry is the most common traditional cropping 
system. It associates different crops inside a single plot, with multifunctional trees to produce 
fruits, cash-crops, wood, medicines, shading, or to conserve biodiversity in various proportions 
and organizations. This system allows a relative sustainability in food diversification, but not 
in incomes, which depends on the trading market fluctuations. Agroforestry is promoted by 
agronomists for environmental and livelihood quality, and is questioned by socio-economists 
because of the cash-crop vulnerability. This emphasizes the need for evaluating the actual 
environmental, social and economic benefits of such cropping system. Remote sensing studies 
now propose new tools to objectively characterize the agroforestry systems at the intra-plot 
scale (Coltri et al., 2013; Guillen-Climent et al., 2014; Peña-Barragán et al., 2004; Aksoy et al., 
2012; Ursani et al., 2012; Mougel and Lelong, 2008), at the farm level (distribution among 
neighbors), and to replace it in the landscape matrix (Wästfelt et al., 2012; Lei et al., 2012). 
This allows associating different environmental, agricultural, and socioeconomic conditions in 
integrated analyses to understand the drivers of agricultural choices and resilience (Fox et al., 
1994; Gobin et al., 2001; Kunwar, 2010), and the level of productivity and quality of the 
production.  

The case study presented in this chapter is situated in Bali, an active volcanic island of 
Indonesia. Coffee is cropped almost everywhere in the central highlands. The study focused on 
a 220 km² area located in Kintamani county which is famous for its coffee crops. The landscape 
is shaped by the local topography, which ranges from 300 m to 1800 m (Figure 5). This work 
aims at producing a cropping system map in order to understand coffee quality drivers, and 
helps delimitating an area labeled by the distinction of the Protected Geographical Indication 
on Arabica coffee. 

 

Double cropping in Southern Amazon 

For nearly forty years, the Southeastern Amazon in Brazil experiences severe agricultural 
dynamics. Cropland expanded dramatically to support commercial cultivation of important 
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commodities such as soybean, maize, and cotton. The severity of the agricultural dynamics 
explains the abundance of large-scale monitoring studies using remote sensing. To date, most 
remote sensing based studies were carried out with MODIS data for three reasons: (i) 
monitoring such a large area requires a huge number of high remote sensing data to be 
processed, (ii) high cloud cover rates during the rainy season prevents the acquisition of good 
quality high resolution images during the cropping period, and (iii) the mean field area is about 
180 ha so that even 250 m medium resolution images are valid for crop type mapping. 
Consequently, most MODIS-based approaches to date were based on the interpretation of 
vegetation index (NDVI or EVI) time series. Such time series have long been successfully used 
to estimate cropland areas thus evidencing the rapid agricultural expansion during the 2000s 
(Anderson et al., 2003; Morton et al., 2006).  

In Mato Grosso state, Arvor et al. (2012) estimated that net cropped areas increased by 43% 
between 2000 and 2007, reaching an area of 55 988 km². In the same time, farmers adopted 
new agricultural management practices to intensify the production process. The cultivation of 
two successive crops, as soybean and cotton, benefits from a long rainy season (Arvor et al., 
2014) and regular rainfall from mid-September to late May. In this context, the Mato Grosso 
case study aims at producing a cropping system map showing the main crop type and the 
intensification practices in relation to the rainfall, and a land use system map to analyze the 
agricultural transition in Mato Grosso. 

 

Rainfed agriculture in Mali 

In the Sudano-Sahelian region, farming is the main source of income for many people, where 
millet and sorghum are the main food crops. The vast majority of the population (80%) consists 
of subsistence farmers. A few larger farms produce crops for sale (cash crops), mainly cotton 
and peanuts. In the Sudano-Sahelian zone, the strong dependence on rainfed agriculture implies 
exposure to climate variability in addition to the impacts population growth have on food 
security. Key deliverables of food security systems for crop monitoring consist of early 
estimates of cultivated area and crop-type distribution, cropping practices, detection of growth 
anomalies, and crop yield estimates. Unfortunately, the national statistics can be deficient in 
insecure countries, and remote sensing has an important role to play in delivering information 
for crop monitoring (e.g., Hutchinson, 1991; Thenkabail et al., 2009). Remote sensing 
techniques face numerous challenges for crop mapping in regions where the cropland is 
fragmented, made of small, highly heterogeneous fields covered with many trees. In Mali, 
Vintrou et al. (2011) showed that 20% to 40% of cropland classification errors using MODIS 
is inherent to the structure of the landscape.  

Southern Mali case study aims at producing farming system map (food-producing, intensive, 
and mixed agricultures) in support to food security analyses (USAID, 2009). Because local 
factors, such as climate, soil, water availability, access to markets, and fertilizers influence the 
agricultural systems, mapping these systems can help determine which region and which 
population may be vulnerable to different hazards. Additionally, the cropping system map can 
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be used for spatialized agro-meteorological modeling and forecasting at regional scales (see 
example in Vintrou et al. (2014).  

 

3.2. Remote Sensing data and methods 

The data (remote sensing images, ancillary data) and methods used to produce agricultural maps 
are presented in Erreur ! Source du renvoi introuvable. for the three case studies. 

 

Table 3. Typology, data and methods used to produce agricultural system maps for the three 
case studies.  

Case study 

(area) 

 

Agriculture 
type 

Satellite data  

 (acquisition 
year) 

Other data Method Map products 

Bali island 

(224 km²) 
Smallhoder 
agriculture 

QuickBird 
bundle - 

(2003) 

DEM 

 

760 ground 
survey 
points  

Photo 
interpretation 

 

Spatial analysis 
(majority filter; 
1 ha window) 

Cropping 
system  

 

Farming 
system 
(agrosystem) 

Mato Grosso 

(906 000 km²) 
Commercial 
agriculture 

 

MOD13Q1 
EVI product - 

(2005-2008) 

 

 

Pixel-based 
supervised 
classification 

 

Landscape 
analysis (land 
cover and land 
use classes 
metrics; 770 km² 
window) 

 

Crop type  

Cropping 
system  

 

Farming 
system 

 

 

Southern Mali 

(165 790 km²) 
Smallhoder 
agriculture 

MOD13Q1 
NDVI 
product  

(2007) 

 

MCD12Q2 
phenology 
product - 

(2007) 

 

100 villages 
field survey 
(2001-2004)  

 

Cropland 
map at 
250 m 
resolution. 

 

Climate 
type, DEM 
and 
population 

 

Texture analysis 
(MODIS NDVI) 

 

Landscape 
analysis (land 
cover classes 
metrics; 100 km² 
window) 

 

Random Forest 
classification 

 

Farming 
system 
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4000 
villages 
location 

 

In Bali, a multispectral QuickBird image at 0.6 m resolution was photo-interpreted to delineate 
the field limits and identify six cropping systems based on the field survey: citrus monocrop, 
coffee monocrop without shade, coffee associated with light shadow (citrus), coffee under 
dense shadow (erythrina, albizias, leucaenas, etc.), clove crops associated or not with coffee, 
and food-crops. An agrosystem map was then obtained by applying a majority filter (1 ha square 
corresponding to a dozen of crop plots) on the cropping system map, and was defined by its 
upper vegetation layer in four classes: citrus, clove, dense shading trees, and food crops. The 
term agrosystem is preferred here to the term farming system whose definition goes beyond 
what is studied in this case.  

In Mato Grosso, MOD13Q1 EVI products acquired from 2005 to 2008 period, were used to 
produce a cropping system map showing the main crop types (soybean, corn and cotton), and 
their intensification practices (mono and double-cropping). Arvor et al. (2013a) used a 
landscape approach to better characterize the land use system across the state. The strategy 
consisted of applying a regular grid where each cell represented an approximation of a district 
territory (a district was considered as an administrative sub-level, below the municipality level). 
There were 1175 districts in Mato Grosso, a total of 906 000 km², and the grid cell was fixed at 
25.75 x 27.75 km², approximating an area of 770 km². A set of landscape indices was then 
computed for each cell based on MODIS-based land use classifications and deforestation maps. 
Those indices referred to the proportion of wilderness areas, the proportion of cropped areas in 
deforested areas, and the proportion of intensive practices observed in cropped areas. Some 
thresholds were applied to identify different land use systems, such as pre-settlement area, non-
cropland occupation, cropland occupation, non-cropland consolidation, cropland consolidation, 
non-cropland intensifying, cropland intensifying and intensive cropland. 

In Mali, the field size and MODIS spatial resolution prevent from producing a crop type map. 
We then mapped directly the farming system map using a 3-class typology. This typology was 
defined at the village scale, and based on a field survey carried out in 100 villages in Southern 
Mali (Soumare, 2008). The typology was created using expert knowledge, and considering the 
main crop types cultivated in the village and the intensification of production (use of fertilizers, 
equipment, livestock, etc.): the “food-producing agriculture” class groups the millet and 
sorghum-based agricultural systems, the “intensive agriculture” class includes farms with maize 
and cotton, and the “mixed agriculture” class encompasses farms where both coarse grain 
(sorghum) and a cash crop (cotton) are found (Vintrou et al., 2012). A random forest algorithm 
(Breiman, 2001) was trained on the 100-village data set, and on a set of 30 variables composed 
of 4 spectral metrics (annual maximum, annual mean, annual amplitude, and seasonal mean 
from May through November; MOD13Q1 product), 12 texture indices (maximum and mean of 
the variance and skewness indices, calculated with a pattern size of seven MODIS pixels for 
March, June, and September; MOD13Q1 product), 7 phenology metrics (MCD12Q2 product), 
3 spatial metrics (the fraction of cropped area, number of cultivated patches, and the mean 
cultivated patch size inside a 10 x 10 km² area centered on the village; MCD12Q1 product), 3 
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environmental indices (climate type, maximum and mean of elevation), and 1 population indice. 
All of the indices were extracted for cropland only. The random forest model trained on the 
100-village ground survey, was applied to the 4 000 villages in South Mali.  

3.3. Results 

Agroforestry in Bali 

In Bali, the cropping system map is presented in Figure 5a. Photointerpretation performed on 
the ground-truth plots showed that confusion between citrus and coffee under citrus is less than 
10%, whereas other class errors lie below 2%. The analysis of the distribution of each cropping 
system showed that the most frequent are the citrus-based crops (18%) and those shaded by 
large trees (15%), followed by the food-crops (12%), and the associated coffee and citrus crops 
(10%). The mean size of a plot is approximately 0.7 ha, but the clove plots are generally bigger 
(1.2 ha) and the food-crops are smaller (0.3 ha). 

The agrosystem map is presented in Figure 5b. The citrus-based agrosystem is largely 
dominant. Coffee, as being cropped below the dominant trees, does not appear in the map 
legend. 
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Figure 5. Map products in Central Bali: a) main cropping systems map derived from QuickBird 
image visual interpretation, b) agrosystems map derived from spatial analysis of the cropping 
system map, c) location map of 40 sampled coffees and quality notation rate for each type of 
aromatic value, and d) Digital Terrain Model derived from topographic maps. 
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At first glance, the cropping system and agrosystem spatial distribution looks complex because 
of a number of factors, such as a North/South contrast, altitude, and local geographic 
characteristics, such as river network density, slope, exposition to wind, and the presence of 
lava-flows and forests. The cropping and agrosystem maps were then used to analyze the 
distribution of each agricultural system, in relation to altimetry because of the strong 
relationship between coffee quality and altitude (Florinsky, 1998; Wintgens, 2004; Montagnon, 
2006). The area covered by all of the different cropping systems is plotted for each 100 m-
altitude bin, between 1000 m and 1800 m in Figure 6a, while Figure 6b represents the altitude 
distribution for the area covered by the coffee-based cropping systems alone. The two principal 
coffee-based cropping systems were found to be those dominated by citrus or dense shading 
trees. The former is most common at high altitudes (64% from 1200 m to 1400 m), while the 
latter dominates coffee crops at lower altitudes (68% below 1100 m). The third coffee-based 
cropping system, dominated by clove shading, covers a small acreage and is spatially restricted. 
It is present at the lowest altitudes, mainly below 1100 m (68%) and 1200 m (28%). The 
unshaded coffee monoculture is not typical in this territory. 

 

Figure 6. Areal altimetry distribution per bin of 100 m between 1000 m and 1800 m in 
Kintamani territory in Bali: a) per cropping system class, and b) per coffee-based cropping 
system class (Arabica monocrop is not displayed because it covers less than 2 ha). 

The coffee samples location and sensorial quality rates were plotted in both the cropping and 
agrosystem maps to understand the spatial distribution of the coffee characteristics at the two 
scales (Figure 5c). A landscape analysis provided spatial and topographic distribution 
information about the three coffee quality classes, and helped to identify the relationships 
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between quality of coffee beans and the local and regional environment. This integrated analysis 
suggests that good coffee is only found in the citrus-dominated agrosystem, even if it is not 
cultivated in association with citrus at the plot level, and cropped above 1200 m. This area was 
validated by both the coffee farmers and the traders, and accepted by the Indonesian 
Government as the official limits of the labeled territory.  

Double cropping in Southern Amazon 

Time series of vegetation indices were used to detect crop types and cropping practices using 
an analysis of agricultural calendars. The producers undertake two successive harvests per rainy 
season: they cultivate soybean from late September to early February, and then cultivate maize 
or cotton until June or July. The double cropping systems show very different patterns in their 
vegetation index time series and can be easily discriminated (Arvor et al., 2011). The user’s and 
producer’s accuracies of the cropland were higher than 95%. Main crop types were also 
correctly detected (

Figure 7) with good Kappa index (0.68) and overall accuracy (74%). Once the double cropping 
classes are grouped (i.e., the “soybean + corn” and “soybean + cotton” classes; Figure 8a), the 
user’s and producer’s accuracies increased up to of 95% and 86%, respectively. The main 
uncertainties to be considered in these maps refer to sorghum or millet that is sometimes sown 
after the soybean harvest (to prevent soil erosion from intense rainfall) and can thus be confused 
with maize. Such issue highlights a main limitation of EVI time series-based classification 
(different crops with similar agricultural calendars may be confused) that could be overcome 
with a better spatial and radiometric resolution (since only Blue, Red and NIR bands are used 
to compute the Enhanced Vegetation Index used in that work).   
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Figure 7. Maps of the three main crop types (soybean, corn and cotton) for the 2006-2007 
harvest for the four main agricultural regions in Mato Grosso: (A) Parecis plateau, (B) along 
the BR163 highway, (C) southeastern region (D) eastern region (Arvor et al., 2011). Maps were 
obtained through supervised classification of MODIS vegetation index (EVI) time series. 

 

Beyond such limitations, those results are in agreement with results obtained by different 
authors (Galford et al., 2008; Arvor et al., 2011; Brown et al., 2013) who successfully mapped 
double cropping systems in Mato Grosso and confirmed the generalization of such intensive 
practices. Arvor et al. (2012) estimated that the proportion of croplands permanently covered 
by double-cropping vegetation during the rainy season increased from 35% to 62% between 
2000 and 2007. This trend raises a major issue regarding the sustainability of cropland systems 
in Mato Grosso. Fu et al. (2013) proved that the length of the rainy season is decreasing in the 
southern Amazon, which leads to the question of whether the adoption of double cropping 
practices would still be viable in the changing climate. Even if intensive practices are a relevant 
strategy to contain deforestation, it raises new issues regarding agricultural sustainability in that 
region.   

The land use system map shows a good overview of the soybean agricultural frontier in the 
southeastern Amazon (Figure 8b). It demonstrates the efficiency of public policies to 
simultaneously contend deforestation (through the creation of protected areas) and encourage 
crop expansion (through the construction of important infrastructures, such as the 
Transamazonian roads). 
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Figure 8. Maps of (A) cropping systems and (B) land use systems obtained from MODIS 
vegetation index time series and landscape analysis for the 2006-2007 harvest (from Arvor et 
al., 2012; Arvor et al., 2013a). 
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Rainfed agriculture in Mali 

The Random Forest model classified the agricultural systems with an estimated overall 
accuracy of 60% calculated from Out-Of-Bag observations (

 

Figure 9). The “food-producing agriculture” class was dominant in the Sudano-Sahelian part of 
the area. Sorghum and millet are well adapted to this zone because they are resistant, and have 
a short growth cycle of about 90 days. In the traditional cotton basin, the dominant system is 
agro-forestry/pastoral agriculture mainly with rainfed crops. Agriculture is focused on cotton, 
the main cash crop, and corresponds to the class “intensive agriculture”. The Sudanian zone 
part of the area is also a cotton-based system zone, but is more diversified, with the 
simultaneous presence of “intensive agriculture” and “mixed agriculture” systems. The length 
of the rainy season in this region makes it possible to grow a wide range of species. Farmers 
usually cultivate different species and varieties to ensure a certain degree of production stability. 

Class errors ranged from 30% to 50%. Globally, producer’s and user’s accuracies were 
reasonably balanced for each class (less than 10 percent difference), meaning that the village 
agricultural systems were estimated correctly. Misclassifications can be explained by three 
main factors: (i) the small size of the crop patches compared to the 250 m spatial resolution of 
MODIS sensor, and the natural and crop vegetation seasonal synchronization due to a short 
rainy season, (ii) the size of the training data set (100 villages), and (iii) the definition of the 
classes (a rough proportion of different crop types, and crop intensification variables) that is 
expert dependent and includes variables that cannot be directly related to landscape features.  
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Figure 9. Village-based farming systems in South Mali predicted by the Random Forest model 
(Vintrou et al., 2012). The model was based on 100 village samples, and 30 MODIS-derived 
and socio-environmental metrics calculated on agricultural areas.  

 

The analysis of the contribution of the different metrics (Figure 10) shows the role of the texture 
of the MODIS images in the classification of the cropland, even if the fields are not visible at 
the MODIS resolution. The field crop information is hidden in these broad images, but can be 
identified with landscape metrics, such as image texture indices. This indirect analysis was 
confirmed by Bisquert et al. (2014) who showed that the texture of broad-scale images is an 
important variable for land stratification in relation to land cover, even if the land cover units 
are not detectable. 

 

Figure 10. Accuracy of class and overall classification of Random Forest run with different 
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4. Discussion 

While remote sensing approaches have proven to be efficient for cropland (land cover) 
mapping, they still remain ill-suited for cropping system (land use) monitoring at the regional 
and global scales because of their inability to distinguish crop types and the associated practices 
(Monfreda et al., 2008). In this section, we consider the main present limitations of remote 
sensing studies for regional mapping of cropping systems, and introduce some emerging 
research areas to overcome such limitations. We then discuss the opportunity to work on an 
extended landscape agronomy approach.    

 

4.1. Difficulties of mapping the cropping systems at regional scales 

Remote sensing-based land use maps suffer from uncertainties related to the spatial and 
temporal resolutions of the observing system, and to the landscape structure.  

The spatial resolution issue is particularly true for smallholders agriculture (Figure 1b), for 
which remote sensing data are unable to resolve individual fields (Ozdogan, 2010). Rather than 
a sensor resolution issue, it should actually be considered as a scale issue to be addressed 
through the concept of H-resolution and L-resolution (Strahler et al., 1986; Blaschke et al., 
2014). H- and L-resolution terms are different from high and low spatial resolution images as 
generally mentioned in remote sensing studies. In the latter, the resolution refers to the sensor 
spatial resolution independently of the geographic objects concerned. H-resolution model is 
valid when scene objects are much larger than the image spatial resolution, thus several pixels 
may represent a single object (a field, a tree …). Meanwhile, L-resolution model is when objects 
are much smaller than the image spatial resolution. An image may contain both H- and L-
resolution information (Hay et al., 2001). Marceau et al. (1994) place the limit between H- and 
L- when the dimension of the resolution cells is ½ to ¾ the size of the objects of interest in the 
scene. This threshold should be a guide for assessing whether the analysis should be performed 
at H- or L-resolution.  

− For an H-resolution situation - agricultural fields in Mato Grosso using MODIS sensor - a 
cropping system can be assessed directly by characterizing crop types and their associated 
cropping practices using inner field information (derived from relatively pure pixels).  

− For an L-resolution situation – cropped trees in Bali using QuickBird sensor or cropped 
fields in Mali using MODIS sensor - pixels correspond to a mixture of different crop (or 
trees) types and other landscape elements (natural vegetation, water bodies, buildings, 
roads, etc.).  

The temporal resolution issue in crop mapping is highly dependent on the environmental and 
agronomic conditions. For example, in tropical dry areas where rainfall is the main driver of 
vegetation growth (e.g., the Sahelian part of Mali), natural and cultivated vegetation are difficult 
to separate using phenology. In equatorial areas (e.g., Bali) characterized by a low seasonality, 
it is difficult to discriminate crops due to fluctuating crop calendars. However, even in regions 
with contrasted seasons (e.g., Mato-Grosso), different cropping systems with similar 
agricultural calendars cannot be separated using MODIS EVI time series. A better temporal 
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resolution (less than 16 days) would surely improve crop discrimination in most of the 
agricultural systems. 

The quality of the land maps produced by image pixel-based classification, is usually evaluated 
using a set of indices (producer’s accuracy, user’s accuracy, overall accuracy and Kappa index) 
which are commonly calculated from an error matrix (or confusion matrix; see Congalton and 
Green, 1999). While such accuracy metrics have been widely accepted by the scientific 
community for a long time, they have also been regularly criticized (Pontius and Millones, 
2011). These metrics tell nothing about the source of error that can be linked to the performance 
of the classification algorithm, or to the resolution of the remotely sensed data (Boschetti et al., 
2004). For instance, Vintrou et al. (2011) using the Pareto boundary method showed that in 
Mali, 20% to 40% of cropland classification errors using MODIS data is inherent to the 
landscape structure. In this context, new processing and evaluation approaches are required to 
better consider landscape properties in order to overcome these limitations and allow an 
efficient monitoring of farming systems at regional scale. 

 

4.2. Emerging remote sensing research  

There was a challenge in land cover mapping in the 2000’s, and today, there is a challenge in 
land use system mapping. It is an emerging area for the remote sensing community that needs 
to focus on land use and land function (Verburg et al., 2009). It requires developing new data, 
methods, and a further integration of the disciplines involved in land science research. These 
developments are presented hereafter according to the resolution situation (the direct and direct 
cases). 

When the landscape elements are larger than the pixel size (H-resolution situation), many 
examples in the literature showed that cropping practices can be directly assessed (Erreur ! 
Source du renvoi introuvable.). Except for rare examples of mapping crop type and cropping 
intensity in regions where the size of the plots is compatible with broad scale sensors (Mato 
Grosso case study), the research was mainly developed at local scale, and for one practice at a 
time. To further characterize regional scale cropping practices, research needs to focus on 
developing automatic or semi-automatic crop type classification procedures, and on the 
combination of different sensors to catch different practices in the same area. Another way to 
work at broader scales is to properly translate local findings to larger regions by using case 
study results from specific land functions (Verburg et al., 2009). This approach needs to define 
the spatial extent and function for the local studies representative of a region. Land stratification 
into homogeneous landscape units could be a way to reach this objective. Bisquert et al. (2014) 
showed that processing broad-scale remote sensing data with spectral and textural segmentation 
techniques permit to delineate radiometrically homogeneous landscape that were consistent in 
terms of land cover. 

When the landscape elements are smaller than the pixel size (L-resolution situation), research 
needs to focus on the role of landscape as a mean to characterize the cropping systems. Research 
on landscape metrics for agricultural systems characterization must be pursued and enhanced. 
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Furthermore, given the multidimensional nature of agricultural systems, focusing on multiple 
metrics within a systems perspective is needed (Kuemmerle et al., 2013). As the current 
approaches based on the remote sensing data are not sufficient to develop a comprehensive 
understanding of situational changes for multiple land functions, remote sensing-based metrics 
should be completed by other types of metrics, such as socio-economic descriptors 
(demography, ethnic spatialized data, etc.). To merge heterogeneous information, new data 
processing tools, such as fuzzy logic and data mining tools (Vintrou et al., 2013; Korting et al., 
2013), must be tested to characterize and map agricultural systems and processes.  

To implement both approaches (direct and indirect), the scientific community should benefit 
from recent promising advances in remote sensing such as GEographic Object-Based Image 
Analysis (GEOBIA) and ontologies. GEOBIA is based on the hypothesis that partitioning an 
image into objects is related to the way humans conceptually organize the landscape to 
comprehend it (Hay and Castilla, 2008). It is actually based on two main components. First, a 
segmentation delineates regions (objects) of the image that have common attributes. Second, 
the approach incorporates the user (expert) knowledge in the image processing operation to 
produce reliable maps. However, to date, GEOBIA is still limited by important issues related 
to product evaluation and knowledge management. Indeed, it is still unclear how to assess a 
segmentation quality (actually considered as an ill-posed problem), although Clinton et al. 
(2010) proposed interesting metrics to assess GEOBIA segmentation goodness through vector-
based measures. Although the integration of knowledge expertise in the image interpretation 
process is a main strength of GEOBIA, it can also be considered as a main limitation as long as 
two experts do not share a consensual knowledge (Belgiu et al., 2014). In such a context, it is 
likely that knowledge representation techniques such as ontologies can play a pivotal role 
(Arvor et al., 2013b). This point is especially meaningful in the case of agricultural system 
mapping where expert knowledge is crucial and often difficult to formalize. In case of land 
cover products, Comber et al. (2005) investigated the semantic and ontological meanings of 
land cover classes and concluded that current paradigms for reporting data quality do not 
adequately communicate the producer's knowledge. In case of land use and land use system 
products, the ontological meaning of the classes is even more difficult to formalize. For 
example, agricultural practices such as double cropping or no-tillage have been studied in 
various regions of the world although they might correspond to different practices on the ground 
(different types of crop, different levels of soil management). In conclusion, ontologies might 
play an important role to allow comparison of complex and heterogeneous land maps. 

 

4.3. Towards an extended landscape agronomy approach 

Landscape and agronomy have long been considered as closely associated. The first references 
on the relationship between agricultural landscapes and field management appeared in the 
1990s, (e.g., Baudry, 1993; Deffontaines et al., 1995) and addressed how farming activities 
produce agricultural landscapes, i.e., explained the spatial distribution of patches (fields and 
associated boundaries). Since then, very few studies were published on the relationship between 
agricultural practices and landscape properties (e.g., Galli et al., 2010; Herzog et al., 2006). 
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Most of the research focused on the characterization and understanding of landscape patterns 
to relate them to ecological issues (e.g., Baudry, 1993; Herzog et al., 2006). Benoit et al. (2012) 
argued why and how agronomy can contribute to landscape research with a conceptual model. 
He suggested a new perspective on farming practices as a crucial driver in the landscape pattern-
agricultural process relationship. He proposed to develop a new research area called Landscape 
Agronomy (see also Rizzo et al., 2013) defined as “the relations among farming practices, 
natural resources and landscape patterns, which are involved in the dynamics of agricultural 
landscapes”. 

We previously mentioned that few landscape studies related to agricultural issues use remote 
sensing. Although it is now widely understood that cropping practices adopted in agricultural 
systems shape rural landscapes, we believe it is time to use landscape agronomy and 
quantitative remote sensing sciences. Applying concepts of landscape ecology to agricultural 
systems monitoring and mapping is a major idea. The case studies from Bali and Mato Grosso 
illustrate this new trend in landscape agronomy research and show that, thanks to its ability to 
identify spatial land cover patterns at local (Bali) and regional (Mato-Grosso) scales, remote 
sensing has become an essential source of information to identify agricultural systems. 

However, landscape agronomy research will have to face the same limitations as landscape 
research. These limitations concern the numerous sources of error or uncertainty with producing 
land cover / land use maps from remote sensing imagery, and on the choice of the landscape 
metrics which need to show a close association with the processes to be detected (Newton et 
al., 2009; Hurni et al., 2013). Another source of limitation is the simplistic approach of thematic 
mapping and the derivation of two-dimensional pattern metrics in landscape ecology (Newton 
et al., 2009), while remote sensing data have the potential to provide a three-dimensional 
characterization of landscapes and their component parts (as seen in Bali study case) and 
quantitative surface variables (as seen in Mali study case) that could be directly integrated in 
the landscape analysis. We showed through the Mali study case that the agricultural landscapes 
could be indirectly characterized by using a set of satellite-derived metrics (spectral, textural, 
temporal  metrics) without going through a thematic map of the crop types. This approach is 
essential when the ratio between the field size and the sensor spatial resolution is low (L-
resolution), meaning land use maps cannot be produced, but it can also be used in H-resolution 
situation.  

5. Conclusions 

It is widely recognized that accurate, updated, and spatially explicit information on cropping 
systems (and thus cropping intensity) is urgently needed at the global and regional scales to 
provide insight into the direction and magnitude of world agricultural production in terms of 
crop type acreage and yield (Lobell and Field, 2007), and in terms of agricultural impacts on 
natural environments (Galford et al., 2008) and water resources (Thenkabail et al., 2010). 
Additionally, information is needed locally to monitor resources, preserve cultural landscapes 
and for land certification (Jouve, 2006). This information is not yet included in the regional 
land cover datasets, and remote sensing entirely overlooks the actual practice of agriculture 
(what is grown, how it is grown, what inputs are used) at this scale (Monfreda et al., 2008). 
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In this paper, we showed how the current generation of Earth observation systems can 
contribute to the characterization of agricultural systems locally and regionally, through 
bibliographic studies and three case studies. We showed that the remote sensing ability to 
describe cropping systems is mainly related to the ratio between the spatial resolution of the 
sensor and the size of the landscape elements. This ratio determines if the fields (or the trees) 
can be identified by the observation system, or if the remote sensing data offers only a view of 
the cropland in its environment. This latter case leads to the development of new tools and 
methods to indirectly connect the spatial patterns of the agricultural landscape to the cropping 
management practices over large territories. 

This bibliographic overview shows that the research community is now at a turning point where 
landscape research is not devoted to ecological issues only, but has started to embrace 
agricultural matters also. We believe that landscape agronomy is on the right track, and that the 
current and future Earth observing systems (such as Sentinel-2 or Landsat8) will have an 
important role to play in this new research area.  
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