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1. Introduction

The world population is expected to reach 9.3 dmllin 2050 (UN, 2010). To feed this
population, the Food and Agriculture OrganizatiastIglobal projection exercise forecasted
that the world’s agricultural production will ne&alincrease by approximately 70% by 2050,
compared with the 2005 production levels (FAO, 20RAbproximately 80% of the increased
agricultural production will need to come from yiehcreases, and higher cropping intensities
such as increased multiple cropping and/or sharteaof fallow periods.

Such evolutions must cope with climate change @ttarized by changing rainfall patterns and
an increasing number of extreme weather eventsjtaiwdnsequences (changing distributions
of plant and vector-borne diseases, and increasgdyeeld variability), more competition for
land (increased competition between food and bmpgneroduction), and the associated
increased environmental pressures (e.g., over-gaptm of ground water resources, water
guality degradation, and soil degradation). Asr@seguence, in addition to the need to increase
crop production, another major agricultural chajles the task of improving the management
of natural resources, especially through the adopif more environmental-friendly practices,
such as ecological intensification or conservatigriculture. Major agricultural powers such
as Europe and Brazil have launched ambitious progir&.g., the GAP (Good Agricultural
Practice) guidelines and the ABC Program (Braziliamw Carbon Agriculture Program),
respectively. These programs give a special rolentdtifunctional landscapes to establish
sustainable agriculture. Landscapes must be caesidewhole land use system at the heart of
human-nature relationships that need to be effiigiemanaged to preserve and restore
ecosystem services (DeFries and Rosenzweig, 2840Y0 contribute to sustainable solutions,
especially regarding food security challenges (Megbet al., 2013). In view of these global
challenges, there is an urgent need to better ctegiize agricultural systems at the regional and
global scales, with a particular emphasis on thgoua pathways towards agricultural
intensification. Those systems are the key to wideding land use sustainability in
agricultural territories.

Although everyone agrees on the need to qualificalfural systems at the regional scale, few
examples exist in the literature. Leenhardt e{24110) reviewed cropping system descriptions
and locations at the regional scale, and conclubdadboth remain highly unclear for most
world regions. The FAO continental farming systeraps (Dixon et al., 2001) and the U.S.
Agency for International Development (USAID) Famigarly Warning Systems Network
(FEWS NET) national livelihood maps for Africa (US212009) are produced at very broad
scales. More detailed, the regional maps of ri@asrn Southeast Asia (Bridhikitti and
Overcamp, 2012) or sugarcane areas in Brazil (Adami, 2012) have recently been produced
using remote sensing data only. But these simgleoaghes, based on the dominant crop type
with limited consideration of land management, iasgifficient to draw a complete picture of
coupled human-environment systems (Verburg e2@09).

So, evolving from traditional remote sensing langer mapping to land use system mapping
is not straightforward and requires processing data, implementing new methods and, above
all, an enhanced integration between land scieesearch disciplines (Verburg et al., 2009;
Koschke et al., 2013). Vaclavik et al. (2013) deda global representation of land use systems
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using land use intensity datasets, environmentaditions and socio-economic indicators.
Land use intensity was derived from satellite-bdaad cover maps and sub-national statistics.
The authors noted that the scope of the study watetl because the quality of the statistical
data sets they used was geographically distributezl’enly worldwide. Kuemmerle et al.
(2013) proposed a review of the current input (dsg@e, cropping frequency, capital and labor
intensity, etc.) and output (yields and carbonlst@tc.) land intensity metrics that could be
provided directly or indirectly by satellite remaensing. They concluded that satellite-based
approaches are still experimental in that domaith @nnot readily be applied across large
areas. Despite these issues, new opportunitiesriareg.

The objective of the present study is to give aaraew of remote sensing-based approaches
for regional mapping of agricultural systems andltstrate the diversity of these approaches
through case studies. To do this, we propose amddunce a general framework, including
satellite data and land mapping approaches, taactearze agricultural systems at different
scales. These approaches are illustrated by tlase studies representing a wide diversity of
agricultural systems across the tropical world. d8lasn these case studies and a literature
review, the opportunities and challenges for adfucal systems mapping at regional and global
scales are discussed, and further research is $gdpo

2. Rolesof remote sensing in the assessment of agricultural systems

2.1. Diversity of theagricultural systemsin theworld

To our knowledge, the most complete global agnicaltmap is the map produced by the Food
and Alimentation Organization (FAO) and the WorldnR (Dixon et al., 2001) which covers
the six main regions of the developing world. Timap represents 72 farming systems (Figure
1a) that were defined according to (i) the avadalmtural resource base (water, land, climate,
altitude...), (ii) the dominant pattern of farm adti?s and household livelihoods, including
relationship to markets, and (iii) the intensitypsbduction activities. These detailed farming
systems are grouped in eight broad categories r@idi; Erreur ! Source du renvoi
introuvable.). It is interesting to note that seven out of #ght broad farming systems
categories are based on smallholder producerstflaa2 hectare land, according to FAO).
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Figure 1. Farming system maps of the developing regions of the world (Dixon et al., 2001): a)
the original FAO 72-class map (see Dixon et al., 2001 for legend), and b) the FAO 8-broad
categories(seeErreur ! Sourcedu renvoi introuvable. for legend). Black dotsin b) correspond
to the location of the three case studies.

Figure 2. The conceptual framework used in this study.



Table 1. Broad category of farming systems (Dixon et al., 2001).

# Farming system name Characteristics

Dominated by smallholder

1 @ Irrigated farming systems producers

Dominated by smallholder
2 ®) Wetland rice based producers, dependent upon seasonal
rains supplemented by irrigation

Dominated by smallholder
3 Rainfed farming systems in humid (angdroducers, characterized by specific
@ subhumid) areas dominant crops or mixed crop-
livestock systems
Rainfed farming systems in steep an[()jomlnated by _smallholder
4 ; producers, often mixed crop-
O highland areas ;
livestock systems

Dominated by smallholder
producers, with mixed crop-

5 O Rainfed farming systems in dry or cold areéigsestock and pastoral systems
merging into systems with very low
current productivity

Dualistic, across a variety of
6 ) Mixed large commercial and small holder ecologies and with diverse
production patterns

Dominated by smallholder
7 ® Coastal artisanal fishing mixed producers, incorporates mixed
farming elements

Dominated by smallholder
producers, typically focused on
horticultural and livestock
production

8 O Urban based

2.2. A conceptual framework based on land mapping issues

Remote sensing-based information can play differelds in the assessment of agricultural
systems. Figur2 illustrates how satellite images can help derla@d maps” (land cover, land
use, and land use system mafdsjn Figure 2) using various processing approackesn(
Figure 2). In the case of agriculture-dominateditamapes, these “land maps” can be interpreted
as “agricultural system” maps (cropland, croppiysiem, and farming syster®, in Figure 2).
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Figure 3. The conceptual framework used in this study.

Based on this framework, monitoring and mappingcagiural systems using remote sensing
require clearly defined concepts and objects, wich “land maps” to monitor which
“agricultural systems™? In the proposed concepftehework (Figure 2), we tried to build
bridges between the land maps (land cover, landamsEland use system), that can be obtained
with the contribution of remote sensing data, dreddgricultural systems (cropland, cropping
system, and farming system respectively) that ddeessed in this chapter. These bridges are
based on a set of definitions and hypotheses thgirasented hereafter.

Land cover addresses the description of the larfdciin terms of soil and vegetation
layers, including natural vegetation, crops, anoh&n structures (Burley, 1961). Land
use refers to the purpose for which humans exghleitand cover (Lambin et al., 2006),
including land management techniques (Verburg gt2809). In remote sensing-
derived maps, mixed LULC (land use/land cover) telgeare often used because
concepts concerning land cover and land use aes\atre closely related and, in many
cases, can be used interchangeably (Anderson,ei%6). Cropping systems are
defined, at least, by the dominant crop type. Gypes, or at least crop groups (e.g.,
winter and summer crops; Atzberger and Rembold3R@ite often represented in these
satellite-derived LULC maps. More recently, infotina on the intensification mode,
such as the use of irrigation (e.g., Thenkaba#l t2010) or the adoption of multiple
cropping (e.g., Arvor et al.,, 2011), appears in tHeLC maps, improving the
characterization of the cropping systems using tereensing data.

Land use system can be defined as a coupled hunmanomment system. It describes
how land, as an essential resource, is being ustdhanaged by. Remote sensing data
do not record human activities and thus cannotitexity used for land use system
mapping. Photo-interpreters historically used pagietones, textures, shapes, and site



associations to derive initial land cover informatinto land use information (Anderson

et al.,, 1976). This approach is consistent withbveg et al. (2009) who proposed

obtaining land use system maps from land cover mapplemented by observations,

inferred from landscape structures. Farming systeteined by most experts as a
combination of biophysical, socio-economic and hnml@ments of a farm, can be seen
as the land use system version for agriculture.

To conclude, LCLU mapping can be obtained by clgisg satellite images, while land use
system mapping needs a larger view and must beagiped on a larger scale (landscape scale).

2.3. Processing appr oaches

A large panel of methods and tools to produce afjural system maps from remote sensing
data are described in the literature. The methadsbe grouped in three types: radiometric-
based method, landscape approach and allocatioelsiod

Radiometric-based methods

Radiometric-based methods are largely used forl@nopand crop type mapping. Most of the
publications report pixel or object based clasatfans, and photo-interpretation methods.
Examples are discussed in Chapter 4, and this wipiioot be further discussed in this paper.

Beyond crop type, many examples concerning renestsiisg and cropping practices are found
in the literature. Most of the methods are basedtatistical relationships between surface
variables and image variables (reflectance, spganttax, texture index, etc.), while others use
signal processing techniques. The examples list&alrieur ! Source du renvoi introuvable.
show that there is a strong link between the typerapping practice and the sensor. High
resolution image primarily identifies inter- andxad-cropping, and agroforestry composition
and structure. High image acquisition frequencyallgunelps to identify double cropping
practices, crop types or groups of crop types,savdng/harvest dates, while spectral richness
is used to distinguish cultivars. Irrigation, crogsidues, and tillage practices are mainly
obtained through multispectral image analyses ccieduat different scales depending on the
structure of the fields.

Table 2. Literature examples of use of remote sensing for mapping cropping practices.
References in bold are review papers.

Cropping practice Crop (sensor) Example of studies




Crop variety Sugarcane (Hyperion)
Sugarcane (Landsat)

Galvaoet al., 2005
Fortes and Dematte, 2006

Double-cropping Soybean & others (MODIS) Arvor etal., 2011

Cereals (MODIS)

Qiuetal., 2014

Harvest date Sugarcane (SPOT)
Sugarcane (SPOT)

Lebourgeoist al., 2007
El Hajj et al., 2007

Sowing date Soybean (MODIS)

Maatoai@l., 2012

Harvest mode Sugarcane (Landsat, DMC) Aguiaretal., 2011

Sugarcane (Landsat, CBERS)COlzetal., 2009

Irrigation Various crops (MODIS) Gumma et al.,, 2011
Wheat (FORMOSAT, ASAR) Hadriaetal., 2009
Review Ozdogaret al., 2010

Crop residue Various crops (Landsat) Pachecat al., 2006
Review Zhanget al., 2011

Tillage Wheat (FORMOSAT, ASAR) Hadria et al., 2009

Various crops (Landsat) Sullivanet al., 2008

Row orientation and width  Vineyard (aerial photos)  Delenneet al., 2008
Olive groves (QuickBird) Amorusoet al., 2009

Orchards (Ikonos) Aksoyet al., 2012
Vineyard, cereals (aeriaLefebvreetal., 2011
photos)

A detailed analysis of the publications on cropppmgctices and remote sensing shows that,
even if the proportion of publications addressimg tssue is increasing (4% of the total remote
sensing and agriculture publications in the ‘90sl 8% currently), these publications primarily
concern only one cropping practice at a time, &edanalyses are generally conducted at local
scale. Literature on the cropping system itselktil limited in terms of the number of
publications (2% of the total published remote senand agriculture papers), and does not
progress significantly.

Landscape approach

Cropland and crop type maps can be viewed as aicnafspatches, where the patches are the
landscape elements. In that case, landscape medindse used to characterize the agricultural
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system. The term “landscape metrics” refers toceslideveloped for categorical map patterns
(McGarigal, 2014). Landscape metrics exist at titelp class (patch type), and landscape level.
At the class and landscape level, some of the oseguantify the landscape composition (the
relative abundance of crop patch types, for inggnehile others quantify the landscape
configuration (the position, connectivity or thegeeto-area ratios of the cropland, for
example).

Although very few articles use landscape metricgharacterize agrosystems compared to
ecosystems (see review by Uuemaa et al., 2013)e sdrthem use crop class metrics as an
input for ecological studies (e.g., Pocas et @113, and a few use landscape research for
agricultural perspectives. The aim of these laiegenerally to evaluate different policies on
agricultural landscapes or to assess the susthipaifithe agricultural systems. For example,
Plexida et al. (2014) discussed the role of modeitivation methods on the simplification of
landscape patterns in central Greece. They shoh&dthe landscape in the agricultural
lowlands was characterized by connectedness (lailgies of Patch Cohesion Index) and simple
geometries (low values of fractal dimension indexhereas the landscape pattern of the
pastoral uplands was found to be highly diversgh(f8hannon Diversity index). Panigrahy et
al. (2005) and Panigrahy et al. (2011) used larmmsscamposition metrics to assess and evaluate
the efficiency and sustainability of the agricuttusystems in India. They proposed and
calculated three indices, namely the Multiple Ciogpindex (MCI), Area Diversity Index
(ADI), and Cultivated Land Utilization Index (CLUlusing three satellite-derived seasonal
land cover maps. The MCI measures the croppingsitie as the number of crops grown
temporally in a particular area over a period of grar, the ADI measures the multiplicity of
crops or farm products planted in a single yead #re CLUI measures how efficient the
available land area has been used over the yeaP@sgrahy et al., 2005) for formula). The
indices were categorized as high, medium, and lowevtaluate the cropping system
performance in each of the districts.

An example of landscape metrics based on the $patdiguration of the classes is given in
Colson et al. (2011). They used eight landscapeieaab quantify and investigate the spatial
patterns of cattle pasture and cropland througtimistates of Para, Mato Grosso, Ronddnia,
and Amazonas, and concluded that these metricseshewidence of a possible measure for
discerning the patterns of agriculture attacheal ¢ertain state.

Spatial allocation modeling

Global cropping system maps (crop type and irra@ggtare emerging at coarse resolution (see
Anderson et al. (2014) for the description and cangon of these products). They are based
on statistical data downscaled at the adminisiakiwel into grid-cell specific values. An
illustrative example of spatial allocation is th®/AV model (SPatial Allocation Model),
developed at the meso-scale by You and Wood (2804d)You et al. (2009), to spatially
disaggregate crop production data (acreage and)yigthin geopolitical units (e.g., countries
or sub-national provinces and districts), usingrass-entropy approach. The pixel-scale
allocations are performed by compiling and merggigvant spatially-explicit data, including

9



production statistics, satellite-derived land cavata, biophysical crop suitability assessments,
and population density. In such models, remoteisgns mainly used to locate cropland at

regional scales as an input for the allocation (e spatially disaggregate statistics data for
instance), while the crop determining factors ameegally established by expertise or statistical
analyses (Leenhardt et al., 2010). Recent exangplewed that satellite images can also be
used to understand and model the environmenta¢rdriof cropping systems. For example,

Jasinski et al. (2005) used a multiple logisticresgion to model the role of environmental

variables (vegetation type, soil type, altitudegps, rainfall) on the Southern Amazonian

cropland dynamics previously assessed using resantging data. More recently, Arvor et al.

(2014) showed that the adoption of intensive dowbbpping practices was related to the

spatial variability of rainfall regimes and favorled a high annual rainfall, a long rainy season
and a low variability of the onset date.

However, a major drawback of the spatial allocatnoodels approach is that it is not always
possible to obtain deterministic relations betweasily accessible factors (climate, solil, etc.)
and cropping system elements, especially in “intensystems” compared to “traditional
systems”, which are more dependent on environmésttdrs (Figure 4). According to Jouve
(2006), in southern countries where traditionalterys are important and make little use of
modern means of production (mechanization, fediilan), the farmers capacity to artificialize
their environment and get rid of the environmewtahstraints is limited. In those cases, the
relationship between the cropping systems and emviental conditions is strong, and the
spatial distribution of the cropping systems raBemore the environmental differences than
the farming differences. Additionally, the relatstmp can be identified at the rural community
scale. Inversely, in intensive systems, the det@nygifactors approach is more difficult to set
up and the spatial allocation models can be mdfieult to implement.

[ ]

Land use and practices

(anthropogenic factors)

Intensive
systems

Natural resources

Traditional
systems

(biotic and abiotic factors)

[ ]

Figure 4. Relative weights of the determining factors in the traditional and intensive
agricultural systems.
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3. Examplesof Agricultural Systems Studies using Remote Sensing

Threecase studies - agroforestry in Bali (Indonesiaylde cropping in Southern Amazon
(Brazil), and traditional rainfed agriculture in Mawere selected to illustrate the use of remote
sensing for mapping agricultural systems. Two ehihBali and Mali, are characterized by
smallholder agriculture, while the Brazilian casecharacterized by commercial agriculture
(Figure 1b). These case studies are far from reptegy all of the possible uses of remote
sensing, but they illustrate a diversity of teclah@nd scientific approaches, while addressing
some worldwide agricultural issues (geographidfeeation, agricultural system sustainability,
food security, etc.).

3.1. Presentation of the case studies

Agro-forestry in Bali

In tropical regions, small stakeholders’ agrofanest the most common traditional cropping
system. It associates different crops inside alsiplpt, with multifunctional trees to produce
fruits, cash-crops, wood, medicines, shading, @ottserve biodiversity in various proportions
and organizations. This system allows a relatiwagnability in food diversification, but not
in incomes, which depends on the trading markedtdlations. Agroforestry is promoted by
agronomists for environmental and livelihood quyaldnd is questioned by socio-economists
because of the cash-crop vulnerability. This emigleasthe need for evaluating the actual
environmental, social and economic benefits of saropping system. Remote sensing studies
now propose new tools to objectively characterize agroforestry systems at the intra-plot
scale (Coltri et al., 2013; Guillen-Climent et &014; Pefia-Barragan et al., 2004; Aksoy et al.,
2012; Ursani et al., 2012; Mougel and Lelong, 20@8)the farm level (distribution among
neighbors), and to replace it in the landscapeim@tvastfelt et al., 2012; Lei et al., 2012).
This allows associating different environmentali@gtural, and socioeconomic conditions in
integrated analyses to understand the drivers rdwdtiral choices and resilience (Fox et al.,
1994; Gobin et al., 2001; Kunwar, 2010), and theelleof productivity and quality of the
production.

The case study presented in this chapter is sduiteBali, an active volcanic island of
Indonesia. Coffee is cropped almost everywherbercentral highlands. The study focused on
a 220 km2 area located in Kintamani county whidamsous for its coffee crops. The landscape
is shaped by the local topography, which range® 800 m to 1800 m (Figure 5). This work
aims at producing a cropping system map in ordermierstand coffee quality drivers, and
helps delimitating an area labeled by the distorctof the Protected Geographical Indication
on Arabica coffee.

Double cropping in Southern Amazon

For nearly forty years, the Southeastern AmazoBriawzil experiences severe agricultural
dynamics. Cropland expanded dramatically to suppomimercial cultivation of important
11



commodities such as soybean, maize, and cotton.s&bherity of the agricultural dynamics
explains the abundance of large-scale monitorindis$s using remote sensing. To date, most
remote sensing based studies were carried out M{DIDIS data for three reasons: (i)
monitoring such a large area requires a huge nurabdrigh remote sensing data to be
processed, (ii) high cloud cover rates during tiay season prevents the acquisition of good
quality high resolution images during the croppiegiod, and (iii) the mean field area is about
180 ha so that even 250 m medium resolution imagesvalid for crop type mapping.
Consequently, most MODIS-based approaches to date tased on the interpretation of
vegetation index (NDVI or EVI) time series. Suamdi series have long been successfully used
to estimate cropland areas thus evidencing thel ragiicultural expansion during the 2000s
(Anderson et al., 2003; Morton et al., 2006).

In Mato Grosso state, Arvor et al. (2012) estimdtext net cropped areas increased by 43%
between 2000 and 2007, reaching an area of 55@88lk the same time, farmers adopted
new agricultural management practices to intertsiéyproduction process. The cultivation of
two successive crops, as soybean and cotton, befreiin a long rainy season (Arvor et al.,
2014) and regular rainfall from mid-September te lslay. In this context, the Mato Grosso
case study aims at producing a cropping system shawing the main crop type and the
intensification practices in relation to the raihfand a land use system map to analyze the
agricultural transition in Mato Grosso.

Rainfed agriculturein Mali

In the Sudano-Sahelian region, farming is the nsaimrce of income for many people, where
millet and sorghum are the main food crops. Thé wegority of the population (80%) consists
of subsistence farmers. A few larger farms prodtrops for sale (cash crops), mainly cotton
and peanuts. In the Sudano-Sahelian zone, thegsiependence on rainfed agriculture implies
exposure to climate variability in addition to thepacts population growth have on food
security. Key deliverables of food security systefos crop monitoring consist of early
estimates of cultivated area and crop-type distiviou cropping practices, detection of growth
anomalies, and crop yield estimates. Unfortunatibky,national statistics can be deficient in
insecure countries, and remote sensing has an tamaole to play in delivering information
for crop monitoring (e.g., Hutchinson, 1991; Thddh et al., 2009). Remote sensing
techniques face numerous challenges for crop mgppinregions where the cropland is
fragmented, made of small, highly heterogeneouddsieovered with many trees. In Mali,
Vintrou et al. (2011) showed that 20% to 40% ofptaad classification errors using MODIS
is inherent to the structure of the landscape.

Southern Mali case study aims at producing farnsiygtem map (food-producing, intensive,
and mixed agricultures) in support to food secuaitplyses (USAID, 2009). Because local
factors, such as climate, soil, water availabil#gcess to markets, and fertilizers influence the
agricultural systems, mapping these systems cagm thelermine which region and which
population may be vulnerable to different hazafdiditionally, the cropping system map can
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be used for spatialized agro-meteorological modedind forecasting at regional scales (see
example in Vintrou et al. (2014).

3.2. Remote Sensing data and methods

The data (remote sensing images, ancillary dathjregthods used to produce agricultural maps
are presented irreur ! Source du renvoi introuvable. for the three case studies.

Table 3. Typology, data and methods used to produce agricultural system maps for the three

case studies.
Case study . Satellite data
Agriculture .0 isition  Other data  Method Map products
(area) type year)
DEM iFr)l?ec:):gretation g;gt%;?:]ng
- uickBird
Bali island Smallhoder Sundle )
(224 km?) g (2003) surve Spatial analysis  Farming
ointsy (majority filter; system
P 1 ha window) (agrosystem)
Pixel-based
supervised Crop type
classification c :
ropping
. . MOD13Q1 system
Mato Grosso Commercial EVI pI‘O(?UC'[ i Landscape 4
906 000 km?) agriculture i
( ) ag (2005-2008) analysis (land Farming
cover and land
system
use classes
metrics; 770 km?
window)
100 villages
field survey Texture analysis
MOD13Q1 (2001-2004) (MODIS NDVI)
NDVI
product Cropland Landscape
(2007) map at analysis (land
Southern Mali Smallhoder 250 m cover classes Farming
(165 790 km2) agriculture  MCD12Q2 resolution. m'etrics; 100 km?  system
phenology window)
product - Climate
(2007) type, DEM  Random Forest
and classification
population
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4000
villages
location

In Bali, a multispectral QuickBird image at 0.6 esolution was photo-interpreted to delineate
the field limits and identify six cropping systetnased on the field survey: citrus monocrop,
coffee monocrop without shade, coffee associatatl ight shadow (citrus), coffee under
dense shadow (erythrina, albizias, leucaenas, etoye crops associated or not with coffee,
and food-crops. An agrosystem map was then obtéipepplying a majority filter (1 ha square
corresponding to a dozen of crop plots) on the girapsystem map, and was defined by its
upper vegetation layer in four classes: citrusye)aense shading trees, and food crops. The
term agrosystem is preferred here to the terfarming system whose definition goes beyond
what is studied in this case.

In Mato Grosso, MOD13Q1 EVI products acquired fraG05 to 2008 period, were used to
produce a cropping system map showing the main tyqogs (soybean, corn and cotton), and
their intensification practices (mono and doublepming). Arvor et al. (2013a) used a
landscape approach to better characterize thedaadsystem across the state. The strategy
consisted of applying a regular grid where eachrepresented an approximation of a district
territory (a district was considered as an admiaiste sub-level, below the municipality level).
There were 1175 districts in Mato Grosso, a tot&d® 000 km?, and the grid cell was fixed at
25.75 x 27.75 km?, approximating an area of 770.kn3et of landscape indices was then
computed for each cell based on MODIS-based laaedlassifications and deforestation maps.
Those indices referred to the proportion of wildssareas, the proportion of cropped areas in
deforested areas, and the proportion of intensraetiges observed in cropped areas. Some
thresholds were applied to identify different lars® systems, such as pre-settlement area, non-
cropland occupation, cropland occupation, non-e@mglconsolidation, cropland consolidation,
non-cropland intensifying, cropland intensifyingdantensive cropland.

In Mali, the field size and MODIS spatial resolutiprevent from producing a crop type map.
We then mapped directly the farming system mapguai8-class typology. This typology was
defined at the village scale, and based on a $etdey carried out in 100 villages in Southern
Mali (Soumare, 2008). The typology was createdgisikpert knowledge, and considering the
main crop types cultivated in the village and titemsification of production (use of fertilizers,
equipment, livestock, etc.): the “food-producingriagjture” class groups the millet and
sorghum-based agricultural systems, the “interagreculture” class includes farms with maize
and cotton, and the “mixed agriculture” class engasses farms where both coarse grain
(sorghum) and a cash crop (cotton) are found (¥inat al., 2012). A random forest algorithm
(Breiman, 2001) was trained on the 100-village dataand on a set of 30 variables composed
of 4 spectral metrics (annual maximum, annual maanpal amplitude, and seasonal mean
from May through November; MOD13Q1 product), 12tte® indices (maximum and mean of
the variance and skewness indices, calculated avjihttern size of seven MODIS pixels for
March, June, and September; MOD13Q1 product), Aglbgy metrics (MCD12Q2 product),

3 spatial metrics (the fraction of cropped areanber of cultivated patches, and the mean
cultivated patch size inside a 10 x 10 km? aredered on the village; MCD12Q1 product), 3
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environmental indices (climate type, maximum anéumaf elevation), and 1 population indice.
All of the indices were extracted for cropland onffhe random forest model trained on the
100-village ground survey, was applied to the 4 @08ges in South Mali.

3.3. Resaults

Agroforestry in Bali

In Bali, the cropping system map is presented gufé 5a. Photointerpretation performed on
the ground-truth plots showed that confusion bebhna@us and coffee under citrus is less than
10%, whereas other class errors lie below 2%. Tia¢yais of the distribution of each cropping
system showed that the most frequent are the dimaed crops (18%) and those shaded by
large trees (15%), followed by the food-crops (12860 the associated coffee and citrus crops
(10%). The mean size of a plot is approximatelyl@ 7but the clove plots are generally bigger
(1.2 ha) and the food-crops are smaller (0.3 ha).

The agrosystem map is presented in Figure 5b. Tinesdased agrosystem is largely
dominant. Coffee, as being cropped below the domiitreges, does not appear in the map
legend.
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At first glance, the cropping system and agrosyspatial distribution looks complex because
of a number of factors, such as a North/South eshtraltitude, and local geographic
characteristics, such as river network densitypesle@xposition to wind, and the presence of
lava-flows and forests. The cropping and agrosysteaps were then used to analyze the
distribution of each agricultural system, in redatito altimetry because of the strong
relationship between coffee quality and altituderifsky, 1998; Wintgens, 2004; Montagnon,
2006). The area covered by all of the differentpping systems is plotted for each 100 m-
altitude bin, between 1000 m and 1800 m in Figaewhile Figure 6b represents the altitude
distribution for the area covered by the coffeegolasropping systems alone. The two principal
coffee-based cropping systems were found to beetHominated by citrus or dense shading
trees. The former is most common at high altitu@6 from 1200 m to 1400 m), while the
latter dominates coffee crops at lower altitude&4eelow 1100 m). The third coffee-based
cropping system, dominated by clove shading, caasraall acreage and is spatially restricted.
It is present at the lowest altitudes, mainly beld®00 m (68%) and 1200 m (28%). The
unshaded coffee monoculture is not typical in taistory.
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Figure 6. Areal altimetry distribution per bin of 100 m between 1000 m and 1800 m in
Kintamani territory in Bali: @) per cropping system class, and b) per coffee-based cropping
system class (Arabica monocrop is not displayed because it coverslessthan 2 ha).

The coffee samples location and sensorial quaditysr were plotted in both the cropping and
agrosystem maps to understand the spatial diswibof the coffee characteristics at the two
scales (Figure 5c). A landscape analysis providedtial and topographic distribution

information about the three coffee quality classes] helped to identify the relationships
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between quality of coffee beans and the local agibnal environment. This integrated analysis
suggests that good coffee is only found in theusttominated agrosystem, even if it is not
cultivated in association with citrus at the pktél, and cropped above 1200 m. This area was
validated by both the coffee farmers and the tsdeand accepted by the Indonesian
Government as the official limits of the labeletitery.

Double cropping in Southern Amazon

Time series of vegetation indices were used toctlet®p types and cropping practices using
an analysis of agricultural calendars. The prodtigadertake two successive harvests per rainy
season: they cultivate soybean from late Septetobearly February, and then cultivate maize
or cotton until June or July. The double croppiggtems show very different patterns in their
vegetation index time series and can be easilyidigtated (Arvor et al., 2011). The user’s and
producer’s accuracies of the cropland were highant95%. Main crop types were also
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Figure7) with good Kappa index (0.68) and overall accur@@fo). Once the double cropping
classes are grouped (i.e., the “soybean + corn™smgbean + cotton” classes; Figure 8a), the
user's and producer’s accuracies increased up @b% and 86%, respectively. The main
uncertainties to be considered in these maps t@fsrghum or millet that is sometimes sown
after the soybean harvest (to prevent soil erds@mn intense rainfall) and can thus be confused
with maize. Such issue highlights a main limitat@nEVI| time series-based classification
(different crops with similar agricultural calendanay be confused) that could be overcome
with a better spatial and radiometric resolutiands only Blue, Red and NIR bands are used
to compute the Enhanced Vegetation Index usedairwvtbrk).
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Figure 7. Maps of the three main crop types (soybean, corn and cotton) for the 2006-2007
harvest for the four main agricultural regionsin Mato Grosso: (A) Parecis plateau, (B) along
the BR163 highway, (C) southeasternregion (D) easternregion (Arvor et al., 2011). Mapswere
obtained through supervised classification of MODI S vegetation index (EVI) time series.

Beyond such limitations, those results are in aged with results obtained by different
authors (Galford et al., 2008; Arvor et al., 20Btown et al., 2013) who successfully mapped
double cropping systems in Mato Grosso and confirthe generalization of such intensive
practices. Arvor et al. (2012) estimated that tr@pprtion of croplands permanently covered
by double-cropping vegetation during the rainy eaascreased from 35% to 62% between
2000 and 2007. This trend raises a major issuedegpthe sustainability of cropland systems
in Mato Grosso. Fu et al. (2013) proved that timgtle of the rainy season is decreasing in the
southern Amazon, which leads to the question oftldrethe adoption of double cropping
practices would still be viable in the changingraie. Even if intensive practices are a relevant
strategy to contain deforestation, it raises newas regarding agricultural sustainability in that
region.

The land use system map shows a good overvieweo$dlgbean agricultural frontier in the
southeastern Amazon (Figure 8b). It demonstrates dfiiciency of public policies to
simultaneously contend deforestation (through tleaton of protected areas) and encourage
crop expansion (through the construction of impdrtanfrastructures, such as the
Transamazonian roads).
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Rainfed agriculturein Mali

The Random Forest model classified the agricultggdtems with an estimated overall
accuracy of 60% calculated from Out-Of-Bag obseovet (
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Figure9). The “food-producing agriculture” class was doarihin the Sudano-Sahelian part of
the area. Sorghum and millet are well adaptedisozitne because they are resistant, and have
a short growth cycle of about 90 days. In the tradal cotton basin, the dominant system is
agro-forestry/pastoral agriculture mainly with rfaith crops. Agriculture is focused on cotton,
the main cash crop, and corresponds to the clagsnSive agriculture”. The Sudanian zone
part of the area is also a cotton-based system, Zoumeis more diversified, with the
simultaneous presence of “intensive agricultured &nixed agriculture” systems. The length
of the rainy season in this region makes it posgiblgrow a wide range of species. Farmers
usually cultivate different species and varietgesrisure a certain degree of production stability.

Class errors ranged from 30% to 50%. Globally, posd's and user’'s accuracies were
reasonably balanced for each class (less than rit@medifference), meaning that the village
agricultural systems were estimated correctly. Missifications can be explained by three
main factors: (i) the small size of the crop paschempared to the 250 m spatial resolution of
MODIS sensor, and the natural and crop vegetagasanal synchronization due to a short
rainy season, (ii) the size of the training data($60 villages), and (iii) the definition of the

classes (a rough proportion of different crop tymesl crop intensification variables) that is
expert dependent and includes variables that cdrendirectly related to landscape features.
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Figure9. Village-based farming systems in South Mali predicted by the Random Forest model
(Vintrou et al., 2012). The model was based on 100 village samples, and 30 MODIS-derived
and socio-environmental metrics calculated on agricultural areas.

The analysis of the contribution of the differerdgtnics (Figure 10) shows the role of the texture
of the MODIS images in the classification of themeand, even if the fields are not visible at

the MODIS resolution. The field crop informationhiglden in these broad images, but can be
identified with landscape metrics, such as imagéute indices. This indirect analysis was

confirmed by Bisquert et al. (2014) who showed that texture of broad-scale images is an
important variable for land stratification in rett to land cover, even if the land cover units

are not detectable.
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4. Discussion

While remote sensing approaches have proven toffimelt for cropland (land cover)
mapping, they still remain ill-suited for croppisgstem (land use) monitoring at the regional
and global scales because of their inability tdmggsiish crop types and the associated practices
(Monfreda et al., 2008). In this section, we coasithe main present limitations of remote
sensing studies for regional mapping of croppingteays, and introduce some emerging
research areas to overcome such limitations. We discuss the opportunity to work on an
extended landscape agronomy approach.

4.1. Difficulties of mapping the cropping systems at regional scales

Remote sensing-based land use maps suffer fromrtaimtees related to the spatial and
temporal resolutions of the observing system, aritie¢ landscape structure.

The spatial resolution issue is particularly troe $mallholders agriculture (Figure 1b), for
which remote sensing data are unable to resohreithil fields (Ozdogan, 2010). Rather than
a sensor resolution issue, it should actually besiciered as a scale issue to be addressed
through the concept of H-resolution and L-resolut(8trahler et al., 1986; Blaschke et al.,
2014). H- and L-resolution terms are different fraigh and low spatial resolution images as
generally mentioned in remote sensing studieshdndtter, the resolution refers to the sensor
spatial resolution independently of the geogratiects concerned. H-resolution model is
valid when scene objects are much larger thanntlagié spatial resolution, thus several pixels
may represent a single object (a field, a treeMeanwhile, L-resolution model is when objects
are much smaller than the image spatial resolufanimage may contain both H- and L-
resolution information (Hay et al., 2001). Marcedual. (1994) place the limit between H- and
L- when the dimension of the resolution cells i$024 the size of the objects of interest in the
scene. This threshold should be a guide for agggsdiether the analysis should be performed
at H- or L-resolution.

— For an H-resolution situation - agricultural fieldsMato Grosso using MODIS sensor - a
cropping system can be assessed directly by cleaiang crop types and their associated
cropping practices using inner field informatioriigded from relatively pure pixels).

— For an L-resolution situation — cropped trees ii Baing QuickBird sensor or cropped
fields in Mali using MODIS sensor - pixels correadao a mixture of different crop (or
trees) types and other landscape elements (natagdtation, water bodies, buildings,
roads, etc.).

The temporal resolution issue in crop mapping ghlyi dependent on the environmental and
agronomic conditions. For example, in tropical drgas where rainfall is the main driver of
vegetation growth (e.g., the Sahelian part of Makural and cultivated vegetation are difficult
to separate using phenology. In equatorial aregs @ali) characterized by a low seasonality,
it is difficult to discriminate crops due to fluetting crop calendars. However, even in regions
with contrasted seasons (e.g., Mato-Grosso), diftercropping systems with similar
agricultural calendars cannot be separated usin@@VI time series. A better temporal
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resolution (less than 16 days) would surely impravep discrimination in most of the
agricultural systems.

The quality of the land maps produced by imagelgiased classification, is usually evaluated
using a set of indices (producer’s accuracy, usasiracy, overall accuracy and Kappa index)
which are commonly calculated from an error mafoixconfusion matrix; see Congalton and
Green, 1999). While such accuracy metrics have leidely accepted by the scientific
community for a long time, they have also been latyu criticized (Pontius and Millones,
2011). These metrics tell nothing about the soafegror that can be linked to the performance
of the classification algorithm, or to the resabutiof the remotely sensed data (Boschetti et al.,
2004). For instance, Vintrou et al. (2011) using Bareto boundary method showed that in
Mali, 20% to 40% of cropland classification errarsing MODIS data is inherent to the
landscape structure. In this context, new procgssid evaluation approaches are required to
better consider landscape properties in order wramme these limitations and allow an
efficient monitoring of farming systems at regiosaéle.

4.2. Emerging remote sensing resear ch

There was a challenge in land cover mapping irR0@0’s, and today, there is a challenge in

land use system mapping. It is an emerging arethéremote sensing community that needs
to focus on land use and land function (Verburglgt2009). It requires developing new data,

methods, and a further integration of the discgdimnvolved in land science research. These
developments are presented hereafter accordimg t@solution situation (the direct and direct

cases).

When the landscape elements are larger than thed pize (H-resolution situation), many
examples in the literature showed that croppingtmas can be directly assessed (Erreur !
Source du renvoi introuvable.). Except for rarenegkes of mapping crop type and cropping
intensity in regions where the size of the plotsaspatible with broad scale sensors (Mato
Grosso case study), the research was mainly desegtlaiplocal scale, and for one practice at a
time. To further characterize regional scale crogppractices, research needs to focus on
developing automatic or semi-automatic crop typasgfication procedures, and on the
combination of different sensors to catch differerectices in the same area. Another way to
work at broader scales is to properly translatalléiadings to larger regions by using case
study results from specific land functions (Verbetgl., 2009). This approach needs to define
the spatial extent and function for the local stsdepresentative of a region. Land stratification
into homogeneous landscape units could be a wegatth this objective. Bisquert et al. (2014)
showed that processing broad-scale remote senaiaguith spectral and textural segmentation
techniques permit to delineate radiometrically hgemeous landscape that were consistent in
terms of land cover.

When the landscape elements are smaller than xleégze (L-resolution situation), research
needs to focus on the role of landscape as a medratacterize the cropping systems. Research
on landscape metrics for agricultural systems dtaraation must be pursued and enhanced.
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Furthermore, given the multidimensional nature griaultural systems, focusing on multiple
metrics within a systems perspective is needed rtitoerle et al., 2013). As the current
approaches based on the remote sensing data aselffioient to develop a comprehensive
understanding of situational changes for multipled functions, remote sensing-based metrics
should be completed by other types of metrics, sash socio-economic descriptors
(demography, ethnic spatialized data, etc.). Togedreterogeneous information, new data
processing tools, such as fuzzy logic and datangitools (Vintrou et al., 2013; Korting et al.,
2013), must be tested to characterize and mapudigiial systems and processes.

To implement both approaches (direct and indirgbt,scientific community should benefit
from recent promising advances in remote sensich a8 GEographic Object-Based Image
Analysis (GEOBIA) and ontologies. GEOBIA is basadthe hypothesis that partitioning an
image into objects is related to the way humansceptually organize the landscape to
comprehend it (Hay and Castilla, 2008). It is altyusased on two main components. First, a
segmentation delineates regions (objects) of ttegarthat have common attributes. Second,
the approach incorporates the user (expert) kngeled the image processing operation to
produce reliable maps. However, to date, GEOBItiit limited by important issues related
to product evaluation and knowledge managemeneedddit is still unclear how to assess a
segmentation quality (actually considered as apafied problem), although Clinton et al.
(2010) proposed interesting metrics to assess GEGBfmentation goodness through vector-
based measures. Although the integration of knogdeskpertise in the image interpretation
process is a main strength of GEOBIA, it can alsacdnsidered as a main limitation as long as
two experts do not share a consensual knowleddgi(Bet al., 2014). In such a context, it is
likely that knowledge representation techniqueshsag ontologies can play a pivotal role
(Arvor et al., 2013b). This point is especially memgful in the case of agricultural system
mapping where expert knowledge is crucial and oftéincult to formalize. In case of land
cover products, Comber et al. (2005) investigatedsdemantic and ontological meanings of
land cover classes and concluded that current jggnadfor reporting data quality do not
adequately communicate the producer's knowledgease of land use and land use system
products, the ontological meaning of the classesvien more difficult to formalize. For
example, agricultural practices such as double gngpor no-tillage have been studied in
various regions of the world although they mightespond to different practices on the ground
(different types of crop, different levels of smanagement). In conclusion, ontologies might
play an important role to allow comparison of coexpand heterogeneous land maps.

4.3. Towards an extended landscape agronomy approach

Landscape and agronomy have long been considerdsady associated. The first references
on the relationship between agricultural landsceages field management appeared in the
1990s, (e.g., Baudry, 1993; Deffontaines et al95)%nd addressed how farming activities
produce agricultural landscapes, i.e., explainedstbatial distribution of patches (fields and
associated boundaries). Since then, very few stwdiee published on the relationship between
agricultural practices and landscape propertias,(&alli et al., 2010; Herzog et al., 2006).
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Most of the research focused on the characterizaim understanding of landscape patterns
to relate them to ecological issues (e.g., Baut®93; Herzog et al., 2006). Benoit et al. (2012)
argued why and how agronomy can contribute to leayals research with a conceptual model.
He suggested a new perspective on farming pracgasrucial driver in the landscape pattern-
agricultural process relationship. He proposecetgetbp a new research area called Landscape
Agronomy (see also Rizzo et al., 2013) defined tas felations among farming practices,
natural resources and landscape patterns, whicmast/ed in the dynamics of agricultural
landscapes

We previously mentioned that few landscape studikged to agricultural issues use remote
sensing. Although it is now widely understood tbitpping practices adopted in agricultural
systems shape rural landscapes, we believe itme tio use landscape agronomy and
guantitative remote sensing sciences. Applying eptecof landscape ecology to agricultural
systems monitoring and mapping is a major idea.CHse studies from Bali and Mato Grosso
illustrate this new trend in landscape agronomgaiesh and show that, thanks to its ability to
identify spatial land cover patterns at local (Balnd regional (Mato-Grosso) scales, remote
sensing has become an essential source of infamtatiidentify agricultural systems.

However, landscape agronomy research will haveate the same limitations as landscape
research. These limitations concern the numerawsss of error or uncertainty with producing
land cover / land use maps from remote sensingenyagnd on the choice of the landscape
metrics which need to show a close association thighprocesses to be detected (Newton et
al., 2009; Hurni et al., 2013). Another sourcamitation is the simplistic approach of thematic
mapping and the derivation of two-dimensional pattaetrics in landscape ecology (Newton
et al., 2009), while remote sensing data have titenpial to provide a three-dimensional
characterization of landscapes and their compoparis (as seen in Bali study case) and
guantitative surface variables (as seen in Maliyitase) that could be directly integrated in
the landscape analysis. We showed through thesilally case that the agricultural landscapes
could be indirectly characterized by using a setaiéllite-derived metrics (spectral, textural,
temporal metrics) without going through a themat@p of the crop types. This approach is
essential when the ratio between the field size thedsensor spatial resolution is low (L-
resolution), meaning land use maps cannot be peafjiouit it can also be used in H-resolution
situation.

5. Conclusions

It is widely recognized that accurate, updated, spatially explicit information on cropping
systems (and thus cropping intensity) is urgendgded at the global and regional scales to
provide insight into the direction and magnitudenafrld agricultural production in terms of
crop type acreage and yield (Lobell and Field, 20@idd in terms of agricultural impacts on
natural environments (Galford et al., 2008) andewaesources (Thenkabail et al., 2010).
Additionally, information is needed locally to mtwr resources, preserve cultural landscapes
and for land certification (Jouve, 2006). This mhation is not yet included in the regional
land cover datasets, and remote sensing entiraylanks the actual practice of agriculture
(what is grown, how it is grown, what inputs aredisat this scale (Monfreda et al., 2008).
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In this paper, we showed how the current generatibricarth observation systems can
contribute to the characterization of agricultusgistems locally and regionally, through

bibliographic studies and three case studies. VWevatl that the remote sensing ability to
describe cropping systems is mainly related tor#tie between the spatial resolution of the
sensor and the size of the landscape elementsrdtiosdetermines if the fields (or the trees)
can be identified by the observation system, tréfremote sensing data offers only a view of
the cropland in its environment. This latter casadk to the development of new tools and
methods to indirectly connect the spatial pattefithe agricultural landscape to the cropping
management practices over large territories.

This bibliographic overview shows that the resea@mmmunity is now at a turning point where
landscape research is not devoted to ecologicakss®nly, but has started to embrace
agricultural matters also. We believe that landsagronomy is on the right track, and that the
current and future Earth observing systems (sucBeaginel-2 or Landsat8) will have an
important role to play in this new research area.
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