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EM Monitoring and classification of IEMI and

protocol-based attacks on IEEE 802.11n
communication networks

Jonathan Villain®, Virginie Deniau®1, Anthony Fleury3’1, Member, IEEE,, Eric Pierre Simon®*1!,
t2,1

Christophe Gransar

Abstract—The development of connected devices and their
daily use are today at the origin of the omnipresence of Wi-
Fi wireless networks. However, these Wi-Fi networks are often
vulnerable, and can be used by malicious people to disturb
services, intercept sensitive data or to gain access to system. In
railways, trains are now equipped with wireless communication
systems for operational purposes or for passenger services. In
both cases, defense strategies have to be developed to prevent
misuses of the networks. The first objective of this study is
to propose a monitoring solution, which is independent of the
communication networks, to detect the occurrence of attacks. The
second objective is to develop a method able to classify attacks
of different types: the intentional electromagnetic interference
(IEMI), i.e., jamming attacks, and the protocol-based attacks.
This study focuses on the IEEE 802.11n Wi-Fi protocol. To
perform these analyses, we propose to monitor and to analyze
electromagnetic (EM) signals received by a monitoring antenna
and a receiver collecting EM spectra. After that, we build a
classification protocol following two steps: the first consists in the
construction of a Support Vector Machine (SVM) classification
model using the collected spectra and the second step uses this
SVM model to predict the class of the attack (if any). A time-
based correction of this prediction using the nearest neighbors
is also included in this second step.

Index Terms—IEMI, Intentional ElectroMagnetic Interference,
Classification, Wlan, Wi-Fi, communication network journal,
IEEE 802.11n.

I. INTRODUCTION

Communications based on radio wave propagation, that
cannot be confined and emit in all directions, can be victim
of various cyberattacks. The main consequence of this “wild
propagation” of radio waves is that unauthorized persons
may listen to the network communications and possibly from
outside a building. The risks of poor protection of a wireless
network are multiple: data interception, diversion of connec-
tion for illicit access to a local network, jamming signals or
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dummy commands for the denials of service etc. Different
approaches can be studied to protect these wireless communi-
cations from such attacks. In this article, we consider that the
first step to countermeasure attacks consists in detecting them
and recognizing the type of attack in order to adapt the action
to envolve.

Intrusion Detection Systems (IDS) [1] can detect an ab-
normal activity on an analyzed target. There are three major
IDS families. The Network Intrusion Detection System (NIDS)
[2] which monitors the security state at the network level,
the HostBased Intrusion Detection System (HIDS) [3] which
monitors the security state at the host level and an hybrid
IDS which combines NIDS and HIDS. The major difference
between NIDS and HIDS is that HIDS is particularly effective
in determining whether a host is contaminated whereas a NIDS
can monitor an entire network. However, IDS mainly work on
the upper layers of the OSI model and do not protect the
wireless communication links. Moreover, the intrusion detec-
tion principles used need to be deployed on all terminals. In
this study, we work on a solution which outsources the attack
detection function by analyzing the wireless electromagnetic
(EM) activity. It consists in taking data from antennas and
receivers perfectly independent from the protected communi-
cation networks, then applying classification algorithms on the
data.

In [4], the authors have already considered improving IDS
approaches through EM measurements with the same objective
of outsourcing the monitoring. However, the context was
different as their work dealt with the analysis of processor EM
emissions with the view to detecting software compromise in
the context of protecting industrial control systems.

In [5], the detection of jamming attacks on wireless link net-
works was studied by analyzing the Received Signal Strength
Indication (RSSI) received by a station. The RSSI is used
by the IEEE 802.11 standard to measure the relative quality
of the received signal. In [6], the detection is based on a
synchronization indicator together with an adaptive signal to
noise plus jammer power ratio. In our case, as the monitoring
solution is outsourced, we are not limited to the indicators
of the standard. We selected the EM spectra collected by an
independent bench, since they provide more information than
the RSSI for the monitoring of the physical link.

Our article focuses on the Wi-Fi system. Nowadays Wi-Fi is
not only used to access to internet. There are growing numbers
of applications using Wi-Fi, including critical applications in



terms of security. For instance, in the railway sector, Wi-Fi
is increasingly used to ease the maintenance. Certain trains
are now equipped with on-board systems that provide mainte-
nance checks and report to a center via Wi-Fi transmissions.
Hence, a monitoring system with attack detection functions
can help strengthen the Wi-Fi network when used for critical
applications.

[7] recently analyzed the impact of jamming attacks on
the performance of a Wi-Fi 802.11n transmission but it did
not consider the detection and the classification of attacks. In
[8] the authors studied different EM interference sources but
they did not consider attacks. However, in [8], the interference
signals were classified, using a combination of SVM binary
classifications to determine if a channel is free from the
interference source, if a microwave oven is active during
the sensing period or if another network is overlapping the
channel.

In our article, the considered attack scenarios correspond
to attackers who would use jammers to provoke denial of
services and/or who would send deauthentication frames on
a public access point. The attack by deauthentication frames
is generally applied to disconnect a station from a licit access
point in order to benefit from all of the Wi-Fi ressource or to
force a station to connect to an illicit access point in order to
intercept private data. The attacks by deauthentication frames
correspond to protocol-based attacks. In this work, we want to
develop a single approach able to detect both jamming attacks
and protocol-based attacks, and to distinguish them.

To achieve this goal, the proposed system first collects EM
spectra of the frequency band of interest via an antenna. Then,
the classification based on these extracted data from the spectra
is carried out. Moreover, we propose the following two steps
based on classification protocol: the first step uses the Support
Vector Machine (SVM) for the classification, and the second
step applies a time correction using the nearest neighbors. This
time correction takes advantage of the fact that the attacks
range on several spectra. In this way, both dimensions, the
frequency dimension via the spectra, and the time dimension
via the corrections are exploited. To sum up, the contributions
of the paper are :

o The original approach for detecting the attacks based on
the physical layer via the spectra - this approach makes
it possible to outsource the monitoring system.

« The classification protocol adapted to this context - both
the ability to detect jamming attacks as well as protocol-
based attacks.

This paper is organized as follows. Section II presents the
considered EM attack experimentation configuration. Section
III reports the state of the art about the SVM and the nearest
neighbour approaches. Section IV is a detailed analysis of the
spectra in a classification perspective. Finally, Section V gives
classification results and the conclusion is drawn in Section
VL

II. EM ATTACK EXPERIMENTATION CONFIGURATION

The considered communication protocol is the IEEE
802.11n, which employs an OFDM modulation scheme. We
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Fig. 1: Experimentation with a 802.11n communication in the
presence of attack

consider two main attack modes: attack by deauthentication
frames which corresponds to a protocol attack and attack by
jamming signals.

a) IEMI attack: The attack by jamming signals consists
in intentionally emitting a signal which covers the frequency
bands employed by a communication system in order to
disturb the reception of a communication device. A jamming
signal is then an IEMI. The difference with IEMIs considered
in [9] is the power level. The power levels of jamming
signals are similar to communication signal power levels. The
jamming signals can degrade the performance of the communi-
cation networks without damaging the communication devices.
Different types of jamming signals can be used [7]. The vast
majority of commercial jammers use a frequency-sweeping
interference signal, which sweeps a frequency band [f, f2] in
a time duration 7. It can be expressed as:

s(t) = Acos (277 (%t + f1> t) L, 0<t<T, (1)

where A is the interference signal amplitude. Here, the jam-
ming signal that we consider sweeps the [2.4 GHz, 2.5 GHz]
frequency band in T' = 10 us A time-frequency representation
of the jamming signal is given Fig. 3.

b) Protocol attack: The attack by deauthentication
frames uses management frames defined into the IEEE 802.11
standard. In a network infrastructure composed of several
access points, when a client station (STA) is moving, the power
of the Wi-Fi signal evolves. As for cellular networks (3G, 4G),
a roaming principle has been specified in the standard. When
a STA is connected to an Access Point (AP) and moves away
from this AP, the Wi-Fi received signal power decreases. Due
to the moving of the STA, it can detect the Wi-Fi beacon
signal from another AP with an increasing power. In that
case, a roaming procedure is launched. The roaming procedure
consists in disconnecting the STA from the first AP and in
reconnecting the STA to the second AP using IEEE 802.11
management frames deauthentication and authentication. The
attack by deauthentication sends to a STA a frame of deau-
thentication even if the STA is not moving. Then, the STA
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Fig. 3: Time-Frequency representation of the jamming signal.

executes the command and is disconnected from the wireless
network. This attack can be easily implemented using tools
like aircrack-ng (airplay-ng) [10]. Using particular parameters,
the attacker creates a crafted frame that contains the real MAC
address of the AP and the MAC address of the STA target.
This attack is called directed deauthentication. For directed
deauthentications, aireplay-ng sends out a total of 128 packets
for each specified deauthentication. 64 packets are sent to the
AP and 64 packets are sent to the client. After the attack,
according to the configuration of the STA, the client can stay

offline and the user has to reconnect the computer manually to
the Wi-Fi network or the device can try by itself to reconnect
after a few seconds. Both attacks with jamming signals or
deauthentication frames, are generally the first step of attacks
aiming the interception of data. Indeed, these attacks permit
to disconnect the STA from a licit access point in order to
reconnect it to a fake access point.

c) Device setting: To study the detection and the distinc-
tion of the different attack modes by using a classification-
based approach, a Wi-Fi communication is set-up in an ane-
choic chamber by installing a server, an access point and a
client computer. The Wi-Fi channel 1, centered on the 2.412
GHz frequency, is used. We include a monitoring antenna
nearby the client. The monitoring antenna is connected to a
spectrum analyzer which is outside the chamber. A 40 MHz
frequency band, centred on 2.412 GHz, is monitored by the
spectrum analyzer. The classification approach is performed
on the collected spectra by the spectrum analyzer. Another an-
tenna connected to an arbitrary waveform generator is placed
in the chamber to emit the jamming signal. For the protocol-
based attack, another computer is present in the anechoic
chamber to send the deauthentication frames.



d) Attack configuration: To evaluate the performances
of the classification approach, we implement 6 distinct con-
figurations. The first configuration is without attack: spectra
acquisitions are carried out with a Wi-Fi communication
only. Three jamming attack configurations are tested: one
configuration with a low powerful jamming signal that has no
impact on the communication quality. The bit rate is still at the
maximal level (about 95 Mbits/s) and the noise on the channel
does not significantly change with or without the jamming
signal. A second configuration uses a jamming signal power
level which sligthly degrades the communication quality. The
bit rate is reduced at about 75 Mbits/s. The third configuration
uses a jamming signal power level 1 dB inferior to the required
power to totally interrupt the communication. So, the three
configurations whith three different jamming signal power
levels represent a jammer which would be at three different
distances from the client and the AP. Another configuration
consists in degrading the communication quality but without
any attack. For that, electromagnetic absorbing materials are
placed around the access point in order to degrade the signal
quality. Finally, the last configuration corresponds to the
deauthentication attack for which a dedicated computer has
been used. This dedicated computer sends deauthentication
requests to the STA to force it to leave the network. In this
work, these different attacks were applied permanently during
the acquisitions.

e) Acquisition: To illustrate the different configurations,
we represent 99 spectra (see Fig. 2) collected by the spectrum
analyzer from the monitoring antenna which is nearby the
client. The spectrum analyzer configuration is as follows: a
40 MHz frequency span, 2.412 GHz center frequency, a 100
kHz resolution bandwidth and 1601 points. The sweep time
of the spectrum analyzer is 38.2 us. By observing the figure,
we notice different curves for each attack configuration.

III. STATISTICAL APPROACH

For the classification of data, it is essential to know the
relationships that bind a variable (here the type of attack) that
one seeks to classify with some observable variables called
explanatory variables (in this work the spectra corresponding
to the attacks).

The purpose of the statistical modeling is to predict an
output from explanatory variables. In our work, this output
is the state (attack or not and if attack, which one) of the
communication network at a precise time. To perform this
task, we first learn to model the six profiles of communication
presented in figure 2.

A. Support Vector Machine (SVM) Basics

In 1964, Vapnik and Chervonenkis [11] set up a method
to determine an optimal margin separator hyperplane for the
separation of two classes in a Hilbertian space [12] associated
with a scalar product denoted by (.,.). To begin with, let
us consider a binary classification problem. The multi-class
problem is investigated at the end of this section. For two
classes, the goal is to find a classifier that will separate the
data by maximizing the distance between the margin and the
closest points of each class.
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a) Main idea: In SVM classification, a linear classifier,
called hyperplane, performs this task. The closest points,
which are used for the determination of the hyperplane, are
called support vectors (points x; and x5 in Figure 4). There is

V=

\

Fig. 4: Example of Separating hyperplane and support vectors
in 2 dimensions.

a large variety of possible hyperplanes, but SVM chooses the
optimal one. The intuitive idea is to look for an hyperplane for
which the minimal distance in the learning data is maximal.
To separate two classes, the greater the distance, the easier the
class separation is. This distance is named “margin”, as we
seek to maximize it, it is then called a wide margin separator.
b) Separating Hyperplane: We have the following train-
ing data set : n couples {(x;,¥:),4 = 1,...,n} where the
label y; € {—1,1} indicates to which class the data x; € RP
belongs. A canonical separating hyperplane H is given by:

(w,x)+b=0. (2

We can choose w and b such that the closest point to H
satisfies:

1 ifwix,+b>0,

(w,x) +b= { -1 if not. ®

we deduce that w'x; +b > 0 and w x5 + b < 0 as:

(W, x1 —x2) = (W, x1) —(W,x2) = (1=-b) — (-1—-0) =2,
“)

and consequently the margin towards H, denoted by M is

given by:
2
M= <W ,xl_X2> -
[[wil [w

where ||w| = \/w} + ... +w2.

; (&)

So, smaller ||w|| is, bigger the margin is. For this reason, in
order to find the hyperplane which offers the best separation
of the data, we must find the one that respects the conditions
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of a canonical hyperplane and for which |Jw|| is minimal. In
order to find this hyperplane, we need to minimize:

1
5wl (©)

under the constraints
yi ((w,x;) +b) >1i=1,...,n @)

which ensures that the hyperplane separates well the data and
that it is canonical.

c) Decision function: The decision function determines
to which class belongs x;. It is based on the sign of (w, x;)+b.
The mathematical function that extracts the sign is noted
sgn and returns the values 1 or —1. For ¢« = 1,...,n,
yi ((w,x;) +b) > 0 only if sgn(y; ((w,x;) +b)) = y; and
so if x; is in the right side of the hyperplane. Then, we can
show that if (w,x;) +b > 0, then y; = 1 is assigned to x;, if
(w,x;) +b <0, y; = —1. The hyperplane is said canonical.

A property of this problem is that

fw) =|lwll> =w? + ...+ w (8)

is a convex function. That ensures the absence of local
minimum and the presence of an unique solution.

d) Lagrangian: In the current context, the problem of
maximization becomes a problem of maximization under con-
straints. The minimization problem of (6) under the constraints
(7) can be solved with the Lagrange multipliers. We denote,
fort=1,...,n, a; > 0 the Lagrange’s multipliers associated
to the constraints. The Lagrangian function is given by:

SIwIP =3 (s (fw,x0) +8) = 1) ©)

i=1

L(w,b,a)=

e) Dual problem: Integrating the constraints, using La-
grange multipliers, the minimization problem can be formu-
lated in its dual form. Thus, we try to minimize L(w,b, &)
with respect to the primal variables w, b and to maximize
it with respect to the dual variables «;. When we reach
the optimal point of this minimization problem we have
w 0 and %:ba) and so Z -1 Yi = 0 and
Z?:l o;y;x; = w. By replacing these values in the La-
grangian, we obtain the dual problem:

H}EXZ o — Zza1ajyzyj<xuxj>

=1 7,1]1

(10)

under constraints «; > 0 and Z?:l a;y; = 0. In the dual
problem, the b coefficient does not appear. It is known that
when (w,x) +b > 1 the coefficient o; = 0 and that (w,x) +
b =1 for the support vector.

f) Resolution of the dual problem: To solve the dual
problem, an average of these parameters is then calculated for
the carrier vectors to estimate M = 2r = (3, oy ai)fl/2
where SV (Support Vector) is the set of the support vectors.
The decision boundary is then written:

(w,x) +b= Z oyi(xi, x) +b
iesv

Y

g) Non-linear hyperplane: Separation of classes by a
linear hyperplane is a special case. Generally, the definition
of the boundary between the different classes requires to
determine a non linear hyperplane. The definition of a such
hyperplane leads to the introduction of a release variable &; for
the constraints. The release variable ¢; penalizes the slacking
in the objective function. The problem then becomes

min Sl + oy e
i=1
under constraints y; ((w,x;) +b) > 1—¢; and §; > 0 with C
the penalisation term which has to be defined. The Lagragian
is then given by

(12)

1 n
‘C(W7b7 €i7a7y) :§||UJH2 + ngl
i=1

=Y iy ((w,xi) +b) =1+ &) (13)

im1
n
- Z vi&i.

Under optimal conditions we have Z oy = 0, w =
S oiyxi =0and C —a; —v; = 0fori=1,...,n.
By replacing these values in the Lagrangian, we obtain the
following dual problem:

n n

H(llaX E o — = g E o0y Y (X, X5)

=1 7,1]1

(14)

under constraints 0 < «; < C and >, a;y; = 0. We
consider now a nonlinear separation. In this case, the complex-
ity of the separator hyperplane used in the linear case is not
sufficient to correctly classify the data. In order to overcome
this problem, we consider a nonlinear transformation ¢(.)
which projects the data in a larger dimension space so that
the data in the transformed space are linear. The separating
hyperplane is then written:

(W, ¢(x)) +b

Replacing the data by the transformation ¢(.) in the La-
grangian we obtain:

5)

1 n
L(w,b, & a,v) =5 [wl* +C D&
i=1

=3 i (i ((w, ¢(x2)) +b) — 1+ &)

i=1

- Z vi&i.
= (16)

under constraints >, a;y; =0, w = > | a;y;x; = 0 and

C—a;—v;=0,i=1,...,n we deduce:
n 1 n n
max > ai- 3 33 iy (d(xi), b(x;)) (A7)
fi=1 i=1 j=1

under constraints 0 < o; < C and >." | oyy; = 0.



h) Kernel trick: 1Tt is difficult to build the hyperplane in
the transformed space (¢(.)). In 1992, Boser et al. [13], using
Mercer theorem [14] have found a way to build the optimal
hyperplane in the projection space without using an explicit
form of it. Applying this theorem, the problem can be written:

max > a; - 3 S0 oo Koxix)  (19)

i=1 i=1 j=1

under constraints 0 < «; < C and Z?zl a;y; = 0. In this
study, we consider the Radial Basis Function kernel (RBF),
given by:

552 (19)

o~ 2
K (x4,%;) = exp <_”X’XJ”>7

where % set the width of the bell-shaped curve which should
be chosen a priori. The larger the value of %, the narrower
the bell is.

i) Multi-class problem: In this study, the problem is
a multi-class classification case. Indeed, the problem is not
limited to one class for "attack™ and one for “normal communi-
cation”. Firstly, we consider different kinds of attacks in order
that the classification allows us to identify the type of attacks.
Secondly, we consider the possibility to have configurations
in which the communication quality is degraded due to bad
propagation conditions. We want to be able to distinguish this
last case in order to avoid false positive attack detections. In a
multi-class classification case, two stategies can be deployed to
adapt the SVM algorithm. The first is One-against-one strategy
and the second is One-against-all strategy. In the following,
the strategy selected to classify the spectra is the One-against-
all strategy [15]. One-against-all strategy involves training a
single classifier per class, with the samples of that class as
positive samples and all other samples as negative. To build the
L-class classifiers, it is common to construct binary classifiers
Y £2, ..., fL and combine them. The combination of these
classifiers is carried out by ajusting the maximal output before
applying it to the function sgn. The combination is then given
by

1
argmax Z yiagK(x, x;) + V. (20)

j=1,....L i—1
This value can also be used as a rejecting decision when we
consider the difference between the two largest values and as
a confidence-building-measure in the classification of x.

B. Nearest Neighbour Approach

The nearest neighbor classifier does not require any pre-
processing of the labelled samples prior to its use. The crisp
nearest-neighbor classification rule assigns an input sample
vector ¥ to the class of its nearest neighbor [16]. The vector §
contains the labels predicted by the SVM model. This idea can
be extended to the K-nearest neighbors with the vector § being
assigned to the class that is represented by a majority amongst
the K-nearest neighbors. When more than one neighbor is
considered, we can have a tie among classes with a maximum
number of neighbors in the group of K-nearest neighbors. One
simple way of handling this problem is to restrict the possible
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values of K. For example, given a two-class problem, if we
restrict K to odd values only, no tie will be possible. Of course,
when more than two classes are possible, this technique is not
useful. A way of handling the occurrence of a tie is as follows.
If these classes are tied, the sample vector is assigned to the
class for which the sum of distances from the sample to each
neighbor in the class is a minimum. This can still lead to a tie.
In that case, the assignment is to the last class encountered.
Consequently, there are cases where a classification vector
becomes an arbitrary assignment, no matter what additional
procedures are included in the algorithm.

C. General protocol

In this section, we describe the protocol which is applied
to classify attacks by focusing on the relationship between
the attack and EM spectra (classification) as well as the time
correlation (correction). To estimate the profile of the attack
(and as a consequence learn to recognize it), the protocol
contains two main parts.

a) Step 1: The first part of the protocol (Figure 5)
performs a learning step of a classification based on SVM
algorithm [11] (see Section III-A) with a radial basic function
[17] as kernel. The SVM classification is performed using
an One-against-all classification approach [15]. In order to
choose the parameter o, we minimize the validation error for
a sigma value included in a selected interval obtained with the
procedure developed by Caputo and al. [18]. To estimate C,
we considered the approach of Cherkassy and Ma [19].

b) Step 2: The second step predicts the class of a new
data using two steps. In a first time, using the model estimated
in step 1, a prediction is made for the new data. In a second
time, with a lag of k/2, a correction is applied on the predicted
class using K nearest temporal neighbors. The correction is
possible due to the duration of the attacks over time which
cannot be focused on a single spectrum [16]. In the figure 5,
Step 2 presents the general architecture of the proposed system
that allows us to test the quality of the prediction.

—
\Validation|
Data
i
2 Co SVM Learning| ‘
o, Learing| ) —) Evaluation
w) Data
Ajusted C, ¢
x A A
— Ak A
Real time - SVM Model - (%% A \A KNN
b % A | correction
N Data N A )
[ N
]
& A g
w
Predicted
class

Fig. 5: Schematization of the Protocol.
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IV. DATA ANALYSIS
A. Frequency band selection

To analyse the importance of the frequencies, we study
the linear relationship between the frequencies of a spectrum.
From the spectra obtained previously, we aim to find models
that could distinguish classes corresponding to known attacks
or to a normal use of the network.

The spectrum acquisitions are performed over a 40 MHz
frequency band. The Wi-Fi channel bandwidth being 20 MHz,
the spectrum characteristics before and after the 20 MHz
channel may significantly vary if there are other access points
or not in the vicinity. Thus, it is preferable for the classification
to only exploit data belonging to the frequency band of
the channel so that the detection is less dependent on the
electromagnetic activity over the other channels. In learning
algorithms, before any modeling we try to reduce the number
of variables and to only select variables in the 20 MHz channel
frequency band, for example by deleting the ones providing
identical information. In the case of the spectra, due to the
type of acquisition and the set up of the spectrum analyzer, we
need to check the correlation between the different frequencies
composing the spectra (see Fig. 6). Figure 6 highlights the high
level of correlation between the frequencies in the interval
[2.402;2.422] GHz as well as the frequencies in the interval
[2.392;2.402[U]2.422;2.432] GHz. In addition, the central
frequency corresponding to the zone D is more than 60%
correlated with the whole band. Thus, only the data included
in the band 2.402 and 2.422 GHz, corresponding to the zones
B, D and E, are retained to perform a classification.

1
08 A First 10 MHz
05 B Communication channel
o4 C Last 10 MHz

D Central frequency

’ E Guard band

Fig. 6: Frequencies correlation.

B. Principal Component Analysis

A way to check if the different classes can be separated
is to compute a Principal Component Analysis (PCA) on
all data, i.e. 99 spectra for the 6 configurations [20]. These
components correspond to the axes obtained from the eigen-
vectors constructed from the spectra. Projecting the spectra on
the two components associated to the eigenvector possessing
the higher eigenvalues (see Fig. 7), we check if the different
configurations can be discriminated by classification. In this

new representation, each point corresponds to one spectrum.
The six different colors represent the spectra collected in the
six different configurations: Wi-Fi communication alone in
blue, Wi-Fi in the presence of absorbers in yellow, Wi-Fi with
jamming signal without effect in red, Wi-Fi with jamming
signal with lightly effect in green, Wi-Fi with jamming signal
at the limit of the break in purple and Wi-Fi communication
with a deauthentication attack in brown.

e Communication alone
With absorbing material
o Deauthentication attack

® Jamming without impact
Jamming with moderate impact
e Jamming with strong impact
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Fig. 7: Representation of the spectra on the two first compo-
nents of the PCA.

In Fig. 7, we notice that the attack by deauthentication
is significantly separated from the other classes. This result
is very satisfying because this attack is a protocol-based
attack and the nature of the signal is not really different
from a normal communication. This result is encouraging
to develop a detection approach able to distinguish a large
number of attacks. Nevertheless, the separation is less obvious
between the Wi-Fi communication alone, the jamming without
impact and with moderate impact. To improve the separation
between these three classes, we have to take into account
other components beyond the first two and we must adopt
a nonlinear separation. As a consequence, the relevance of the
retained variables (zones B, D et E in Fig. 6) has to be verified
in the case of a non linear analysis.

C. Identification of the most discriminating frequencies

The relevance of the retained variables has been demon-
strated in a linear analysis. While conducting a nonlinear
analysis, it must be verified that the most discriminative
frequencies belong to sections B, D and E of Fig 6.

To identify the most discriminating frequencies in the spec-
trum, we use sensitivity response aggregation functions [21].
The sensitivity method works by varying an input variable
x, through its range with S levels. This method works by
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Fig. 8: Weight of the 20 first relevant frequencies.

considering a given baseline vector d of size S which generally
contains the statistical values (mean, median, quartile, ...) of
each input. Then, it cycles through all {z, : a € 1,...,p}
inputs. For each input, S inputs are built using all d values
except {zq; : j € {1;...;5}}. We denote the respective
model responses by ¥, = {ya; : j € {1;...;S}}, where
Ya;j represents the response for x,;. Based on these values,
we compute a sensitivity measure of the input. Thus, highest
is the score obtained by a variable, the more it discriminates
the studied cluster. To study the discrimination capacity of
the different frequencies, we use these sensitivity response
aggregation functions. Fig. 8 represents the 20 most discrim-
inating frequencies, with in abscissa, their respective weight
issued from the sensitivity measure. These most discriminating
frequencies are located between 2.4 GHz and 2.42 GHz (see
red points in Fig. 9) and the best frequency is 2.412025 GHz.
Therefore, the central 20 MHz frequency band is sufficient to
discriminate the spectra associated to the different types of
attack, even using a non linear analysis. In the following, only
the central frequency band of the spectrum is considered.

Moreover, in this paper the acquisitions are performed in
anechoic chamber, using a single Wi-Fi channel. However, in
realistic conditions, the adjacent Wi-Fi channels can be used
or not. Therefore, the spectra over 40 MHz can significantly
evolve according to the activity of the Wi-Fi network. As a
consequence, centering the analysis on the 20 MHz of the used
channel can make the classification results less dependent on
the activity of the adjacent communication channels.

The identification of the most discriminative frequencies is
also interesting to optimize the acquisition process. Indeed, the
perspective of this work, is also to develop attack detection
tools on Software Defined Radio (SDR) platforms. The acqui-
sition process could be optimized by focusing on a reduced
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frequency band including the most relevant frequencies for the
classification.

V. CLASSIFICATION RESULTS

The classification is then performed only on the central 20
MHz frequency band. We want to identify whether or not
the communication network is facing an attack at a precise
time using the spectra corresponding to this time. We have to
identify 6 attack profiles presented in section II. We estimate
the attack profile using the protocol presented in Fig. 5. In the
second step of the protocol, to perform the K-nearest neighbors
on the SVM predictions, we use the 10 nearest neighbors. To
verify the quality of the prediction, the general architecture of
the proposed system is tested on sampling data constructed as
presented in Fig. 5.

The learning phase is the phase where the SVM model
learns the separating hyperplanes. The learning data set is
composed of 49 spectra for each configuration (294 spectra in
total). The validation phase is a verification of the parametriza-
tion of the SVM model. The validation data set is composed
of 29 spectra for each configuration (174 spectra). Finally, the
testing phase is the phase in which we compute and evaluate
the correction. The real time data is replaced by a testing data
set composed of 126 spectra organized in a temporal way
simulating a succession of configurations (see figure 10).

jamming
Providing
alteration

jamming
providing cut

jamming
Without effect

Presence of 2 Peauthentication|
absorber =

Wi-fi
Wifi
Wi-fi

Fig. 10: Test set organization.

The classification quality is evaluated using the classifica-
tion error. Table I represents this error on the training, the
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TABLE I: Classification error

model error (%) | sample size n
Cross-validation 15 468
Training 7 294
Validation 9 174
Test 14 126

validation, the testing sets and by a cross-validation. Cross-
validation is a validation technique to assess how the results
of a statistical analysis can be generalized to an independent
data set. One round of cross-validation involves partitioning a
sample of data into complementary subsets, performing the
analysis on one subset and validating the analysis on the
other subset. The number of folds determines the number of
rotations used to estimate the combined measures. In the fol-
lowing, we use the cross-validation on the combined training,
validating and testing sets to estimate the classification error
using a three-fold validation.

Table II represents the confusion matrix between the pre-
dicted classes and the real one (the predicted classes are
obtained by cross-validation). 1) corresponds to a Wi-Fi com-
munication only, 2) corresponds to a communication in the
presence of absorbers, 3) corresponds to a communication in
the presence of jamming without effect, 4) corresponds to a
communication with a light impact jamming, 5) corresponds
to a communication in the presence of jamming that provokes
short communication interruptions and 6) corresponds to a
communication with a deauthentication attack (see Table II).

Observing the confusion matrix, the majority of the errors
are concentrated on two different cases : (1) between nor-
mal communication and the presence of absorbing materials,
and (2) between strong jamming creating short connection
losses and deauthentication attacks. It is important to note
that there is no confusion between a degraded propagation
situation by the presence of absorbing materials and the
presence of an attack signal. This shows that the degraded
propagation situation is not likely to produce a false alarm.
The errors between normal communication and the presence
of absorbing materials can be explained by the proximity in
their spectra profiles as it can be observed in Fig. 7. The
confusion between strong jamming creating short connection
losses and deauthentication attacks, comes from restarts on
the Wi-Fi communication after interruptions. To overcome
this confusion, we compute a correction using the 9 nearest
neighbors which permits to take into account the proximity in
time of the spectra to be analysed. To evaluate this correction,
we apply it on the testing set.

In Table III, to analyze the weakness of the initial model
and the potential relation between the attacks, we also analyze
the confusion matrix established over the test data respectively
without and with correction by the nearest neighbors.

Here, the correction is based on the fact that an attack
cannot be implemented on only one spectrum, it lasts a certain
time and covers several spectra. In our configuration, this
correction suppresses all the errors. But, the correction does
not work when an error occurs on a transition phase (transition
between two states of the network). Moreover, the lack of good

TABLE 1II: Confusion matrix obtained by cross-validation
between predicted classes and real configuration.

predicted attack
1 2 3 4
1: Wi-Fi alone 80 19 0 0
2: With absorbers 25 74 0 0
0 0 97 2
4: Moderate jamming 0 0 4 95
0 0
0 0

3: Low jamming

o O O o|w
o O O oo

real attack

0 0 63 36
0 0 2 97

5: Strong jamming
6: Deauthentication

TABLE III: The confusion matrix obtained on the testing
set. In each line of the table, the two results correspond
respectively to the result without and with correction

predicted attack

1 2 3 4 5 6
1: Wi-Fi alone 2 > 0 0 0 0
26 0 0 0 0 0
2: With absorbers 7 19 0 0 0 0
0 26 0 0 0 0
A . . 0 1 23 2 0 0
Q 3: Low jamming
g 0 0 26 0 0 0
= 1 2
§ 4: Moderate jamming 0 0 > 0 0
0 0 0 26 O 0
. . 0 0 0 0 20 6
5: Strong jamming
0 0 0 0 26 0
6: Deauthentication 0 0 0 0 2 24
0 0 0 0 0 26

prediction in a transition phase can create a new error in the
case where the classification correctly predicts the attack or
produces a wrong correction of the error. The choice of the
K parameter is crucial for the correction. On one hand, it is
important to take a sufficiently large value to have a good
correction. On the other hand, higher the value is, later the
prediction arrives.

VI. CONCLUSION

This paper focuses on the conception of a monitoring system
able to detect and classify jamming and protocol based attacks.
To achieve this goal, we propose to outsource the attack
detection function from the network to protect and we use
an antenna to monitor the spectrum over the time.

In this study, the Wi-Fi network and the attacks are carried
out in an anechoic chamber to avoid disturbing other Wi-Fi
communication networks in the vicinity.

A study of the spectra highlights that the frequencies of
interest belong to the communication channel between 2.402
GHz and 2.422 GHz. Focusing the analysis on this 20 MHz
frequency band permits to construct a classification model
to overcome the problems induced by the utilization of the
adjacent channels which can be or not occupied by other Wi-
Fi communications.

On these frequencies, the proposed estimation model shows
good results in the prediction of attacks. In addition, the
correction using the K spectra nearest in time permits to
correct most of the miss classification.



In our future work, we plan to verify the behavior of our
model on data acquired outside of the anechoic chamber,
in realistic situations. Another important point is knowing
how our model can evolve in the case where unknown at-
tack occurs. Finally, as new (unpresented/unlearned) attacks
can appear very quickly, we aim to use machine learning
techniques. These techniques include adaptive classification
algorithms, able to change the models after their creation
and the number of classes over time. By learning upstream
the standard behavior of the communication, the algorithm
analyzes the data as they arrive and try to classify them as
one standard communication or not. If the communication is
not standard, a new class is created and considered by defaults
as an unknown attack.
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