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In this paper, we introduce the concept of spatial and spectral control of nonlinear parametric sidebands in multi-
mode optical fibers by tailoring their linear refractive index profile. In all cases, the pump experiences Kerr self-
cleaning, leading to a bell-shaped beam profile. Geometric parametric instability, owing to quasi-phase matching
from the dynamic grating generated via the Kerr effect by pump self-imaging, leads to frequency multicasting of
beam self-cleaning across a wideband array of sidebands. Our experiments show that introducing a Gaussian dip
into the refractive index profile of a graded index fiber permits us to dramatically change the spatial content of
spectral sidebands into higher-order modes. This is due to the breaking of the oscillation synchronism among low-
order and higher-order modes. Hence, the inter-modal four-wave mixing approach should be used to describe the
sideband generation mechanism. Observations agree well with theoretical predictions based on a perturbative
analysis and with full numerical solutions of the (3+1)D nonlinear Schrödinger equation. © 2019 Optical

Society of America

https://doi.org/10.1364/JOSAB.36.001117

1. INTRODUCTION

The last few years witnessed a strong renewed interest in the
research on controllable spatio-temporal beam shaping with
multimode optical fibers. In particular, graded-index multi-
mode fibers (GRIN MMFs), thanks to their reduced modal
dispersion, which permits relatively long interaction lengths
among the guided modes, were found to host a rich variety
of spatiotemporal dynamical effects [1–3]. Among these, we cite
multimode solitons [4], ultra-wideband spectral sideband series
generation from either oscillating multimode solitons [1,5] or
quasi continuous-wave (CW) pulses (also known as geometric
parametric instability, GPI) [6–9], intermodal four-wave mixing
(IMFWM) [10,11], beam self-cleaning in passive [7,8,12,13]
and active MMFs [14], supercontinuum generation [15,16],
spatio-temporal mode-locking [17,18], and wavefront shaping
control of frequency conversion processes [19], to name a few.

It remains yet to explore the possibility to control spatio-
temporal beam shaping in MMFs by a suitable tailoring of
the refractive index profile of the fiber. In this paper, we address

this issue and unveil the central role played by the refractive
index profile for the control of spatial and spectral properties
of nonlinear wave propagation in MMFs. In particular, we
reveal that a relatively small localized depression (or dip) in
the refractive index of a GRIN fiber has a significant impact
both on the Kerr beam self-cleaning, and most strikingly, on
the parametric sideband generation.

It is well known that any deviation of the refractive index
profile of a GRIN MMF from the ideal parabolic shape has
direct consequences on the spacing among propagation con-
stants of its modes [20–22]. In this work, we show that this
simple consideration has dramatic consequences on the mode
selection properties of parametric sidebands, as a result of the
disruption of the collective self-imaging effect, which is a typical
characteristic of multimode wave propagation in ideal GRIN
fibers.

To generate a parabolic index profile, optical fibers are
drawn from performs, which are often obtained by chemical
vapor deposition of dopants. A central index dip may appear
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in the deposition process, owing to the volatilization of silica,
and dopants in the innermost layers [22]. This effect is usually
unwanted, and it can be circumvented by increasing the con-
centration of the more volatile dopant.

Interestingly, the linear propagation equation describing
light propagation in GRIN MMFs in the presence of diffrac-
tion and with a parabolic refractive index profile is fully analo-
gous to the Schrödinger equation governing the state of a
quantum system under the influence of a harmonic potential.
A longitudinally invariant modification of the refractive index is
then analogous to a time-invariant perturbation of the har-
monic oscillator. From this viewpoint, the presence of a local
depression of the refractive index or dip is equivalent to per-
turbing the harmonic potential with a barrier. This analogy per-
mits a direct link with other physical problems that have been
often studied in the past. By fitting the barrier with a Gaussian
function, it was possible to study the inversion of ammonia [23].
Notably, the harmonic potential with a Gaussian barrier has been
considered since a long time in the context of the Bose–Einstein
condensates (BEC). Solitons were also studied in the context of
harmonic potentials with a Gaussian barrier [24].

The introduction of a perturbation to the harmonic quan-
tum potential leads to a splitting of energy levels (see for instance
[25]). In the case of classical optical waves in a fiber, where the
role of time is replaced by the fiber length, and propagation con-
stants play the role of energy levels, the corresponding shift of
propagation constants has direct consequences on phase match-
ing of four-wave mixing processes, hence on spatial and spectral
properties of waves scattered through parametric processes. In
the context of multimode nonlinear parametric sideband gen-
eration, it was recently pointed out that an imperfect parabolic
shape could lead to splitting of propagation constants within
nearly degenerate mode groups [26]. Moreover, the presence
of stable soliton families was theoretically predicted, when
the graded index profile is modified by the Kerr effect induced
by light itself [27].

In this paper, we will show that a central index dip in the
refractive index profile of GRIN fibers, a feature that one would
typically consider as a defect, may in fact be exploited to inspire
new ways of shaping the spatial and spectral domains of
light waves generated by four-wave mixing. In GRIN fibers
with an ideal parabolic index profile, GPI is pumped by a
bell-shaped self-cleaned beam, which translates its spatial
profile into all sidebands. These sidebands are generated by
quasi-phase matching (QPM) via the dynamic grating resulting
from the Kerr effect and pump self-imaging. The presence of a
refractive index dip breaks the oscillation synchronism among
fundamental and higher-order modes, which spoils the QPM
between the pump and sidebands. As a result, to obtain phase
matching, the sidebands and the pump need to be carried by
different modes of the fiber. Hence, a particular IMFWM pro-
cess prevails as the sideband generation mechanism. Quite re-
markably, the central positions of these IMFWM sidebands,
experimentally measured with the fiber having a central defect,
still nearly coincide with sideband positions obtained with the
perfect GRIN fiber, as derived from a GPI analysis. On the
other hand, the index perturbation leads to a broadening of
sideband spectral bandwidths.

2. THEORETICAL ANALYSIS

In an ideal GRIN fiber, the regular spacing of modal propaga-
tion constants is at the origin of the periodic, with a sub-
millimeter period, contraction of the beam waist (i.e., the
self-imaging effect) and the consequent periodic increase of
the local intensity level. Since the refractive index is intensity
dependent, the resulting long-period light-induced index gra-
ting may in turn generate an efficient QPM mechanism for
sideband waves. Wright et al. [1,5], for instance, observed in
the anomalous dispersion regime the efficient coupling of mul-
timode fiber solitons with multiple resonant dispersive waves,
thanks to the spatiotemporal periodic oscillations of soliton
beams. However, in the normal dispersion regime, Krupa et al.
[7] observed the break-up of a nanosecond pulse, leading to the
generation of multiple sidebands carried by bell-shaped beams,
as a result of GPI, that was previously predicted by Longhi [6].
It is important to consider the nonlinear spatial beam reshap-
ing, which accompanies the GPI-induced sideband generation.
GPI occurs at power values larger than the threshold for self-
cleaning of the pump beam. Hence the pump beam is mostly
carried by a bell-shaped transverse profile, with a diameter close
to that of the fundamental mode of the GRINMMF, sitting on
a background of higher-order modes [7,12]. Since the gener-
ation of the various sidebands is a result of QPM with the
different orders of the light-induced index grating, there is no
additional need for the sidebands to be carried by higher-order
modes for a phase matching of the IMFWM process. Spatial
multicasting of the pump beam occurs: all sidebands are gen-
erated with the same bell-shaped transverse beam profile and
modal content as the self-cleaned pump.

The presence of a dip in the refractive index profile of a
GRIN fiber modifies the mode propagation constants, which
disrupts their regular spacing [26], hence the exact periodicity
of the collective beam oscillations. Let us consider one of
the orthonormal modes of the ideal fiber with a parabolic index
profile, say ψ�x, y�, with a propagation constant β. Perturbation
theory predicts that a dip in the refractive index δn exp�−r2∕Γ2�
will lead to a shift δβ in the mode propagation constant, which
reads as

δβ ≃
δnω
c

Z
S
jψ j2e−r2∕Γ2

dS, (1)

where r2 � x2 � y2, S is the transverse domain, δn stands for
the depth of the refractive index dip, and Γmeasures the size of
the localized dip.

According to Eq. (1), the presence of a barrier in the poten-
tial well (that is, a dip in the refractive index profile) can be
interpreted as an astigmatism, which principally affects low-
order modes with an intensity peak at the center of the fiber
core. On the other hand, the propagation constants of modes
with a zero in the core center, will be only weakly affected
by the presence of the dip (for more details, please refer to
Appendixes A and B). Because of their propagation constant
shift, modes will exhibit a slightly different beating period,
and as a result, different modes get out of step instead of
breathing together in unison. The resulting mode breathing
dynamics is graphically visualized in Fig. 1. Here we can see
that, in the absence of a dip [panel (a) of Fig. 1], a regularly
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spaced longitudinal refractive index grating is induced by the
Kerr effect. On the other hand, in the presence of the refractive
index dip [panel (b) of Fig. 1], the longitudinal strictly periodic
beam oscillation is disrupted. Only the external crown is regu-
larly spaced, whereas the beam center exhibits three different,
and not well localized, domains of index variation. The disrup-
tion of the collective beam oscillations strongly reduces the ef-
ficiency of dynamic QPM or GPI as a mechanism for sideband
generation. In this case, phase matching between the pump and
sidebands necessarily requires that different spatial modes are
involved in the IMFWM process[10,11,28].

The phase-matching condition for IMFWM can be derived
as follows. Supposing that the pump (P) wave is carried by a
given mode p, the Stokes (S) wave is carried by a given mode s,
and supposing that the antiStokes (A) wave is carried by mode
a, the phase matching condition of IMFWM is 2βp�ωp�−
βs�ωs� − βa�ωa� � 0, where ωa,s � ωp �Ω. By fitting the
frequency dependence of the propagation constants as Taylor
expansions up to the second order, while assuming the same
group velocity 1∕β 0 and the same group velocity dispersion
β 0 0 (both calculated at pump carrier frequency) for all
modes, one obtains βs�ωs� � βs�ωp� −Ωβ 0 � Ω2β 0 0∕2 and
βa�ωa� � βa�ωp� �Ωβ 0 �Ω2β 0 0∕2. So the phase-matching
condition can be written as Δβ � Ω2β 0 0, where Δβ �
2βp�ωp� − βs�ωp� − βa�ωp� is the difference in propagation
constants between the three modes p, s, and a at the pump
carrier frequency, and it grows larger with the distance in
the modal order between the modes. The sideband frequency
detuning Ω obeys the condition Ω2 � Δβ∕β 0 0. The higher the
frequency detuning, the higherΔβ, and consequently the mode
order difference.

In the particular case of an ideal GRIN fiber, the refractive
index profile n�r� can be described by the function

n�r� � n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Δ

r2

R2

r
, (2)

with R being the core radius and Δ the relative refractive index
difference. The mode propagation constants can be associated

with Hermite–Gauss eigenfunctionsHp,q�x, y�. In this case, the
frequency detuning can be explicitly written as a function of
fiber parameters Ω2

h � 2
ffiffiffiffiffiffi
2Δ

p
h∕�Rβ 0 0�, where h is an integer

measuring the sideband order. Incidentally, one can rewrite the
same result by replacing β 0 0 with the refractive index dispersion
upon the wavelength n 0 0�λ�. In that case, one has Ω2

h∕�2π�2 �
c2

ffiffiffiffiffiffi
2Δ

p
h∕�Rλ3n 0 0� [10]. The same value of the sideband shifts

Ωh results from GPI. Indeed, for an ideal GRIN fiber, GPI is
derived by a modulation stability analysis of the longitudinally
breathing beam, which is equivalent to the IMFWM involving
the same spatial mode for pump and sidebands. In fact, GPI
analysis is based on a given ansatz for the spatial distribution of
the beam (e.g., a Gaussian). Hence, GPI sidebands are carried
by the same spatial beam shape as the pump, whereas, in the
IMFWM, pump and sideband waves can be carried by different
fiber modes. Hence, IMFWM is a more general model for side-
band generation than GPI. The present analysis is limited to
the simplified case of constant group velocity dispersion β 0 0.
A more rigorous approach would require the inclusion of
high-order dispersion terms, especially in the presence of refrac-
tive index differences larger than those considered in the
present work [29].

Other forms of perturbations may also affect the index profile
of a longitudinally invariant fiber: for example, consider core
ellipticity. This situation may equally be studied in the frame
of a perturbative approach. In this case, beam propagation ex-
hibits two slightly detuned self-imaging periods (one per axis).
Although the introduction of a core ellipticity can be seen as a
way of splitting each of the IMFWM sidebands, the additional
astigmatism that is brought by ellipticity causes an increase of
the beam size at the point of minimumwaist, with a consequent
reduction of the conversion efficiency. Note that other forms of
perturbations, based instead on the longitudinal periodic modu-
lation of the refractive index, have also been recently proposed to
induce the sideband splitting of GPI sidebands [30].

3. NUMERICAL RESULTS

To analyze the spatial and spectral properties of parametrically
generated waves in GRINMMFs, we solved the (3+1)D NLSE
equation accounting for diffraction, dispersion, parabolic index
profile, a localized dip, and the Kerr effect, which reads as

∂E
∂z

− i
1

2k0
∇2

⊥E � i
κ 0 0

2

∂2E
∂t2

� ik0Δ
r2

R2 E − ik0
δn
n0

Ee−r2∕Γ2

� iγ�1 − f R�jE j2E: (3)

Numerical calculations (and analytical phase-matching esti-
mates) in a GRIN fiber predict [7,10] the generation of first-
order sidebands at a frequency shift of 124.5 THz (125 THz)
from a laser pump at 1064 nm, with a fiber of core radius
R�26μm, group velocity dispersion κ 0 0 �16.55×10−27 s2∕m,
core index 1.470, and cladding index of 1.457.

In Fig. 2, we compare the numerically computed spectrum,
for three representative cases with either δn � 0 (green color,
no dip), δn � −0.002 (orange color), and δn � −0.004
(violet color). We used the relatively high input intensity of
10 GW∕cm2 and a short propagation distance of 0.16 m
for a 9 ps pulse and input beam diameter of 40 μm to reduce

Fig. 1. Iso-intensity surfaces identifying the local variation of the
refractive index induced by the Kerr effect and obtained for δn �
0 (a) and δn � −0.004 (b).
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the computational burden. Instabilities were seeded by adding
input white noise. The spatial transverse domain of 100 μm ×
100 μm was represented by 128 × 128 points. The temporal
domain was of 213 points, and the longitudinal integration step
was of 8 μm. Intensity images shown are integrated over the
time domain. Panels (a) and (b) of Fig. 2 show the first-order
and second-order anti-Stokes sidebands, respectively. We may
note that for the largest dip with δn � −0.004, the conversion
efficiency drops by approximately 20 dB with respect to the
case with no dip. Another interesting feature is that the side-
band position is only weakly affected by the presence of the dip
since the sideband appears at 123.5 THz for δn � −0.004.
A similar effect is also observed for the second-order sideband,
which moves from a 176.6 THz detuning (in the absence of a
dip) to the frequency shift of 175.2 THz (δn � −0.004).

Nevertheless, in the presence of a dip, such a small variation
in the sideband frequency position (1 THz or less) is accom-
panied by a dramatic variation of the sideband spatial mode
content. The frames in the lower row of Fig. 2 compare the
sideband beam shape in the absence (green frame) and in
the presence (with δn � −0.004, violet frame) of a dip, respec-
tively. Note that the value of δn � −0.004 is a dip size that is
comparable to the actual value of our perturbed GRIN fiber.
Thus, the numerical modeling predicts that, by carving a dip of
size comparable to the experimental data at the center of the
refractive index profile, one obtains a substantial spatial reshap-
ing of the parametric sidebands, at the expense of significantly
lower conversion efficiency. Note that a more accurate estimate
of the sideband shift, expressed in the wave numbers, can be
calculated by using Eq. (1), when it is applied to the actual
modes of the GRIN fiber with a dip (see Appendix B).

4. EXPERIMENTAL RESULTS

In our experiments, we used two different standard 10-m-long
GRINMMFs (core diameter 52.1 μm andNA � 0.205). Their
refractive index profiles, illustrated in Fig. 7 of Appendix A, were
close to the ideal parabolic shape for the first fiber, and exhibited
a dip at the center of the core for the second fiber, as also shown

in panel (b) of Fig. 3. We pumped the fibers by an amplified
Nd:YAG microchip laser, emitting pulses at 1064 nm with a
temporal duration of 900 ps and a repetition rate of 30 kHz.
We focused a linearly polarized Gaussian beam at the input face
of the fibers with a full-width at half-maximum intensity
(FWHMI) diameter of 30 μm. Such coupling method allowed
us in principle to excite a large number of modes, thanks also to
the unavoidable presence of random linear mode coupling
among all modes. We used two optical spectrum analyzers to
cover the spectral range from 350 up to 2500 nm, as well as a
charge-coupled device (CCD) camera and beam profiler to study
the spectral and spatial reshaping of the multimode beams.

At first, we investigated the possibility to observe the Kerr
beam self-cleaning in a GRINMMF with a central dip, to com-
pare it with the case of a GRIN MMF without a dip, as previ-
ously reported in Ref. [12]. Figure 3 illustrates the variation,
versus input guided peak power Pp−p, of the output beam diam-
eter from the fiber with a dip, measured at the FWHMI. As can
be seen, for Pp−p above 20 kW, the output beam diameter is
nearly halved with respect to its value at low powers. The insets
of Fig. 3 illustrate the corresponding evolution of the spatial
shape of the beam for selected input power values. In spite of
the presence of the dip in the refractive index profile of the
GRIN fiber, Kerr-induced beam self-cleaning toward a bell-
shaped spatial pattern could still be clearly observed [see also
panel (a) of Fig. 4]. This effect took place before the occurrence
of any significant spectral broadening. Although our experi-
ments show that the Kerr beam self-cleaning still occurs in
the presence of a dip in the refractive index profile, quite remark-
ably (when considering that the dip is only a minor modification
to the index profile of the fiber) the threshold power required to
observe the effect is six times larger than in the case of a GRIN
MMF with an ideal parabolic index profile [12].

Moreover, when slightly adjusting the input excitation con-
ditions, we could observe that an initially multimode beam,
when increasing its input power, could self-organize toward

Fig. 2. Numerical simulation of sideband generation for an input
intensity of 10 GW∕cm2, pulse duration of 9 ps, input beam diameter
of 40 μm, and propagation distance of 0.16 m. First (a) and second
(b) anti-Stokes sidebands obtained for δn � 0 (green), δn � −0.002
(orange), and δn � −0.004 (violet). The lower frames show the corre-
sponding beam shapes integrated over a 10 THz bandwidth, for the two
extreme cases of δn � 0 (green frame) and δn � −0.004 (violet frame).

(a)

(b)

Fig. 3. (a) Beam diameter versus input (guided) peak power (Pp−p)
measured at the FWHMI, emerging from a 10-m-long GRIN dip
MMF. The blue fitting curve is a guide for the eye. Insets: output
near-field patterns for different Pp−p. (b) Measured index profile of
the dip fiber (red filled curve). Parabolic profile used in the simulations
(black curve) and Gaussian approximation of the dip (yellow curve).
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a spatial shape that bears strong resemblance to modeH 0,1, as it
is shown by the frames of panel (b) in Fig. 4. Note that similar
odd-parity beam shapes were also experimentally observed in a
more systematic study carried out with the ideal GRIN fibers in
Ref. [31], and also numerically predicted in Ref. [27], in a dif-
ferent context of multimode solitons.

Next, we considered the generation of parametric sidebands,
which are observed when the input peak power is increased
above the threshold for beam self-cleaning. As originally pre-
dicted by Longhi [6] and later experimentally observed by
Krupa et al. [7], the periodic intensity oscillation of the beam
due to self-imaging leads, via the Kerr effect, to a dynamic (or
light-induced) refractive index grating. This makes the GRIN
MMF to behave as a periodic waveguide, which scatters light,
via QPM, into unequally spaced sidebands with a large fre-
quency detuning (i.e., >100 THz) from the pump, an effect
that was named geometric parametric instability, or GPI [7]. In
Fig. 5, we compare experimental optical spectra obtained in the
two multimode GRIN fibers with (blue curve) and without

(red curve) the dip, for the same input guided peak power of
Pp−p � 36 kW.

The vertical dashed lines in Fig. 5 indicate the analytically
predicted GPI sideband frequencies, calculated from a linear
stability analysis of the longitudinally oscillating beam [7].
In GPI, the sidebands are spaced in frequency approximately
by

ffiffiffi
h

p
fm, where fm � 124.5 THz is the measured frequency

detuning for the first resonant sideband, and h � 1, 2, 3, 4. As
we can see in Fig. 5, with the fiber with a dip in the index
profile, the frequency positions of far-detuned anti-Stokes side-
bands obey well the values predicted by the theory of GPI [7]
or IMFWM [10,11]. As already discussed in Section 2, the
frequencies of the IMFWM sidebands nearly coincide with
the values of GPI sidebands. The virtual insensitivity of the
spectral sideband positions for both fiber samples with the same
length and at the same launched power confirms the prediction
that the dip has only a minor impact on the sideband positions,
in agreement with perturbation theory in Section 2, and
numerical simulations in Section 3 (see also Appendix B).

Note, however, that although the two fibers had the same
diameter, to establish a fair comparison of the spectral positions
of sidebands, one would need a precise knowledge of their opto-
geometric parameters at the pump wavelength. The dynamics
and resolution of our spectrum analyzers were also not sufficient
to fully resolve any possible difference in sideband positions.

On the other hand, our experiments demonstrate that the
presence of a refractive index dip has a strong impact on the
conversion efficiency. The GRIN fiber with a dip led to much
lower (reduced by more than 20 dB) frequency conversion
efficiencies with respect to the values observed with the ideal
GRIN fiber with the same diameter, and for the same launched
power. As illustrated in Fig. 5, the intensity difference between
the first anti-Stokes sideband and the pump is approximately
25 dB for the GRIN fiber with the dip. This should be com-
pared with the difference of only 3 dB between the pump and
the first anti-Stokes wave, which is observed with the fiber with
a well-defined parabolic index shape [7]. The observed large
drop in frequency conversion efficiency is well predicted by
numerical simulations in Section 2 (see Fig. 2).

Most importantly, our experiments clearly demonstrate that
only the pump beam at 1064 nm exhibits a spatial distribution
with a bell-shaped profile, as a result of the Kerr self-cleaning
(see Fig. 6). A series of transverse beam profiles corresponding
to different spectral components, which were selected by using
various 10-nm-wide bandpass filters with different center wave-
lengths, are displayed in Fig. 6 for the case of the GRIN fiber
with a dip in its index profile. The generated sidebands are car-
ried by high-order modes Hq,0, with odd values for the index q
(see the upper panel of Fig. 6): the larger the order of the peak,
the higher the order of the associated spatial mode q. For in-
stance, the beam shape at 750 nm is close to mode H 1,0; the
beam shape at 650 nm to mode H 5,0; and the beam shape at
600 nm is close to mode H 7,0. This observation confirms well
the hypothesis formulated in Section 2, that phase matching of
the pump and sidebands is achieved via IMFWM. This con-
dition requires the observed increase in the mode number as
the sideband order grows larger. Supercontinuum generated by
the interplay of stimulated Raman scattering and multimode

Fig. 4. Experimental output two-dimensional near-field shapes
(normalized intensity in the linear scale) as a function of input guided
power Pp−p measured at the pump wavelength of 1064 nm in 10-m-
long GRIN dip MMF. Panels (a) and (b) show the results obtained for
slightly different input conditions. Asterisk (*): results for the Pp−p at
which frequency conversion into sidebands was also observed.

−100 0 100 200 300
−120

−100

−80

−60

−40

−20

0

Frequency detuning (THz)

I (
dB

)

GRIN MMF Dip

321 4

GRIN MMF No Dip

Fig. 5. Experimental spectra obtained from a 10-m-long GRIN
MMF without (top, red curve) and with (bottom, blue curve) a central
dip in the refractive index profile. The input guided power was
Pp−p � 36 kW. The vertical dashed lines indicate the analytically cal-
culated sideband frequencies. The blue spectrum was down-shifted by
50 dB for better visualization.
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solitons appearing on the Stokes side of the pump was still
observed; however, the spatial profile at Stokes frequencies was
no longer carried by the fundamental mode, in contrast with
the case of a nearly ideal GRIN MMF [16]. Additional exper-
imental results are presented in Appendix C.

5. CONCLUSIONS

In this work, we showed how a small deviation (central dip)
from the parabolic profile of the refractive index of a GRIN
MMF breaks the dynamic grating periodicity resulting from
self-imaging of the pump beam. As a result, the sideband gen-
eration mechanism is no longer GPI, but a dominant selected
type of IMFWM, and higher-order transverse modes are gen-
erated in the sidebands. We demonstrated that the Kerr self-
cleaning of the pump into a bell-shaped beam may still occur,
however, with a much higher threshold power than with an
ideal parabolic profile. Finally, the efficiency of frequency
generation is strongly reduced when sidebands are carried by
high-order modes. The capability to generate sidebands and
supercontinuum light carried by spatial modes of high orders
can be of great interest in several applications of imaging and
microscopy in the visible and infrared regions, allowing us to
increase their resolutions.

APPENDIX A: COMPARISON OF THE
REFRACTIVE INDEX PROFILES OF THE
TWO GRIN FIBERS

We show in Fig. 7 the refractive index profile of the two
GRIN fibers used in the present work. Panel (a) shows the
reference case, where the refractive index is smooth at the
top; panel (b) instead illustrates the case of the perturbed
GRIN fiber, where the presence of a refractive index dip is
clearly visible. To highlight the influence of the dip only, in
numerical simulations, we approximated the two refractive in-
dex profiles by using the same truncated parabola (black curve
in Fig. 7), although the real fiber with a dip in panel (b) has a

diameter that is slightly smaller than the diameter of the GRIN
fiber in panel (a). To simplify the comparison, in the numerical
simulations, we approximated the dip by a Gaussian sinkhole,
while keeping for both fibers the same outer diameter [yellow
curve in panel (b)].

APPENDIX B: IMPACT OF AN INDEX DIP ON
THE GUIDED MODES

We show in Fig. 8 the first 10 guided modes of the GRIN fiber
in the presence of a dip, as obtained by a numerical mode
solver, by assuming depth of the refractive index dip equal
to δn � −4 × 10−3, and a dip radius of 1.5 μm. In particular,
it is possible to observe how the fundamental mode is not a bell-
shaped beam, but it exhibits a local intensity reduction, owing
to the anti-guiding effect of the dip.

Next, we briefly recall the main steps of the perturbation
theory [25,32] that we have applied to describe beam propa-
gation in GRIN fibers with a central index dip. The complex
envelope of the electric field Ã�x, y,ω, z�, A�x, y, t, z� propagat-
ing in a GRIN fiber can be written as

2in0
ω0

c
∂Ã
∂z

−
n20ω

2
0

c2
Ã� ∇2

⊥Ã � −
ω2

c2
n2Ã −

ω2

c2ε0
f̃ NL: (B1)

Fig. 6. Experimental output two-dimensional near-field shapes
(normalized intensity in linear scale) of a series of selected spectral
components measured from 10-m-long GRIN MMF with a dip in their
index profile at Pp−p � 36 kW including the first four-orders anti-Stokes
parametric sidebands (upper panel). Asterisk (*): near-field shape at the
pump wavelength (1064 nm) in the linear regime with Pp−p � 18 W.

Fig. 7. Measured refractive index profiles of two types of GRIN
fibers: (a) fiber with a nearly parabolic profile—the black curve shows
the parabolic profile used in the numerical simulations; (b) fiber with a
parabolic profile with a dip on the top—the black curves and the yel-
low curve represent the parabolic profiles and the Gaussian approxi-
mation of the dip, respectively, as used in the numerical simulations.

Fig. 8. Low-order mode profiles for a GRIN fiber with a Gaussian
dip with δn � −4 × 10−3. Since these modes have intensity profiles
similar to the linearly polarized modes of a step-index fiber, we adopted
the same numbering.
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The radial (r) dependence of the refractive index profile can be
approximated in the following way:

n�r� � n�r� � δne−r2∕Γ2
, (B2)

where the second term on the right-hand side represents the
index perturbation, acting as a barrier for the harmonic poten-
tial when δn < 0. In the numerical simulations, the parabolic
shape of the core refractive index was truncated once the core
radius was reached. In Eq. (B1), f̃ NL is the term related to the
nonlinear response of the fiber.

We may suppose now that the contribution of the Kerr
effect in determining the mode profile is of weak impact
when compared with the contribution of the waveguide profile.
When neglecting nonlinearity, in the CW approximation, and
in the absence of a dip, Eq. (B1) has the following structure:

i
∂A
∂z

� −
1

2k0
∇2

⊥A� k0Δ
r2

R2 A, (B3)

where k0 � n0ω0∕c. Equation (B3) can be also written as

i
∂A
∂z

� −
1

2k0
∇2

⊥A� V 0�r�A � H�0�A: (B4)

V 0�r� � k0Δr2∕R2 is the harmonic potential (in the approxi-
mation of a parabolic profile of the refractive index), r2 �
x2 � y2, and H�0� is the Hamiltonian operator of the unper-
turbed waveguide (in numerical simulations, we assumed that
the potential is a truncated paraboloid).

We may model the presence of a dip by adding to the
harmonic potential a small Gaussian barrier V �r� � V 0�r��
ϵ exp�−r2∕Γ2�. In this case, ϵ � −k0δn∕n0 is a measure of the
depth of the dip, and Γ fixes the dip radius.

The new equation reads as

i
∂A
∂z

� HA � �H�0� �H1�A, (B5)

where H1 � ϵ exp�−r2∕Γ2� is the perturbation term of the
dip. Equation (B5) looks formally equivalent to the previous
one, under the influence of a static perturbing force: this is
the common procedure to study the influence of a perturbation
such as an electric or magnetic field, that can change the energy
levels and the shape of orbitals (the propagation constants and
the shape of the guided modes in our case). The perturbation
theory can thus be of help in identifying the consequences
brought by the dip in the propagation constants, and in the
shape of the guided modes [25,32].

Let us suppose now that the guided modes of the perturbed
systemH are of the form A � ψ�x, y� exp�−iβz�, where β is the
mode wave-vector shift from the reference wave-vector of the
core. A first insight on how the propagation constants are modi-
fied can be obtained by the Hellmann–Feynman theorem,
which says, once applied to the depth ϵ of the Gaussian
barrier, that

∂β
∂ϵ

�
Z

ψ�
�
∂H1

∂ϵ

�
ψdxdy �

Z
ψ��e−r2∕Γ2�ψdxdy: (B6)

Although the theorem requires the modes ψ of the perturbed
problem, it is an already evident key point that the largest con-
sequences for the propagation constants are for those modes
with a field maximum around the dip. Modes with nearly zero

intensity in the center will be much less affected. Note that the
degeneracy and the equal spacing among wave-vectors are the
basic ingredient of GPI [7] in GRIN fibers. Therefore, since
the presence of an index defect directly perturbs the equal spac-
ing of wave-vectors, as well as the overlap integrals, the selection
rules of the parametric processes will also be perturbed.

As a confirmation, we obtain from the numerical mode
solver the difference in propagation constants for the funda-
mental mode in the absence and in the presence of dip as
βH00,ideal −βL01,dip�1.98×103 m−1. The perturbation theory
predicts βH00,ideal − βH00,dip � 1.82 × 103 m−1. The difference
in propagation constants for the first odd-parity mode in the
presence and in the absence of dip is reduced by nearly one
order of magnitude: βH10,ideal − βL11,dip � 3.83 × 102 m−1.

The dip-induced perturbation has a direct effect of modify-
ing the separation between the adjacent group of modes.
However, the corresponding analysis would require using a
second-order perturbation theory, since the frequency detuning
depends upon the difference between pairs of propagation
constants. In fact, depending on the relative depth of the local
defect, one can modify not only the propagation constants, but
also the shape of the modes (e.g., the fundamental mode
presents a local depression in the center). Thus, one obtains
that the synchronized beating of modes is gradually spoiled,
with a reduction of the collective effect or self-imaging of
the beam as described in Ref. [7].

Perturbation theory permits estimation of the propagation
constants and the shape of modes in the presence of the
Gaussian barrier, or dip, starting from the solutions of the
ideally parabolic GRIN fiber. The procedure begins by solving
the mode equation for the unperturbed GRIN fibers with
Hamiltonian H�0�. We include a first-order perturbation
H � H�0� � μH�1�, where μ is a book-keeping parameter
to help separating the different orders. We consider also
ψn � ψ0,n � μψ �1�

0,n: this expression shows how the guided
mode ψn can be obtained by adding to the unperturbed mode
solution a correction term at first order ψ �1�

0,n. Similarly,
βn � β0,n � μβ�1�0,n. By applying this formalism to the equation
Hψn � βnψn, and after separating terms of the same order in
μ, we obtain at order zero

H�0�ψ0,n � β0,nψ0,n, (B7)

whereas at first order one has

�H�0� − β0,n�ψ �1�
0,n � �β�1�0,n −H

�1��ψ0,n: (B8)

It is customary to develop the perturbation as a linear combi-
nation of the eigenmodes of the unperturbed problem, which is
our case are the guided modes of the unperturbed GRIN fiber
ψ �1�
0,n �

P
hahψ0,h. After some algebra, it is possible to derive

the known result of the first-order perturbation theory [25]:

β�1�0,n �
Z

ψ�
0,n�H�1��ψ0,ndxdy: (B9)

With the same procedure, it is also possible to calculate the
correction in the modal shape induced by the index dip, which
reads as

ψ �1�
n � ψ0,n �

X
h

hhjH�1�jni
β0,n − β0,h

ψ0,h: (B10)
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The numerators (written in Diract notation [25]) in the sum
appearing in Eq. (B10) account for the overlap among modes
and the physical deformation of the refractive index: the influ-
ence of a central dip is expected to be larger for those modes
having a maximum at the center of the fiber, as already antici-
pated by Eq. (B6). Moreover, looking at the denominator, the
terms tend to vanish as the difference of the wave-vectors grows
larger. The above procedure can be extended to the case of
degenerate modes [25,32].

In GPI, the key ingredient is the beating among modes of
adjacent group orders. As another outcome of the perturbation
theory, we may calculate the beating among two modes of the
same parity, here emphasized by the choice of mode indexes n
and n� 2:

βn�2 − βn � β0,n�2 − β0,n �
�Z

ψ�
0,n�2�H�1��ψ0,n�2dxdy

−

Z
ψ�
0,n�H�1��ψ0,ndxdy

�
: (B11)

Although Eq. (B11) was calculated from a simple first-order
perturbation theory, it shows the intuitive result that the refrac-
tive index dip may perturb each wavenumber in a different way.
This fact can in turn affect the equal spacing of wavenumbers
with consequences in the parametric generation of sidebands.
The term in brackets in Eq. (B11) vanishes in the absence of
perturbation or for a perturbation equally affecting the modes,
whereas the remaining term β0,n�2 − β0,n is responsible for the
self-imaging properties of ideal GRIN fibers. Caution should be
taken because Eq. (B11) represents the difference between two
wavevectors, each calculated with the perturbative method.
Should the error be relevant, one can proceed by extending
the perturbative analysis to the second order so to have a more
reliable estimation of the propagation constants in presence of
perturbation [25]. The effect of the perturbation term can be
considered as a sort of astigmatism (or better aberration), since
pairs of modes have different beat lengths, in analogy with
free-space optical systems, where different rays can have dif-
ferent foci. Note also that high-order modes are only weakly
affected by the perturbation, and collective effects remain
possible among them. Low-order modes (among which the
fundamental mode) instead are highly affected by the term
in brackets, because the influence of the dip varies a lot among
these modes. We expect that low-order modes will have then a
slightly different beating period than high-order modes, so that
they get de-synchronized instead of breathing together as
a whole.

The overall spatial beam dynamics can be visualized (see
Fig. 1 of the main text) by collecting the iso-intensity surfaces,
which identify the local variation of the refractive index
induced by the Kerr effect. In particular, in the absence of a
dip (green diagram), the iso-intensity surfaces show the finger-
print of the longitudinal grating, which is regularly spaced.
In the presence of a dip instead (violet diagram), the profile
is broken by the aberration brought by the dip: only the exter-
nal crown is regularly spaced, whereas the center presents three
different and not well-localized zones of intensity variation.

The perturbative analysis permits exploration of the impact
of any given parameter. For instance, one can repeat the analysis

by obtaining an approximate estimation of the frequency shift
for each pair of beating modes upon the barrier depth δn.
Results of these approximated computations (at the second
order) are given in Fig. 9. Note that all of these frequencies
converge to the same value for δn � 0, whereas all frequency
detunings tend to spread as soon as the barrier depth increases
in modulus. From these results, it is reasonable to expect that
parametric sidebands will broaden, since modes taken by pairs
may generate the parametric frequencies in slightly different
positions.

APPENDIX C: ADDITIONAL EXPERIMENTAL
RESULTS

Figure 10 illustrates the evolution of the spatial shape of
the pump beam [panel (a)] measured at the output of the
GRIN MMF with a dip, as a function of the input guided peak
power Pp−p. Panel (b) of the same figure illustrates how the
overall spectrum (shown upon the wavelength and the fre-
quency detuning from the pump) varies with the input guided
power.

Figure 11 summarizes the supercontinuum spectrum and
the associated transverse beam shapes at some selected wave-
lengths from the GRIN fiber with dip. In this different series
of experiments, it is visible how the pump beam only has a bell-
shaped beam, whereas the supercontinuum is carried mainly by
a beam shape with two lobes. This result is of particular inter-
est, and it shows how a defect in a graded index fiber can lead to
the generation of a supercontinuum with a beam shape with
two main lobes. The change in the orientation of the lobes
for wavelengths above 1064 nm simply indicates the use of
another camera (InGaAs). The sharp parametric sidebands at
wavelengths lower than the pump show more complex profiles,
with additional lobes as the sideband wavelength decreases,
as discussed in the main text of the paper.

In another series of experiments, we used shorter pulses
(30 ps duration), which were delivered by a flash-pumped
Nd-YAG laser emitting at 1064 nm, or at its second harmonic
of 532 nm, with a repetition rate of 20 Hz. Here, we considered
spans of the dip perturbed GRIN MMF with a length of 30 m.
The experimental results demonstrating the variation of the
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1124 Vol. 36, No. 4 / April 2019 / Journal of the Optical Society of America B Research Article



output spatial shape of the fundamental beam, as a function of
input guided peak power Pp−p, are displayed in panels (a) and
(b) of Fig. 12 for the pump wavelengths of 1064 nm and
532 nm, respectively. In the linear regime, the speckle sizes
are related to the guided modes, whose number increases by
reducing the carrier wavelength. As a consequence, for the
pump at 532 nm, the speckle grains are far smaller than those
observed at 1064 nm.

Nevertheless, also for the second harmonic pump at
532 nm, we observed the effect of spatial self-cleaning. As pre-
sented in Figs. 12(a) and 12(b), similarly to the results previ-
ously discussed with 900 ps pulses, low-power speckled beams
at both pump wavelengths initially evolve into high-power
modes close to L11, but then end up by forming a doughnut
shape, which is further transferred across all spectral range gen-
erated via Raman scattering when the input power grows larger.
Such doughnut shape is likely related to the fundamental mode
of the dip fiber, as it is calculated by the mode solver. Our
experimental results clearly show that by modifying the input
conditions, it is also possible to isolate a doughnut shape, which
can be of interest for imaging applications.
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