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In this paper, we consider U-statistics whose data is a strictly stationary sequence which can be expressed as a functional of an i.i.d. one. We establish a strong law of large numbers, a bounded law of the iterated logarithms and a central limit theorem under a dependence condition. The main ingredients for the proof are an approximation by U-statistics whose data is a functional of ℓ i.i.d. random variables and an analogue of the Hoeffding's decomposition for U-statistics of this type.

Introduction and main results

1.1. Context. Let (Xj ) j 1 be a strictly stationary sequence, in the sense that the vectors (Xi) n i=1 and (X i+k ) n i=1 have the same distribution for all n and k 1. The U-statistic of kernel h : R × R → R and data (Xj) j 1 is defined as

Un := 1 i<j n h (Xi, Xj ) , n 2.
(

The study of the asymptotic behavior of the sequence (Un) n 2 properly normalized is a question of interest in probability theory and the applications. We will be interested in the following three limit theorems.

(1) Law of large numbers: let 1 p < 2; the following convergence holds 1 n 1+1/p (Un -E [Un]) → 0 a. s.;

(1.2)

(2) Bounded law of the iterated logarithms: the random variable sup n 1

1

n 3/2 LL (n) |Un -E [Un]| (1.3)
is almost surely finite, where L : R+ → R+ is defined by L (x) = max {ln x, 1} and LL (x) := L • L (x). (3) Central limit theorem: there exists a σ > 0 such that 1 n 3/2 (Un -E [Un]) → σN in distribution, (1.4) where N is a standard normal random variable.

Usually, the conditions for guaranting this kind of limit theorems are on the dependence of the sequence (Xj ) j 1 and also on the kernel h, for example by requiring some integrability conditions on h (X1, X2). We will first review a few results for the case where the data (Xj ) j 1 is i.i.d. and the kernel h is symmetric.

(1) If 1 p < 2 and h (X1, X2) ∈ L p , then (1.2) holds [START_REF] Giné | Marcinkiewicz type laws of large numbers and convergence of moments for Ustatistics[END_REF].

(2) If h (X1, X2) ∈ L 2 , then the random variable defined by (1.3) is almost surely finite. Moreover, for all 1 < p < 2, according to Theorem 2.5 in [5], the following inequality holds:

sup n 1 1 nL (L (n))
Un h, f, (εi) i∈Z -E Un h, f, (εi) i∈Z p Cp h (X1, X2) 2 .

(1.5)

(3) The convergence (1.4) has been established in [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF].

The extension of these results to the case of stationary dependent data is a challenging problem. The law of large numbers has been established under a β-mixing assumption in [3,10]. In the case p = 1, the independence assumption can be replaced by a 4-dependence assumption, that is, for all 4-uple of distinct integers (i1, i2, i3, i4), the collection of random variables (Xi k ) 4 k=1 is independent. If the sequence (Xj ) j 1 is identically distributed, then the law of large numbers hold (Theorem 1 in [START_REF]The law of the large numbers for U-statistics for 2m-wise independent random variables[END_REF]). The question of an equivalent of the ergodic theorem when the data is any strictly stationary sequence was considered in [START_REF] Aaronson | Strong laws for L-and U-statistics[END_REF]. The question of the law of the iterated logarithms was also adressed in [START_REF]Law of the iterated logarithm for U-statistics of weakly dependent observations, Dependence in probability, analysis and number theory[END_REF] where the data is allowed to be α-mixing or a functional of a β-mixing sequence. A central limit theorem has been established under a β-mixing assumption in [2] and under an α-mixing condition in [8].

In this paper, we will be interested in establishing the law of large number, the law of the iterated logarithms and the central limit theorem when the data can be expressed as a functional of an i.i.d. sequence. In a similar context on the data but for weighted U-statistics, the central limit theorem was investigated in [START_REF] Hsing | On weighted U-statistics for stationary processes[END_REF].

Let us precise the context. Let (εi) i∈Z be an independent identically distributed sequence with values in R k , k 1. Given measurable functions h : R k × R k → R and f : R k Z → R, we are interested in the asymptotic behavior of the U-statistic of order two defined by Un h, f, (εi) i∈Z =

1 i<j n h f (ε i-k ) k∈Z , f (ε j-k ) k∈Z , (1.6) 
that is, letting Xj := f (ε j-k ) k∈Z , Un is a U-statistic of kernel h and the data is the strictly stationary sequence (Xj ) j 1 . More precisely, we are interested in conditions involving the kernel h and the sequence f (ε j-k ) k∈Z j 1 which guarantee the previously mentioned limit theorems. In all the paper, the kernel h is supposed to be symmetric in the sense that h (x, y) = h (y, x) for all x, y ∈ R.

The paper is organized as follows. In Subsection 1.2, we will introduce a measure of dependence of a U-statistic whose data is a functional of an i.i.d. sequence. In Subsection 1.3, we formulate an analogue of the Hoeffding decomposition for such U-statistics. Subsections 1.4, 1.5 and 1.6 are devoted respectively to the statements of the law of large numbers, the bounded law of the iterated logarithms and the central limit theorems for U-statistics of Bernoulli data. In Subsection 1.7, we give examples of kernels h for which the measure of dependence can be estimated only with the help of the dependence of the data. Section 2 is devoted to the proofs of the previously mentioned results.

1.2. Measure of dependence. The extension of the results of the i.i.d. case requires a measure of dependence. Let (εu) u∈Z be an i.i.d. sequence, f : R Z → R a measurable function and h : R × R → R. In order to deal with the dependence which comes into play in Un h, f, (εi) i∈Z , we need the following notations. Denote Xj := f (εj-i) i∈Z and define the random vectors V j,ℓ := (εu) j+ℓ u=j-ℓ .

(1.7)

The random variable E [Xj | V j,ℓ ] can be writen as a function of V j,ℓ and by stationarity and Lemma A.6, the involved function does not depend on j. Therefore, we write

E [Xj | V j,ℓ ] = f ℓ (V j,ℓ ) . (1.8)
We then define for p 1 and ℓ 1 the coefficient of dependence

θ ℓ,p := sup j 0 h (f ℓ (V 0,ℓ ) , f ℓ (V j,ℓ )) -h (f ℓ-1 (V 0,ℓ-1 ) , f ℓ-1 (V j,ℓ-1 )) p (1.9)
and for ℓ = 0, θ0,p = sup j 0 h (f0 (V j,ℓ ) , f0 (V 0,ℓ )) p .

In particular, finiteness of ℓ 1 θ ℓ,p allows to write

Un h, f, (εi) i∈Z = 1 i<j n ℓ 1 h (f0 (Vi,0) , f0 (Vj,0)) + 1 i<j n h (f ℓ (V i,ℓ ) , f ℓ (V j,ℓ )) -h (f ℓ-1 (V i,ℓ-1 ) , f ℓ-1 (V j,ℓ-1 )) , (1.10)
where the convergence takes place in L p and almost surely. The interest of the decomposition (1.10) is that it reduces the treatmeant of the original U-statistic to that of U-statistics whose data is a strictly stationnary sequence which is a functional of 2ℓ + 1 independent identically distributed random variables. Nevertheless, this task requires some work in order to be reduced to U-statistics of independent data.

1.3.

A generalized Hoeffding's decomposition. A usefull tool to establish limit theorems for Ustatistics with i.i.d. data is the Hoeffdings's decomposition [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF]. Let h : R + ×R k → R be a symmetric measurable function and (Xj ) j∈Z be an i.i.d. sequence. We write decompose h in the following way:

h (x, y) = θ + h1 (x) + h1 (y) + h2 (x, y) , (1.11) 
where

θ = E [h (X1, X2)], h1 (x) = E [h (X1, x)] -θ and (1.12) h2 (x, y) = h (x, y) -h1 (x) -h1 (y) -θ. (1.13)
In this way, the following equality holds

1 i<j n h (Xi, Xj ) = n 2 θ + n n i=1 h1 (Xi) + 1 i<j n h2 (Xi, Xj ) . (1.14)
The part involving h2 can be treated by martingale techniques, since the sequence j-1 i=1 h2 (Xi, Xj ) j 1 is a martingale differences sequence with respect to the filtration (σ (Xu, u j)) and the terms j-1 i=1 h2 (Xi, Xj ) can be treated thanks to a reverse martingale differences property. We would like to extend this to the setting mentioned in 1.1, that is, Xj := f (ε j-k ) k∈Z , where (εu) u∈Z is an i.i.d. sequence. We introduce the following notation

U ind n h, (εi) i∈Z = 1 i<j n h (εi, εj) , ( 1.15) 
where (εi) i∈Z is an i.i.d. sequence of random variables with values in R k and h :

R k × R k → R is a measurable function.
One naturally expects the decomposition to be more complicated as in the independent case. Let us point out the major differences and common points. Like in the independent case, the decomposition of the centered U-statistic involves a stationary sequence and a degenerated U-statistic. But in the context of Bernoulli data, one get a series involving stationary sequences and a series of degenerated Ustatistics. An other difference is that we also have remainder terms which are not directly associated to the involved stationary sequences or degenerated U-statistic. The origin of these terms will be explained during the proof. Proposition 1.1. Let (εu) u∈Z be an i.i.d. sequence of random variables, (ε ′ u ) u∈Z an independent copy of (εu) u∈Z and f : R Z → R be a measurable function. Let V k,ℓ := (εu) k+ℓ u=k-ℓ and

V ′ k,ℓ := (ε ′ u ) k+ℓ u=k-ℓ . Let f ℓ : R 2ℓ+1 → R be a function such that f ℓ (V k,ℓ ) = E f (ε k-u ) u∈Z | V k,ℓ a.s.
(1.16)

Let h : R × R → R be a symmetric measurable function. Assume that the following convergence holds almost surely for all 1 i < j:

lim ℓ→+∞ h (f ℓ (V i,ℓ ) , f ℓ (V j,ℓ )) = h f (εi-u) u∈Z , f (εj-u) u∈Z .
(1.17)

Then the following equality holds:

Un h, f, (εi) i∈Z -E Un h, f, (εi) i∈Z = n n k=1 E h f0 (V k,0 ) , f0 V ′ k,0 | V k,0 +U ind n h (0) , (εi) i + ℓ 1 (4ℓ + 1) n 4ℓ + 1 (4ℓ+2)⌊ n 4ℓ+2 ⌋+1 k=1 E h f ℓ (V k,ℓ ) , f ℓ V ′ 0,ℓ | V k,ℓ -E h f ℓ-1 (V k,ℓ-1 ) , f ℓ-1 V ′ 0,ℓ-1 | V k,ℓ-1 + ℓ 1 a,b∈[4ℓ+2] U ind ⌊ n 2ℓ ⌋ h (ℓ) a,b , ε a,b i + Rn,1,1 + Rn,1,2 + 6 k=2 R n,k , (1.18)
where for each ℓ 1 and all a, b ∈

[4ℓ + 2], the U-statistic U ind ⌊ n 2ℓ ⌋ h (ℓ) a,b , ε a,b i has independent data
and is degenerated, and the remainder terms are defined as where κp is bigger than 1 and depends only on p.

Rn,1,1 := ℓ 1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 j-1 i=(4ℓ+2)⌊ j-1 4ℓ+2 ⌋+1 H (ℓ) i,j (1.19) Rn,1,2 := ℓ 1 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 ⌊ j-1 4ℓ+2 ⌋-1 k=0 H (ℓ) (4ℓ+2)k+a,j ; (1.20) Rn,2 := ℓ 1 ⌊ n 4ℓ+2 ⌋-1 u=0 a,b∈[4ℓ+2] a<b H (ℓ) u(4ℓ+2)+a,u(4ℓ+2)+b (1.21) Rn,3 := ℓ 1 ⌊ n 4ℓ+2 ⌋-1 v=1 a,b∈[4ℓ+2] 0 a-b (2ℓ+1)-1 H (ℓ) a,v(4ℓ+2)+b + H (ℓ) b,v(4ℓ+2)+a (1.22) Rn,4 = ℓ 1 a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-1 v=1 H (ℓ) a,(v+1)(4ℓ+2)+b + H (ℓ) (4ℓ+2)+b,v(4ℓ+2)+a (1.23) Rn,5 = ℓ 1 a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-2 u=0 H (ℓ) u(4ℓ+2)+a,(u+1)(4ℓ+2)+b -H (ℓ) u(4ℓ+2)+a,2m(2ℓ+1)+b (1.24) Rn,6 = ℓ 1 a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-1 v=1 H (ℓ) b,v(4ℓ+2)+a -H (ℓ) v(4ℓ+2)+b,v(4ℓ+2)+a , (1.25) with H (ℓ) i,j := h (f ℓ (V i,ℓ ) , f ℓ (V j,ℓ )) -E [h (f ℓ (V i,ℓ ) , f ℓ (V j,ℓ ))] -(h (f ℓ-1 (V i,ℓ-1 ) , f ℓ-1 (V j,ℓ-1 )) -E [h (f ℓ-1 (V i,ℓ-1 ) , f ℓ-1 (V j,ℓ-1 ))]) . (1.
The previous Proposition gives a control in terms of the weak-L p -semi-norm, defined as X p,w := sup x>0 (x p P {|X| > x}) 1/p , p > 1. However, the triangular inequality may fail, which is not convenient in view of the decomposition obtained in Proposition 1.1. For this reason, we introduce the weak-L pnorm, defined as X p,∞ := sup (1.32) will be useful in the sequel.

A:P(A)>0 P (A)
We are now in position to present our first result, which gives a control on the maximal function of a U-statistic whose data is a functional of an i.i.d. sequence. Theorem 1.4. Let (εu) u∈Z be an i.i.d. sequence, f : R Z → R and h : R → R be measurable functions.

Let p ∈ [1, 2). Then sup n 1 1 n 1+1/p Un h, f, (εu) u∈Z -E Un h, f, (εu) u∈Z p,∞ cp θ0,p + ℓ 1 ℓ 1-1/p θ ℓ,p . (1.33)
The second result of this Subsection is a Marcinkievicz law of large numbers. Theorem 1.5 (Marcinkievicz law of large numbers). Let (εu) u∈Z be an i.i.d. sequence, f : R Z → R and h : R → R be measurable functions. Let p ∈ [1, 2). Suppose that

ℓ 0 ℓ 1-1/p θ ℓ,p < +∞.
(1.34)

Then the following almost sure convergence holds:

1 n 1+1/p Un h, f, (εu) u∈Z -E Un h, f, (εu) u∈Z → 0. (1.35)
1.5. Bounded law of the iterated logarithms. Let us present our next result concerning the bounded law of the iterated logarithms. Like in the independent case, one can control the moments of order p ∈ (1, 2) of the maximal function of U-statistic with the normalisation n 3/2 LL (n).

Theorem 1.6. Let (εu) u∈Z be an i.i.d. sequence, f : R Z → R and h : R → R be measurable functions. Let p ∈ [1, 2). For all 1 p < 2, the following inequality holds:

sup n 1 1 n 3/2 LL (n) Un h, f, (εu) u∈Z -E Un h, f, (εu) u∈Z p cp θ0,2 + ℓ 1 ℓ 1/2 θ ℓ,2 ,
(1.36) where cp depends only on p. 1.6. Central limit theorem. Let us present our result concerning the central limit theorem. We will make essentially three assumptions on the dependence of our U-statistic. The first and second one involve the coefficients δ•,2 and θ ℓ,1 respectively and the third condition is imposed is summability of the family of covariances of a strictly stationary sequence which comes from the generalized Hoeffding decomposition of Proposition 1.1.

Theorem 1.7. Let h : R 2 → R be a measurable function, f : R Z → R be a measurable function and (εu) u∈Z be an i.i.d. sequence. Let

Xj := f (ε j-k ) k∈Z , Un := 1 i<j n h (Xi, Xj ) .
(1.37)

Suppose that ℓ 0 ℓ 1/2 θ ℓ,2 < +∞; ℓ 0 ℓ 2 θ ℓ,1 < +∞ (1.38) and that k∈Z |Cov (Y0, Y k )| < +∞, (1.39)
where the random variable Y k is defined by the following L 2 -convergence

Y k = lim ℓ→+∞ E h f ℓ (V k,ℓ ) , f ℓ V ′ 0,ℓ | V k,ℓ -E h f ℓ (V k,ℓ ) , f ℓ V ′ 0,ℓ (1.40) and V k,ℓ = (εu) k+ℓ u=k-ℓ , V ′ k,ℓ = (ε ′ u ) k+ℓ u=k-ℓ , where (ε ′ u ) u∈Z is an independent copy of (εu) u∈Z .
Then the following convergence in distribution holds:

1 n 3/2 (Un -E [Un]) → N 0, σ 2 , (1.41)
where

σ 2 := k∈Z Cov (Y0, Y k ) . (1.42)
Remark 1.8. It is not clear to us whether the condition (1.38) guarantees (1.39). Nevertheless, conditions of the type

j 0 E [Yj | σ (εu, u 0)] -E [Yj | σ (εu, u -1)] 2 < ∞ (1.43)
guarantee (1.39) and are not too hard to check for the choices of kernel involved in Subsection 1.7.

1.7. Applications. In this Subsection, we give examples of kernels h for which the measure of dependence defined by (1.9) can be estimated.

(1) Uniformly continuous kernel Let h : R 2 → R be a measurable function. We assume that there exists a non-negative function ω : R+ → R+ which is increasing, satisfies ω (0) = 0 and for each x, x ′ , y, y ′ ∈ R,

h (x, y) -h x ′ , y ′ ω x -x ′ + ω y -y ′ . (1.44)
Then the following inequality holds:

h (f ℓ (V 0,ℓ ) , f ℓ (V j,ℓ )) -h (f ℓ-1 (V 0,ℓ-1 ) , f ℓ-1 (V j,ℓ-1 )) p ω (|f ℓ (V 0,ℓ ) -f ℓ-1 (V 0,ℓ-1 )|) p + ω (|f ℓ (V j,ℓ ) -f ℓ-1 (V j,ℓ-1 )|) p . (1.45) Since (V j,ℓ , V j,ℓ-1
) has the same distribution as (V 0,ℓ , V 0,ℓ-1 ), the two terms of the right hand side of (1.45) are equal hence

θ ℓ,p 2 ω (|f ℓ (V 0,ℓ ) -f ℓ-1 (V 0,ℓ-1 )|) p . (1.46)
In particular, if h is α-Hölder continuous for some α ∈ (0, 1), we can choose ω : t → ct α for some constant c and in this case, the estimate (1.46) becomes

θ ℓ,p 2c f ℓ (V 0,ℓ ) -f ℓ-1 (V 0,ℓ-1 ) α pα , (1.47) 
which can be rewritten as

θ ℓ,p 2c E [X0 | V 0,ℓ ] -E [X0 | V 0,ℓ-1 ] α pα .
(1.48)

(2) Variance estimation. Consider the kernel h : R 2 → R defined by h (x, y) := (x -y) 2 /2. The associated U-statistic is (after normalization) the classical variance estimator. For this choice of kernel, one can estimate the measure of dependence defined by (1.9). One need to control the L p -norm of the difference of the square ot two random variables Y and Z. SInce

Y 2 -Z 2 p p = E [|Y -Z| p |Y + Z| p ] E |Y -Z| 2p 1/2 E |Y + Z| 2p 1/2 (1.49) we derive that Y 2 -Z 2 p Y -Z 2p Y 2p + Z 2p . (1.50)
We use this for a fixed ℓ

1 to Y = f ℓ (V 0,ℓ ) -f ℓ (V j,ℓ ) and Z = f ℓ-1 (V 0,ℓ-1 ) -f ℓ-1 (V j,ℓ-1 ).
Accounting the following bounds (which are a consequence of stationarity):

Y 2p + Z 2p 2 f ℓ (V 0,ℓ ) 2p + 2 f ℓ (V 0,ℓ-1 ) 2p 4 X0 2p , (1.51) we get that θ ℓ,p 2 X0 2p E [X0 | V 0,ℓ ] -E [X0 | V 0,ℓ-1 ] p . (1.52) 2. Proofs 2.1.
Proof of the generalised Hoeffding's decomposition. Let us explain the idea of proof of Proposition 1.1. First, we write Un h, f, (εi) i∈Z as a series (index by ℓ) of U-statistics. For the term of index ℓ, the data of the corresponding U-statistic is a function of 2ℓ + 1 i.i.d. random variables. We then decompose this a sum of 4 (2ℓ + 1) U-statistics of independent data. We divide the proof in two steps:

(1) First we treat the case where Xj = f (εu) j+ℓ u=j-ℓ and h : R × R → R a symmetric function.

(2) Then we write the mentioned U-statistic a sum of U-statistics tractable with the work of step 1, plus a remainder term.

Step 1: we decompose a U-statistic whose data is a function of 2ℓ + 1 i.i.d. random variables as a sum of 4ℓ + 2 U-statistics of i.i.d. data plus remainder terms.

Lemma 2.1. Let ℓ 1 be an integer, h : R 2ℓ+1 × R 2ℓ+1 → R be a measurable function, let (εu) u∈Z be an i.i.d. real-valued sequence and (ε ′ u ) u∈Z an independent copy of (εu) u∈Z . Define Un h, (εu) u∈Z :=

1 i<j n h (Vi, Vj ) = 1 i<j n Hi,j
, where Vj = (εu) j+ℓ u=j-ℓ and Hi,j

:= h (Vi, Vj). Then Un h, (εu) u∈Z = a,b∈[4ℓ+2] U ind ⌊ n 4ℓ+2 ⌋ h a,b , ε a,b i + 6 k=1 R n,k , (2.1)
where

• the function h a,b : R 4ℓ+2 × R 4ℓ+2 → R is defined for 0 a -b 2ℓ by h a,b (xi) 4ℓ+2 i=1 , (yj) 4ℓ+2 j=1 := h (x i+a-b ) 2ℓ+1 i=1 , (yj) 2ℓ+1 j=1 + h (y j+a-b ) 2ℓ+1 j=1 , (xi) 2ℓ+1 i=1 (2.2)
and for

(2ℓ + 1) a -b (4ℓ + 2) -1 by h a,b (xi) 4ℓ+2 i=1 , (yj ) 4ℓ+2 j=1 := h x i+a-b-(2ℓ+1) 2ℓ+1 i=1 , (yj) 2ℓ+1 j=1 + h y j+a-b-(2ℓ+1) 2ℓ+1 j=1 , (xi) 2ℓ+1 i=1 , (2.3)
• the random vectors ε a,b u are defined by

ε a,b u := (εj) (u+1)(4ℓ+2)+b-ℓ-1 j=u(4ℓ+2)+b-ℓ , 0 a -b 2ℓ; (2.4) ε a,b u := (εj) (u+1)(4ℓ+2)+b+ℓ j=u(4ℓ+2)+b+ℓ+1 , (2ℓ + 1) a -b (4ℓ + 2) -1;
(2.5)

• the remainder terms are defined (with the convention that

-k u=1 = 0, k 0) by Rn,1 = 1 i<j n Hi,j - 1 i<j (4ℓ+2)⌊ n 4ℓ+2 ⌋ Hi,j; (2.6) Rn,2 := ⌊ n 4ℓ+2 ⌋-1 u=0 a,b∈[4ℓ+2] a<b H u(4ℓ+2)+a,u(4ℓ+2)+b ;
(2.7)

Rn,3 = ⌊ n 4ℓ+2 ⌋-1 v=1 a,b∈[4ℓ+2] 0 a-b (2ℓ+1)-1 H a,v(4ℓ+2)+b + H b,v(4ℓ+2)+a ;
(2.8)

Rn,4 = a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-1 v=1 H a,(v+1)(4ℓ+2)+b + H (4ℓ+2)+b,v(4ℓ+2)+a ;
(2.9)

Rn,5 = a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-2 u=0 H u(4ℓ+2)+a,(u+1)(4ℓ+2)+b -H u(4ℓ+2)+a,2m(2ℓ+1)+b ;
(2.10)

Rn,6 = a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-1 v=1 H b,v(4ℓ+2)+a -H v(4ℓ+2)+b,v(4ℓ+2)+a .
(2.11)

Proof. Before going into the details of the proof, let us explain the general idea, which will also explain the origin of the remainder terms. First, it turns out that it would be more convenient that n is a multiple of 4ℓ + 2. However, it has no reason to be the case and we should also take into account the difference between Un and U n ′ where n ′ is a multiple of 4ℓ + 2 close to n. The control of the difference of these two terms is precisely Rn,1. Now that we are reduced to the case where n is a multiple of 4ℓ + 2, we look that the terms Hi,j and the remainder of i and j by the Euclidian division by 4ℓ + 2. If these remainder are closed enough, then we can write the corresponding sum as a U-statistic whose data are independent vectors of length 4ℓ + 2. If the remainders are too far way, we have to add and substract a term to be reduced to the previous case, and this leads to the definition of R n,k , 3 k 6.

If the quotient in the Euclidian division by 4ℓ + 1 of i and j are the same, then the corresponding sum is Rn,2.

From the equality Un h2, f, (εi) i∈Z = 1 i<j n Hi,j we get by (2.6) that Un h2, (εi

) i∈Z = 1 i<j (4ℓ+2)⌊ n 4ℓ+2 ⌋
Hi,j + Rn,1.

(2.12)

For simplicity, let us denote by I the set [4ℓ + 2] and m := n 4ℓ+2 . With these notations and in view of (2.7), the following equality takes place

1 i<j (4ℓ+2)⌊ n 4ℓ+2 ⌋ Hi,j = 0 u<v m-1 a,b∈I 0 a-b (2ℓ+1)-1 H u(4ℓ+2)+a,v(4ℓ+2)+b + H u(4ℓ+2)+b,v(4ℓ+2)+a + 0 u<v m-1 a,b∈I (2ℓ+1) a-b (4ℓ+2)-1 H u(4ℓ+2)+a,v(4ℓ+2)+b + H u(4ℓ+2)+b,v(4ℓ+2)+a + Rn,2. (2.13)
Let us treat the first term. For a, b ∈ I such that 0 a -b 2ℓ, in view of the definitions (2.2) and (2.4) and the symmetry of h2, the following equaliy holds

h a,b ε a,b u , ε a,b v = H u(4ℓ+2)+a,v(4ℓ+2)+b + H u(4ℓ+2)+b,2v(4ℓ+2)+a (2.14) hence 0 u<v m-1 a,b∈I 0 a-b (2ℓ+1)-1 H u(4ℓ+2)+a,v(4ℓ+2)+b + H u(4ℓ+2)+b,v(4ℓ+2)+a = U ind m h a,b , ε a,b u u∈Z + Rn,3. (2.15)
Let us treat the second term in the right hand side of (2.13). Adding and stubstracting the terms H u(4ℓ+2)+a,(v+1)(4ℓ+2)+b and H (u+1)(4ℓ+2)+b,v(4ℓ+2)+a gives, after having rewriten the corresponding sums as double sums and exploited a telescoping of the inside sum,

0 u<v m-1 H u(4ℓ+2)+a,v(4ℓ+2)+b + H u(4ℓ+2)+b,v(4ℓ+2)+a = S + Rn,5 + Rn,6, (2.16) 
where S :=

0 u<v m-1 H u(4ℓ+2)+a,(v+1)(4ℓ+2)+b + H 2(u+1)(2ℓ+1)+b,v(4ℓ+2)+a (2.17)
We express S as a U-statistic of independent data. Noticing that 0 a -(b + (2ℓ + 1)) (2ℓ + 1) -1, we are in a similar situation as in the case 0 a -b (2ℓ + 1) -1, with b replaced by b + (2ℓ + 1). Therefore, in view of (2.5), (2.3) and (2.9), we obtain that

S = U ind m-1 h a,b , ε a,b u u∈Z + Rn,4.
(2.18)

Collecting these terms gives Lemma 2.2. Let ℓ 1 be an integer, h : R 2ℓ+1 × R 2ℓ+1 → R be a measurable function, let (εu) u∈Z be an i.i.d. real-valued sequence and (ε ′ u ) u∈Z an independent copy of (εu) u∈Z . Define Un h, (εu) u∈Z :=

a,b∈I (2ℓ+1) a-b (4ℓ+2)-1 0 u<v m-1 H u(4ℓ+2)+a,v(4ℓ+2)+b + H u(4ℓ+2)+b,v(4ℓ+2)+a = a,b∈I (2ℓ+1) a-b (4ℓ+2)-1 U ind m-1 h a,b , ε
1 i<j n h (Vi, Vj ) -E [h (Vi, Vj)] = 1 i<j n Hi,j, where Vj = (εu) j+ℓ u=j-ℓ , V ′ j = (ε ′ u ) j+ℓ u=j-ℓ and Hi,j := h (Vi, Vj ) -E [Vi, Vj]. Then Un h, (εu) u∈Z = (4ℓ + 2) n 4ℓ + 2 (4ℓ+2)(⌊ n 4ℓ+2 ⌋)+1 k=1 E h V k , V ′ 0 | V k -E h V k , V ′ 0 + a,b∈[4ℓ+2] U ind ⌊ n 4ℓ+2 ⌋ h (2) a,b , ε a,b i + 6 k=1 R n,k , (2.20)
where the function h a,b :

R 4ℓ+2 × R 4ℓ+2 → R is defined h (2) a,b := h a,b (xi) 4ℓ+2 i=1 , (yj ) 4ℓ+2 j=1 -h a,b (xi) 4ℓ+2 i=1 , ε a,b 0 -h a,b (yj) 4ℓ+2 j=1 , ε a,b 0 + E h a,b ε a,b 0 , ε ′ 0 a,b
(2.21) and (2.25)

• the function h a,b : R 4ℓ+2 × R 4ℓ+2 → R is defined for 0 a -b 2ℓ by h a,b (xi) 4ℓ+2 i=1 , (yj) 4ℓ+2 j=1 := h (x i+a-b ) 2ℓ+1 i=1 , (yj ) 2ℓ+1 j=1 + h (y j+a-b ) 2ℓ+1 j=1 , (xi) 2ℓ+1 i=1 (2.
• the remainder terms are defined (with the convention that

-k u=1 = 0, k 0) by Rn,1,1 := n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 j-1 i=(4ℓ+2)⌊ j-1 4ℓ+2 ⌋+1
Hi,j (2.26)

Rn,1,2 := 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 ⌊ j-1 4ℓ+2 ⌋-1 k=0 H (4ℓ+2)k+a,j ;
(2.27)

Rn,2 := ⌊ n 4ℓ+2 ⌋-1 u=0 a,b∈[4ℓ+2] a<b H u(4ℓ+2)+a,u(4ℓ+2)+b
(2.28)

Rn,3 := ⌊ n 4ℓ+2 ⌋-1 v=1 a,b∈[4ℓ+2] 0 a-b (2ℓ+1)-1 H a,v(4ℓ+2)+b + H b,v(4ℓ+2)+a
(2.29)

Rn,4 = a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-1 v=1 H a,(v+1)(4ℓ+2)+b + H (4ℓ+2)+b,v(4ℓ+2)+a (2.30) Rn,5 = a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-2 u=0 H u(4ℓ+2)+a,(u+1)(4ℓ+2)+b -H u(4ℓ+2)+a,2m(2ℓ+1)+b (2.31) Rn,6 = a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-1 v=1 H b,v(4ℓ+2)+a -H v(4ℓ+2)+b,v(4ℓ+2)+a , (2.32)
To sum up, the centered U-statistic whose data is a function of 2ℓ + 1 i.i.d. random variables can be decomposed as a partial sum of a strictly stationary sequence, a sum of degenerated U-statistics plus a remainder term.

Proof of Proposition 1.1. By the assumption (1.17), the following equality holds almost surely:

Un h, f, (εu) u∈Z = Un h, f0, (εu) u∈Z + +∞ ℓ=1 Un h, f ℓ , (εu) u∈Z -Un h, f ℓ-1 , (εu) u∈Z . (2.

33)

Since Un h, f0, (εu) u∈Z is a U-statistic of independent identically distributed data, it can be treated by the classical Hoeffding's decomposition written in (1.14).

To proceed, we need to decompose for a fixed ℓ 1 the term Un h, f ℓ , (εu) u∈Z -Un h, f ℓ-1 , (εu) u∈Z .

To this aim, we apply Lemma 2.2 in the following setting: the function h is replaced by h : R 2ℓ+1 × R 2ℓ+1 → R, which is defined by

h (xi) 2ℓ+1 i=1 , (yj ) 2ℓ+1 j=1 = h f ℓ (xi) 2ℓ+1 i=1 , f ℓ (yj) 2ℓ+1 j=1 -h f ℓ-1 (xi) 2ℓ i=2 , f ℓ-1 (yj ) 2ℓ j=2 . (2.34)
In this way,

Un h, f ℓ , (εu) u∈Z -Un h, f ℓ-1 , (εu) u∈Z = 1 i<j n h (εi-u) ℓ u=-ℓ , (εj-v) ℓ v=-ℓ
(2.35) and with the notation V i,ℓ = (εu) i+ℓ u=i-ℓ , Lemma 2.1 gives

Un h, f ℓ , (εu) u∈Z -Un h, f ℓ-1 , (εu) u∈Z -E Un h, f ℓ , (εu) u∈Z -Un h, f ℓ-1 , (εu) u∈Z = (4ℓ + 2) n 4ℓ + 2 (4ℓ+2)⌊ n 4ℓ+2 ⌋+1 k=1 E h V k,ℓ , V ′ 0,ℓ | V k,ℓ -E h V k,ℓ , V ′ 0,ℓ | V k,ℓ + a,b∈[4ℓ+2] U ind ⌊ n 4ℓ+2 ⌋ h (2) a,b , ε a,b i + 6 k=1 R n,k , (2.36)
Observe that

E h V k,ℓ , V ′ 0,ℓ | V k,ℓ = E h f ℓ (V k,ℓ ) , f ℓ V ′ 0,ℓ | V k,ℓ -E h f ℓ-1 (V k,ℓ-1 ) , f ℓ-1 V ′ 0,ℓ-1 | V k,ℓ
(2.37) and using Lemma A.5, this equality becomes

E h V k,ℓ , V ′ 0,ℓ | V k,ℓ = E h f ℓ (V k,ℓ ) , f ℓ V ′ 0,ℓ | V k,ℓ -E h f ℓ-1 (V k,ℓ-1 ) , f ℓ-1 V ′ 0,ℓ-1 | V k,ℓ-1 (2.38) Moreover, U ind ⌊ n 4ℓ+2 ⌋ h (2) a,b , ε a,b i = 1 u<v ⌊ n 4ℓ+2 ⌋ Y a,b ℓ,u,v + Y b,a ℓ,u,v -Y a,b ℓ-1,u,v -Y b,a ℓ-1,u,v (2.39) 
where

Y a,b ℓ,u,v = h f ℓ V (4ℓ+2)u+a,ℓ , f ℓ V (4ℓ+2)v+b,ℓ -E h f ℓ V (4ℓ+2)u+a,ℓ , f ℓ V ′ 0,ℓ | V (4ℓ+2)u+a,ℓ -E h f ℓ V (4ℓ+2)v+b,ℓ , f ℓ V ′ 0,ℓ | V (4ℓ+2)v+b,ℓ + E h f ℓ (V 0,ℓ ) , f ℓ V ′ 0,ℓ . (2.40)
We conclude by collecting all the terms.

Proof of the results of Subsection 1.4.

Proof of Proposition 1.2. It will be more convenient to work with dyadics, since the martingale property will be useful to handle the maximums. First observe that Mp 2 1/p M ′ p , where

M ′ p := sup N 1 2 -2N/p max 2 n 2 N U ind n h, (εi) i∈Z -E U ind n h, (εi) i∈Z . (2.41)
For a fixed integer n, consider the event

AN := 2 -2N/p max 2 n 2 N U ind n h, (εi) i∈Z > 2 .
(2.42)

It suffices to prove that there exists a constant cp (depending only on p) such that

+∞ N=1 P (AN ) cpE [|h (ε0, ε1)| p ] .
(2.43) Indeed, item 1 follows from an application of (2.43) to h/ε for a positive ε and the Borel-Cantelli lemma. In order to prove item 2, we notice that P M ′ p > 2 +∞ N=1 P (AN ) and we apply (2.43) to h/x for each positive x. Consequently, we focus on establishing a satisfactory bound for P (AN ). Define for j 2 the random variable Dj := j-1 i=1 h (εi, εj ). Let Fj denote the σ-algebra generated by the random variables ε k , 1 k j. Define

D ′ j := Dj1 |Dj | 2 2N/p -E Dj 1 |Dj | 2 2N/p | Fj-1 and
(2.44)

D ′′ j := Dj 1 |Dj | > 2 2N/p -E Dj 1 |Dj | > 2 2N/p | Fj-1 . (2.45) Since E [Dj | Fj-1] = 0, it follows that Dj = D ′ j + D ′′ j hence AN ⊂ A ′ N ∪ A ′′ N ,
where

A ′ N := 2 -4N/p max 2 k 2 N k j=2 D ′ j > 1 and
(2.46)

A ′′ N := 2 -4n/p max 2 k 2 N k j=2 D ′′ j > 1 .
(2.47)

Let us bound p ′ N := P (A ′ N ). Markov's inequality entails

p ′ N 2 -4N/p E max 2 k 2 N k j=2 D ′ j 2 (2.48)
and since D ′ j j 2 is a martingale differences sequence, we obtain by Doob's inequality and orthogonality of increments that

p ′ N 2 1-4N/p 2 N j=2 E D ′ j 2 2 2-4N/p 2 N j=2 E D 2 j 1 |Dj | 2 N/p . (2.49)
Now, we use

E D 2 j 1 |Dj| 2 2N/p = 2 2 2N/p 0 tP t < |Dj| 2 2N/p dt (2.50) = 2 2 2N/p 0 tP {|Dj | > t} dt -2 2N/p P |Dj | > 2 2N/p (2.51) 2 2 2N/p 0 tP {|Dj | > t} dt (2.52)
and after the substitution s = 2 -2N/p t, we get

E D 2 j 1 |Dj| 2 2N/p 2 1+4N/p 1 0 sP |Dj| > 2 2N/p s ds. (2.53)
We thus obtained the estimate

p ′ N 8 2 N j=2 1 0 sP |Dj | > 2 2N/p s ds.
(2.54)

In order to bound p ′′ N := P (A ′′ N ), we start by Markov's inequality to get We are thus reduced to control the tail of Dj, which will be done by using Proposition A.1. Our particular setting permits some simplification of the involved terms. We first observe that Dj has the same distribution as j-1 i=1 h (ε0, εi) (since the vectors (ε1, . . . , εj-1, εj) and (ε1, . . . , εj-1, ε0) are identically distributed). Define di := h (ε0, εi). Since E [h (ε0, x)] = 0 for all x ∈ R d , the sequence (di) d i=1 is a martingale differences sequence for the filtration (Gi) n i=1 where Gi is the σ-algebra generated by ε k , 0 k i. We apply Proposition A.1 to x = 2 2n/p s for a fixed positive s and q = 2p. let i ∈ {1, . . . , j -1}. By Lemma A.5 applied to Y = di, F = σ (ε0) and G = σ (ε1, . . . , εi-1), we have

p ′′ N 2 -2N/p 2 N j=2 E D ′′ j 2 1-2N/p 2 N j=2 E |Dj| 1 |Dj | > 2 2N/p . ( 2 
E [|di| p | Gi-1] = E [|h (ε0, εj)| p | σ (ε0)] .
(2.59)

Using Lemma A.6 with Y = εj, Z = ε0 and f = h, we derive that

E [|di| p | Gi-1] = E [|h (ε0, ε1)| p | σ (ε0)] .
(2.60)

Using this equality combined with the fact that the random variables di, 1 i j -1 have the same distribution as d1 , one gets

P |Dj| > 2 2N/p s c1 (j -1) 1 0 P |d1| > x2 2N/p usc2 u q-1 du + c1 1 0 P (j -1) 1/p (E [|h (ε0, ε1)| p | σ (ε0)]) 1/p > 2 2N/p suc2 u q-1 du. (2.61)
In view of (2.58), we derive that 

P (AN ) c12 2N +∞ 0 1 0 P |d1| > x2 2N/p suc2 u 2p-1 du min {1, s} ds + c12 N +∞ 0 1 0 P (E [|h (ε0, ε1)| p | σ (ε0)])
H (ℓ) i,j := h (f ℓ (V i,ℓ ) , f ℓ (V j,ℓ )) -E [h (f ℓ (V i,ℓ ) , f ℓ (V j,ℓ ))] -(h (f ℓ-1 (V i,ℓ-1 ) , f ℓ-1 (V j,ℓ-1 )) -E [h (f ℓ-1 (V i,ℓ-1 ) , f ℓ-1 (V j,ℓ-1 ))]) . (2.64)
and

Rn,1,1 := ℓ 1 Y n,ℓ ; Y n,ℓ := n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 j-1 i=(4ℓ+2)⌊ j-1 4ℓ+2 ⌋+1 H (ℓ) i,j
(2.65)

Rn,1,2 := ℓ 1 Z n,ℓ ; Z n,ℓ := 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 ⌊ j-1 4ℓ+2 ⌋-1 k=0 H (ℓ) (4ℓ+2)k+a,j .
(2.66)

For a fix ℓ 1, we evaluate the contribution of of Y n,ℓ and Z n,ℓ .

Lemma 2.3. Let ℓ 1. The following inequalities hold:

sup n 1 1 n 1+1/p |Y n,ℓ | p,∞ cpℓ 1-1/p θ ℓ,p ;
(2.67)

sup n 1 1 n 1+1/p |Z n,ℓ | p,∞ cpℓ 1-1/p θ ℓ,p , (2.68)
where cp depends only on p.

Proof. First observe that Y n,ℓ is a sum of at most (4ℓ + 2) 2 random variables whose weak-L p -norm does not exceed θ ℓ,p hence by cutting the supremum where n is between two consecutive multiples of 4ℓ + 2 gives sup

n 1 1 n 1+1/p |Y n,ℓ | p,∞ n 1 1 n 1+1/p |Y n,ℓ | p p,∞ 1/p (2.69) (4ℓ + 2) 2-1-1/p n 1 n -1-p 1/p θ ℓ,p , (2.70) 
In order to treat Z n,ℓ , we decompose it as Z ′ n,ℓ + Z ′′ n,ℓ , where

Z ′ n,ℓ = 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 ⌊ j-1 4ℓ+2 ⌋-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ (2.71) Z ′′ n,ℓ = 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 ⌊ j-1 4ℓ+2 ⌋-1 k=0 E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ .
(2.72)

Using (1.32), it follows that sup n 1 1 n 1+1/p Z ′ n,ℓ p,∞ n 1 1 n 1+1/p Z ′ n,ℓ p p,∞ 1/p (2.73)   N 1 N -p-1 (4ℓ + 2) -p-1   (4ℓ+2)(N+1)-1 n=(4ℓ+2)N Z ′ n,ℓ p,∞   p   1/p (2.74)
and for all n such that (4ℓ + 2) N n (4ℓ + 2) (N + 1) -1,

Z ′ n,ℓ p,∞ 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 ⌊ n 4ℓ+2 ⌋-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ p,∞ (2.75) 4ℓ+2 a=1 (4ℓ+2)(N+1) j=(4ℓ+2)N+1 N-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ p,∞ (2.76) hence sup n 1 1 n 1+1/p |Z n,ℓ | p,∞   N 1 N -p-1 (4ℓ + 2) -p-1   4ℓ+2 a=1 (4ℓ+2)(N+1) j=(4ℓ+2)N+1 N-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ p,∞   p   1/p . (2.77)
For all fixed j, we notice using Lemma A.5 that

H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ 0 k N-1
is a martingale differences sequence with respect to the filtration (F k ) 0 k N-1 where

F k := σ (V j,ℓ ) ∨ σ V (4ℓ+2)i+a,j , i k hence by Burkholder's inequality, N-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ p p,∞ cp N-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ p p,∞ 2 p cp N-1 k=0 H (ℓ) (4ℓ+2)k+a,j p p 2 p cpN θ p ℓ,p
(2.78) and plugging this estimate into (2.77) gives sup

n 1 1 n 1+1/p Z ′ n,ℓ p,∞ Cp N 1 N -p-1 (4ℓ + 2) -p-1 (4ℓ + 2) 2p N θ p ℓ,p p 1/p C ′ p θ ℓ,p ℓ 1-1/p . (2.79)
In order to treat the contribution of Z ′′ n,ℓ , we observe that E H

(ℓ) (4ℓ+2)k+a,j | V j,ℓ is independent of k hence Z ′′ n,ℓ = 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 n 4ℓ + 2 E H (ℓ) a,j | V j,ℓ . (2.80)
Consequently, the control of the contribution of sup n 1 n -1-1/p Z ′′ n,ℓ can be done thanks to Proposition A.2. This ends the proof of Lemma 2.3.

Treatment of terms of the form

u H (ℓ) a,(4ℓ+2)u+b and u H (ℓ) (4ℓ+2)u+a,(4ℓ+2)⌊ n 4ℓ+2 ⌋+b .
Lemma 2.4. For all ℓ 1 and all a, b ∈ [4ℓ + 2], the following inequality holds

sup n 1 1 n 1+1/p ⌊ n 4ℓ+2 ⌋ u=1 H (ℓ) a,(4ℓ+2)u+b p,∞ cp (4ℓ + 2) -1-1/p θ ℓ,p .
(2.81) Lemma 2.5. For all ℓ 1 and all a, b ∈ [4ℓ + 2], the following inequality holds

sup n 1 1 n 3/2 ⌊ n 4ℓ+2 ⌋ u=1 H (ℓ) (4ℓ+2)u+a,(4ℓ+2)⌊ n 4ℓ+2 ⌋+b p,∞ cp (4ℓ + 2) -1-1/p θ ℓ,p .
(2.82)

These two lemmas are the consequence of the following observations.

(1) We first assume that 0 a -b 2ℓ; if not we add and substract

H (ℓ)
a,(4ℓ+2)(u+1)+b and use telescoping to treat instead

⌊ n 4ℓ+2 ⌋ u=1 H (ℓ)
a,(4ℓ+2)(u+1)+b (where we will apply the previous case to a = a and b = b + 2ℓ + 1). A similar method can be used to treat the sum involved in Lemma 2.5.

(2) The supremum involved in the statement can be restricted to the integers n with are a multiple of 4ℓ + 2. (3) For all integer N and all sequence of random variables Wi,j, i, j 1, we write

Sn := 1 i<j n Wi,j, S ′ n := 0 i<j n Wi,j.
(

With the choice Wi,j := H (ℓ) (4ℓ+2)i+a,(4ℓ+2)j+b , the following equality holds:

⌊ n 4ℓ+2 ⌋ u=1 H (ℓ) a,(4ℓ+2)u+b = S ′ N -SN , (2.84) 
when n = (4ℓ + 2) N . Since S ′ N and SN can be both expressed as U-statistics of i.i.d. data, we can use Corollary 1.3 to treat these terms.

Lemma 2.5 can be done in a similar way: we express this time the involved sum as SN -SN-1.

Treatment of terms of the form u H

(ℓ) (4ℓ+2)u+a,(4ℓ+2)u+b .

Lemma 2.6. For all ℓ 1 and all a, b ∈ [4ℓ + 2], the following inequality holds where for a fixed L, An,L is the sum for the indexes ℓ smaller or equal to L (viewing the terms associated to V k,0 as the corresponding ones for ℓ = 0) and Bn,L the remaining term. We have to prove that for each positive ε, 

sup n 1 1 n 1+1/p ⌊ n 4ℓ+2 ⌋ u=1 H (ℓ) (4ℓ+2)u+a,(4ℓ+2)u+b p,∞ cp (4ℓ + 2) -1-
lim N→+∞ P sup n N 1 n 1+1/p Un h, f, (εi) i∈Z -E Un h, f, (εi) i∈Z > 2ε = 0. ( 2 
H (ℓ) i,j := h (f ℓ (V i,ℓ ) , f ℓ (V j,ℓ )) -E [h (f ℓ (V i,ℓ ) , f ℓ (V j,ℓ ))] -(h (f ℓ-1 (V i,ℓ-1 ) , f ℓ-1 (V j,ℓ-1 )) -E [h (f ℓ-1 (V i,ℓ-1 ) , f ℓ-1 (V j,ℓ-1 ))]) . (2.90)
and

Rn,1,1 := ℓ 1 Y n,ℓ ; Y n,ℓ := n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 j-1 i=(4ℓ+2)⌊ j-1 4ℓ+2 ⌋+1 H (ℓ) i,j
(2.91)

Rn,1,2 := ℓ 1 Z n,ℓ ; Z n,ℓ := 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 ⌊ j-1 4ℓ+2 ⌋-1 k=0 H (ℓ) (4ℓ+2)k+a,j .
(2.92)

For a fix ℓ 1, we evaluate the contribution of of Y n,ℓ and Z n,ℓ .

Lemma 2.7. Let ℓ 1. The following inequalities hold.

sup

n 1 1 n 3/2 LL (n) |Y n,ℓ | p,∞ cpℓ 1-1/p θ ℓ,p (2.93) sup n 1 1 n 3/2 LL (n) |Z n,ℓ | p,∞ cpℓ 2 θ ℓ,p .
(2.94)

Proof. First observe that Y n,ℓ is a sum of at most (4ℓ + 2) 2 random variables whose weak-L p -norm does not exceed θ ℓ,p hence by cutting the supremum where n is between two consecutive multiples of 4ℓ + 2 gives sup n 1

1

n 3/2 LL (n) |Y n,ℓ | p,∞   n 1 1 n 3/2 LL (n) |Y n,ℓ | p p,∞   1/p
(2.95)

c (4ℓ + 2) 1-1/p n 1 n -3p/2 1/p θ ℓ,p .
(2.96)

In order to treat Z n,ℓ , we decompose it as Z ′ n,ℓ + Z ′′ n,ℓ , where

Z ′ n,ℓ = 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 ⌊ j-1 4ℓ+2 ⌋-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ
(2.97)

Z ′′ n,ℓ = 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 ⌊ j-1 4ℓ+2 ⌋-1 k=0 E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ .
(2.98)

We first use (1.32) to get sup

n 1 1 n 3/2 LL (n) Z ′ n,ℓ p,∞   n 3 1 n 3/2 LL (n) Z ′ n,ℓ p p,∞   1/p (2.99)   N 1 N -3p/2 (4ℓ + 2) -3p/2   (4ℓ+2)(N+1)-1 n=(4ℓ+2)N Z ′ n,ℓ p,∞   p   1/p
(2.100) and for all n such that (4ℓ + 2) N n (4ℓ + 2) (N + 1) -1,

Z ′ n,ℓ p,∞ 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 ⌊ n 4ℓ+2 ⌋-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ p,∞ (2.101) 4ℓ+2 a=1 (4ℓ+2)(N+1) j=(4ℓ+2)N+1 N-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ p,∞ (2.102) hence sup n 1 1 n 3/2 LL (n) Z ′ n,ℓ p p,∞ N 1 N -p-1 (4ℓ + 2) -3p/2   4ℓ+2 a=1 (4ℓ+2)(N+1) j=(4ℓ+2)N+1 N-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ p,∞   p .
(2.103) For all fixed j, we notice using Lemma A.5 that H

(ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ 0 k N-1
is a martingale differences sequence with respect to the filtration (F k ) 0 k N-1 where

F k := σ (V j,ℓ ) ∨ σ V (4ℓ+2)i+a,j , i k hence N-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ p p,∞ N-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ p 2 N-1 k=0 H (ℓ) (4ℓ+2)k+a,j -E H (ℓ) (4ℓ+2)k+a,j | V j,ℓ 2 2 p/2 cpN p/2 θ p ℓ,2
(2.104)

and plugging this estimate into (2.103) gives sup 

n 1 1 n 3/2 LL (n) Z ′ n,ℓ p,∞ Cp N 1 N -1-p/2 (4ℓ + 2) -3p/2+2 (4ℓ + 2) 2p N θ p ℓ,p 1/p C ′ p θ ℓ,2 ℓ
n 3/2 LL (n) ⌊ n 4ℓ+2 ⌋ u=1 H (ℓ) (4ℓ+2)u+a,(4ℓ+2)⌊ n 4ℓ+2 ⌋+b p,∞ cp (4ℓ + 2) -1-1/p θ ℓ,p . 1 
(2.107)

The proof follows exactly the same idea as the proof of Lemmas 2.4 and 2.5, where the use of Corollary 1.3 is replaced by that of Proposition A.4.

Treatment of terms of the form

u H (ℓ) (4ℓ+2)u+a,(4ℓ+2)u+b .
Lemma 2.10. For all ℓ 1 and all a, b ∈ [4ℓ + 2], the following inequality holds 

sup n 1 1 n 3/2 ⌊ n 4ℓ+2 ⌋ u=1 H (ℓ) (4ℓ+2)u+a,(4ℓ+2)u+b p,∞ cp (4ℓ + 2) -3/2 θ ℓ,p . ( 2 
Y k = Y k,0 + ℓ 1 Y k,ℓ -Y k,ℓ-1 (2.109) and Y k,ℓ := E h f ℓ (V k,ℓ ) , f ℓ V ′ 0,ℓ | V k,ℓ -E h f ℓ (V k,ℓ ) , f ℓ V ′ 0,ℓ . 
(2.110)

We can establish the convergence of n -1/2 n k=1 Y k n 1 by showing the convergence of n -1/2 n k=1 Y k,L n 1 for a fixed L and by controlling the remainder. We have to prove that all the terms in the decomposition obtained in Proposition 1.1 converge to zero in probability. To sum up, we start by writing

1 n 3/2 Un h, f, (εi) i∈Z -E Un h, f, (εi) i∈Z = 1 √ n n k=1 Y k + U ind n h (0) , (εi) i + + 1 n 3/2 ℓ 1 a,b∈[4ℓ+2] U ind ⌊ n 2ℓ ⌋ h (ℓ) a,b , ε a,b i + Rn,1,1 + Rn,1,2 + 7 k=2 R n,k , (2.111)
where for each ℓ 1 and all a, b ∈

[4ℓ + 2], the U-statistic U ind ⌊ n 2ℓ ⌋ h (ℓ) a,b , ε a,b i has independent data
and is degenerated, and the remainder terms are defined as

Rn,1,1 := 1 n 3/2 ℓ 1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 j-1 i=(4ℓ+2)⌊ j-1 4ℓ+2 ⌋+1 H (ℓ) i,j (2.112) Rn,1,2 := 1 n 3/2 ℓ 1 4ℓ+2 a=1 n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1 ⌊ j-1 4ℓ+2 ⌋-1 k=0 H (ℓ) (4ℓ+2)k+a,j ; (2.113) Rn,2 := 1 n 3/2 ℓ 1 ⌊ n 4ℓ+2 ⌋-1 u=0 a,b∈[4ℓ+2] a<b H (ℓ) u(4ℓ+2)+a,u(4ℓ+2)+b
(2.114)

Rn,3 := 1 n 3/2 ℓ 1 ⌊ n 4ℓ+2 ⌋-1 v=1 a,b∈[4ℓ+2] 0 a-b (2ℓ+1)-1 H (ℓ) a,v(4ℓ+2)+b + H (ℓ) b,v(4ℓ+2)+a (2.115) Rn,4 = 1 n 3/2 ℓ 1 a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-1 v=1 H (ℓ) a,(v+1)(4ℓ+2)+b + H (ℓ) (4ℓ+2)+b,v (4ℓ+2)+a 
(2.116)

Rn,5 = 1 n 3/2 ℓ 1 a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-2 u=0 H (ℓ) u(4ℓ+2)+a,(u+1)(4ℓ+2)+b -H (ℓ) u(4ℓ+2)+a,2m(2ℓ+1)+b
(2.117)

Rn,6 = 1 n 3/2 ℓ 1 a,b∈[4ℓ+2] (2ℓ+1) a-b (4ℓ+2)-1 ⌊ n 4ℓ+2 ⌋-1 v=1 H (ℓ) b,v(4ℓ+2)+a -H (ℓ) v(4ℓ+2)+b,v(4ℓ+2)+a , (2.118) Rn,7 := 1 n 3/2 ℓ 1 R (ℓ) n,7 , R (ℓ) n,7 := (4ℓ + 1) n 4ℓ + 1 (4ℓ+2)⌊ n 4ℓ+2 ⌋+1 k=1 (Y k,ℓ -Y k,ℓ-1 ) -n n k=1 (Y k,ℓ -Y k,ℓ-1 ) (2.119) with H (ℓ) i,j := h (f ℓ (V i,ℓ ) , f ℓ (V j,ℓ )) -E [h (f ℓ (V i,ℓ ) , f ℓ (V j,ℓ ))]
-(h (f ℓ-1 (V i,ℓ-1 ) , f ℓ-1 (V j,ℓ-1 )) -E [h (f ℓ-1 (V i,ℓ-1 ) , f ℓ-1 (V j,ℓ-1 ))]) . (2.120)

We then follow the steps :

(1) we show that n -1/2 n k=1 Y k n 1 converges to a centered normal distribution with variance (2) We show the convergence in probability to zero of all the terms Rn,1,1, Rn,1,2, R n,k , 2 k 7.

2.4.1. Convergence of n -1/2 n k=1 Y k n 1 . We use Theorem 4.2 in [6], which states the following. For L, n ∈ N, Zn, Zn,L, WL and Z are real-valued random variables defined on a common probability space (Ω, F, P). We assume that (1) for all L ∈ N, Zn,L → WL in distribution as n → ∞;

(2) WL → Z in distribution as L → ∞, and (3) for each ε > 0, limL→∞ lim sup n→∞ P {|Zn,L -Zn| > ε} = 0.

Then Zn → Z in distribution as n → ∞.

We will apply the result in the following setting: does not exceed a constant times ℓ (2.127)

We use the same method for the terms Rn,1,2 and R n,k , 2 k 6. (2.132)

A. Appendix

In this appendix, we collect some fact about partial sums of martingales or functional of independent sequences that we will need in the proof.

The first is a probability inequatlity for martingales; PropositionA.2 andA.3 give a control of the maximal function involved in the strong law of large numbers, respectively for martingales and functionals of a fixed number of i.i.d. random variables. We end the Appendix by two lemmas on conditional expectation. Proposition A.1 (Theorem 1.3 in [12]). Let 1 < p < 2 and q > p. Then there exists constants c1 and c2 depending only on {p, q} such that if (di) n i=1 is a martingale differences sequence with respect to a filtration (Fi) n i=1 , then for each integer n and each positive x, 

  22) and for (2ℓ + 1) a -b (4ℓ + 2) -1 by h a,b (xi) 4ℓ+2 i=1 , (yj ) 4ℓ+2 j=1 := h x i+a-b-(2ℓ+1) 2ℓ+1 i=1 , (yj ) 2ℓ+1 j=1 + h y j+a-b-(2ℓ+1) 2ℓ+1 j=1 , (xi) 2ℓ+1 i=1 , (2.23) • the random vectors ε a,b u are defined by ε a,b u := (εj) (u+1)(4ℓ+2)+b-ℓ-1 j=u(4ℓ+2)+b-ℓ , 0 a -b 2ℓ; (2.24) ε a,b u := (εj) (u+1)(4ℓ+2)+b+ℓ j=u(4ℓ+2)+b+ℓ+1 , (2ℓ + 1) a -b (4ℓ + 2) -1;

  WL a centered normal variable with variance σ 2 L := L k=-L Cov (Y0,L, Y k,L ) and W a centered normal variable with variance σ 2 = k∈Z Cov (Y0, Y k ).The first item follows from the central limit theorem for (2L + 1)-dependent random variables; the second one from the convergence of σ 2 L L 1 to σ 2 , which can be seen by writingY k,L -Y k = ℓ L (Y k,ℓ -Y k,ℓ+1) and using Cauchy-Schwarz inequality:L k=-L Cov (Y0,L, Y k,L ) -Cov (Y0, Y k ) L k=-L |Cov (Y0,L, Y k,L -Y k )| + L k=-L |Cov (Y0,L -Y0, Y k )| 2L Y0,L 2 ℓ L θ ℓ,2 + 2L Y k 2 ℓ L θ ℓ,2 (2.122)and the quantities Y0,L 2 and Y k 2 are bounded independently of L and k.For the third item, we start from Chebytchev's inequality:P {|Zn,L -Zn| > ε} ε -2 Zn,Lk,ℓ -Y k,ℓ-1 )2

2. 4 . 3 .ℓ 1 k 1 (

 431 Treatment of Rn,7. First we rewrite Rn,7 as a double sum, namely, asRn,7 = 1 n 3/2 Y k,ℓ -Y k,ℓ-1 ) c n,k,ℓ (2.128)wherec n,k,ℓ = (4ℓ + 2) n 4ℓ + 2 k (4ℓ + 2) n 4ℓ + 2 + 1 -n [k n] ,(2.129)with the notation [P ] = 1 if the assertion P holds and 0 otherwise. Write n as (4ℓ + 2) N + r, where 0 r 4ℓ + 1. Thenc n,k,ℓ = -q [k N (4ℓ + 2) + 1] -n [N (4ℓ + 2) k n] , ,ℓ -Y k,ℓ-1 ) (2.131)and taking the expectation give that Rn,7 1 2n -1/2 ℓ 1 ℓθ ℓ,1 .

E

  [|di| p | Fi-1] u q-1 du. (A.1)

  Let (εi) i∈Z be an i.i.d. sequence with values in R d and let h : R d × R d → R be a measurable function. For 1 p < 2, define

					26)
	1.4. Law of large numbers. We first present a result on the Marcinkievicz law of large numbers for
	U-statistics of i.i.d. data. In order to extend it to the context of functional of i.i.d., we need a control
	on a maximal function.			
	Proposition 1.2 (Marcinkievicz-Zygmund law of large numbers). Let (εi) i∈Z be an i.i.d. sequence
	with values in R d and let h : R d × R d → R be a measurable function. For 1 p < 2, define
	Mp := sup n 1	1 n 2/p U ind n	h, (εi) i∈Z .	(1.27)
	Assume that E [|h (ε0, ε1)| p ] is finite and that for all x ∈ R d , E [h (ε0, x)] = 0. Then the following statements hold:
	(1) the sequence n -2/p U ind n	h, (εi) i∈Z n 1 converges to zero almost surely ;
	(2) for any positive x,			
	x p P {Mp > x} κpE [|h (ε0, ε1)| p ] ,	(1.28)
	where κp is bigger than 1 and depends only on p.
	Corollary 1.3. Mp := sup n 1	1 n 1+1/p U ind n	h, (εi) i∈Z .	(1.29)
	Assume that E [|h (ε0, ε1)| p ] is finite and E [h (ε0, ε1)] = 0. Then the following statements hold:
	(1) the sequence n -1-1/p U ind n	h, (εi) i∈Z n 1 converges to zero almost surely ;
	(2) for any positive x,			
	x p P {Mp > x} κpE [|h (ε0, ε1)| p ] ,	(1.30)

  .55) Since there exists a constant Cp depending only on p such thatE |Dj | 1 |Dj | > 2 2N/p = 2 2N/p P |Dj | > 2 2N/p +

						+∞
						2 2N/p	P {|Dj| > t} dt
							+∞
							Cp	2 2N/p-1	P {|Dj | > t} dt, (2.56)
	we derive after the substitution t = 2 2N/p s that	
				2 N	+∞	
	p ′′ N	Cp2	j=2	1/2	P |Dj | > 2 2N/p s ds.	(2.57)
	The combination of (2.54) with (2.57) yields	
			2 N	+∞	
	P (AN ) Cp	j=2	0	min {1, s} P |Dj | > 2 2N/p s ds.	(2.58)

  This ends the proof of Proposition 1.2. 2.2.1. Treatment of Rn,1,1 and Rn,1,2. Recall that

	1/p > 2 N/p suc2 u 2p-1 du min {1, s} ds. (2.62)
	Summing over N , we get (2.43) in view of the inequality		
	2 2N P Y > 2 2N/p	2E [Y p ]	(2.63)
	N 1		

for a non-negative random variable Y and the convergence of the integrals 1 0 u p-1 du and +∞ 0 min {1, s} s -p ds.

  Like for the results on the strong law of larger numbers, we have to control the contribution of the extra-terms in the decomposition obtained in Proposition 1.1. 2.3.1. Treatment of Rn,1,1 and Rn,1,2. Recall that

								.87)
	Using (2.86) and the fact that An,L consists of sums of terms which can be treated by Lemmas 2.3,
	2.4, 2.6 and 2.5, we derive that for all fixed L,			
	lim sup N→+∞	P sup n N	1 n 1+1/p Un h, f, (εi) i∈Z -E Un h, f, (εi) i∈Z	> 2ε	lim sup N→+∞	P sup n N	1 n 1+1/p |Bn,L| > ε .
								(2.88)
	Bounding the latter probability by ε -p sup n 1 2.5, we can see that for some constant C depending only on p, 1 p p,w and using Lemmas 2.3, 2.4, 2.6 and n 1+1/p |Bn,L|
			sup n 1	1 n 1+1/p |Bn,L|	p,w	C	ℓ L	ℓ 2 θ ℓ,p ,	(2.89)
	which can be made arbitrarily small.				
	2.3. Proof of Theorem 1.6.				

  Let us explain the idea of the proof. The convergence is essentially due to the partial sums of strictly stationnary sequence (Y k ) k 1 , where

	2.4. Proof of Theorem 1.7.		
			.108)
	This follows from the fact that H	(ℓ) (4ℓ+2)u+a,(4ℓ+2)u+b u 1	forms a two-dependent sequence.

  1/2 θ ℓ,2 hence lim sup Convergence in probability of Rn,1,1, Rn,1,2 and R n,k , 2 k 6 to 0. Observe that and that the number of terms in the two inner sums is of order ℓ 2 hence

	2.4.2. E [|Rn,1,1|]	1 n 3/2	ℓ 1	n j=(4ℓ+2)⌊ n 4ℓ+2 ⌋+1	j-1 i=(4ℓ+2)⌊ j-1 4ℓ+2 ⌋+1	H	(ℓ) i,j	1	,	(2.126)
	that H	(ℓ) i,j	1	θ ℓ,1 E [|Rn,1,1|]	1 n 3/2	ℓ 1	ℓ 2 θ ℓ,1 .
											2
											ℓ 1/2 θ ℓ,2	.	(2.125)
											ℓ L

n→+∞ P {|Zn,L -Zn| > ε} ε -2

The next Proposition gives a control of the maximal function involved in the strong law of large numbers. A control on the r-th moment for r < p was obtained in the proof of Theorem 4.1 in [START_REF] Wojbor | Asymptotic behavior of martingales in Banach spaces. II[END_REF]. The control on the weak-L p -moment was explicitely established in [START_REF] Cuny | A compact LIL for martingales in 2-smooth Banach spaces with applications[END_REF], p. 324, under a stationarity assumption, but the proof work for martingale with identically distributed increments.

Proposition A.2. Let (dj) j 1 be an identically distributed martingale differences sequence with respect to the filtration (Fj ) j 0 . Then for all 1 < p < 2, sup

Proof. We first notice that sup

and we apply Proposition A.2 to the sequences

The next Proposition give a control of the weak-L p -norm of the maximum function involved in the bounded law of the iterated logarithms for partial sum of stationary sequences. When the involved sequence is i.i.d. and centered, this reduces to Théorème 1 in [START_REF] Pisier | Sur la loi du logarithme itéré dans les espaces de Banach[END_REF]. This can be extended to the context of the functional of 2ℓ + 1 i.i.d. random variables by the same method as in the proof of Proposition A.4.

Proposition A.4. Let ℓ 1 and (Xj ) j 1 be a sequence such that Xj = f (εu) j+ℓ u=j-ℓ , where (εu) u∈Z is i.i.d. and X1 is centered. Then for all 1 < p < 2,

(A.5) Lemma A.5 (Proposition 2 p. 1693 in [START_REF] Wang | A new condition for the invariance principle for stationary random fields[END_REF]). Let Y be a real-valued random variable and let F and G be two sub-σ-algebra such that G is independent of the σ-algebra generated by Y and F. Then

Finally, the next lemma is well-known.