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Particle tracking velocimetry (PTV), also referred to as Lagrangian particle track-
ing (LPT) has recently gained considerable revival. The trend started with the
Iterative Particle Reconstruction (IPR) method that applied a projection-matching
scheme, to reconstruct 3D particles’ positions rather than voxel-based intensity,
like in Tomographic PIV. Recently, IPR has given rise to the Shake-The-Box (STB)
method able to tackle densely seeded flows with considerably high accuracies and
reasonable computational efforts. However, in most of 3D turbulent flows, image-
based experiments can only provide sparse spatiotemporal data, for which STB is
not able to track particles. If more robust estimations are possible, something use-
ful may be learnt from the coupling between dynamical models and image data. In
responding to these problems, we introduce a novel approach originated from the
data assimilation technique comprising a sampling-based optimal estimation algo-
rithm, namely a group of ensemble-based filtering variational schemes. We found
that employing such an ensemble-based optimal estimation method helped tackling
the problems associated with STB: the inaccurate predictor and/or the robustness
of the optimization procedure. The proposed method (ENS) was quantitatively eval-
uated with synthetic particle image data built by transporting virtual particles in a
turbulent cylinder wake-flow at Reynolds number equal to 3900. We examined the
mean positional error of the reconstructed particles, the fraction of track lost parti-
cles as well as the required CPU time/memory. We observed that even at large ppp
levels (>0.1), the mean positional error of ensemble method was considerably lower
than the one given by the STB method. Besides ENS performed equally well in
terms of data series of relatively large time separation. These preliminary results
indicates that the ensemble-based method was indeed effective.

1 Introduction

In the fields of fluid dynamics research and application, reconstructing the 3D flow through imaging
particles driven by the flow, followed by inferring spatiotemporal flow structures from particle images,
is an important method to investigate the small scale flow phenomena related to the turbulence. Car-
rying out such investigations using CFD tools is hardly applicable to such problems due to lack of exact
knowledge to calibrate the dynamic model.

The algorithms used to infer spatiotemporal flow fields from particle images can be classified under
two categories. Tomographic particle image velocity (TomoPIV) [1] centers on a tomographic reconstruc-
tion of particles in voxel basis as a discretization of the 3D object space. Then the Eulerian velocity field
is obtained by applying the classic cross-correlation technique inherited from standard 2D PIV tech-
nique to 3D intensity voxels. Thus the central task is to solve for the intensity at voxel coordinate given
particle images. We can solve the problem iteratively using algebraic reconstruction technique (ART),
MART and SMART algorithms [2]. The TomoPIV technique has gained considerable success since the
last decade due to its robustness and its capability of dealing with particle image of high seeding density
(particle per pixel, ppp around 0.05). Nevertheless the TomoPIV technique still suffers from several
flaws such as large amount of ghost particles, relatively large particle positional error and computation-
ally demanding.

On the other hand, 3D particle tracking velocimetry (3D-PTV), also referred to as Lagrangian par-
ticle tracking (LPT), aims at following particle positions through time. The 3D-PTV has been proposed
since 1990s [3, 4] but this approach is limited by the fact that it can only tackle images of rather low seed-
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ing densities. But 3D-PTV recently has regained popularity pioneered by the advanced iterative particle
reconstruction (IPR) approach proposed in [5]. The main contribution of IPR is its using of active image
matching scheme inspired by the success of TomoPIV in terms of particle tracking. The central idea
following this paradigm is to find the best estimation of particles’ positions through iteratively matching
the projection between their prior distributions and their observational records captured by cameras.
This method is different from the classic 2D PIV or aforementioned voxel-based TomoPIV technique,
in which the local velocity is calculate through cross-correlation operation on the interrogation domain
composed either by pixels or voxels. In pure Lagrangian particle tracking method, once we are able
to reconstruct the particle trajectory, the Lagrangian velocity field is readily available through simple
difference method. Nevertheless, in practice, we prefer to work with Eulerian field define on fixed grids,
so additional interpolation procedure must be applied [6, 7].

Recently the Shake-The-Box (STB) algorithm proposed in [8] has shown its superiority in terms of
reconstruction accuracy, occurrence of ghost particles as well as usage of computational resources com-
pared to TomoPIV. The STB method is rooted in IPR combined with an additional prediction phase able
to introducing temporal information. Consequently the difficulties of finding the uniqueness solution in
terms of the optimization procedure is alleviated especially dealing with particle images of high seeding
densities. However, we have found that STB is less effective when the Wiener filter or polynomial ex-
trapolations fails to predict the particles’ positions. This corresponds to the cases of sparse temporal data
or data extracted from complex flows. Furthermore, large prediction errors lead to severe convergence
issues where the simple "Shaking" optimization algorithm is trapped by local minimum.

In responding to these problems, we consider reformulating the particle reconstruction procedure
under the framework of data assimilation (DA) since the core of STB essentially shares similarities
with DA. The difference is that STB focused on reconstruction from data by adding an adhoc model
whereas DA focused on controlling the governing dynamical equations by inferring the optimal state
and/or parameter from data.

Therefore, we propose to integrate the reconstruction strategies used in IPR/STB approaches into
data assimilation framework. Our motivation is twofold, on the one hand, the image matching scheme
linking the 3D object space and 2D image space is proven to be quite accurate that provides us a good
observation operator allowing extracting as much as information from data, on the other hand, intro-
ducing dynamics into the data assimilation framework allows the unobserved variables (e.g. velocity,
pressure) to be easily inferred. We are particularly interested in ensemble-based method which provides
an efficient solution of the complex nonlinear optimization problem. The complexity is either due to
the nonlinearities of dynamics [9] or due to the nonlinearities of the observation operator. Ensemble
methods, based on Monte-Carlo approximations, provides a stable and solid solution in transforming
the original nonlinear problem to a linear one. Note that this paper concentrates on the aspect of em-
ploying ensemble approaches in the correction phase thus we continue to use polynomial-based filter to
predict state. The advantages of introducing complex dynamics into the reconstruction procedure will
be reported in the following paper.

2 Method
2.1 Recap of Shake-The-Box (STB)

The STB algorithm begins with an initialization phase in which the information of the first few tracks
are obtained either by IPR, TomoPIV or CFD results. After the initialization phase the errors can be
quite high for densely seeded flows partly due to a large portion of undetected particles, partly due to
large amount of ghost particles. Therefore by introducing temporal information, STB performs quite
well within several time steps of convergence phase in terms of correcting these errors by finding the
missing particles as well as eliminating the ghost particles. Note that a ghost particle is discarded if its
track at certain time step given by the predictor can not be found through searching around in its radius
in image space. If the predictor works well, we can envisage a fast separation of ghost particles and real
particles. Eventually we enter a converged phase where almost all particles have been identified and
tracked. The STB scheme dealing with two snapshots functions exactly the same in the convergence
phase and the converged phase. It can be interpreted as an recursive filtering scheme based on a two
stage prediction-correction strategy. In this article, we concentrate on studying this filtering scheme in
STB and improving it by our proposed scheme. For sake of simplicity, we consider the prior particles’s
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tracks are known to a large extent that corresponds to the converged phase. In the following, we high-
light the optimization scheme used STB method and propose our ensemble-based (ENS) optimization
method in this regard. We also show the relation between the optimization procedure used in STB and
ENS approaches.

2.1.1 STB optimization

In STB, for particle p at time step k, we start by obtaining the prior position X’; =k ()A(';’l) by forecast-
ing the posterior position Xﬁ’l at time level £ — 1 to k using predictor ¢. Note the notation & denotes
the posterior estimation that is either given by the previous correction stage or by other methods such
as IPR or TomoPIV. In the correction stage, we search iteratively for XI; that minimizes:

X ) - Z || res+p,k part k(Xk)HQ (1)

where i is the camera index, I;Mt’ k(X’;) consists of an optical transfer function (OTF) that projects
the current particle p into the image space, and I;.,, ; is the augmented particle image defined by
Doipr = Ihes + I;Mt(Xk) I%., is the residual image computed as the difference of recorded image I’
and the projected image I, Z ar,( ) where P is the total particle size.

This optimization approach used in IPR/STB belongs to a group of model-based derivative-free trust
region optimization methods. Under this vein, we employ a quadratic form: m(5X,) that locally ap-
proximates the original cost function J(6X,) in terms the particle’s X coordinate while keeping Y and
Z coordinates invariant:

me(0Xp) =c+ g7 0 X, + %5)(; G6X,

Then with 3 sample points we are able to uniquely determine the coefficients ¢, g, G, which are all scalar
with respect to a single particle. For each particle, we need to compute I},,,,(X}) 7 times. Compare to the
time dedicated to computing the image projection, the computing time used to determine the extreme of
above quadratic function is trivial.

2.2 Ensemble methods (ENS)

Our proposed scheme focuses on improving the performance of the recursive filter discussed in previous
section through the introduction of ensemble averaging in the prediction phase and the linearization of
nonlinear cost function using an ensemble in the correction phase. We write below the cost function in
standard DA form [9] in terms of the increment 6X, = X’; — Xg"’“ considering the observation operator
I} 411, defined as in the STB method:

1 i
J(0X5) = SIS + QZHIMW, Lare o (X" 4+ 0X5)[7. 2

Compared to (1), we have an extra term on 5X,’; that acts as the regularization term preventing the
system from overfitting the data. In (2), we introduced the regularization parameter \ in terms of the
prior particle state. A major difficulties in finding the minimum of above problem is that the particle
projection operator I,.,: is a nonlinear function of particle’s 3D position X,,. Using sophisticate nonlinear
optimization algorithm can lead to good results with substantial computing time, yet the convergence
is not guarantied. We can linearize cost function (2) by expanding the Taylor series of function I;,m’ &
around the prior state X/* that leads to an alternative version:

J(6X%) = 5A||5X’;\|2 +5 > 1Dy — Ox Lpare k6 X5 |7 3)

where 9x I, is the tangent linear model I’.,,., ;.."

I;aart,k (Xp+ﬂdxp)_1;7art,k(xp)

1The tangent linear model dx I ;Mt i, is defined by: limg_,¢

= axI;m, o (XE)axE.
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We reformulate above cost functions in ensemble-based framework in which the tangent linear model
Ox I pari . 1s approximated by an ensemble. To start, we introduce ensemble notations. Denote Ex the
ensemble state containing N sample state at time level ¢:

E; = (lek, .. ~7Xl,k7 . ,XN,k) € RPXN, (4)

from which, we compute the ensemble perturbation matrix X, through: X, = E, — E;, where the
column of E; contains N replicates of the ensemble mean, X, = % Zl]i 1 Xy, It is also convenient to
define A = \/LX’ the ensemble anomaly matrix.

N—1
The forecast stage therefore corresponds to propagate the entire ensemble state from time ¢5_1 to tx

using the predictor operator ¢y: R
E] = ou(Er_1). (5)

We then make the assumption that dx; lives in the column space of A,’:: 5X’; = Aﬁw, which leads to a
cost function in terms of the weighting vector w:

J(W) :E)‘I”WHz + 5 Z ||Dk,p - 8ija'rt,kA£WH27 (6)

which is a linear optimization problem whose solution can be easily found using gradient-based opti-
mization scheme. The ensemble trick consists in approximating the projection of ensemble anomaly
matrix A£ using tangent linear model 8xlgm.t, , through the difference of the projection of the entire
ensemble minus ensemble mean using the nonlinear projection model 1,,,.; x:

axl;a'rt,kA£ ~ \/%( ;art,k:(El;;) - ;art,k(Eg))' (7)

We think such ensemble-based scheme would help resolving the optimization problem based on
following arguments. Firstly, the reconstruction results of STB method showed that the model-based
derivative-free trust region method is indeed effective. This optimization method is based on the Taylor
series expansion of the cost function at the prior state. The high order terms (high than 2) is discarded.
In ensemble-based method, a similar strategy is employed to linearize the cost function, however instead
of using the Taylor series of the cost function, the nonlinear observation operator is expanded around
the prior state. Indeed the ensemble formulation allows the approximation of the first order Taylor se-
ries (tangent linear model) through the ensemble states driven by nonlinear projection model. Secondly,
the ensemble formulation of the cost function as derived from MAP (Maximum a posteriori) estimator
introduces naturally a regularization term. Thirdly, the prior ensemble consists of a cloud of potential
candidatures of the particle’s position, contrary to only one position as the starting of the search space
for STB/IPR methods. By combine different candidatures in the prior ensemble, the search space can be
extended and less likely to fall into local minimum. In the meantime, the weighted averaging of different
candidatures reduces the potential prediction error. This is known as ensemble averaging technique. Fi-
nally, last gradient-based optimization scheme can be employed to solve problem (6). During the whole
optimization process, the computing time is also dominated by projection of different ensemble member
into image space.

3 Experiment results

3.1 Synthetic particle images creation and experiment configuration

We intend to apply our proposed ensemble-based estimation scheme to particle image data and evaluate
quantitatively its performance compared to the STB scheme. To this end, we have created synthetic
images by projecting virtual particles driven by known Eulerian velocity field to virtual cameras. The
Eulerian velocity data was obtained with a Large Eddy Simulation (LES)[10]. We have chosen the
source velocity field within the domain of interest of size 6D x 6D x wD/3, which is discretized into a
regular mesh of size 291 x 291 x 16, in a turbulent wake-flow past a circular cylinder at Reynolds number
equal to 3900. This subdomain is cropped from the whole computing domain of size 20D x 20D x «wD
where D is the characteristic diameter of the cylinder. The dimensionless simulation time step Atg;., is
0.003. The initial distribution of the virtual particle are randomly generated within the subdomain, then
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each particle is transported according to its velocity calculated as trilinear interpolation of the velocity
vectors on the nearest 8 neighboring grids. As for the time marching scheme, we use the first-order
Euler method to solve for the predicted particle position.

All virtual particles transported by the flow are projected onto four virtual cameras (1000 x 1000
pixels each) under a cross-like configuration with a rotation of +30° around x and y axis respectively.
All cameras are pre-calibrated using both polynomial mapping model and pinhole model. In terms of
the OTF parameter [11], we employed a uniform two dimensional Gaussian form resulting in a constant
particle diameter of 2.5 px. The tested seeding density varies from 0.01 to 0.125 ppp.

Although particle initialization is a complex issue for both STB and ENS schemes, STB has been re-
ported to achieve the converged state quite efficiently. All related techniques used in STB can be applied
to our ENS scheme that help reaching the converged state quickly. Therefore in the current study, we
employed a simplified triangulation scheme to obtain the particles’ tracks of the first 9 snapshots that
constitute the prior distribution of particles of prediction phase for both ENS and STB. In our case, the
velocity field is characterized by fast fluctuations induced by turbulence, unlike smooth slowly varying
velocity field used in other studies. Thus predicting the particle’s position with polynomial-based pre-
dictor can be quite inaccurate. To improve the accuracy of the predictor, we have used a longer history
of data time series (9 against 4 snapshots used in [8]). When the time interval between two consecutive
snapshots AT, is relatively short compared to the dimensionless simulation time step, the polynomial-
based predictor remains effective. However, the prediction errors become higher with larger AT, since
the temporal distribution of observations cannot capture the fast spatially changing velocity. So we are
inclined to lose track of more particles under such circumstances. We employed two test cases with
different AT,,s(0.1 for case I and 0.5 for case II respectively) to evaluate the performance of STB/ENS
handling sparse spatiotemporal data. The mean particle displacement is a fraction of pixel for case I
whilst case IT lead to a larger displacement of nearly 2 pixels.

We considered that the issue of track lost particles is particularly relevant for time resolved recon-
struction schemes. Because ideally, in the converged phase, only the particles entering the domain need
to be reconstructed using triangulation procedure. With most particles have been identified successfully,
the resulting residual image, after correction, is almost null except the peaks corresponding to the new
particles. Eventually when more and more particles get lost during the tracking process, we need to
employ additional triangulation procedure to re-track those lost particles. However, the triangulation
procedure (or IPR) can become quite difficult when dealing with particle image of high density. So the
risk of failure of STB becomes important when the number of lost particles is high compared to the
successfully tracked particles. On the contrary, in the last section we have argued how ensemble-based
method can overcome such limitations causing track lost particles. Still the convergences of both the
‘Shaking’ procedure in STB and the gradient-based optimization procedure in ENS depend on a warm
start initialization. [8] proposed an additional procedure of initial shake to provide a good starting value
for normal shake procedure. In ENS, we implemented a similar procedure to locate the warm-starting
particle positions. We chose an ensemble member of 8 for ENS method.

In the following, we assess numerically both schemes by evaluating the mean positional error of
detected tracks with respect to the synthetic tracks in pixel unit, the fraction of track lost particles
compare to total particles as well as computational resources needed. In practice, we consider that a
particle is lost if the deviation of its reconstructed location from its ¢rue location for current images is
larger than 1 px. All track lost particles have to be relocated using triangulations so that they can be
considered as re-detected. Both the image data ranging from the 10th snapshot up to the 50th snapshot
and the prior particle distribution of the first 9 snapshots are passed to the proposed approach along
with a STB approach for 3D particle tracks’ reconstruction. The simplified triangulation procedure is
applied to retrieve the positions of new particles entering the domain as well as the positions of lost
particles, and a particle is removed when its position exceeds the boundaries of the domain.

3.2 Comparison of ENS to STB method

We plotted the temporal evolution of mean positional error of detected particles obtained by STB and
ENS at different ppp levels for case I (Fig. 1la) and case II (Fig. 1b) respectively. We also plotted in
figure 2a the mean positional errors of detected particles after the 50th snapshot of STB and ENS for
both cases in terms of different ppp levels.

We observed that for data series of high time sampling rate (case I), both STB and ENS schemes
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Figure 1: The temporal evolution of the mean positional errors in pixel of STB/ENS under

different ppp levels (denoted by different color): (a), case I with AT,;,, = 0.1 ; (b), case II with
ATy = 0.5.

Mean Positional Error o 08Fraction of Track Lost Particles of ATops=0.5

107t

stb, 0.125
stb, 0.1
stb, 0.075
stb, 0.05

0.07

stb, dtobs=0.1
—=- ens, dtobs=0.1 0.06
—e— stb, dtobs=0.5

0.05 stb, 0.025
—m- ens, dtobs=0.5 B ens, 0.01
—_ S r
K Z0.04 - ens, 0.125
& 8 - ens, 0.1
=003 - ens, 0.075
0.02 - ens, 0.05
- ens, 0.025
0.01 - ens, 0.01
0.001
0.0100.025 0.050 0.075 0.100 0.125 10 20 30 40 50
pPpp Snapshots
(a) (b)

Figure 2: Mean positional errors after the 50th snapshot with respect to different ppp levels:
(a), case I and case II; (b), comparison of fraction of number of track lost particles relative to
number of total true particles of case II with AT, = 0.5.
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perform well and exhibit good temporal convergence in reconstructing the 3D particle tracks. Yet the
errors of tracked particles obtained by ENS are 3-4 times lower compared to STB during the course of
temporal tracking process. For both methods, the particles are almost never lost in the tracking process.
The same findings can be observed with respect to sparse seeded flow (ppp<0.5) of case II featuring data
series of low time sampling rate.

Nevertheless, when dealing with densely seeded flow (ppp>=0.5) of case II, the evolution of mean
positional errors obtained by STB diverged. The errors eventually reached the level of 0.1 px. Under
this scenario (low time sampling rate, high ppp), the errors of ENS are nearly an order of magnitude
lower compared to STB as revealed by both figures 1b and 2a. Such detrimental reconstruction quality
of STB in this condition is also reflected by the fraction of track lost particles (figure 2b) that soared and
reached nearly 10% for ppp>0.05. The issue of track lost particles associated to STB indeed arise with
data series of large time separation, which becomes more severe with densely seeded flow due to the
overlapping particle images. ENS has produced far less track lost particles. Note that for STB, the di-
verged errors is not related to the exploding number of track lost particles. Because in our experimental
setup, the triangulation introduced far less errors compared to the tracking process. Consequently, those
triangulated particles are re-registered as detected at the end of the optimization process and they tend
to pull down the error curve instead. For example, the small drop of error evolution of ENS (denoted by
dashed line) in figure 1b can be explained by the small surge of number of track lost particles.

As in our experimental setup, the particle initialization is considered to be almost perfect. Therefore
the inability of STB is largely associated with the failure of providing a good starting point stemming
from the warm-start procedure. Note that even though the error divergence of STB can be partially
avoided by carefully fine tuning parameters (search radius, number of iterations) used in the ‘initial’
shake phase, ENS is still superior. Because for one thing, ENS do not need such refining step and is
able to converge with the same ‘cold’ initialization that leads STB to diverge; secondly, even with such
additional fine tuning procedure, the resulting error (not shown here) is still considerably higher than
that of ENS. The good performance of ENS has demonstrated its robustness especially dealing with
data series of low time sampling rate. In this regard, we consider the ensemble-based method a better
alternative facing the challenge of sparse spatiotemporal data.

CPU time per snapshot

—e— stb -
1200| =m- ens -,

1000

600

CPU Time/Second

400

200

0.0100.025 0.050 0.075 0.100 0.125
ppp

Figure 3: Comparison of sequential CPU time per snapshot by STB and ENS for case 1.

We have compared the computing time and memory usage for STB and ENS with 8 members’ en-
semble in figure 3. Note that all schemes evaluated here are implemented sequentially. The CPU time
per snapshot of ENS is about 20% more than that of STB. However, the scalability of ENS is better
since an ensemble can be parallelized efficiently. On the memory side, ENS is memory demanding and
the memory required by ENS is a factor of ensemble members higher than STB under same ppp level.
Nevertheless such memory usage is still affordable considering any modern computer with as much
as several tens of GBs. Finally we highlighted that all results obtained by ENS method are using 8
ensemble members. If highly accurate reconstruction is desired, we can further improve the result by
increasing the ensemble members at the expense of more computational cost.
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4 Conclusions

The success of STB hinged on two factors: the image matching schemes as in IPR and a dynamical
predictor exploiting the temporal coherence of the particle image data respectively. In this paper, we
have proposed an ensemble-based optimal estimation scheme allowing integrating such active image
matching schemes into data assimilation framework.

We have found that the ensemble method outperforms STB in terms of reconstruction accuracy under
all circumstances (at least in our experiment setup). The success of ENS can be attributed to the fact
that the minimization of the nonlinear data discrepancy term as in IPR method can be efficiently solved
by linearizing the original problem to a linear quadratic form followed by ultra-fast gradient-based
searching algorithms. More importantly, we have shown that ENS is even more effective dealing with
sparse spatio-temporal data that cause STB to fail. Because the linearization through the ensemble,
comprising a cloud of possible positional state of all particles, is able to explore a larger search radius
than the quadratic points fitting algorithm used in STB.

Furthermore we have introduced the ensemble approach as an optimal estimation framework. This
framework allows us to naturally couple the particle image based data, as well as the prior information
brought in by sophisticated CFD models through a robust stochastic searching algorithm combined with
the effective image matching schemes. This paves the way for many perspectives including incorporating
sophisticated dynamic model and jointly estimating Lagrangian particle positions as well as Eulerian
velocity fields.
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