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Abstract: Image registration is a crucial and fundamental problem in image processing and computer
vision, which aims to align two or more images of the same scene acquired from different views
or at different times. In image registration, since different keypoints (e.g., corners) or similarity
measures might lead to different registration results, the selection of keypoint detection algorithms
or similarity measures would bring uncertainty. These different keypoint detectors or similarity
measures have their own pros and cons and can be jointly used to expect a better registration result.
In this paper, the uncertainty caused by the selection of keypoint detector or similarity measure is
addressed using the theory of belief functions, and image information at different levels are jointly
used to achieve a more accurate image registration. Experimental results and related analyses show
that our proposed algorithm can achieve more precise image registration results compared to several
prevailing algorithms.

Keywords: image registration; evidential reasoning; belief functions; uncertainty

1. Introduction

Image registration is a fundamental problem encountered in image processing, e.g.,
image fusion [1] and image change detection [2]. It refers to the alignment of two or more
images of the same scene taken at different time, from different sensors, or from different
viewpoints. Image registration plays an increasingly important role in applications of surveillance [3],
remote-sensing [4] and medical imaging [5].

For a collection of images to be registered, one is chosen as the reference image and the others are
selected as sensed images. Image registration align each sensed image to the reference image by finding
the correspondence between all pixels in the image pair and estimating the spatial transformation
from the sensed image to the reference image. In this paper, we just consider the image registration
between two images, i.e., there is only one sensed image together with a given reference image.

Current image registration techniques that based on image domain can be generally divided
into two categories [6]: the sparse methods and dense methods. There are also some methods based
on transform domain, like Fourier-Mellin transformation method [7]. The transform domain based
methods are often used for image registration with similarity transformation model. In this paper,
we focus on the image domain based methods.

The sparse methods [8] extracts and matches salient features from the reference image and sensed
image and then estimates the spatial transformation between the two images based on these matched
features. Line features (e.g., edges) and point features (corners, line intersections and gravities of
regions) all can be used for image registration. Corner features are the mostly used features and can be
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manually selected or automatically detected by Harris [9], FAST (Features from Accelerated Segment
Test) [10], SIFT (Scale-Invariant Feature Transform) [11], SURF (Speeded-Up Robust Features) [12],
DAISY [13], ORB (Oriented FAST and Rotated BRIEF) [14], KAZE [15], etc.

In contrast to the sparse methods, the dense methods [16] do not detect features from the image
pair but search the optimal spatial transformation directly that can best match all the pixels in the
image pair. Similarity (resp. dissimilarity) measures are defined to quantify the independency
(resp. dependency) between the pair of images. Various similarity and dissimilarity measures
have been proposed [17] such as RMSE (Root-Mean-Squared Error), PSNR (Peak Signal to Noise
Ratio), Spearman’s Rho [18], NCC (Normalized Cross-correlation Coefficient) and MI (Mutual
Information). It should be noted that dense methods based on RMSE or PSNR cannot handle the
cases with illumination variation since these two similarity/dissmilarity measures are very sensitive
to illumination changes.

Both the sparse methods and dense methods involve uncertainty problems. For the sparse
methods, keypoints obtained from different keypoint detectors describe different corner features
of the image. Therefore, image registrations based on different keypoint detectors would obtain
different spatial transformations. For the dense methods, different similarity (dissimilarity) measures
quantify the difference between the pair of images from different aspects so that image registrations
based on different similarity (dissimilarity) measures would obtain different spatial transformations.
These different spatial transformations obtained have their own pros and cons, and the selection of
the spatial transformation (the selection of the feature detector or similarity measure indeed) would
bring uncertainty.

To deal with the uncertainty caused by the particular selection of feature detector or similarity
(dissimilarity) measure, one feasible way is to combine these registration transformations obtained
from different feature detection methods or similarity measures to obtain a better registration result.
The belief functions introduced in Demspter–Shafer Theory (DST) [19] of evidence offer a powerful
theoretical tool for uncertainty modeling and reasoning; therefore, we propose a fusion based image
registration method using belief functions. In this paper, the spatial transformations obtained from
different feature detection algorithms or similarity measures compose the frame of discernment (FOD)
and their uncertainties are modeled using belief functions. In uncertainty modeling, image information
at different levels, i.e., image’s intensities, edges and phase angles, are jointly used to evaluate the
beliefs about image transformations. Then, these uncertainties are further handled through the
evidence combination of the above multiple information. The final registration result is obtained
according to the combined evidence.

This paper is an extension of our previous work in [20] where the basic idea is briefly presented.
The main added values with respect to [20] are as follows. First, the transformation model between the
reference image and sensed image is more comprehensive. We use similarity transformation model
in [20] but use projective transformation model in this paper, which is more general since all similarity
transformations are examples of projective transformations. Second, the keypoints used in the sparse
approach in [20] are manually selected. To reduce the subjective influence to the registration result,
in this paper, the keypoints are generated from detection algorithms. Accordingly, feature matching
and mismatching removal are added after the keypoint detection. Third, when modeling uncertainties,
one more information source, i.e., image’s phase angle information, is considered in this work. Fourth,
more experiments and analyses are provided for performance evaluation and analysis.

The rest of this paper is organized as follows. The basics of image registration are introduced in
Section 2. The basics of evidence theory are introduced in Section 4. The proposed image registration
method is introduced in Section 4.1 with emphasis of uncertainty modeling and handling. Evaluation
method is introduced in Section 5. Experiment results of the proposed method and other registration
methods are presented and compared in Section 6.1. Concluding remarks are given in Section 7.
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2. Basics of Image Registration

For two (or more) images of the same scene taken at different time, from different sensors, or from
different viewpoints, one is chosen as the reference image (R) and the other one is chosen as the sensed
image (S). In this paper, we focus on the projective transformation model between the reference image
and sensed image, which is a commonly used model in image registration [16].

Denote pixel coordinates in the reference image R as (v, w) and their mapping counterparts in
the sensed image S as (g, h). The projective transformation from R to S can be expressed based on the
homogeneous coordinates (Homogeneous coordinates can easily express the translation transformation
as matrix multiplications while Cartesian coordinates cannot) as

[g h 1] = [v w 1] T = [v w 1]

 t11 t12 t13

t21 t22 t23

t31 t32 t33

 (1)

The similarity transformation and affine transformation are important specializations of the
projective transformation, as illustrated in Table 1.

Table 1. Projective transformation and its two specializations.

Similarity Affine Projective s cos θ s sin θ 0
−s sin θ s cos θ 0

t31 t32 1


 t11 t12 0

t21 t22 0
t31 t32 1


 t11 t12 t13

t21 t22 t23

t31 t32 t33



The purpose of image registration is to estimate the transformation T to align the sensed image S
with the reference image R by [

v′ w′ 1
]
= [g h 1] T−1, (2)

where (v′, w′) and (g, h) denote pixel coordinates in registered sensed image S′ and sensed image S,
respectively. Current image registration techniques can be divided into two categories [6] in general,
including the sparse method and dense method. Basics of these two methods are introduced below.

2.1. Sparse Image Registration and Its Uncertainty

The feature detection and feature matching are two critical steps in the sparse methods. The flow
chart of the sparse approach is illustrated in Figure 1, where each functional block is detailed in
the sequel.

Figure 1. Flow chart of sparse approach.

2.1.1. Feature Detection

Corner features are the mostly used features in image registration due to their invariance to
imaging geometry [6]. Some early keypoint detectors, like Harris and FAST, are very sensitive to
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image scale changes so that have poor performance when the sensed images have different scales
with the reference image. The most well-known SIFT detector shows good robustness to illumination,
orientation and scale changes. Most scale invariant detectors, like SIFT, SURF, ORB and BRISK,
detect and describe features at different scale levels by building or approximating the Gaussian scale
space of the image. In a different way, KAZE detects features in a nonlinear scale space built using
efficient additive operator splitting techniques and variable conductance diffusion.

2.1.2. Feature Matching

To align the sensed image and the reference image, the detected keypoints in the two images
are matched first by comparing their local feature characterized by descriptors. Generally, if the two
keypoints’ descriptors are similar, the two keypoints are likely to be a matched pair. Given a keypoint t
in the reference image, there might be a set of candidates in the sensed image having similar descriptor
with t. Among these candidates, t’s real counterpart should have the closest distance with t, and at the
same time its distance should be much closer than other candidates’ distances.

The accuracy of the keypoints’ matching affects the accuracy of the transformation’s estimation.
The mismatched keypoint pairs should be further removed before estimating the transformation.
RANSAC (RANdom SAmple Consensus) [21] and MSAC (M-estimator SAmple and Consensus) [22]
are often used to deal with this problem. A recent RANRESAC (RANdom RESAmple Consensus) [23]
algorithm has been proposed to remove mismatched keypoint pairs for noisy image registration.
Besides the accuracy of the keypoints’ matching, the distribution of matched pairs over the image
space is another key factor to obtain a high-quality estimation of transformation.

2.1.3. Transformation Estimation

With all the matched keypoint pairs, the transformation matrix T can be estimated using
Equation (1). Since T has eight degrees of freedom, four point correspondences (with no three
collinear) are needed to obtain the unique solution of T according to Cramer’s rule.

Normally, the amount of the matched keypoint pairs is more than four and T can be estimated
using the least squares (LS) fitting technique [6] by searching the minimum sum of the Euclidean
distances between all the matched keypoints:

T̂ = arg min ∑
i

d
(

corR
i , corS′

i

)
, (3)

where corR
i = (vi, wi) represents the coordinate of the ith matched keypoint in the reference image and

corS′
i = (v′i, w′i) represents the coordinate of the ith matched keypoint in the registered sensed image

transformed from the sensed image using Equation (2).

2.1.4. Uncertainty Encountered in Sparse Approach

Since different keypoint detection algorithms detect different kinds of corner features, the detected
keypoints are usually different, as shown in Figure 2.

Image registrations based on different matched keypoint pairs would in general yield different
spatial transformations to align two images. Different transformations obtained have their own pros
and cons. Therefore, the selection of keypoint detection algorithms would bring uncertainty problem
to the registration results.
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(a) (b)

(c)

Figure 2. Different keypoint pairs detected by different keypoint detectors. (a) BRISK. (b) KAZE.
(c) SURF.

2.2. Dense Image Registration and Its Uncertainty

The dense image registration estimates the optimal transformation T by searching the largest
similarity (or the smallest dissimilarity) between the reference image R and the registered sensed
image S′ = T (S):

T̂ = arg max Sim (R, T (S)) (4)

where Sim is a chosen similarity measure. The flow chart of the dense approach is illustrated in
Figure 3, where each functional block is detailed in the sequel.

Figure 3. Flow chart of dense approach.

2.2.1. Similarity Measure

Various similarity (or dissimilarity) measures have been proposed. Here we briefly introduce the
commonly used MI, NCC and PSNR measures.

(1) MI

MI measure between images A and B is

MI(A, B) =
255

∑
a=0

255

∑
b=0

pAB(a, b) log
PAB(a, b)

PA(a)PB(b)
, (5)

where pAB is the joint probability distribution function (PDF) of images A and B, and pA and pB are
the marginal PDFs of A and B, respectively. MI(A, B) is larger when A and B are more similar.
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(2) NCC

For given images A and B with size of M× N, NCC measure between them is

NCC(A, B) =
M

∑
x=1

N

∑
y=1

(A(x, y)− µA)(B(x, y)− µB)

σAσB
, (6)

where A(x, y) and B(x, y) are the pixels’ intensities in images A and B at (x, y), respectively; µA and
µB are the mean intensities of A and B, respectively; σA and σB are the standard deviation intensities
of A and B, respectively. NCC(A, B) is larger when A and B are more similar.

(3) PSNR

PSNR measure between images A and B is

PSNR(A, B) = 10× log10

(
2552

MSE(A, B)

)
, (7)

where MSE(A, B) = 1
M×N ∑M

x=1 ∑N
y=1 [A(x, y)− B(x, y)]2. PSNR(A, B) is larger when A and B are

more similar. Since PSNR measure is very sensitive to illumination changes, it cannot be used for
image registration when there are illumination variations between image pairs.

2.2.2. Transformation Estimation

The estimation for transformation T, i.e., Equation (4), is always a non-convex problem and
is not so easy to obtain the global maximum [24]. Therefore, advanced optimization methods [25],
or intelligent optimization approaches (like genetic, or particle swarm algorithms, etc.) are often used
to estimate the optimal transformation T.

2.2.3. Uncertainty Encountered in Dense Approach

Since different similarity (dissimilarity) measures compare two images from different aspects,
their calculated similarities (dissimilarities) between the reference image and registered sensed
image are different. Image registration based on different measures would obtain different spatial
transformations to align two images and they have their own pros and cons. Therefore, the selection
of similarity (dissimilarity) measure would bring uncertainty problem to the registration results.

To deal with the uncertainty caused by the selection of feature detection algorithms or similarity
measures, one feasible way is to combine the registration transformations (T1, T2, . . . , TQ) obtained from
different feature detection algorithms (or different similarity measures) to expect a better registration
result. We propose an evidential reasoning [19] based image registration algorithm to generate a
combined transformation from T1, T2, . . . , TQ thanks to the ability of belief functions for uncertainty
modeling and reasoning. Basics of the theory of belief functions are recalled first below.

3. Basics of Evidence Theory

Dempster–Shafer evidence theory (DST) [19] is a theoretical framework for uncertainty modeling
and reasoning. In DST, elements in the frame of discernment (FOD) Θ = {θ1, θ2, . . . , θQ} are mutually
exclusive and exhaustive. The power set of Θ, i.e., 2Θ, is the set of all subsets of Θ. For example,
if Θ = {θ1, θ2, θ3}, then 2Θ = {{∅}, {θ1}, {θ2}, {θ3}, {θ1, θ2}, {θ1, θ3}, {θ2, θ3}, {θ1, θ2, θ3}}. The basic
belief assignment (BBA, also called mass function) is defined by a function m: 2Θ 7→ [0, 1], satisfying

∑A⊆Θ m(A) = 1 , m(∅) = 0, (8)

where m(A) depicts the evidence support to the proposition A. A is called a focal element when
m(A) > 0. If there is only one element in A, like {θ1} and {θ2}, A is called the singleton element;
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if there are more than one element in A, e.g., {θ1, θ2} and {θ1, θ2, θ3}, A is called the compound
element. The belief assigned to a compound element represents the degree of ambiguity for the
multiple elements.

The plausibility function (Pl) and belief function (Bel) are defined as follows:

Pl(A) = ∑A∩B 6=∅ m(B), (9)

Bel(A) = ∑B⊆A m(B). (10)

Dempster’s combination rule [19] for combining two distinct pieces of evidence is defined as

(m1 ⊕m2)(A) =

{
0, A = ∅

1
1−K ∑

B∩C=A
m1(B)m2(C), A 6= ∅ (11)

Here, K = ∑B∩C=∅ m1(B)m2(C) denotes the total conflict or contradictory mass assignments.
An alternative fusion rule PCR6 [26] for the combination of two sources is defined as

mPCR6
12 (A) = mConj

12 (A) + ∑
A∩Y=∅

[
m1(A)2m2(Y)

m1(A) + m2(Y)
+

m2(A)2m1(Y)
m2(A) + m1(Y)

] (12)

where mConj
12 (A) is the conjunctive rule defined as

mConj
12 (A) = ∑

B∩C=A
m1(B)m2(C) (13)

General PCR6 formula for the combination of more than two sources is given in [26].
For a probabilistic decision-making, Smets defined the pignistic probability transformation [27] to

obtain the probability measure BetP from a BBA

BetP(θi)
∆
= ∑θi∈A

m(A)

|A| ∀θi ∈ Θ, (14)

where |A| is the cardinality of A. The decision can be made by choosing the element in FOD whose BetP
value is the highest one and higher than a preset threshold. Other types of probability transformation
methods can be found in [26,28].

4. Image Registration Based on Evidential Reasoning

To deal with the uncertainty caused by the choice of keypoint detectors in the sparse approach
or the choice of similarity measure in the dense approach, we propose an image registration method
based on evidential reasoning. Suppose that the spatial transformation between the reference image
and sensed image is projective. Our purpose is to estimate the transformation matrix to align two
images. Unlike the prevailing methods estimating the transformation matrix from single method of
keypoint detection or similarity (dissimilarity) measure, we estimate the transformation matrix by
jointly utilizing different keypoint detection methods or similarity measures.

To use belief functions for image registration, one should define the frame of discernment (FOD)
first. The FOD Θ = {T1, T2, . . . , TQ}, where Q is the amount of transformations obtained from different
single feature detection algorithms or different single similarity measures. We first model the beliefs for
every proposition A ⊆ Θ using BBAs. A can be single transformation in FOD or a set of transformations
in FOD. One BBA depicts the support to each proposition A from one evidence source. The BBA
allocations from different evidence sources describes the uncertainty of the transformations in FOD.
Next, the BBAs are combined to generate the combined BBA mc depicting the fused support to each
proposition A. Then, the combined transformation Tc is generated from the combined BBA mc. Finally,
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the registered sensed image S′c is transformed from the sensed image using Equation (2). During this
process, the resampling [29] is needed to determine the intensity of each pixel in S′c. Figure 4 illustrates
the flow chart of this new proposed method. It should be noted that the classical interpretation of BFT
assumes that the final estimation should be in the FOD. In this work, we relax this assumption and the
final transformation is a combination result of those in the FOD.

Figure 4. Flow chart of the proposed image registration.

4.1. Uncertainty Modeling

If the similarity between the reference image R and registered sensed image Si
′ is large,

the corresponding transformation Ti is quite accurate and should be allocated large support (Si
′

is transformed from sensed image S by T−1
i ). Here we use NCC (Other similarity or dissimilarity

measures, e.g., MI, are also appropriate to quantify the similarity here) to measure the similarity
between R and Si

′:

NCCi =
M

∑
x=1

N

∑
y=1

(R(x, y)− µR)(S′i(x, y)− µS′i
)

σRσS′i

(15)

where µR and µS′i
are the mean intensities of R and S′i , respectively; σR and σS′i

are the standard
deviation intensities of R and S′i , respectively.

Since multi-source information can help to reduce the uncertainty through evidence combination,
we use different levels of image information to quantify the similarity between R and S′i . The similarity
can be calculated from the gray images, edge feature images or reconstructed images using phase angle
as shown in Figure 5. Their corresponding NCCi are denoted as NCCi(G), NCCi(E) and NCCi(P),
respectively. The edge detection method used in Figure 5b is the Canny detector [30]. More details of
the image reconstruction from phase angle information can be found in [29].

(a) (b) (c)

Figure 5. Image information at different levels. (a) Gray image. (b) Edge feature image.
(c) Reconstructed image using phase angle.

The value range of NCCi(·) is [−1, 1]. According to our experiments, most values of NCCi(·) are
larger than 0. Before allocating BBAs, we first enlarge the differences of NCCi(·) within [0, 1] using
function y = ex−1, as illustrated in Figure 6.
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Figure 6. The curve of function ex−1.

Each level of image information (gray images (G), edge feature images (E) and reconstructed
images using phase angle (P)) can be viewed as one evidence source and their corresponding eNCCi(·)−1

can be used to assign beliefs for transformation Ti:

mG(Ti) =
eNCCi(G)−1

∑Q
j=1 eNCCj(G)−1

mE(Ti) =
eNCCi(E)−1

∑Q
j=1 eNCCj(E)−1

mP(Ti) =
eNCCi(P)−1

∑Q
j=1 eNCCj(P)−1

(16)

4.2. Fusion-Based Registration

After obtaining BBAs mG, mE and mP, we generate the combined BBA mc using a combination
rule denoted symbolically with ⊕:

mc(·) = [mG ⊕mE ⊕mP] (·) (17)

mc(Ti) describes the combined evidence support to Ti (a 3× 3 matrix with 6 unknown parameters).
The combined transformation Tc is computed by

T−1
c = ∑Q

i=1 mc(Ti)T−1
i . (18)

Finally, the registered sensed image Sc
′ can be obtained using Equation (2) following the resampling.

5. Evaluation of Image Registration

Since the purpose of image registration is to align the reference image R and sensed image S to a
single coordinate frame, one popular evaluation method for the registration result is to quantify the
difference (usually quantified by Root-Mean-Squared Error (RMSE)) between R and the registered
sensed image Sc

′ [31,32]. However, since Sc
′ is transformed from the sensed image S, which may have

less information than R (S may be part of R or have lower resolution than R since R and S can be taken
from different views or taken by different cameras), the difference between R and Sc

′ could be large
even when the estimated transformation Tc equals to the true transformation Ttrue from the reference
image R to the sensed image S, as shown in Figure 7. Therefore, this kind of evaluation method is not
accurate enough.
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Figure 7. Relationship among R, S, Rc
′ and Sc

′.

Another popular evaluation method is to quantify the difference between the reference image R
and image Rc

′, which is transformed from R by the transformation matrix TtrueT−1
c [16,33], as shown

in Figure 7. The mapping relationship between pixel at (v, w) in image R and pixel at (v′, w′) in image
Rc
′ satisfies [

v′ w′ 1
]
= [v w 1] TtrueT−1

c , (19)

when the registration is absolutely accurate, Tc = Ttrue and Rc
′ = R.

In this paper, we evaluate the registration performance by quantifying the difference between R
and Rc

′ using AAID (average absolute intensity difference) [16]:

AAID(R, Rc
′) =

1
MN

M

∑
x=1

N

∑
y=1

∣∣R(x, y)− Rc
′(x, y)

∣∣. (20)

AAID(R, Rc
′) is smaller when the registration result is better.

6. Experiments

To verify the performance of our new proposed image registration method, we provide
experiments on noise-free images and noisy images, respectively. Image registration under the noisy
condition is difficult since the noise pixels bring difficulties for keypoints’ detection and matching
and reduce the accuracy for similarity measure. For the sparse method, experiment results based
on BRISK [34], KAZE [15] and SURF [12] feature detection algorithms are provided for comparison.
For the dense method, experiment results based on MI, PSNR and NCC similarity measures are
provided for comparison. For the noisy image registration, the experiment result of RANRESAC
(a recently proposed method for noisy image registration) [23] is also provided for comparison.

6.1. Sparse Image Registration Results

We first do experiments on actual data to illustrate the effectiveness of the proposed method.
The reference image and sensed image are taken from different cameras with different views, as shown
in Figure 8. BRISK, KAZE and SURF feature detections are used for generating transformations T1,
T2 and T3, respectively. When deriving combined BBAs in Equation (17), an alternative fusion rule
PCR6, which is more robust than Dempster’s rule [26], is also used for comparison.



Sensors 2019, 19, 1091 11 of 19

(a) (b)

Figure 8. Fence image pair. (a) Reference image. (b) Sensed image.

The registered results of the proposed method are illustrated in Figure 9. From Figure 9,
the proposed method can successfully align the sensed image to the reference image illustrating
that the proposed method is effective for actual data.

(a) (b)

Figure 9. Registered results of the proposed methods for Fence image. (a) Dempster’s rule. (b) PCR6.

To quantify the accuracy of the registration results, the actual transformation between the
reference image and sensed image is needed and we do experiments on simulated images. We first do
experiments on Boats image (The reference image can be found at https://imagej.nih.gov/ij/images/
boats.gif.) and Foosball image (sample image from the MATLAB), as shown in Figure 10.

(a) (b) (c) (d)

Figure 10. Boats image pair and Foosball image pair. (a) Boats reference image. (b) Boats sensed image.
(c) Foosball reference image. (d) Foosball sensed image.

The AAID evaluations of these registration results for Boats image and Foosball image are
compared in Figure 11, where Demp represents the Dempster’s combination rule. According to

https://imagej.nih.gov/ij/images/boats.gif
https://imagej.nih.gov/ij/images/boats.gif
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Figure 11, the proposed fusion-based method achieves much better registration result (smaller AAID)
than algorithms based on BRISK, KAZE or SURF feature detections, respectively.

1
0

0.5

1

1.5

2

2.5

3

3.5

A
A

ID
(R

,R
c')

BRISK
KAZE
SURF
Proposed(Demp)
Proposed(PCR6)

3.21

1.24 1.24

1.581.67

(a)

0
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1

1.5

2

2.5

3

3.5
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4.5

A
A

ID
(R

,R
c')

BRISK
KAZE
SURF
Proposed(Demp)
Proposed(PCR6)
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Figure 11. AAID evaluations of registration results for Boats image pair and Foosball image pair.
(a) Boats. (b) Foosball.

Furthermore, we also analyzed the spatial partition of the AAID evaluation for each result by
evenly dividing the reference image into 5× 5 parts (as shown in Figure 12a) and calculating the
AAID between the reference image and the registration result in each part. The AAID spatial partition
results for Boats image and Foosball image are illustrated in Figures 12 and 13, respectively. For Boats
image, the AAID of BRISK and KAZE results varies significantly for different parts while the SURF
result is relatively uniform; the proposed methods have low and similar AAID in most parts while the
rightmost parts (parts 5, 10, 15, 20 and 25) have significant larger AAID. For Foosball image, the AAID
spatial partition of all these results are uneven.
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Figure 12. Spatial partition of the AAID evaluation for Boats image. (a) Partition method. (b) BRISK.
(c) KAZE. (d) SURF. (e) Proposed (Demp). (f) Proposed (PCR6).
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Figure 13. Spatial partition of the AAID evaluation for Foosball image. (a) BRISK. (b) KAZE. (c) SURF.
(d) Proposed (Demp). (e) Proposed (PCR6).

Then, we consider the noisy image registration and do experiments on West Concord image pair
(sample image from the MATLAB) with zero-mean Gaussian noise (variance is 0.01), as shown in
Figure 14. The AAID evaluations for these registration results are compared in Figure 15, where the
proposed fusion-based methods achieve better performance (smaller AAID) than RANTESAC and
methods based on BRISK, KAZE and SURF feature detections, respectively. The spatial partition of
the AAID evaluation for each result is illustrated in Figure 16, where the KAZE result is the most
uneven one.

(a) (b)

Figure 14. West Concord image pair. (a) Reference image. (b) Sensed image.
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Figure 15. AAID evaluations of registration results for West Concord image pair.
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Figure 16. Spatial partition of the AAID evaluation for West Concord image. (a) BRISK. (b) KAZE.
(c) SURF. (d) RANRESAC. (e) Proposed (Demp). (f) Proposed(PCR6).

6.2. Dense Image Registration Results

Since the optimization of dense registration is intractable when the solution space has high
dimensions, we simplify the transformation model to rigid transformation here. The solution space for
rigid model only has three dimensions: one for rotation and two for translations in horizontal and
vertical directions, respectively. We first provide experiments on Concord image and Hestain image
(sample images from the MATLAB) as shown in Figure 17, where the sensed image is transformed from
the reference image through the rotation (θ = 10◦ in anticlockwise) and translation ((tv, th) = (−10, 5))
successively.

(a) (b) (c) (d)

Figure 17. Concord image pair and Hestain image pair. (a) Concord reference image. (b) Concord
sensed image. (c) Hestain reference image. (d) Hestain sensed image.

In the proposed dense approach, MI, PSNR and NCC similarity measures are used for generating
transformations T1, T2 and T3, respectively. The AAID evaluations of these registration results for
the Concord image and Hestain image are compared in Figure 18, where the proposed fusion-based
methods achieve much better registration results (smaller AAID) than algorithms based on MI, PSNR or
NCC similarities, respectively. The AAID spatial partition results for Concord image and Hestain
image are illustrated in Figures 19 and 20, respectively. For these two images, the AAID results of the
proposed methods are smaller in the downside parts compared with those in upside parts.
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Figure 18. AAID evaluations of registration results for Concord image pair and Hestain image pair.
(a) Concord. (b) Hestain.
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Figure 19. Spatial partition of the AAID evaluation for Concord image. (a) MI. (b) PSNR. (c) NCC.
(d) Proposed (Demp). (e) Proposed(PCR6).
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Figure 20. Spatial partition of the AAID evaluation for Hestain image. (a) MI. (b) PSNR. (c) NCC.
(d) Proposed (Demp). (e) Proposed (PCR6).
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Then, we consider the noisy image condition and implement experiments on Lifting Body image
pair (sample image from the MATLAB) with zero-mean Gaussian noise (variance is 0.01), as shown in
Figure 21. The sensed image is transformed from the reference image through the rotation (θ = −10◦)
and translation ((tv, th) = (−10, 5)), successively.

(a) (b)

Figure 21. Lifting Body image pair. (a) Reference image. (b) Sensed image.

The AAID evaluations for these registration results are compared in Figure 22 and the spatial
partition of the AAID evaluation for each result is illustrated in Figure 23, From these two figures,
the proposed fusion-based methods achieve better performance and the rightmost parts (parts 5, 10,
15, 20 and 25) have larger AAID than other parts.
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Figure 22. AAID evaluations of registration results for Lifting Body image pair.
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Figure 23. Spatial partition of the AAID evaluation for Lifting Body image. (a) MI. (b) PSNR. (c) NCC.
(d) RANRESAC. (e) Proposed (Demp). (f) Proposed (PCR6).
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According to all the experiments, the proposed fusion-based methods achieve better registration
results than those prevailing ones (BRISK, KAZE, SURF, MI, PSNR and NCC). For noisy image
registration, the proposed methods also obtain better performance than RANRESAC. This indicates
that the theory of belief function can well deal with the uncertainty brought by the selection of keypoint
detection algorithms or similarity measures, and the jointly use of the different keypoint detections or
similarity measures is effective. Furthermore, from the above provided experiments one sees that the
choice of combination rule does not affect the registration performance that much.

6.3. Computational Cost

The computational cost is an important criterion to evaluate an algorithm. We counted the
computational costs of the above sparse algorithms and dense algorithms for Cameraman image
(Figure 5a) on a Windows 10 Enterprise system equipped with Intel Core i7-7700HQ CPU at 2.80 GHz
and 16.00 GB RAM. The platform is MATLAB R2018a. The average execution time comparisons for
the sparse algorithms and dense algorithms are provided in Tables 2 and 3, respectively. Each average
execution time is calculated from 100 runs of experiments.

Table 2. Average execution time comparison for sparse algorithms (unit second).

Method Noise-Free Images Noisy Images

BRISK 0.2847 0.2832
KAZE 0.1348 0.1304
SURF 0.0431 0.0437

RANRESAC – 6.2648
Proposed (Demp) 0.3934 0.3933
Proposed (PCR6) 0.3938 0.3989

Table 3. Average execution time comparison for dense algorithms (unit second).

Method Noise-Free Images Noisy Images

MI 16.7622 16.4789
PSNR 12.8583 13.4214
NCC 14.7187 15.1050

Proposed (Demp) 17.0734 16.7945.
Proposed (PCR6) 17.0812 16.8729

From Tables 2 and 3, the dense algorithms need more execution time than the sparse algorithms.
Furthermore, since the proposed fusion-based method combines the registration transformations
generated from the three sparse methods (BRISK, KAZE and SURF) or the three dense methods (PSNR,
MI and NCC) and these three methods can be parallely executed, the execution time of the proposed
fusion-based method is longer than the most time-consuming one among the three methods.

6.4. Discussion of BBA Generation

The BBA generated in Equation (16) is Bayesian BBA, where all its focal elements are
singletons. People in the community of belief function theory may prefer to use the compound
focal elements, which usually seems better than only using singletons in Bayesian BBAs. We have
also designed experiments of generating non-Bayesian BBAs for image registration using FCOWA-ER
(Fuzzy-Cautious Ordered Weighted Averaging with Evidential Reasoning) [35] method. In detail,
when multiple image information (image’s intensities, edges and phase angle) are simultaneously
considered, image registration can be viewed as a multi-criteria decision making problem. FCOWA-ER
(Fuzzy-Cautious Ordered Weighted Averaging with Evidential Reasoning) [35] is a decision making
approach under multi-criteria with uncertainty and it generates non-Bayesian BBAs using α-cut
method (The α-cut method used in FCOWA-ER boils down to the Dubois and Prade allocation [36] in
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this case) when modeling uncertainties. According to the experimental results, non-Bayesian BBAs
obtain similar registration results with Bayesian BBAs. Since Bayesian BBAs are easier to generate
than non-Bayesian BBAs, we recommend Bayesian BBAs for image registration and do not provide the
non-Bayesian BBA based method in this work.

7. Conclusions

In this paper, we proposed a new image registration algorithm based on evidential reasoning.
The uncertainty encountered in image registration is taken into account and modeled by belief
functions. Image information at different levels are jointly used to achieve a more effective registration.
Experimental results show that the proposed algorithm can improve the precision of image registration.

The generation of BBA is crucial in evidential reasoning and most methods are proposed based
on applications. In this paper, we generate BBAs from three different image information, i.e., intensity,
edge and phase angle. In future work, other image information, such as texture feature and gradient
feature, will also be considered and jointly used in image registration. Furthermore, we will attempt to
apply the proposed method to color image registration. Different color channels of the color image
provide different image information and can be jointly used in image registration. We will also focus on
the comparison with the state-of-the-art approaches based on convolutional neural networks (CNN).
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