N
N

N

HAL

open science

The Weight Function in the Subtree Kernel is Decisive

Romain Azais, Florian Ingels

» To cite this version:

Romain Azais, Florian Ingels. The Weight Function in the Subtree Kernel is Decisive. 2019. hal-

02097593v2

HAL Id: hal-02097593
https://hal.science/hal-02097593v2

Preprint submitted on 22 Nov 2019 (v2), last revised 7 May 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02097593v2
https://hal.archives-ouvertes.fr

THE WEIGHT FUNCTION IN THE SUBTREE KERNEL IS DECISIVE

Romain Azais Florian Ingels
romain.azais@inria.fr florian.ingels@inria.fr

Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS,
INRA, Inria, F-69342, Lyon, France

Abstract

Tree data are ubiquitous because they model a large variety of situations, e.g., the architecture of plants,
the secondary structure of RNA, or the hierarchy of XML files. Nevertheless, the analysis of these non-
Euclidean data is difficult per se. In this paper, we focus on the subtree kernel that is a convolution kernel
for tree data introduced by Vishwanathan and Smola in the early 2000’s. More precisely, we investigate the
influence of the weight function from a theoretical perspective and in real data applications. We establish
on a 2-classes stochastic model that the performance of the subtree kernel is improved when the weight
of leaves vanishes, which motivates the definition of a new weight function, learned from the data and
not fixed by the user as usually done. To this end, we define a unified framework for computing the
subtree kernel from ordered or unordered trees, that is particularly suitable for tuning parameters. We
show through eight real data classification problems the great efficiency of our approach, in particular for
small datasets, which also states the high importance of the weight function. Finally, a visualization tool of
the significant features is derived.

keywords: classification of tree data; kernel methods; subtree kernel; weight function; tree compression

1 Introduction

1.1 Analysis of tree data

Tree data naturally appear in a wide range of scientific fields, from RNA secondary structures in
biology [22] to XML files [8] in computer science through dendrimers [23] in chemistry and physics.
Consequently, the statistical analysis of tree data is of great interest. Nevertheless, investigating
these data is difficult due to the intrinsic non-Euclidean nature of trees.

Several approaches have been considered in the literature to deal with this kind of data: edit
distances between unordered or ordered trees (see [6] and the references therein), coding processes
for ordered trees [27], with a special focus on conditioned Galton-Watson trees [3, 5]. One can also
mention the approach developed in [31]. In the present paper, we focus on kernel methods, a
complementary family of techniques that are well-adapted to non-Euclidean data.

Kernel methods consists in mapping the original data into a (inner product) feature space. Choos-
ing the proper feature space and finding out the mapping might be very difficult. Furthermore,
the curse of dimensionality takes place and the feature space may be extremely big, therefore im-
possible to use. Fortunately, a wide range of prediction algorithms do not need to access that

mailto:romain.azais@inria.fr
mailto:florian.ingels@inria.fr

feature space, but only the inner product between elements of the feature space. Building a func-
tion, called a kernel, that simulates an inner product in an implicit feature space, frees us from
constructing a mapping. Indeed, K : X2 — R is said to be a kernel function on X if, for any
(X1y...,xn) € &A™, the Gram matrix [K(xy,%;)], <ij<n is positive semidefinite. By virtue of Mer-
cer’s theorem [24], there exists a (inner product) feature space) and a mapping ¢ : X — Y such
that, for any (x,y) € X2, K(x,y) = (p(x),@(y))y. This technique is known as the kernel trick.
Algorithms that can use kernels include Support Vector Machines (SVM), Principal Components
Analyses (PCA) and many others. We refer the reader to the books [9, 25, 26] and the references
therein for more detailed explanations of theory and applications of kernels.

To use kernel-based algorithms with tree data, one needs to design kernel functions adapted to
trees. Convolution kernels, introduced by Haussler [18], measure the similarity between two com-
plex combinatorial objects based on the similarity of their substructures. Based on this strategy,
many authors have developed convolution kernels for trees, among them the subset tree kernel
[7], the subtree kernel [30] and the subpath kernel [21]. A recent state-of-the-art on kernels for
trees can be found in the thesis of Da San Martino [10], as well as original contributions on re-
lated topics. In this article, we focus on the subtree kernel as defined in [30]. In this introduction,
we develop some concepts on trees in Subsection 1.2. They are required to deal with the pre-
cise definition of the subtree kernel in Subsection 1.3 as well as the aim of the paper presented in
Subsection 1.4.

1.2 Unordered and ordered rooted trees

Rooted trees A rooted tree T is a connected graph with no cycle such that there exists a unique
vertex R(T), called the root, which has no parent, and any vertex different from the root has exactly
one parent. The leaves £(T) are all the vertices without children. The height of a vertex v of a tree
T can be recursively defined as #(v) = 0 if vis a leaf of T and

H(v) =1+ max H(w)
weC(v)

otherwise. The height 7(T) of the tree T is defined as the height of its root, i.e., H(T) = H(R(T)).
The outdegree of T is the maximal branching factor that can be found in T, that is

deg(T) = r\r)leaTx #C(v),
where C(v) denotes the set of children of v. For any vertex v of T, the subtree T[v] rooted in v is the
tree composed of v and all its descendants D(v). S(T) denotes the set of subtrees of T.

Unordered trees Rooted trees are said unordered if the order between the sibling vertices of any
vertex is not significant. The precise definition of unordered rooted trees, or simply unordered
trees, is obtained from the following equivalence relation: two trees Ty and T, are isomorphic (as
unordered trees) if there exists a one-to-one correspondence ® from the set of vertices of Ty into
the set of vertices of T, such that, if w is a child of v in T;, then ®(w) is a child of ®(v) in T,. The
set of unordered trees is the quotient set of rooted trees by this equivalence relation.

Ordered trees In ordered rooted trees, or simply ordered trees, the set of children of any vertex is
ordered. As before, ordered trees can be defined as a quotient set if one adds the concept of order
to the equivalence relation: two trees Ty and T, are isomorphic (as ordered trees) if there exists a
one-to-one correspondence @ from the set of vertices of T; into the set of vertices of T, such that,
if w is the rth child of v in T;, then ® (w) is the ! child of ®(v) in T,.

In the whole paper, 7* denotes the set of *-trees with * € {ordered, unordered}.

1.3 Subtree kernel

The subtree kernel has been introduced in [30] as a convolution kernel on trees for which the
similarity between two trees is measured through the similarity of their subtrees. A subtree kernel
K on x-trees is defined as,

VT, T e 7% KT) =) wek (Ne(Th),Ne(T2)) (1)
TeT*

where wr is the weight associated to T, N¢(T) counts the number of subtrees of T that are isomor-
phic (as *-trees) to T and « is a kernel function on N, Z or R (see [25, Section 2.3] for some classic
examples). Assuming k(0,n) = k(n,0) = 0, the formula (1) of K becomes

KM= > wex(Ne(T1),Ne(T2)),
1€S(T1)NS(T,)

making the sum finite. Indeed, all the subtrees T € 7* \ S(T;) N S(T;) do not count in the sum (1).
In this paper, as in [30], we assume that k(n, m) = nm, then

K(M,T) = Y weNg(T)No(T). 2)
€S(T)NS(Ty)

which is the subtree kernel as introduced in [30].

The weight function T — wr is the only parameter to be tuned. In the literature, the weight is
always assumed to be a function of a quantity measuring the “size” of 7, in particular its height
#H(t). Then wy is taken as an exponential decay of this quantity, w, = A*(Y for some A € [0, 1]
[1,7,10, 21, 30]. This choice can be justified in the following manner. If a subtree T is counted in
the kernel, then all its subtrees are also counted. Then an exponential decay counterbalances the
exponential growth of the number of subtrees.

In the literature, two algorithms have been proposed to compute the subtree kernel for ordered
trees. The approach of [30] is based on string representations of trees, while the authors of [1, 10]
extensively use DAG reduction of tree data, an algorithm that achieves lossly compression of trees.
To the best of our knowledge, the case of unordered trees has only been considered through the
arbitrary choice of a sibling order.

1.4 Aim of the paper
The aim of the present paper is threefold:

1. We investigate the theoretical properties of the subtree kernel on a 2-classes model of random
trees in Section 2. More precisely, we provide a lower-bound for the contrast of the kernel
in Proposition 2.2. Indeed, the higher the contrast, the less data are required to achieve a
given performance in prediction (see [4] for general similarity functions and Corollary 2.3
for the subtree kernel). We exploit this result to show in Subsection 2.4 that the contrast of
the subtree kernel is improved if the weight of leaves vanishes. The relevance of the model
is discussed in Remark 2.1.

2. Werely on[1, 10] on ordered trees to develop in Section 3 a unified framework based on DAG
reduction for computing the subtree kernel from ordered or unordered trees, with or with-
out labels on their vertices. Subsection 3.1 is devoted to DAG reduction of unordered then
ordered trees. DAG reduction of a forest is introduced in Subsection 3.2. Then, the subtree
kernel is computed from the annotated DAG reduction of the dataset is Subsection 3.3. We
notice in Remark 3.8 that DAG reduction of the dataset is costly but makes possible super-
fast repeated computations of the kernel, which is particularly adapted for tuning parame-
ters. This is the main advantage of the DAG computation of the subtree kernel compared to
the algorithm based on string representations [30]. Our method allows the implementation
of any weighting function, while the recursive computation of the subtree kernel proposed
in [10, Chapter 6] also uses DAG reduction of tree data but makes an extensive use of the
exponential form of the weight (combining equations (3.12) and (6.2) from [10]). We also in-
vestigate the theoretical complexities of the different steps of the DAG computation for both
ordered and unordered trees (see Proposition 3.2 and Remark 3.8). This kind of question
has been tackled in the literature only for ordered trees and from a numerical perspective [1,
Section 4].

3. As aforementioned, we show in the context of a stochastic model that the performance of
the subtree kernel is improved when the weight of leaves is 0 (see Section 2). Relying on this
(see also Remark 2.5 on the possible generalization of this result), we define in Section 4 a
new weight function, called discriminance, that is not a function of the size of the argument
as in the literature, but is learned from the data. The learning step of the discriminance
weight function strongly relies on the DAG computation of the subtree kernel presented
above because it allows the enumeration of all the subtrees composing the dataset without
redundancies. We explore in Section 5 the relevance of this new weighting scheme across
several datasets, notably on the difficult prediction problem of the language of a Wikipedia
article from its structure in Subsection 5.2. Beyond very good classification results, we show
that the methodology developed in the paper can be used to extract the significant features
of the problem and provide a visualization at a glance of the dataset. In addition, we remark
that the average discriminance weight decreases exponentially as a function of the height
(except for leaves). Thus, the discriminance weight can be interpreted as the second order
of the exponential weight introduced in the literature. Application to real-world datasets in
Subsections 5.3, 5.4 and 5.5 shows that the discriminance weight is particularly relevant for
small databases when the classification problem is rather difficult, as depicted in Fig. 18.

Finally, concluding remarks are presented in Section 6. Technical proofs have been deferred into
Appendices A and B.

2 Theoretical study

In this section, we define a stochastic model of 2-classes tree data. From this ideal dataset, we
prove the efficiency of the subtree kernel and derive the sufficient size of the training dataset to
get a classifier with a given prediction error. We also state on this simple model that the weight of
leaves should always be 0. We emphasize that this study is valid for both ordered and unordered
trees.

2.1 Two trees as different as possible

Our goal is to build a 2-classes dataset of random trees. To this end, we first define two typical
trees Ty and T; that are as different as possible in terms of subtree kernel.

Let To and Ty be two trees that fulfill the following conditions:

1. Vi € {0,1}, Vu,v € Ty \ L(Ty), if u # v then Ti[u] # Ti[v], i.e, two subtrees of T; are not
isomorphic (except leaves).

2. Vue To\ L(Tp), Vv € Ty \ L(Tq), Tolul # Ty[v], i.e., any subtree of Ty is not isomorphic to a
subtree of T; (except leaves).

These two assumptions ensure that the trees Ty and Ty are as different as possible. Indeed, it is
easy to see that
K(To, T) = we# L(To)# L(TH),

which is the minimal value of the kernel and where w, is the weight of leaves. We refer to Fig. 1
for an example of trees that satisfy these conditions.

Figure 1: Two trees Ty and T; that fulfill conditions 1 and 2.

Trees of class i will be obtained as random editions of T;. In the sequel, T;(v — T) denotes the
tree T; in which the subtree rooted at u has been replaced by t. These random edits will tend to
make trees of class 0 closer to trees of class 1. To this end, we introduce the following additional
assumption. Let (1) a sequence of trees such that #(tn) = h.

3. Letu € Tyoand v € T;. We consider the edited trees T; = To(u = Ty () and T) = (v —
Tow)- Then, Vu' € T\ (o) UL(TY)), Vv € T/ \ (T U L(T)), Tgw'] # T/ .

In other words, if one replaces subtrees of Ty and T; by subtrees of the same height, then any
subtree of T is not isomorphic to a subtree of Ty (except the new subtrees and leaves). This means
that the similarity between random edits of Ty and T; will come only from the new subtrees and
not from collateral modifications. We refer to Fig.2 for an example of trees that satisfy these
conditions.

Figure 2: Two trees Ty and T; that fulfill conditions 1, 2 and 3.

2.2 A stochastic model of 2-classes tree data

From now on, we assume that, for any h > 0, Ty is not a subtree of Ty nor T;. For the sake of
simplicity, To and Ty have the same height H. In addition, if u € T; then T}* denotes T;(u — Ty(y,)).

The stochastic model of 2-classes tree data that we consider is defined from the binomial distribu-
tion P, = B(H, p/H) on support {0, . .., H} with mean P, = p. The parameter p € [0, H] is fixed. In
the dataset, class 1 is composed of random trees T, where the vertex u has been picked uniformly
at random among vertices of height h in T;, where h follows P,. Furthermore, the considered
training dataset is well-balanced in the sense that it contains the same number of data of each
class.

Intuitively, when p increases, the trees are more degraded and thus two trees of different class are
closer. p somehow measures the similarity between the two classes. In other words, the larger p,
the more difficult is the supervised classification problem.

Remark 2.1. The structure of a markup document such as an HTML page can be described by a tree (see
Subsection 5.1 and Fig. 6 for more details). In this context, the tree T;, i € {0, 1}, can be seen as a model
of the structure of a webpage template. By assumption, the two templates of interest are as different as
possible. However, they are completed in a similar manner, for example to present the same content in two
different layouts. Edition of the templates is modeled by random edit operations. They tend to bring trees
from different templates closer.

2.3 Theoretical guarantees on the subtree kernel

The authors of [4] have introduced a theory that describes the effectiveness of a given kernel in
terms of similarity-based properties. A similarity function over X is a pairwise function K : X2 —
[—1,1] [4, Definition 1]. It is said (e, y)-strongly good [4, Definition 4] if, with probability at most
1—e¢,

Ex’,y [K(X)X/) - K(x,y)] >,

where label(x) = label(x’) # label(y). From this definition, the authors derive the following
simple classifier: the class of a new data x is predicted by 1 if x is more similar on average to
points in class 1 than to points in class 0, and 0 otherwise. In addition, they prove [4, Theorem 1]
that a well-balanced training dataset of size 32/y*log(2/8) is sufficient so that, with probability at
least 1T — 5, the above algorithm applied to an (e, y)-strongly good similarity function produces a
classifier with error at most € + 0.

We aim to prove comparable results for the subtree kernel that is not a similarity function. To this
end, we focus for i € {0, 1} on

Al = B [K(TS T — K(TH T)

1)

We emphasize that the two following results (Proposition 2.2 and Corollary 2.3) assume that the
weight of leaves w, is 0. For the sake of readability, we introduce the following notations, for any
0<h<Handie{0,1},

Kin = max K(Ti[ul, Ti[ul),
{ueT; - H(u)=h}

o KT K

b #L(Ty)

H
Go(h) = 1= > Pylk).

k=h+1

The following results are expressed in terms of a parameter 0 < h < H. The statement is then true
with probability G,(h). This is equivalent to state a result that is true with probability 1 — €, for
any € > 0.

Proposition 2.2. If wy, > 0 then Al =0 if and only if x = R(TL). In addition, if p > H/2, for any
0 < h < H, with probability G,(h), one has

Al > P,(0)Cip- (4)

Proof. The proof lies in Appendix A. 4

This result shows that the two classes can be well-separated by the subtree kernel. The only data
that can not be separated are the trees completely edited. In addition, the lower-bound in (4) is of
order Hexp(—p) (up to a multiplicative constant).

Corollary 2.3. Forany 0 < h < H, a well-balanced training dataset of size

2max; K(T;, T)? exp(2p) 2
- 5 5 log | -
min; Ci’h H

5

is sufficient so that, with probability at least 1 — 8, the aforementioned classification algorithm produces a
classifier with error at most 1 — G,(h) + 4.

Proof. The proof is based on the demonstration of [4, Theorem 1]. However, in our setting, the
kernel K is bounded by max; K(T;, T;) and not by 1. Consequently, by Hoeffding bounds, the
sufficient size of the training dataset if of order

. . T.)2
2log <2> max; K(T;, Ty)

< YZ) (5)

d
where v can be read in Proposition 2.2, y = P,(0)Cir > P,(0) min; Ci,. The coefficient 2 lies
because we consider here the total size of the dataset and not only the number of examples of each
class. Together with P,(0) ~ Hexp(—p), we obtain the expected result. 4

2.4 Weight of leaves

Here KT is the subtree kernel obtained from the weights used in the computation of K together
with a positive weight on leaves, w, > 0. We aim to show that K* separates the two classes less
than K. A" denotes the conditional expectation (3) computed from K*.

Proposition 2.4. Foranyx € T,
AP = AL + we# L(Ti[x])Di 1,

where Dy 1 = By [# L(T) —# L(T7)],

Proof. We have the following decomposition, for any trees Ty and T,
K* (T, To) = K(Ti, Ta) +we# L(T)# L(T2),
in light of the formula (2) of K. Thus, with (3),
APV = Euy [K(TE T 4+ wet LT L(T) — K(TE TYL) — wat L(TH# L(TY)]

1) "

= Al +Eyy Wt L(TY)#L(TH) —# L(TY)],

which ends the proof. 4

The sufficient number of data provided in Corollary 2.3 is obtained (5) through the square ratio
of max; K(T;, T;) over min; Al. First, it should be noticed that K*(T;, T;) > K(T;, T;). In addition,
by virtue of Proposition 2.4, either A7° < A or AD! < Al (and the inequality is strict if trees of
classes 0 and 1 have not the same number of leaves on average). Consequently,

min AP < min Al
1 1
and thus the sufficient number of data mentioned above is minimum for we, = 0.

Remark 2.5. The results stated in this section establish that the subtree kernel is more efficient when
the weight of leaves is 0. It should be placed in perspective with the exponential weighting scheme of the
literature [1, 7, 10, 21, 30] for which the weight of leaves is maximal. We conjecture that the accuracy of
the subtree kernel should be in general improved by imposing a null weight to any subtree present in two
different classes. This can not be established from the model for which the only such subtrees are the leaves.
Relying on this, one of the objectives of the sequel of the paper is to develop a learning method for the weight
function that improves in practice the classification results (see Sections 4 and 5).

3 DAG computation of the subtree kernel

In this section, we define DAG reduction, an algorithm that achieves both compression of data and
enumeration of all subtrees of a tree without redundancies. DAG reduction of a tree is presented
in Subsection 3.1, while Subsection 3.2 is devoted to the compression of a forest. In Subsection 3.3,
we state that the subtree kernel can be computed from the DAG reduction of dataset of trees.

3.1 DAG reduction of a tree

Trees can present internal repetitions in their structure. Eliminating these structural redundancies
defines a reduction of the initial data that can result in a Directed Acyclic Graph (DAG). In partic-
ular, beginning with [29], DAG representations of trees are also much used in computer graphics
where the process of condensing a tree into a graph is called object instancing [17]. DAG reduction
can be computed upon unordered or ordered trees. We begin with the case of unordered trees.

Unordered trees We consider the equivalence relation “existence of an unordered tree isomor-
phism” on the set of the subtrees of a tree T: Q(T) = (V, E) denotes the quotient graph obtained
from T using this equivalence relation. V is the set of equivalence classes on the subtrees of T,
while E is a set of pairs of equivalence classes (C7,C;) such that R(C;) € C(R(Cy)) up to an
isomorphism. The graph Q(T) is a DAG [15, Proposition 1] that is a connected directed graph
without path from any vertex v to itself. Let (C;,C;) be an edge of the DAG Q(T). We define
L(C1, C2) as the number of occurrences of a tree of C; just below the root of any tree of C;. The
tree reduction of T is defined as the quotient graph Q(T) augmented with labels L(Cy, C;) on its
edges. We refer to Fig.3a for an example of DAG reduction of an unordered tree. Two different
algorithms that allow the computation of the DAG reduction of an unordered tree but that share
the same time-complexity in O(#T? deg(T)log(deg(T))) are presented in [15].

Ordered trees In the case of ordered trees, it is required to preserve the order of the children
in the DAG reduction. As for unordered trees, we consider the quotient graph Q(T) = (V,E)
obtained from T using the equivalence relation between ordered trees. V is the set of equivalence
classes on the subtrees of T. Here, the edges of the graph are ordered as follows. (Cy, C;) is the
rih edge between C; and C; if R(C;) is the i child of R(C1) up to an isomorphism. We obtain
a DAG with ordered edges that compresses the initial tree T. An example of DAG reduction of
an ordered tree is presented in Fig.3b. Polynomial algorithms have been developed to allow the
computation of a DAG, with complexities ranging in O(#T?) to O(#T) for ordered trees [12].

SN N

(a) Unordered (b) Ordered

Figure 3: A tree (left) and its DAG reduction (right) seen (a) as an unordered tree and (b) as an
ordered tree. In each figure, roots of isomorphic subtrees are displayed with the same color, which
is reproduced on the corresponding vertex of the DAG. Note that the subtree on the left is colored
differently in the two cases, whether the order of its children is relevant or not. If no label is
specified on an edge (in the unordered case), it is equal to 1.

In this paper, 53*(T) denotes the DAG reduction of T as *-tree, * € {ordered,unordered}. It is
crucial to notice that the function R* is a one-to-one correspondence, which means that DAG

reduction is a lossless compression algorithm. In other words, T can be reconstructed from 9*(T)
and (9R*)~! stands for the inverse function.

The DAG structure inherits of some properties of trees. For a vertex v in a DAG D, we will denote
by C(v) (P(v), respectively) the set of children (parents, respectively) of v. #(v) and deg(v) are
inherited as well. Similarly to trees, we denote by D[v] the subDAG rooted in v composed of v
and all its descendants in D.

3.2 DAG reduction of a forest

Let Tr, be the super-tree obtained from a forest of *-trees 77 = (Ty,..., Ty) by placing in this
order each T; as a subtree of an artificial root. We define the DAG reduction of the forest F7 as
R (Fr) = R (Tr,).

However, if the forest Fr is stocked as a forest of compressed DAGs, that is, Fp = (Dy,...,Dn)
(with D; = R*(T;)), it would be superfluous to decompress all trees before reducing the super-
tree. So, one would rather compute R*(F7) directly from Fp. From now on, we consider only
forests of DAGs that we will denote unambiguously F. In this context, 53 (F) stands for the DAG
reduction of the forest of trees ((M*)71(D1),..., (:*) "1 (Dn)). We define the degree of the forest
as deg(F) = maxl\; deg(Ds).

Computing R*(F) from (Dj,...,Dy) is in two steps: (i) we construct a super-DAG Dy from
F = (Dy,...,Dn) by placing in this order each D; as a subDAG of an artificial root (with time-
complexity O(deg(F) YN, #D;)), and (ii) we recompress D5 using Algorithm 1. Fig. 4 illustrates
step by step Algorithm 1 on a forest of two trees seen as unordered then ordered trees.

Proposition 3.1. Algorithm 1 correctly computes SR* (F).

Proof. Starting from the leaves, we examine all vertices of same height in Dx. Those with same
children (with respect to *) are merged into a single vertex. The algorithm stops when at some
height h, we cannot find any vertices to be merged. Vertices that are merged in the algorithm
represents isomorphic subtrees, so it suffices to prove that the algorithm stops at the right time.
Let h be the first height for which o(h) = 0.

Suppose by contradiction that some vertices were to be merged at some height h’ > h. They
represents isomorphic subtrees, so that their respective children should also be merged together,
and all of their descendants by induction. As any vertex of height h” + 1 admits at least one child
of height h”, o(h) would not be empty, which is absurd. 4

Proposition 3.2. Algorithm 1 has time-complexity:
1. O(#Drdeg(F)(logdeg(F)+ H(Dx))) for unordered trees;
2. O#Dxrdeg(F)H(DF)) for ordered trees.
Proof. The proof lies in Appendix B. 4

Remark 3.3. One might also want to treat online data, but without recompressing the whole dataset when
adding a single entry in the forest. Let SR*(F) be the already recompressed forest and D a new DAG to be
introduced in the data. It suffices to place D has the rightmost child of the artificial root of R*(F) to get
D rup, then run Algorithm 1 to obtain R*(F U D).

10

Algorithm 1: DAGRECOMPRESSION

@ N

© @ NN S U1 B

10
11
12
13

14
15

Data: Dr the superdag obtained from a forest of DAG reductions of *-trees,

x € {ordered, unordered}

Result: R*(F)

Construct, within one exploration of D, the mapping h — D" where D" is the set of
vertices of Dr at height h

for h from 0 to H(Dx) — 1 do

Let o(h) = {f'({S}) : S € Im f, #f~({S}) > 2} be the set of vertices to be merged at
height h, where f : v € D" C(v)
if o(h) = () then
‘ Exit algorithm;
else
for M in o(h) do
Choose one element vy in M to remain in D
Denote by dp the other elements of M

for v in Dz such that H(v) > h do

for win C(v) such that 3M € o(h), &y > ndo
Delete u from C(v)

L Add vp in C(v)

for M € o(h) do
L Delete dp from D+

16 return Dr

It should be noticed that Im f (that appears line 3) depends on *. Indeed, if * = ordered, Im f is the set of all lists of
children; otherwise, Im f is the set of all multisets of children.

11

“S[e[q UI PIIOJOD SI JOOI [EDYTIE Y[, "PaI Ul PAIOJ0d dIt SIDIIDA PISISIA Y3y
19d ared U0 0} PaOLNSAI JOU STk OM : PIZISW 3q 0} SADNHIdA JO sited om) pury om ‘g
dass 3e (0) ur ey 30N *dois am pue aG1ow 03 X9310A Aue pury Jou ued am ‘§ days 3y
“USIPTIYD SWIeS dABY UOTYM dSOY} 9319w pue (Z'1°0) IYSIOY Je SOOTIA JUTUIEXD 9M
‘c pue g ‘1 doys yoea 1y *(3y311) unyirioSe sy Jo uonndIX Y} pue (Jo) SOV Y}
9ATISO UL SU() 'S331} PAISPIO (D) IO parapioun (q) se uaas ‘(MO[[eA ur) 7| pue (ueld
ur) L sea13 omy (B) ypm [unrod[y oay3 jo days Aq deays uonensnyr uy :p iy

(®)

12

3.3 DAG annotation and kernel computation

We consider a dataset composed of two parts: the train dataset &,,,;, = (T1,..., Tn) and the dataset
to predict Xpred = (Twi1y.. -, In). In the train dataset, the classes of the data are assumed to be

known. Our aim is to compute two Gram matrices G = [K(T;, Ty)]; ., where:

i’

o (ij)eX, . xX

train train for the training matrix Girains

e (i,j) € Xored X Xirain for the prediction matrix Gpreq-

SVM algorithms will use Girain to learn their classifying rule, and Gpred to make predictions [9,
Section 6.1]. Other algorithms, such as kernel PCA, would also require to compute a Gram matrix

before processing [25, Section 14.2]. We denote by A = R* (X, U & q) the DAG reduction of

the dataset and, for any 1T <1i < N, D; = R*(T;). DAG computation of the subtree kernel requires
to annotate the DAG with different pieces of information.

Origins In order to compute the subtree kernel, it will be necessary to retrieve from the vertices
of A their origin in the dataset, that is, from which tree they come from. For any vertex v in
A\ R(A), the origin of v is defined as

ov)={ie{l,...,my,n+1,...,N}: Dy > v}.

Assuming that (Dy,...,Dy) are children of the root of A in this order (which is achieved if A had
been constructed following the ideas developed in Subsection 3.2) leads to the following proposi-
tion.

Proposition 3.4. Origins can be calculated using the recursive formula,

{i} if v is the i child of R(A),

Vv e A\R(A), ov) =9 |J ofp) otherwise.

PEP(v)

Proof. Using the assumption, origins are correct for the children of R(A). If D; > v for some
ie{l,...,N}and v € A, then D; D D(v). The statement follows by induction. 4

Frequency vectors Remember that in (2) N(T) counts the number of subtrees of a tree T that are
x-isomorphic to the tree T. To compute the kernel, we need to know this value, and we claim that
we can compute it using only A. We associate to each vertex v € A\ R(A) a frequency vector ¢,
where, forany 1 <1 <N, @+ (1) = Ngey-1(ap) (T1)-

Proposition 3.5. Frequency vectors can be calculated using the recursive formula,

(Licomien,..Ny v E€C(R(A)),

VYEANR(A), ov=4 T L(p,v) @p otherwise,
PEP(V)

where either L(p,v) = 1 if *+ = ordered, or L(p,Vv) is the label on the edge between p and v in A if
*x = unordered.

13

Proof. Let vbein A\ R(A). If v € C(R(A)), then v represents the root of a tree T; (possibly several
trees if there are repetitions in the dataset), and therefore @, (i) = Ny, (T;) = 1. Otherwise, suppose
by induction that ¢, (i) is Correct forall p € P(v), and any i. We fix p € P(v). v appears L(p, V)
times as a child of p, so if (%*)~"(Alp]) appears @, (i) times in T;, then the number of occurrences
of (M*)71(A[v]) in T; as a child of (:3*)~"(Alp]) is L(p, v) @p(i). Summing over all p € P(v) leads
@+ (1) to be correct as well. 4

DAG weighting The last thing that we lack to compute the kernel is the weight function. Re-
member that it is defined for trees as a function w : 7 — R™. As we only need to know the
weights of the subtrees associated to vertices of A, we define the weight function for DAG as, for
any v € A, Wy = W1 (AR

Remark 3.6. In light of Propositions 3.4 and 3.5, it should be noted that both o and ¢ can be calculated in
one exploration of A. By definition, this is also true for w.

DAG computation of the subtree kernel We introduce the matching subtrees function M as

M:{1,. NP — 28
(L) = {ved:{L,j} So(v)}

where 2% is the powerset of the vertices of A. Note that M is symmetric. This leads us to the
following proposition.

Proposition 3.7. Forany Ty, Ty € X, i, U X, .4, we have

ram pred”’

TuT Z Wy @+ (1) e+ (j).

veM(i,j)

Proof. By construction, it suffices to show that R*(S(T;) N S(T;)) = M(i,j). Let T € S(T;) N S(T).
Then R*(t) € R*(T;) and R*(1) € R*(Tj). Necessarily, R*(1) € A and {i,j} C o(R*(1)). So
R*(1) € M(i,j). Reciprocally, let v € M(i,j). We denote T = (") 1(v). As {i,j} C o(v), then
Te S(T)NS(T). 74

Remark 3.8. M can be created in O(N*#A) within one exploration of A and allows afterward computa-
tions of the subtree kernel K(T;, T;) in O(#M(i,j)) = O(min(#Dy, #Dj)), which is more efficient than the
O#Ty + #T;) algorithm proposed in [30] (the time-complexity is announced in [21, Section 1]). However,
since the whole process through Algorithm 1 is costly, the global method that we propose in this paper is not
faster than existing algorithms. Nonetheless, our algorithm is particularly adapted to repeated computa-
tions from the same data, e.g., for tuning parameters. Indeed, once M and A have been created, they can be
stored and are ready to use. An illustration of this property is provided from experimental data in Fig. 19.

14

Remark 3.9. The DAG computation of the subtree kernel investigated in this section relies on the references
[1, 10]. Our work and the aforementioned papers are different and complementary. First, our framework
is valid for both ordered and unordered trees, while these papers focus only on ordered trees. In addition,
the method developed in [1, 10] is only adapted to exponential weights (see equations (3.12) and (6.2) from
[10]). Thus, even if this algorithm is also based on DAG reduction of trees, it is less general than ours since
the weight function is not constrained (see in particular Section 4 where the weight function is learned from
the data). Finally, in [1, Section 4], the time-complexities are studied only from a numerical point of view,
while we state theoretical results.

4 Discriminance weight function

For a given probability level and a given classification error, and under the stochastic model of
Subsection 2.2, we state in Subsection 2.4 that the sufficient size of the training dataset is min-
imum when the weight of leaves is 0. In other words, counting the leaves, which are the only
subtrees that appear in both classes, does not provide a relevant information to the classification
problem associated to this model. As mentioned in Remark 2.5, we conjecture that, in a more
general model, this result would be true for any subtree present in both classes. In this section, we
propose to rely on this idea by defining a new weight function, learned from the data and called
discriminance weight that assigns a large weight to subtrees, that help to discriminate the classes,
i.e., that are present or absent in exactly one class, and a low weight otherwise.

The training dataset is divided into two parts: &, . ght = (Ti,..., Trn) to learn the weight function,
and X, . = (Tmy1,..., In) to estimate the Gram matrix. For the sake of readability, A denotes the
DAG reduction of the whole dataset, including Xweight, X s and Xpred. In addition, we assume

that the data are divided into K classes numbered from 1 to K.

For any vertex v € A\ R(A), we define the vector p, of length K as,

1
V1 <k <K, py(k) = #7Ck Z Licomyp
TieCy

where (Cy)1<k<k forms a partition of X, such that T; € Cy if and only if T; is in class k. In other

eight
words, py(k) is the proportion of data in class k that contain the subtree (9*)~'(A[v]). Therefore,
py belongs to the K-dimensional hypercube. It should be noticed that p, is a vector of zeros as

soon as (93*) "1 (A[v]) is not a subtree of a tree of X, cight

For any 1 < k < K, let ey (€, respectively) be the vector of zeros with a unique 1 in position k
(vector of ones with a unique 0 in position k, respectively). If p, = ey, the vertex v corresponds
to the subtree (*)~'(A[v]), which only appears in class k: v is thus a good discriminator of this
class. Otherwise, if py = €y, the vertex v appears in all the classes except class k and is still a good
discriminator of the class. For any vertex v, 6, measures the distance between p, and its nearest
point of interest ey or €y,

K
oy = 1’]?}? min(|py — exl, lpv —&l).

It should be noted that the maximum value of &, depends on the number of classes and can
be larger than 1. If &, is small, then p, is close to a point of interest. Consequently, since v
tends to discriminate a class, its weight should be large. In light of this remark, the discriminance

15

weight of a vertex v is defined as w, = f(1 — &), where f : (—o0,1] — [0, 1] is increasing with
f(x) = 0 for x < 0and f(1) = 1. Fig. 5 illustrates some usual choices for f. In the sequel, we chose
wy = f*(1 — 8y) with the smoothstep function f* : x — 3x? — 2x3. We borrowed the smoothstep
function from computer graphics [13, p. 30], where it is mostly used to have smooth transition in
a threshold function.

Figure 5: The discriminance weight 1} — identity

is defined by wr = f(1 — ;) where | — smootﬁstep N

f: (—o0, 1] — [0, 1] is increasing with ; — smoothstep o smoothstep
‘ — threshold

f(0) = 0 and f(1) = 1. This figure
presents some usual choices for f.

Since leaves appear in all the trees of the training dataset, p, is a vector of ones and thus 6, =1,
which implies w, = 0. This is consistent with the result developed in Subsection 2.4 on the
stochastic model. As aforementioned, the discriminance weight is inspired from the theoretical
results established in Subsection 2.4 and the conjecture presented in Remark 2.5. The relevance
in practice of this weight function will be investigated in the sequel of the paper through two
applications.

Remark 4.1. The discriminance weight is defined from the proportion of data in each class that contain
a given subtree, for all the subtrees appearing in the dataset. It is thus required to enumerate all these
subtrees. This is done, without redundancy, via the DAG reduction A of the dataset defined and investigated
in Section 3. As the m trees of the training dataset dedicated to learning the discriminance weight are
partitioned into K classes, computing one p~, vector is of complexity O(m). Therefore, computing all of
them is in O(#Am). In addition, computing all values of & is in O(#AK?), as there are 2K Euclidean
distances to be computed for each vector of length K. All gathered, computing the discriminance weight
function has an overall complexity of O(#A(N + K?)).

5 Real data analysis

This section is dedicated to the application of the methodology developed in the paper to eight real
datasets with various characteristics in order to show its strengths and weaknesses. The related
questions are supervised classification problems. As mentioned in Subsection 3.3, our approach
consists in computing the Gram matrices of the subtree kernel via DAG reduction and with a
new weight function called the discriminance (see Section 4). In particular, we aim to compare
the usual exponential weight of the literature and the latter in terms of prediction capability. In
all the sequel, the Gram matrices are used as inputs to SVM algorithms in order to tackle these
classification problems. We emphasize that this approach is not restricted to SVM but can be
applied with other prediction algorithms.

5.1 Preliminaries

In this subsection, we introduce (i) the protocol that we have followed to investigate several
datasets, together with a description of (ii) the classification metrics that we use to assess the

16

quality of our results, (iii) an extension of DAG reduction to take into account discrete labels on
vertices of trees, and (iv) the standard method to convert a markup document into a tree. It should
be already noted that all the datasets presented in the sequel are composed of trees (that can be
ordered or unordered, labeled or not) together with their class.

Protocol For each dataset, we have followed the same presentation and procedure. First, a de-
scription of the data is made notably via histograms describing the size, outdegree, height and
class repartition of trees. Given the dispersion of some of these quantities, we have binned
together the values that does not fit inside the interval [Q; — 1.5 - IQR; Q3 + 1.5 - IQR] where
IQR = Q3 — Qg is the interquartile range. Therefore, the flattened-large bins that appears in some
histograms represents those outliers bins. The objective of this part is to show the wide range of
datasets considered in the paper.

In a second time, we evaluated the performance of the subtree kernel on a classification task via
two methods: (i) for exponential weights T — A%(") we randomly split the data in half, one for
training a SVM, and one for prediction; (ii) for discriminance weight, we randomly split the data
in thirds, one for training the discriminance weight, one for training a SVM, and the last one for
prediction. We repeated 50 times this random split for discriminance, and for different values of
A. The classification results are assessed by some metrics defined in the upcoming paragraph, and
gathered in boxplots. The first application example, presented in Subsection 5.2, is slightly differ-
ent since (i) we have worked with 50 distinct databases, and (ii) the results have been completed
with a deeper analysis of the discriminance weights, in relation with the usual weighting scheme
of the literature.

Classification metrics To quantify the quality of a prediction, we use four standard metrics that
are accuracy, precision, recall and F-score. For a class k, one can have true positives TPy, false
positives FPy, true negatives TNy and false negatives FNy. In a binary classification problem,
those metrics are defined as,

Accuracy(k) = TPy + TN
y TPy + FP + FN, + TN
TP
Precision(k) = P, —i—kFPk
TPy
2 Precision(k) Recall(k
Foscore(k) = recision (k) Recall (k)

Precision(k) + Recall(k)

For a problem with K > 2 classes, we adopt the macro-average approach, that is,
1 X
Metric = X % Metric(k).

We used the implementation available in the scikit—-1earn Python library, via the two functions
accuracy_score and precision_recall_fscore_support.

17

DAG reduction with labels In the sequel, some of the presented datasets are composed of la-
beled trees, that are trees which each vertex possesses a label. Labels are supposed to take only
a finite number of different values. Two labeled x-trees are said isomorphic if (i) they are *-
isomorphic, and (ii) the underlying one-to-one correspondence mapping vertices of Ty into ver-
tices of T, is such that Vv € Ty, v and ®@(v) have the same label. The set of labeled x-trees is the
quotient set of rooted trees by this equivalence relation. It should be noticed that the subtree ker-
nel as well as DAG reduction are defined through only the concept of isomorphic subtrees. As
a consequence, they can be straightforwardly extended to labeled *-trees. This formalization is
an extension of the definition introduced by the authors of [1, 10], as they consider only ordered
labeled trees, whereas we can consider unordered labeled trees as well.

From a markup document to a tree Some of the datasets come from markup documents (XML
or HTML files). From such a document, one can extract a tree structure, identifying each couple of
opening and closing tags as a vertex, which children are the inner tags. It should be noticed that,
during this transcription, semantic data is forgotten: the tree only describes the topology of the
document. Fig. 6 illustrates the conversion from HTML to tree on a small example. Such a tree is
ordered but can be considered as unordered. Finally, a tag can also be chosen as a label for the
corresponding vertex in the tree.

<html>
<body>

</body>
</html>

Figure 6: Underlying ordered tree structure (right) present in a HTML document (left). Each level
in the tree is colored in the same way as the corresponding tags in the document. Natural order
from top to bottom in the HTML document corresponds to left-to-right order in the tree.

5.2 Prediction of the language of a Wikipedia article from its topology

Classification problem and results Wikipedia pages are encoded in HTML and, as aforemen-
tioned, can therefore be converted into trees. In this context, we are interested in the following
question: does the (ordered or unordered) topology of a Wikipedia article (as an HTML page)
contain the information of the language in which it has been written? This can be formulated
as a supervised classification problem: given a training dataset composed of the tree structures

18

of Wikipedia articles labeled with their language, is a prediction algorithm able to predict the
language of a new data only from its topology? The interest of this question is discussed in Re-
mark 5.1.

In order to tackle this problem, we have built 50 databases of 480 trees each, converted from
Wikipedia articles as follows. Each of the databases is composed of 4 datasets:

e a dataset to predict Xpre 4 made of 120 trees;

e asmall train dataset thrl;}ill made of 40 trees;

e a medium train dataset Xt‘r‘;ﬁlium made of 120 trees;

Xlarge

train made of 200 trees.

¢ and a large train dataset

For each dataset, and each language, we picked Wikipedia articles at random using the Wikipedia
API', and converted them into unlabeled trees. It should be noted that the probability to have
the same article in at least two different languages is extremely low. For each database, we aim at

predicting the language of the trees in X, .4 using a SVM algorithm based on the subtree kernel for
ordered and unordered trees, and trained with thrfi; where size € {small, medium, large}. Fig.8
provides the description of one typical database. All trees seem to share common characteristics,

regardless of their class.

Size repartition

0.1
0.0-
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Outdegree repartition
0.21

O,OA_MMM ‘
0

30 60 90 120 150 180 210 240 270

Height repartition Class repartition

L

e ().0
10 15 20 25 30 35 40 45 50

0.2 Uniform

Figure 7: Description of a Wikipedia dataset (480 trees).

Classification results over the 50 databases are displayed in Fig. 8. Discriminance weighting achie-
ves highly better results than exponential weighting, with all metrics greater than 90% on average
from only 200 training data. This points out that the language information exists in the structure
of Wikipedia pages, whether they are considered as ordered or unordered trees, unlike what in-
tuition as well as subtree kernel with exponential weighting suggest. It should be added that the
variance of all metrics seem to decrease with the size of the training dataset when using discrimi-
nance.

Mttps://wuw.mediawiki.org/wiki/APT:Random (last accessed in October 2019)

19

https://www.mediawiki.org/wiki/API:Random

Accuracy Precision Recall F-score Accuracy Precision Recall F-score

10 10
I I I I I I I I I I I I 1 1 1 1 1 1 1 1 I 1 1 1
I I I ? I I I é I I I ? I I I é 1 1 I ? 1 1 I é 1 1 I ? 1 1 I %
I I] I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1
I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1
I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1
- 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1
0.8 I I I I I I I I I I I I 0.8 1 1 1 1 1 1 1 1 1 1 1 1
I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1
I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1
I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.6 4]]]]]]]]]]]] 0.6 4 I I I I I I I I I I I I
I 1 1 1 I 1 I 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1
I I I 1) 1 I I I I I I 1 1 1 1 ! 1 1 1 1 1 1 1
1 I 1 I I 1 1 I 1 I I I 1 1 1 1 1 1 1 1 1 1 1 1
1 I 1 1 ! ! 1 I 1)) 1 1 1 1 1 1 1 1 1 1 1] 1
! 1 1 ! ! I ! 1 1 I I 1 1 1 1 1 1 1 1 1 1 I 1 1
0.44] 1]]] I] 1] I 1 1 0.44] I I I I I I I 1 I I I
I I I I) I I I I ! ! I 1 1 1 1 1 1 1 1 1 1 I 1
I I I) I I I I I)) I 1 1 1 1 1 1 1 1 1 1 1 1
I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1
I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1
I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1
0.24 1 1 1 1 1 1 1 1 1 1 I I 0.2 4 I I I I I I I I 1 1 1 1
I 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1
I I 1 1
! Small —— Medium Large | ! Small —— Medium Large |
I T T T T T T T T T I 1 T T T T T T 1
0.0 1 1 1 - 1 - l - 1 - 1 - 1 - l - 1 - 1 - 1 - l - 1 - 1 - 1 - 0.0 4 T 1 1 T 1 T l 1 T 1 T 1 T l T 1 T 1 1 T l 1 1 T 1 T
PO N DO N DO N DN @ PO N PO N DO N DN @
NN NN N RN DN N RN\ QRS NCEN DN QNS NN RN QNN N D SN TN CEN DN SN DN DN RN
AR AR i AR AR i AN A A AR AR R AR A 7 7T 7 7T
R N NP N NP N NP N S S R N P N S P N N NP N N NS
o 5 o > o > > >
‘\(;}‘ ‘\(;‘,C‘ ‘\(;‘,C‘ ‘\(;‘,C‘ .\ao .\ac .\aﬁl‘ .\aﬁl‘

Figure 8: Classification results for the 50 Wikipedia databases as ordered (left) and unordered
(right) trees. A values stands for exponential decay weight of the form t — A1) The colors of the
boxplot indicates, for each size € {small, medium, large}, the results obtained for the classification

size
of Xpre 4 from APZE.

These numerical results show the great interest of the discriminance weight, in particular with
respect to an exponential weight decay. Nevertheless, it should be compelling in this context to
understand the classification rule learned by the algorithm. Indeed, this could lead to explain how
the information of the language is present in the topology of the article.

Comprehensive learning and data visualization When a learning algorithm is efficient for a
given prediction problem, it is interesting to understand which features are significant. In the
subtree kernel, the features are the subtrees appearing in all the trees of all the classes. Looking
at (2), the contribution of any subtree T to the subtree kernel with discriminance weighting is the
product of two terms: the discriminance weight w, quantifies the ability of T to discriminate a
class, while k(N(T7), N¢(T2)) evaluates the similarity between Ty and T, with respect to T through
the kernel k. As explained in Section 4, if w is close to 1, T is an important feature in the prediction
problem.

As shown in Section 3, DAG reduction provides a tool to compress a dataset without loss. We
recall that each vertex of the DAG represents a subtree appearing in the data. Consequently, we
propose to visualize the important features on the DAG of the dataset where the radius of the
vertices is an increasing function of the discriminance weight. In addition, each vertex of the DAG
can be colored as the class that it helps to discrimine, either positively (the vertex of the DAG
corresponds to a subtree that is present almost only in the trees of this class), or negatively. This
provides a visualization at a glance of the whole dataset that highlights the significant features for
the underlying classification problem. We refer the reader to Fig. 9 for an application to one of our
datasets. Thanks to this tool, we have remarked that the subtree corresponding to the License at
the bottom of any article highly depends on the language, and thus helps to predict the class.

20

-ystuedg 103 ,,$3,, pue “Uousi] 10y, Ij, “UeWIdN) 10§ ,,9p,, ‘@3endue ysi3uy 10 st
L, U9, a1aym ‘puadal a3 03 urprodde UondunsIp SIy} SUIMOT[O] A TOJ0D M) "dOUSSJE S} A SIPLUTWLIISIP A “19 ST 31 JT pue ‘oduasard
S31 AQ S9PUTWILIOSTP A Jey} Aes om 12 ST JT 12 10 9 I9UID 0} SdUR)ISIP [eWIUTW Sty *d Jeyj} yons 3 SSe[d ay} puy am ‘A yoesd
IO "SISSE[D JUDISJJIP S} dJLUTWILIDSIP 1S9q Jely} 9SO} oIe S9N }Sa3Ie] ay Jey) os (49 — [),J 03 Surpiodde payeds st (¥),16 D A

Xxa110A yoey ‘saseqerep erpadpyipm s a3 Suowre saaxy patepioun jo PPy umporX’ = X’ J9SEIEP U0 JO UOHeZI[ensIA 6 23]

aouasard 11y) oduesaid :op @ soussaid :so @ soussard :uo @

dduasqe :1j () dDUSSqe :9p @ 9OUISCR 1S3 @ dDUISAR (UL ()

21

Distribution of discriminance weights To provide a better understanding of our results, we
have analyzed in Fig. 10 the distribution of discriminance weights of one of our large training
datasets. It shows that the discriminance weight behaves on average as a shifted exponential.
Considering the great performance achieved by the discriminance weight, this illustrates that ex-
ponential weighting presented in the literature is indeed a good idea, when setting w, = 0 as
shown in Subsection 2.4 or suggested in [30, 6 Experimental results]. However, a closer look to
the distribution in Fig. 10 (left) reveals that important features in the kernel are actually outliers:
relevant information is both far from the average behavior and scarce. To a certain extent and
regarding these results, discriminance weight is the second order of the exponential weight.

.. 0.06 L .
L0 + o, Average distribution A Average distribution per height
+ 005 \ -—=+ Exp. fit : 0.108 exp(—0.609h)
08 . ¢+ . \
£ \
0.04 \
0.6 \
0.03 ‘\
. \
0.4 + \\
., 0.02 3
+ N\
L. \
0.2 S 0.01 DY
: i ii | | E £ \\
0.0-&i__—§.ii;éegeeee ool ' TTe=———o oo
012345678 9101112131415 0 2 4 6 hS 10 12 14
h

Figure 10: Estimation of the distribution of the discriminance weight function h — {w, : H(v) =
h,v € R*(X)} from one large training Wikipedia dataset of unordered trees (left) and fit of its

average behavior (in red) to an exponential function (in blue). All ordered and unordered datasets
show a similar behavior.

Remark 5.1. The classification problem considered in this subsection may seem unrealistic as ignoring the
text information is obviously counterproductive in the prediction of the language of an article. Neverthe-
less, this application example is of interest for two main reasons. First, this prediction problem is difficult
as shown by the bad results obtained from the subtree kernel with exponential weights (see Fig. 8). As high-
lighted in Fig. 9 and 10 (left), the subtrees that can discriminate the classes are very unfrequent and diverse

(in terms of size and structure), so difficult to be identified. On a different level, as Wikipedia has a very
large corpus of pages, it provides a practical tool to test our algorithms and investigate the properties of

our approach. Indeed, we can virtually create as many different datasets as we want by randomly picking
articles, ensuring that we avoid overfitting.

5.3 Markup documents datasets

We present and analyze in this subsection three datasets obtained from markup documents.

INEX 2005 and 2006 These datasets originate from the INEX competition [11]. There are XML
documents, that we have been considering as ordered and unordered in our experiments. INEX

22

2005 is made of 9630 documents arranged in 11 classes, whereas INEX 2006 has 18 classes for
12107 documents. For INEX 2005, classes can be split into two groups of trees with similar char-
acteristics, as shown in Fig. 11 (left). However, inside each group, all trees are alike. In the case
of INEX 2006, no special group seems to emerge from topological characteristics of the data, as
pointed out in Fig. 11 (right).

The classification results are depicted in Fig. 12, for both datasets, and with trees considered suc-
cessively as ordered and unordered. For INEX 2005, both exponential decay and discriminance
achieve similar good performance. However, for INEX 2006, neither of them are able to achieve
significant results. Actually, discriminance performs slightly worse than exponential decay. From
these results we deduce that subtrees do not seem to form the appropriate substructure to capture
the information needed to properly classify the data.

Size repartition Size repartition

0.2

0

|M‘LU1¢.Hlul\yHu‘H'JIJII TR
10

20 30 40 50 60 70 80 90

Outdegree repartition

0.0

uu Jlﬂle1|J|JJVI11|J|“'.U.[1U ol

0.0

0 15 30

Outdegree repartition

IHH_

il

4 8 12 16 20 24 28 32

Height repartition Class repartition

—

Uniform

Il
1 2 3

0.0

0.0

0 8 16

Height repartition

24 32

40 48 56

Class repartition

Ll M

2 3

0.1

0.0
4

Uniform

Figure 11: Description of INEX 2005 (9 630 trees, left) and INEX 2006 (12 107 trees, right) datasets.

Videogame sellers We manually collected, for two major websites selling videogames?, the
URLs of the top 100 best-selling games, and converted them into ordered labeled trees. As web-
pages might seem similar to some extent, the trees are actually very different, as highlighted in
Fig. 13. We found that the subtree kernel retrieves this information as, for both exponential decay
and discriminance weights, we achieved 100% of correct classifications in all our tests.

5.4 Biological datasets

In this subsection, three datasets from the literature are analyzed, all related to biological topics.

Vascusynth The Vascusynth dataset from [16, 20] is composed of 120 unordered trees that rep-
resent blood vasculatures with different bifurcations numbers. In a tree, each vertex has a contin-
uous label describing the radius r of the corresponding vessel. We have discretized these contin-
uous labels in three categories: small if v < 0.02, medium if 0.02 < r < 0.04 and large if r > 0.04
(all values are in arbitrary unit). We split up the trees into three classes, based on their bifurcation
number. Based on Fig. 14 (left), we can distinguish between the three classes by looking only at

Zsteam. comand gog. com (last accessed in October 2019)

23

steam.com
gog.com

Accuracy Precision Recall F-score Accuracy Precision Recall F-score
1.0 1.0
-4 4 == 2
1= = & = le = = =
us & 2==8g==8 o BEERE, L slee=s
0.6 0.6
0.4 0.4+
0.2 0.2 4
ottt L e L e I e e o e LI E a
A A A D & D & oS A A
PPN ERPPN ERPPN FRPN PPN TN ERPRN ER RN
AR Ay A s
AN N NP N N NP R N NP N N NP TITTITSI T I IS T I IS TS
& & o & & & & &
Accuracy Precision Recall F-score Accuracy Precision Recall F-score
1.0 1.0
0.81 0.8 4
0.6 0.6 4
o 8
0.4-?%#@%1‘%‘%‘% 0,4—_55%_%%%%&_}
g2 =2z =F 2 =Tzl g
0.2 0.2 9
ot - ot
< < < <
RN FRPPI ERPRPN ER PR PPN FRPPN ERPRN ER RN
AR A A YA Ay
RN NI R N N NP N N NP N N SRS TR YA AT ITAS
& & & & & & & &

Figure 12: Classification results for INEX 2005 (top) and INEX 2006 (bottom) as ordered (left) and
unordered (right) trees.

the size of trees. Contrary to the videogame sellers dataset that had the same property, the clas-
sification does not achieve 100% of good classification, as depicted in Fig. 14 (right). On average,
discriminance performs better than the other weights, despite having a larger variance. This is
probably due to the small size of the dataset, as the discriminance is learned only with around 13
trees per class.

Hicks et al. cell lineage trees Across cellular division, tracking the lineage of a single cell nat-
urally defines a tree. In a recent article, Hicks et al. have been investigating the variability inside
cell lineages trees of three different species [19]. From the encoding of the data that they have pro-
vided as a supplementary material®, we have extracted ordered unlabeled trees that are presented
in Fig. 15 (left). The dataset contains, for two classes, trees of outdegree O (i.e., isolated leaves) that
can be considered as noise. With respect to the exponential weight, the value of the kernel between
such trees will be identical, whether they belong to the same class or to two different classes. They
therefore contribute to reducing the kernel’s ability to effectively discriminate between these two

Shttps://doi.org/10.1101/267450 (last accessed in October 2019)

24

https://doi.org/10.1101/267450

Size repartition

0.25
0.00- ; T T T T T v
400 800 1200 1600 2000 2400 2800 3200 3600 4000
Outdegree repartition
0.5 1
0.0- " -
15 30 45 60 75 90 105
Height repartition Class repartition
F=="uitorm
0.2 |
0.0 "h . .
0 150 450 900

Figure 13: Description of the videogame sellers dataset (200 trees).

Size repartition

j=g |
0 15 30 45 6 '

0.0
60 1G]

Outdegree repartition

1--
0-

Height repartition

0.25 1 0.2

0.00 -
3 6 9 121518 21 24

Figure 14: Description of the Vascusynth dataset (120 trees, left) and classification results (right).

classes. On the other hand, the discriminance weight will assign them a zero value, “de-noising”,
in a way, the data. This observation may explain why discriminance weight achieves better results

than exponential weight.

Faure et al. cell lineage trees Faure et al. have developed a method to construct cell lineage trees
from microscopy [14] and provided their data online*. We extracted 300 unordered and unlabeled
trees, divided between three classes. It seems from Fig. 16 (left) that one class among the three
can be distinguished from the two others. Classification results can be found in Fig. 16 (right):
the discriminance weight performs better than the exponential weight, whatever the value of the

parameter.

‘nttps://bicemergences.eu/biocemergences/openworkflow-datasets.php (last accessed in October

2019)

25

Accuracy Precision Recall F-score
1.0
-Bahleasdoab ot
9 105 120 061
e
0.4
0.2 1
Class repartition 0.0 r—r— —
——————————— oo SRR 5 A A A
Uniform Q’b Q"’ Q- QCJ@ %QD Q- \)QQ) ch Qﬁ‘) Q- QQQ) Q[b QOD Q- \\C,Q)
YA A A
TITTITSI T I IS T I IS S
_%é\ ,%é\ _%é\ -%“0
Q‘\ Q‘\, Q‘\ Q\

https://bioemergences.eu/bioemergences/openworkflow-datasets.php

Size repartition

Height repartition

0 60 120 180 240 300 360 420 480 540
Outdegree repartition
N B — B
0 1 2

Class repartition

0 |,I.,. il
0 2 4 6 8

Uniform

Accuracy Precision Recall F-score
1.0
0.8 1
1y 8 € ‘%
0.4 1 E 8 é a
8 ° s 88
0.2 1 - — =
L e L e I e e o e LI E a
% < o A
AR A A
TITTITSI T I IS T I IS TS
& o o O
& & & &
9 < 9 Q

Figure 15: Description of the Hicks et al. dataset (345 trees, left) and classification results (right).

Size repartition

0.5
0.0 __-,_—_,_L,_L-_- S— . .
32 40 48 56 64 72 80 88
Outdegree repartition
1 q
0 —— . . .
1 2 3

Height repartition

Class repartition

1- U
0 . . :
28 29 30

26 27

Uniform

0.2
0.0

Accuracy

Precision

Recall F-score

0.8 1

;

o
0.6 &I
0.4 1

0.2 4

3

o+

X
:

Figure 16: Description of the Faure et al. dataset (300 trees, left) and classification results (right).

5.5 LOGML

The LOGML dataset is made of user sessions on an academic website, namely the Rensselaer
Polytechnic Institute Computer Science Department website”, that registered the navigation of
users across the website. 23111 unordered labeled trees are present, divided into two classes. The
trees are very alike, as shown in Fig. 17 (left), and the classification results of Fig. 17 (right) are very
similar to INEX 2005, where all weight functions behave similarly, without any advantage for the
discriminance weight in terms of prediction.

Shttps://science.rpi.edu/computer-science (last accessed in October 2019)

26

https://science.rpi.edu/computer-science

Accuracy Precision Recall F-score
Size repartition 1.0

0.2
0.8—%=ﬁ=%#ﬁ£

ol b I T

0 40 80 120 160 200 240 280 0.6

Outdegree repartition

0.4 1
0.251

ooo b : 02

0 15 30 45 60 75 90 1(‘)5 120

Height repartition Class repartition o+r-ttr -
. H oA S o A A o A
05 Uniform Q"‘J Q.ﬁ NS QCQ’ Q’?:) Q'D Q- 9QQ) ch Q?‘) Q- QQ‘Z’ Q{b Q.D Q- \\Q@
0.251 : A s
TTTEITTIITITSTITTI TS LS
(L 0.0 Jrou & ou %é\
0 15 30 45 60 75 90 105 <> <> N <

Figure 17: Description of the LOGML dataset (23 111 trees, left) and classification results (right).

6 Concluding remarks

6.1 Main interest of the DAG approach: learning the weight function

In Section 2, we have shown on a 2-classes stochastic model that the efficiency of the subtree
kernel is improved by imposing that the weight of leaves is null. As explained in Remark 2.5, we
conjecture that the weight of any subtree present in two different classes should be 0. The main
interest of the DAG approach developed in Section 3 is that it allows to learn the weight function
from the data, as developed in Section 4 with the discriminance weight function. Our method has
been implemented and tested in Section 5 on eight real datasets with very different characteristics
that are summed up in Table 1.

As a conclusion of our experiments, we have analyzed the relative improvement in prediction
obtained with the discriminance weight against the best exponential weight in order to show both
the importance of the weight function and the relevance of the method developed in this paper.
More precisely, for each dataset and each classification metric, we have calculated

_ Metricgjser — max(Metricy)

RI
max(Metricy)

b

from the average values of the different metrics. The results are presented in Fig.18. We have
found that, except in one case, discriminance behaves as good as exponential weight decay and
even performs better in most of the datasets. Furthermore, one can observe a kind of trend, where
the relative improvement decreases when the number of trees in the training dataset is increasing,
which proves the great interest of the discriminance to handle small datasets, provided that (i) the
problem is difficult enough that the exponential weights are not already high performing, as it is
the case in the Videogames sellers dataset, and (ii) the dataset is not too small, as for Vascusynth.
Indeed, as the discriminance is learned independently from the SVM, one must have enough
training data to divide them efficiently. Nevertheless, it should be noted that, in the framework
of the DAG approach, results from the discriminance weight can be obtained much faster due to
the fact that the Gram matrices are estimated from one half of the training dataset, while learning

27

the discrimance is very fast as it can be done in one traversal of the DAG (see time-complexity
presented in Remark 4.1). Finally, we have investigated on a single example some properties of
the discriminance, discovering that it can be interpreted as a second-order exponential weight, as
well as a method for visualizing the important features in the data.

) X A Y
N ST P b o x X O O
w08 & P> P s e e N
A .20 * > Q) NS 2 G
Dataset AN @Q) @Q) N R O
Ord. / Unord. Both Ord. Both Both Unord. Ord. Unord. Unord.
labeled X v v v v X X v
Number of trees | 160-320 200 9630 12107 120 345 300 23111
Number of classes 4 2 11 18 3 3 3 2
Table 1: Summary of the 8 datasets.
140 4 [}
120 4 e s o
| °
100 o o A
0 ccuracy
o ° Precision
60 -
° ° Recall

404 ° F-score

20 4 °

0+8----- Dt SEEEEEEE *-———- -
—920 4 s

N Q - SO L
& @% o '@J& S \f& SN &
ISR M S I\ PR AR R
%00 : ‘b’l Q’% &’QQ) &QJ x‘b’/ C\)z;%) @AV Q)AV \9
LT @® ‘2’)&-@’ S o \é \é
TSRS &S

@%i@?@ &

Figure 18: Relative improvement RI (in percentage) of the discriminance against the best value of
A for all datasets (sorted by increasing number of trees in the training dataset) and all metrics.

6.2 Interest of the DAG approach in terms of computation time

As shown in Fig. 16 (right), the exponential decay classification results for the Faure et al. dataset
are very dependent on the value chosen for the parameter A. In this case, it can be interesting to
tune this parameter and estimate its best value with respect to a prediction score. This requires to

28

compute the Gram matrices from different weight functions. We present in Fig. 19 the computation
time required to compute the Gram matrices from a given number of values of the parameter. As
expected from the theoretical results, we observe a linear dependency: the intercept corresponds
to the computation time required to compute and annotate the DAG reduction, while the slope
is associated with the time required to compute the Gram matrices, which is proportional to the
average of O(min(#T;,#T;)) (see Remark 3.8). This can be compared to the time-complexity of the
algorithm developed in [30] which is the average of O(#T; +-#T;). Consequently, the corresponding
computation times should be proportional to at least twice the slope that we observe with the
DAG approach. This shows another interest of our method that is not related to the discriminance
weight function. It should be faster to compute several repetitions of the subtree kernel from the
DAG approach than from the previous algorithm [30] provided that the number of repetitions is
large enough.

350

Figure 19: Computation time required to com-
pute several repetitions of the kernel on the
Faure et al. dataset. All those calculations have
been repeated 50 times for each number of rep-
etitions. The intercept corresponds to the DAG
compression of the dataset, which is indepen-
dent on the number of repetitions. The blue
curve is a linear fitting of all the measurement
points.

300 4

(f)

Computation time

1 3 5 7 9 11 13 15 17 19
Number of kernel repetitions

6.3 Implementation and reproducibility

The treex library for Python [2] is designed to manipulate rooted trees, with a lot of diversity
(ordered or not, labeled or not). It offers options for random generation, visualization, edit opera-
tions, conversions to other formats, and various algorithms. We implemented the subtree kernel
as a module of t reex so that the interested reader can manipulate the concepts discussed in this
paper in a ready-to-use manner.

Basically, the subtree_kernel module allows the computation of formula (2) with options for
choosing (i) k among some classic choices of kernels [25, Section 2.3] and (ii) the weight function
among exponential decay or discriminance. Resorting to dependencies to scikit-1learn, tools
for processing databases and compute SVM are also provided for the sake of self-containedness.
Finally, visualization tools are also made available to perform the comprehensive learning ap-
proach discussed in Subsection 5.2.

Installing instructions and the documentation of t reex can be found from [2]. For the sake of
reproducibility, the databases used in Section 5, as well as the scripts that were designed to create
them and process them, have been made available on the first author webpage®.

6http://perso.ensflyon.fr/romain.azais/subtreefkernel/

29

http://perso.ens-lyon.fr/romain.azais/subtree-kernel/

Acknowledgments

This work has been supported by the European Union’s H2020 project ROMI. The authors would
like to thank Dr. Bruno Leggio as well as Dr. Giovanni Da San Martino for helping them to access
some of the datasets presented in the paper: grazie. Last but not least, the authors are grateful to
three anonymous reviewers for their valuable comments on a first version of the manuscript.

References

[1] Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, and Alessandro Moschitti. Fast
on-line kernel learning for trees. In Sixth International Conference on Data Mining (ICDM’06),
pages 787-791. IEEE, 2006.

[2] Romain Azais, Guillaume Cerutti, Didier Gemmerlé, and Florian Ingels. treex: a python
package for manipulating rooted trees. The Journal of Open Source Software, 4, 2019.

[3] Romain Azais, Alexandre Genadot, and Benoit Henry. Inference for conditioned Galton-
Watson trees from their Harris path. To appear in ALEA, 2019.

[4] Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. A theory of learning with similarity
functions. Machine Learning, 72(1-2):89-112, 2008.

[5] Karthik Bharath, Prabhanjan Kambadur, Dipak Dey, Rao Arvin, and Veerabhadran Baladan-
dayuthapani. Statistical tests for large tree-structured data. Journal of the American Statistical
Association, 2016.

[6] Philip Bille. A survey on tree edit distance and related problems. Theoretical Computer Science,
337(1-3):217 — 239, 2005.

[7] Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Advances in
neural information processing systems, pages 625-632, 2002.

[8] Gianni Costa, Giuseppe Manco, Riccardo Ortale, and Andrea Tagarelli. A tree-based ap-
proach to clustering xml documents by structure. In Jean-Frangois Boulicaut, Floriana Es-
posito, Fosca Giannotti, and Dino Pedreschi, editors, Knowledge Discovery in Databases: PKDD
2004, pages 137-148, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[9] Nello Cristianini, John Shawe-Taylor, et al. An introduction to support vector machines and other
kernel-based learning methods. Cambridge university press, 2000.

[10] Giovanni Da San Martino. Kernel methods for tree structured data. PhD thesis, alma, 2009.

[11] Ludovic Denoyer and Patrick Gallinari. Report on the xml mining track at inex 2005 and inex
2006: categorization and clustering of xml documents. In SIGIR Forum, volume 41, pages
79-90, 2007.

[12] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpres-
sion problem. . ACM, 27(4):758-771, October 1980.

30

[13] David S. Ebert and F. Kenton Musgrave. Texturing & modeling: a procedural approach. Morgan
Kaufmann, 2003.

[14] E Faure, T Savy, B Rizzi, C Melani, M Remesikova, R épir, O Drblikova, R Cunderlik,
G Recher, B Lombardot, et al. An algorithmic workflow for the automated processing of
3d+ time microscopy images of developing organisms and the reconstruction of their cell
lineage. Nat. Commun, 2015.

[15] Christophe Godin and Pascal Ferraro. Quantifying the degree of self-nestedness of trees: ap-
plication to the structural analysis of plants. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB), 7(4):688-703, 2010.

[16] Ghassan Hamarneh and Preet Jassi. Vascusynth: Simulating vascular trees for generating vol-
umetric image data with ground truth segmentation and tree analysis. Computerized Medical
Imaging and Graphics, 34(8):605-616, 2010.

[17] John C. Hart and Thomas A. DeFanti. Efficient antialiased rendering of 3-d linear fractals.
SIGGRAPH Comput. Graph., 25(4):91-100, July 1991.

[18] David Haussler. Convolution kernels on discrete structures. Technical report, Department of
Computer Science, University of California, 1999.

[19] Damien G Hicks, Terence P Speed, Mohammed Yassin, and Sarah M Russell. Maps of vari-
ability in cell lineage trees. PLoS computational biology, 15(2):e1006745, 2019.

[20] Preet Jassi and Ghassan Hamarneh. Vascusynth: Vascular tree synthesis software. Insight
Journal, January-June:1-12, 2011.

[21] Daisuke Kimura, Tetsuji Kuboyama, Tetsuo Shibuya, and Hisashi Kashima. A subpath kernel
for rooted unordered trees. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 62-74. Springer, 2011.

[22] Shu-Yun Le, Ruth Nussinov, and Jacob V. Maizel. Tree graphs of RNA secondary structures
and their comparisons. Computers and Biomedical Research, 22(5):461 — 473, 1989.

[23] M. A. Martin-Delgado, J. Rodriguez-Laguna, and G. Sierra. Density-matrix renormalization-
group study of excitons in dendrimers. Phys. Rev. B, 65:155116, Apr 2002.

[24] James Mercer. Xvi. functions of positive and negative type, and their connection the theory
of integral equations. Philosophical transactions of the royal society of London. Series A, containing
papers of a mathematical or physical character, 209(441-458):415-446, 1909.

[25] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

[26] John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis. Cambridge
university press, 2004.

[27] Dan Shen, Haipeng Shen, Shankar Bhamidi, Yolanda Mufioz Maldonado, Yongdai Kim, and
J. Stephen Marron. Functional data analysis of tree data objects. Journal of computational and
graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical
Statistics, Interface Foundation of North America, 23 2:418-438, 2014.

31

[28] Steven S Skiena. Sorting and searching. In The Algorithm Design Manual, pages 103-144.
Springer, 2012.

[29] Ivan E. Sutherland. Sketchpad: A man-machine graphical communication system. In Pro-
ceedings of the May 21-23, 1963, Spring Joint Computer Conference, AFIPS '63 (Spring), pages
329-346, New York, NY, USA, 1963. ACM.

[30] S.V.N. Vishwanathan and Alexander] Smola. Fast kernels on strings and trees. Advances on
Neural Information Proccessing Systems, 14, 2002.

[31] Haonan Wang and J. S. Marron. Object oriented data analysis: Sets of trees. Ann. Statist.,
35(5):1849-1873, 10 2007.

A Proof of Proposition 2.2

The proof is mainly based on the following technical lemma, which statement requires the follow-
ing notation. If u is a vertex of a tree T, F(u) denotes the family of u, i.e., the set composed of
the ascendants of u, u, and the descendants of u in T. We recall that D(u) stands for the set of
descendants of u.

Lemma A.1. Let u,v € T, i € {1,2}. One has

KTHT) =K(T, T) — Y wrpg + KT, Tam)s

XEBu,v
where PO UMY if
u)Uu fu=v,
Buv = { Fu)U F(v) else. ©)

Letue Tyandv € Ty. Then,
K(TH 1Y) = Kty), T

Proof. We begin with the case u # v. The result relies on the following decomposition which is
valid under the assumptions made on T; and the sequence (T),

S(THNS(M) = [S(M)\{Tilz] : ze FWUFW} U [S(typ) NS(tym)]-
Together with (2),

KM = > woNo(TH)Ng(T?)
0eS(T)\{Tilz] : ze F(W)UF(v)}

+ Z WeNe(Tiu)NS(TiV)-
0€S (T (1))NS (T (1))

If 0 € S(Tyuy) NS(Tyn), then No(T?) = No(Ty(,)), z € {u,V}, because, for any h > 0, 1, isnot a
subtree of Ty nor Ty by assumption. Thus,

Z woNo (T)Np(T) = Z WoNo (o)) Ne(Tr)
0€S (a1 ())NS(T2(v)) 0€S (T ()INS (T (v))
= K(TH(LL)) TH(V))) (7)

32

in light of (2) again. Furthermore, if 06 € S(T;) \ {Tilz] : z € F(u) U F(v)}, then Ng(T?) = No(T),
z € {u,v}, and

> woNo (T)N (Ty) = > woNg(Ti)No(Ti)
0eS(TO\(Tilz : zE FWUF(v)) 0cS(TI\Ti[2] : zZEF(WUF(v)}
= Z woNe(Ti)No(Ti)
0cS(T
— > woNg (Ti)No(T;)
O€(Tilu] : ue F(v)UF(w)}
= KT,) - > We, (8)

0€(Tilz] : ze F(WUF(v)}

since Ng(T;) = 1 because of the first assumption on T;. (7) and (8) state the first result. Whenu =,
the decomposition is slightly different,

S(MY) = [S(M)\{Tilz] : ze {WUDW}] U S(tau),

but the rest of the proof is similar. Finally, the formula for K(T*, T) is a direct consequence of the
third assumption on Tq, T, and the sequence (t},). 4

By virtue of the previous lemma, one can derive the following result on the quantity Al defined
by (3).

Lemma A.2. Let x € Ty, 1 € {1,2}. One has

Al =K(T,) — [> owr 21]

Z2EBxu

Proof. In light of Lemma A.1, one has

Al =K(T,) — [> wrk

2€Bx,u

Eu [K(Tx)s Trw)] — Ev [K(Tapas Trw))] -

By assumption on the stochastic model of random trees, H(u) and H(v) have the same distribution
and thus Ey [K(Ty(y), Ty)] = Ev[K(Ty(x), Ta))], which states the expected result. 7

The next decomposition is useful to prove the result of interest. If ¢}, denotes the number of
subtrees of height h appearing in T;, h > 0, then the probability of picking a particular vertex u is
Pp(”H(u))/C;ﬂu) and thus

Eu[ZWTi[z}]_PpC(Z{(X)) Z WT[7,+ Z ZWT

2EBxu H(X) ze(x}uD(x ueT;\{x} H(2€Bxu

In addition, for u € T; \ {x},

> wrg = KK, T, ©)
z2e{x}UD(x)

Z wry = K(T,T)— Z WT, - (10)

2€Bxu 2¢F(x)UF (W)

33

(9) and (10) together with Lemma A.2 show that

A= PP o) kb, T+ 3 WLy

x ct ct
Hx) ueTi\x} HW 2¢FuF()
The left-hand term (and the right-hand term when wy, > 0) is null if and only if x = R(T;), which
shows the first result. In addition,
. Po(H(x

AL > P g 1) KT, Tl
CHx)
which states the expected formula (4) with P,(0) < P,(H(x)) (true if p > H/2) and Ci?-z(x) <#L(Ty).
The conclusion comes from the fact that the probability of drawing a vertex x of height greater
than his G,(h).

B Proof of Proposition 3.2

We denote by D™ the set of vertices at height h in any DAG D, and * € {ordered, unordered} the
type of isomorphism considered. From the forest (Dj,...,Dn), we construct the DAG A such
that (i) D; is a subDAG of A for all i, (ii) H(A) = max; H(D;), (iii) all vertices in A have degree
max; deg(D;), and (iv) at each height except 0 and H(D), #A" = max; #DI". If A is placed N times
under an artificial root, and then recompressed by the algorithm, indeed the output contains the
recompression of the original forest. Therefore, this case is the worst possible for the algorithm,
and we claim that it achieves the proposed complexity.

Let A be now a DAG with following properties : #A = m, H(A) = H, at each height h ¢ {0, H},
#A" = n (so that n(H — 2) + 2 = m), and all vertices have degree d. Dy is the super-DAG

obtained after placing N copies of A under an artificial root. We then have #Dr = 1 + Nm so that
O#Dr) = O(Nm) = O(NHn) and deg(F) = deg(A) = d.

At the beginning of the algorithm, constructing the mapping h — D 7" in one exploration of Dr
has complexity O(#Dr). We will now examine the complexity of the further steps, with respect to
n, m, d, H and N. We introduce the following lemma :

Lemma B.1. Constructing o(h) has time-complexity:
1. O(X cp,n#C(v)log#C(v)) for unordered trees;

2. O(X ,cp,n #C(v)) for ordered trees.

Proof. When sorting lists of size L, merge sort is known to have O(Llog L) complexity in the worst
case [28]. Accordingly, we introduce

“(x) = X if + = ordered,;
J B x(1+logx) if * =unordered.

At height h, we construct o(h) = (f1(S) : S € Im(f), #7(S) > 2} where f : v € D" — C(v).
Finding the preimage of f requires first to construct f, by copying the children of each vertex in

34

D£" (in the unordered case, we also need to sort them, so that we get rid of the order and can
properly compare them). Then we only need to explore once the image and check whether an
element has two or more antecedents. The global cost is then O(ZVGD]__}L g *(#C(v))). 4

We reuse the notation g* from the proof of Lemma B.1. With respect to A, the complexity for
constructing o(-) is O(Nng*(d)). Exploring the elements of o(h) for (i) choosing a vertex vj to
remain, and (ii) delete the other elements 6y has complexity O(Nn). In addition, at height h’ > h,
exploring the children to replace them or not costs O(}_ €D #C(v)) = O(Ndn).

The global complexity C(Dr) of the algorithm is then

H(A)
C(Dr) =O#Dz)+ Y O(Nng*(d))+O(Nn)+ Y O(Ndn).
h=0 h’>h

Remark that Zf:“g) O(Nn) = O(Nm) = O(#Dx), this leads to

H(D)
C(Dr) = O#Dz g*(deg(F))) + O(Ndn > > 1).
h=0 h’/>h
The right-hand inner sum is in O(H2). As
O(NdnH?) = O#Dz Hd) = O(#Dx H (D) deg(F)),

this leads to our statement.

35

	Introduction
	Analysis of tree data
	Unordered and ordered rooted trees
	Subtree kernel
	Aim of the paper

	Theoretical study
	Two trees as different as possible
	A stochastic model of 2-classes tree data
	Theoretical guarantees on the subtree kernel
	Weight of leaves

	DAG computation of the subtree kernel
	DAG reduction of a tree
	DAG reduction of a forest
	DAG annotation and kernel computation

	Discriminance weight function
	Real data analysis
	Preliminaries
	Prediction of the language of a Wikipedia article from its topology
	Markup documents datasets
	Biological datasets
	LOGML

	Concluding remarks
	Main interest of the DAG approach: learning the weight function
	Interest of the DAG approach in terms of computation time
	Implementation and reproducibility

	Proof of Proposition 2.2
	Proof of Proposition 3.2

