
HAL Id: hal-02097593
https://hal.science/hal-02097593v1

Preprint submitted on 12 Apr 2019 (v1), last revised 7 May 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Weight Function in the Subtree Kernel is Decisive
Romain Azaïs, Florian Ingels

To cite this version:
Romain Azaïs, Florian Ingels. The Weight Function in the Subtree Kernel is Decisive. 2019. �hal-
02097593v1�

https://hal.science/hal-02097593v1
https://hal.archives-ouvertes.fr


THE WEIGHT FUNCTION IN THE SUBTREE KERNEL IS DECISIVE

Romain Azaı̈s
romain.azais@inria.fr

Florian Ingels
florian.ingels@inria.fr

Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS,
INRA, Inria, F-69342, Lyon, France

Abstract

Tree data are ubiquitous because they model a large variety of situations, e.g., the architecture of plants,
the secondary structure of RNA, or the hierarchy of XML files. Nevertheless, the analysis of these non-
Euclidean data is difficul per se. In this paper, we focus on the subtree kernel that is a convolution kernel
for tree data introduced by Vishwanathan and Smola in the early 2000’s. More precisely, we investigate the
influence of the weight function from a theoretical perspective and in real data applications. We establish
on a 2-classes stochastic model that the performance of the subtree kernel is improved when the weight
of leaves vanishes, which motivates the definition of a new weight function, learned from the data and
not fixed by the user as usually done. To this end, we define a unified framework for computing the
subtree kernel from ordered or unordered trees, that is particularly suitable for tuning parameters. We
show through two real data classification problems the great efficiency of our approach, in particular with
respect to the ones considered in the literature, which also states the high importance of the weight function.
Finally, a visualization tool of the significant features is derived.

keywords: classification of tree data; kernel methods; subtree kernel; weight function; tree compression

1 Introduction

1.1 Analysis of tree data

Tree data naturally appear in a wide range of scientific fields, from RNA secondary structures in
biology [19] to XML files [8] in computer science through dendrimers [20] in chemistry and physics.
Consequently, the statistical analysis of tree data is of great interest. Nevertheless, investigating
these data is difficult due to the intrinsic non-Euclidean nature of trees.

Several approaches have been considered in the literature to deal with this kind of data: edit
distances between unordered or ordered trees (see [6] and the references therein), coding processes
for ordered trees [24], with a special focus on conditioned Galton-Watson trees [3, 5]. One can also
mention the approach developed in [29]. In the present paper, we focus on kernel methods, a
complementary family of techniques that are well-adapted to non-Euclidean data.

Kernel methods consists in mapping the original data into a (inner product) feature space. Choos-
ing the proper feature space and finding out the mapping might be very difficult. Furthermore,
the curse of dimensionality takes place and the feature space may be extremely big, therefore im-
possible to use. Fortunately, a wide range of prediction algorithms do not need to access that

1

mailto:romain.azais@inria.fr
mailto:florian.ingels@inria.fr


feature space, but only the inner product between elements of the feature space. Building a func-
tion, called a kernel, that simulates an inner product in an implicit feature space, frees us from
constructing a mapping. Indeed, K : X 2 → R is said to be a kernel function on X if, for any
(x1, . . . , xn) ∈ X n, the Gram matrix [K(xi, xj)]1≤i,j≤n is positive semidefinite. By virtue of Mer-
cer’s theorem [21], there exists a (inner product) feature space Y and a mapping ϕ : X → Y such
that, for any (x, y) ∈ X 2, K(x, y) = 〈ϕ(x), ϕ(y)〉Y . This technique is known as the kernel trick.
Algorithms that can use kernels include Support Vector Machines (SVM), Principal Components
Analyses (PCA) and many others. We refer the reader to the books [9, 22, 23] and the references
therein for more detailed explanations of theory and applications of kernels.

To use kernel-based algorithms with tree data, one needs to design kernel functions adapted to
trees. Convolution kernels, introduced by Haussler [16], measure the similarity between two com-
plex combinatorial objects based on the similarity of their substructures. Based on this strategy,
many authors have developed convolution kernels for trees, among them the subset tree kernel
[7], the subtree kernel [28] and the subpath kernel [18]. A recent state-of-the-art on kernels for
trees can be found in the thesis of Da San Martino [10], as well as original contributions on re-
lated topics. In this article, we focus on the subtree kernel as defined in [28]. In this introduction,
we develop some concepts on trees in Subsection 1.2. They are required to deal with the pre-
cise definition of the subtree kernel in Subsection 1.3 as well as the aim of the paper presented in
Subsection 1.4.

1.2 Unordered and ordered rooted trees

Rooted trees A rooted tree T is a connected graph with no cycle such that there exists a unique
vertexR(T), called the root, which has no parent, and any vertex different from the root has exactly
one parent. The leaves L(T) are all the vertices without children. The height of a vertex v of a tree
T can be recursively defined asH(v) = 0 if v is a leaf of T and

H(v) = 1+ max
w∈C(v)

H(w)

otherwise. The height H(T) of the tree T is defined as the height of its root, i.e., H(T) = H(R(T)).
The outdegree of T is the maximal branching factor that can be found in T , that is

deg(T) = max
v∈T

# C(v),

where C(v) denotes the set of children of v. For any vertex v of T , the subtree T [v] rooted in v is the
tree composed of v and all its descendants D(v). S(T) denotes the set of subtrees of T .

Unordered trees Rooted trees are said unordered if the order between the sibling vertices of any
vertex is not significant. The precise definition of unordered rooted trees, or simply unordered
trees, is obtained from the following equivalence relation: two trees T1 and T2 are isomorphic (as
unordered trees) if there exists a one-to-one correspondence Φ from the set of vertices of T1 into
the set of vertices of T2 such that, if w is a child of v in T1, then Φ(w) is a child of Φ(v) in T2. The
set of unordered trees is the quotient set of rooted trees by this equivalence relation.

2



Ordered trees In ordered rooted trees, or simply ordered trees, the set of children of any vertex is
ordered. As before, ordered trees can be defined as a quotient set if one adds the concept of order
to the equivalence relation: two trees T1 and T2 are isomorphic (as ordered trees) if there exists a
one-to-one correspondence Φ from the set of vertices of T1 into the set of vertices of T2 such that,
if w is the rth child of v in T1, then Φ(w) is the rth child ofΦ(v) in T2.

In the whole paper, T ∗ denotes the set of ∗-trees with ∗ ∈ {ordered,unordered}.

1.3 Subtree kernel

The subtree kernel has been introduced in [28] as a convolution kernel on trees for which the
similarity between two trees is measured through the similarity of their subtrees. A subtree kernel
K on ∗-trees is defined as,

∀ T1, T2 ∈ T ∗, K(T1, T2) =
∑
τ∈T ∗

wτ κ (Nτ(T1), Nτ(T2)) , (1)

where wτ is the weight associated to τ, Nτ(T) counts the number of subtrees of T that are isomor-
phic (as ∗-trees) to τ and κ is a kernel function on N, Z or R (see [22, Section 2.3] for some classic
examples). Assuming κ(0, n) = κ(n, 0) = 0, the formula (1) of K becomes

K(T1, T2) =
∑

τ∈S(T1)∩S(T2)

wτ κ (Nτ(T1), Nτ(T2)) ,

making the sum finite. Indeed, all the subtrees τ ∈ T ∗ \ S(T1) ∩ S(T2) do not count in the sum (1).
In this paper, as in [28], we assume that κ(n,m) = nm, then

K(T1, T2) =
∑

τ∈S(T1)∩S(T2)

wτNτ(T1)Nτ(T2). (2)

which is the subtree kernel as introduced in [28].

The weight function τ 7→ wτ is the only parameter to be tuned. In the literature, the weight is
always assumed to be a function of a quantity measuring the “size” of τ, in particular its height
H(τ). Then wτ is taken as an exponential decay of this quantity, wτ = λH(τ) for some λ ∈ [0, 1]
[1, 7, 10, 18, 28]. This choice can be justified in the following manner. If a subtree τ is counted in
the kernel, then all its subtrees are also counted. Then an exponential decay counterbalances the
exponential growth of the number of subtrees.

In the literature, two algorithms have been proposed to compute the subtree kernel for ordered
trees. The approach of [28] is based on string representations of trees, while the authors of [1, 10]
extensively use DAG reduction of tree data, an algorithm that achieves lossly compression of trees.
To the best of our knowledge, the case of unordered trees has only been considered through the
arbitrary choice of a sibling order.

3



1.4 Aim of the paper

The aim of the present paper is threefold:

1. We investigate the theoretical properties of the subtree kernel on a 2-classes model of random
trees in Section 2. More precisely, we provide a lower-bound for the contrast of the kernel
in Proposition 2.2. Indeed, the higher the contrast, the less data are required to achieve a
given performance in prediction (see [4] for general similarity functions and Corollary 2.3
for the subtree kernel). We exploit this result to show in Subsection 2.4 that the contrast of
the subtree kernel is improved if the weight of leaves vanishes. The relevance of the model
is discussed in Remark 2.1.

2. We rely on [1, 10] on ordered trees to develop in Section 3 a unified framework based on DAG
reduction for computing the subtree kernel from ordered or unordered trees, with or with-
out labels on their vertices. Subsection 3.1 is devoted to DAG reduction of unordered then
ordered trees. DAG reduction of a forest is introduced in Subsection 3.2. Then, the subtree
kernel is computed from the annotated DAG reduction of the dataset is Subsection 3.3. We
notice in Remark 3.8 that DAG reduction of the dataset is costly but makes possible super-
fast repeated computations of the kernel, which is particularly adapted for tuning parame-
ters. This is the main advantage of the DAG computation of the subtree kernel compared to
the algorithm based on string representations [28]. Our method allows the implementation
of any weighting function, while the recursive computation of the subtree kernel proposed
in [10, Chapter 6] also uses DAG reduction of tree data but makes an extensive use of the
exponential form of the weight (combining equations (3.12) and (6.2) from [10]). We also in-
vestigate the theoretical complexities of the different steps of the DAG computation for both
ordered and unordered trees (see Proposition 3.2 and Remark 3.8). This kind of question
has been tackled in the literature only for ordered trees and from a numerical perspective [1,
Section 4].

3. As aforementioned, we show in the context of a stochastic model that the performance of the
subtree kernel is improved when the weight of leaves is 0 (see Section 2). Relying on this,
we define in Section 4 a new weight function, called discriminance, that is not a function of
the size of the argument as in the literature, but is learned from the data. The learning step
of the discriminance weight function strongly relies on the DAG computation of the subtree
kernel presented above because it allows the enumeration of all the subtrees composing the
dataset without redundancies. We illustrate in Section 5 the relevance of this new weighting
scheme on the difficult prediction problem of the language of a Wikipedia article from its
structure. Beyond very good classification results, we show that the methodology devel-
oped in the paper can be used to extract the significant features of the problem and provide
a visualization at a glance of the dataset. In addition, we remark that the average discrimi-
nance weight decreases exponentially as a function of the height (except for leaves). Thus,
the discriminance weight can be interpreted as the second order of the exponential weight
introduced in the literature. Another application to labelled trees is presented in Section 6.

Finally, implementation of the proposed algorithms and reproducibility of the experiments pre-
sented in this paper are discussed in Section 7. Technical proofs have been deferred into Appen-
dices A and B.

4



2 Theoretical study

In this section, we define a stochastic model of 2-classes tree data. From this ideal dataset, we
prove the efficiency of the subtree kernel and derive the sufficient size of the training dataset to
get a classifier with a given prediction error. We also state on this simple model that the weight of
leaves should always be 0. We emphasize that this study is valid for both ordered and unordered
trees.

2.1 Two trees as different as possible

Our goal is to build a 2-classes dataset of random trees. To this end, we first define two typical
trees T0 and T1 that are as different as possible in terms of subtree kernel.

Let T0 and T1 be two trees that fulfill the following conditions:

1. ∀ i ∈ {0, 1}, ∀u, v ∈ Ti \ L(Ti), if u 6= v then Ti[u] 6= Ti[v], i.e, two subtrees of Ti are not
isomorphic (except leaves).

2. ∀u ∈ T0 \ L(T0), ∀ v ∈ T1 \ L(T1), T0[u] 6= T1[v], i.e., any subtree of T0 is not isomorphic to a
subtree of T1 (except leaves).

These two assumptions ensure that the trees T0 and T1 are as different as possible. Indeed, it is
easy to see that

K(T0, T1) = w•#L(T0)#L(T1),
which is the minimal value of the kernel and where ω• is the weight of leaves. We refer to Fig. 1
for an example of trees that satisfy these conditions.

Figure 1: Two trees T0 and T1 that fulfill conditions 1 and 2.

Trees of class i will be obtained as random editions of Ti. In the sequel, Ti(v 7→ τ) denotes the
tree Ti in which the subtree rooted at u has been replaced by τ. These random edits will tend to
make trees of class 0 closer to trees of class 1. To this end, we introduce the following additional
assumption. Let (τh) a sequence of trees such thatH(τh) = h.

3. Let u ∈ T0 and v ∈ T1. We consider the edited trees T ′0 = T0(u 7→ τH(u)) and T ′1 = T1(v 7→
τH(v)). Then, ∀u ′ ∈ T ′0 \

(
τH(u) ∪ L(T ′0)

)
, ∀ v ′ ∈ T ′1 \

(
τH(v) ∪ L(T ′1)

)
, T ′0 [u

′] 6= T ′1 [v ′].

In other words, if one replaces subtrees of T0 and T1 by subtrees of the same height, then any
subtree of T0 is not isomorphic to a subtree of T1 (except the new subtrees and leaves). This means
that the similarity between random edits of T0 and T1 will come only from the new subtrees and
not from collateral modifications. We refer to Fig. 2 for an example of trees that satisfy these
conditions.

5



Figure 2: Two trees T0 and T1 that fulfill conditions 1, 2 and 3.

2.2 A stochastic model of 2-classes tree data

From now on, we assume that, for any h > 0, τh is not a subtree of T0 nor T1. For the sake of
simplicity, T0 and T1 have the same height H. In addition, if u ∈ Ti then Tui denotes Ti(u 7→ τH(u)).

The stochastic model of 2-classes tree data that we consider is defined from the binomial distribu-
tion Pρ = B(H, ρ/H) on support {0, . . . , H} with mean Pρ = ρ. The parameter ρ ∈ [0,H] is fixed. In
the dataset, class i is composed of random trees Tui , where the vertex u has been picked uniformly
at random among vertices of height h in Ti, where h follows Pρ. Furthermore, the considered
training dataset is well-balanced in the sense that it contains the same number of data of each
class.

Intuitively, when ρ increases, the trees are more degraded and thus two trees of different class are
closer. ρ somehow measures the similarity between the two classes. In other words, the larger ρ,
the more difficult is the supervised classification problem.

Remark 2.1. The structure of a markup document such as an HTML page can be described by a tree (see
Subsection 5.1 and Fig. 6 for more details). In this context, the tree Ti, i ∈ {0, 1}, can be seen as a model
of the structure of a webpage template. By assumption, the two templates of interest are as different as
possible. However, they are completed in a similar manner, for example to present the same content in two
different layouts. Edition of the templates is modeled by random edit operations. They tend to bring trees
from different templates closer.

2.3 Theoretical guarantees on the subtree kernel

The authors of [4] have introduced a theory that describes the effectiveness of a given kernel in
terms of similarity-based properties. A similarity function over X is a pairwise function K : X 2 →
[−1, 1] [4, Definition 1]. It is said (ε, γ)-strongly good [4, Definition 4] if, with probability at most
1− ε,

Ex ′,y[K(x, x
′) − K(x, y)] ≥ γ,

where label(x) = label(x ′) 6= label(y). From this definition, the authors derive the following
simple classifier: the class of a new data x is predicted by 1 if x is more similar on average to
points in class 1 than to points in class 0, and 0 otherwise. In addition, they prove [4, Theorem 1]
that a well-balanced training dataset of size 32/γ2 log(2/δ) is sufficient so that, with probability at
least 1 − δ, the above algorithm applied to an (ε, γ)-strongly good similarity function produces a
classifier with error at most ε+ δ.

We aim to prove comparable results for the subtree kernel that is not a similarity function. To this
end, we focus for i ∈ {0, 1} on

∆ix = Eu,v[K(T
x
i , T

u
i ) − K(T

x
i , T

v
1−i)]. (3)

6



We emphasize that the two following results (Proposition 2.2 and Corollary 2.3) assume that the
weight of leavesω• is 0. For the sake of readability, we introduce the following notations, for any
0 ≤ h ≤ H and i ∈ {0, 1},

Ki,h = max
{u∈Ti :H(u)=h}

K(Ti[u], Ti[u]),

Ci,h =
K(Ti, Ti) − Ki,h

#L(Ti)
,

Gρ(h) = 1−

H∑
k=h+1

Pρ(k).

The following results are expressed in terms of a parameter 0 ≤ h < H. The statement is then true
with probability Gρ(h). This is equivalent to state a result that is true with probability 1 − ε, for
any ε > 0.

Proposition 2.2. If wTi > 0 then ∆ix = 0 if and only if x = R(Ti). In addition, if ρ > H/2, for any
0 ≤ h < H, with probability Gρ(h), one has

∆ix ≥ Pρ(0)Ci,h. (4)

Proof. The proof lies in Appendix A. f

This result shows that the two classes can be well-separated by the subtree kernel. The only data
that can not be separated are the trees completely edited. In addition, the lower-bound in (4) is of
order H exp(−ρ) (up to a multiplicative constant).

Corollary 2.3. For any 0 ≤ h ≤ H, a well-balanced training dataset of size

2maxi K(Ti, Ti)2

miniC2i,h

exp(2ρ)
H2

log
(
2

δ

)
is sufficient so that, with probability at least 1 − δ, the aforementioned classification algorithm produces a
classifier with error at most 1−Gρ(h) + δ.

Proof. The proof is based on the demonstration of [4, Theorem 1]. However, in our setting, the
kernel K is bounded by maxi K(Ti, Ti) and not by 1. Consequently, by Hoeffding bounds, the
sufficient size of the training dataset if of order

2 log
(
2

δ

)
maxi K(Ti, Ti)2

γ2
, (5)

where γ can be read in Proposition 2.2, γ = Pρ(0)Ci,h ≥ Pρ(0)miniCi,h. The coefficient 2 lies
because we consider here the total size of the dataset and not only the number of examples of each
class. Together with Pρ(0) ∼ H exp(−ρ), we obtain the expected result. f

7



2.4 Weight of leaves

Here K+ is the subtree kernel obtained from the weights used in the computation of K together
with a positive weight on leaves, w• > 0. We aim to show that K+ separates the two classes less
than K. ∆+,i

x denotes the conditional expectation (3) computed from K+.

Proposition 2.4. For any x ∈ Ti,

∆+,i
x = ∆ix +w•#L(Ti[x])Di,1−i,

where Di,1−i = Eu,v[#L(Tui ) − #L(T v1−i)].

Proof. We have the following decomposition, for any trees T1 and T2,

K+(T1, T2) = K(T1, T2) +w•#L(T1)#L(T2),

in light of the formula (2) of K. Thus, with (3),

∆+,i
x = Eu,v

[
K(Txi , T

u
i ) +w•#L(Txi )#L(Tui ) − K(Txi , T v1−i) −w•#L(Txi )#L(T v1−i)

]
= ∆ix + Eu,v [w•#L(Txi )(#L(Tui ) − #L(T vi ))] ,

which ends the proof. f

The sufficient number of data provided in Corollary 2.3 is obtained (5) through the square ratio
of maxi K(Ti, Ti) over mini∆ix. First, it should be noticed that K+(Ti, Ti) > K(Ti, Ti). In addition,
by virtue of Proposition 2.4, either ∆+,0

x ≤ ∆0x or ∆+,1
x ≤ ∆1x (and the inequality is strict if trees of

classes 0 and 1 have not the same number of leaves on average). Consequently,

min
i
∆+,i
x ≤ min

i
∆ix,

and thus the sufficient number of data mentioned above is minimum forω• = 0.

3 DAG computation of the subtree kernel

In this section, we define DAG reduction, an algorithm that achieves both compression of data and
enumeration of all subtrees of a tree without redundancies. DAG reduction of a tree is presented
in Subsection 3.1, while Subsection 3.2 is devoted to the compression of a forest. In Subsection 3.3,
we state that the subtree kernel can be computed from the DAG reduction of dataset of trees.

3.1 DAG reduction of a tree

Trees can present internal repetitions in their structure. Eliminating these structural redundancies
defines a reduction of the initial data that can result in a Directed Acyclic Graph (DAG). In partic-
ular, beginning with [26], DAG representations of trees are also much used in computer graphics
where the process of condensing a tree into a graph is called object instancing [15]. DAG reduction
can be computed upon unordered or ordered trees. We begin with the case of unordered trees.

8



Unordered trees We consider the equivalence relation “existence of an unordered tree isomor-
phism” on the set of the subtrees of a tree T : Q(T) = (V, E) denotes the quotient graph obtained
from T using this equivalence relation. V is the set of equivalence classes on the subtrees of T ,
while E is a set of pairs of equivalence classes (C1, C2) such that R(C2) ∈ C(R(C1)) up to an
isomorphism. The graph Q(T) is a DAG [13, Proposition 1] that is a connected directed graph
without path from any vertex v to itself. Let (C1, C2) be an edge of the DAG Q(T). We define
L(C1, C2) as the number of occurrences of a tree of C2 just below the root of any tree of C1. The
tree reduction of T is defined as the quotient graph Q(T) augmented with labels L(C1, C2) on its
edges. We refer to Fig. 3a for an example of DAG reduction of an unordered tree. Two different
algorithms that allow the computation of the DAG reduction of an unordered tree but that share
the same time-complexity in O(#T 2 deg(T) log(deg(T))) are presented in [13].

Ordered trees In the case of ordered trees, it is required to preserve the order of the children
in the DAG reduction. As for unordered trees, we consider the quotient graph Q(T) = (V, E)
obtained from T using the equivalence relation between ordered trees. V is the set of equivalence
classes on the subtrees of T . Here, the edges of the graph are ordered as follows. (C1, C2) is the
rth edge between C1 and C2 if R(C2) is the rth child of R(C1) up to an isomorphism. We obtain
a DAG with ordered edges that compresses the initial tree T . An example of DAG reduction of
an ordered tree is presented in Fig. 3b. Polynomial algorithms have been developed to allow the
computation of a DAG, with complexities ranging in O(#T 2) to O(#T) for ordered trees [11].

2

(a) Unordered (b) Ordered

Figure 3: A tree (left) and its DAG reduction (right) seen (a) as an unordered tree and (b) as an
ordered tree. In each figure, roots of isomorphic subtrees are displayed with the same color, which
is reproduced on the corresponding vertex of the DAG. Note that the subtree on the left is colored
differently in the two cases, whether the order of its children is relevant or not. If no label is
specified on an edge (in the unordered case), it is equal to 1.

In this paper, R∗(T) denotes the DAG reduction of T as ∗-tree, ∗ ∈ {ordered,unordered}. It is
crucial to notice that the function R∗ is a one-to-one correspondence, which means that DAG
reduction is a lossless compression algorithm. In other words, T can be reconstructed from R∗(T)
and (R∗)−1 stands for the inverse function.

The DAG structure inherits of some properties of trees. For a vertex ν in a DAGD, we will denote
by C(ν) (P(ν), respectively) the set of children (parents, respectively) of ν. H(ν) and deg(ν) are
inherited as well. Similarly to trees, we denote by D[ν] the subDAG rooted in ν composed of ν
and all its descendants in D.

9



Algorithm 1: DAGRECOMPRESSION

Data: DF the superdag obtained from a forest of DAG reductions of ∗-trees,
∗ ∈ {ordered,unordered}

Result: R∗(F)
1 Construct, within one exploration of DF , the mapping h 7→ DFh where DFh is the set of

vertices of DF at height h
2 for h from 0 toH(DF ) − 1 do
3 Let σ(h) =

{
f−1({S}) : S ∈ Im f, #f−1({S}) ≥ 2

}
be the set of vertices to be merged at

height h, where f : ν ∈ DFh 7→ C(ν)
4 if σ(h) = ∅ then
5 Exit algorithm;
6 else
7 forM in σ(h) do
8 Choose one element νM inM to remain in DF
9 Denote by δM the other elements ofM

10 for ν in DF such thatH(ν) > h do
11 for µ in C(ν) such that ∃M ∈ σ(h), δM 3 µ do
12 Delete µ from C(ν)
13 Add νM in C(ν)

14 forM ∈ σ(h) do
15 Delete δM from DF

16 return DF

It should be noticed that Im f (that appears line 3) depends on ∗. Indeed, if ∗ = ordered, Im f is the set of all lists of
children; otherwise, Im f is the set of all multisets of children.

3.2 DAG reduction of a forest

Let TFT be the super-tree obtained from a forest of ∗-trees FT = (T1, . . . , TN) by placing in this
order each Ti as a subtree of an artificial root. We define the DAG reduction of the forest FT as
R∗(FT ) = R∗(TFT ).

However, if the forest FT is stocked as a forest of compressed DAGs, that is, FD = (D1, . . . , DN)
(with Di = R∗(Ti)), it would be superfluous to decompress all trees before reducing the super-
tree. So, one would rather compute R∗(FT ) directly from FD. From now on, we consider only
forests of DAGs that we will denote unambiguously F . In this context, R∗(F) stands for the DAG
reduction of the forest of trees ((R∗)−1(D1), . . . , (R

∗)−1(DN)). We define the degree of the forest
as deg(F) = maxNi=1 deg(Di).

Computing R∗(F) from (D1, . . . , DN) is in two steps: (i) we construct a super-DAG DF from
F = (D1, . . . , DN) by placing in this order each Di as a subDAG of an artificial root (with time-
complexity O(deg(F)∑N

i=1 #Di)), and (ii) we recompress DF using Algorithm 1. Fig. 4 illustrates
step by step Algorithm 1 on a forest of two trees seen as unordered then ordered trees.

Proposition 3.1. Algorithm 1 correctly computes R∗(F).

10



(a
)

Fi
gu

re
4:

A
n

ill
us

tr
at

io
n

st
ep

by
st

ep
of

th
e

A
lg

or
it

hm
1

w
it

h
(a

)
tw

o
tr

ee
s
T
1

(i
n

cy
an

)a
nd
T
2

(i
n

ye
llo

w
),

se
en

as
(b

)u
no

rd
er

ed
or

(c
)o

rd
er

ed
tr

ee
s.

O
ne

ca
n

ob
se

rv
e

th
e

D
A

G
s

(l
ef

t)
an

d
th

e
ex

ec
ut

io
n

of
th

e
al

go
ri

th
m

(r
ig

ht
).

A
te

ac
h

st
ep

1,
2

an
d

3,
w

e
ex

am
in

e
ve

rt
ic

es
at

he
ig

ht
(0

,1
,2

)
an

d
m

er
ge

th
os

e
w

hi
ch

ha
ve

sa
m

e
ch

ild
re

n.
A

ts
te

p
4,

w
e

ca
n

no
tfi

nd
an

y
ve

rt
ex

to
m

er
ge

an
d

w
e

st
op

.N
ot

e
th

at
in

(c
)a

ts
te

p
3,

w
e

fin
d

tw
o

pa
ir

s
of

ve
rt

ic
es

to
be

m
er

ge
d

:w
e

ar
e

no
tr

es
tr

ic
te

d
to

on
e

pa
ir

pe
r

he
ig

ht
.M

er
ge

d
ve

rt
ic

es
ar

e
co

lo
re

d
in

re
d.

Th
e

ar
ti

fic
ia

lr
oo

ti
s

co
lo

re
d

in
bl

ac
k.

1

2

=

2

2

=

3

2
=

4

26=

2

(b
)

1

=

2

=

3 =

=

4

6=

(c
)

11



Proof. Starting from the leaves, we examine all vertices of same height in DF . Those with same
children (with respect to ∗) are merged into a single vertex. The algorithm stops when at some
height h, we cannot find any vertices to be merged. Vertices that are merged in the algorithm
represents isomorphic subtrees, so it suffices to prove that the algorithm stops at the right time.
Let h be the first height for which σ(h) = ∅.
Suppose by contradiction that some vertices were to be merged at some height h ′ > h. They
represents isomorphic subtrees, so that their respective children should also be merged together,
and all of their descendants by induction. As any vertex of height h ′′ + 1 admits at least one child
of height h ′′, σ(h) would not be empty, which is absurd. f

Proposition 3.2. Algorithm 1 has time-complexity:

1. O(# DF deg(F)(log deg(F) +H(DF ))) for unordered trees;

2. O(# DF deg(F)H(DF )) for ordered trees.

Proof. The proof lies in Appendix B. f

Remark 3.3. One might also want to treat online data, but without recompressing the whole dataset when
adding a single entry in the forest. Let R∗(F) be the already recompressed forest and D a new DAG to be
introduced in the data. It suffices to place D has the rightmost child of the artificial root of R∗(F) to get
DF∪D, then run Algorithm 1 to obtain R∗(F ∪D).

3.3 DAG annotation and kernel computation

We consider a dataset composed of two parts: the train datasetXtrain = (T1, . . . , Tn) and the dataset
to predict Xpred = (Tn+1, . . . , TN). In the train dataset, the classes of the data are assumed to be
known. Our aim is to compute two Gram matrices G = [K(Ti, Tj)]i,j, where:

• (i, j) ∈ Xtrain ×Xtrain for the training matrix Gtrain;

• (i, j) ∈ Xpred ×Xtest for the prediction matrix Gpred.

SVM algorithms will use Gtrain to learn their classifying rule, and Gpred to make predictions [9,
Section 6.1]. Other algorithms, such as kernel PCA, would also require to compute a Gram matrix
before processing [22, Section 14.2]. We denote by ∆ = R∗(Xtrain ∪ Xpred) the DAG reduction of
the dataset and, for any 1 ≤ i ≤ N, Di = R∗(Ti). DAG computation of the subtree kernel requires
to annotate the DAG with different pieces of information.

Origins In order to compute the subtree kernel, it will be necessary to retrieve from the vertices
of ∆ their origin in the dataset, that is, from which tree they come from. For any vertex ν in
∆ \R(∆), the origin of ν is defined as

o(ν) =
{
i ∈ {1, . . . , n, n+ 1, . . . ,N} : Di 3 ν

}
.

Assuming that (D1, . . . , DN) are children of the root of ∆ in this order (which is achieved if ∆ had
been constructed following the ideas developed in Subsection 3.2) leads to the following proposi-
tion.

12



Proposition 3.4. Origins can be calculated using the recursive formula,

∀ν ∈ ∆ \R(∆), o(ν) =

 {i} if ν is the ith child ofR(∆),⋃
p∈P(ν)

o(p) otherwise.

Proof. Using the assumption, origins are correct for the children of R(∆). If Di 3 ν for some
i ∈ {1, . . . ,N} and ν ∈ ∆, then Di ⊇ D(ν). The statement follows by induction. f

Frequency vectors Remember that in (2)Nτ(T) counts the number of subtrees of a tree T that are
∗-isomorphic to the tree τ. To compute the kernel, we need to know this value, and we claim that
we can compute it using only ∆. We associate to each vertex ν ∈ ∆ \R(∆) a frequency vector ϕν
where, for any 1 ≤ i ≤ N, ϕν(i) = N(R∗)−1(∆[ν])(Ti).

Proposition 3.5. Frequency vectors can be calculated using the recursive formula,

∀ν ∈ ∆ \R(∆), ϕν =

(1{i∈ o(ν)})i∈{1,...,N} if ν ∈ C(R(∆)),∑
p∈P(ν)

L(p, ν)ϕp otherwise,

where either L(p, ν) = 1 if ∗ = ordered, or L(p, v) is the label on the edge between p and ν in ∆ if
∗ = unordered.

Proof. Let ν be in ∆ \R(∆). If ν ∈ C(R(∆)), then ν represents the root of a tree Ti (possibly several
trees if there are repetitions in the dataset), and thereforeϕν(i) = NTi(Ti) = 1. Otherwise, suppose
by induction that ϕp(i) is correct for all p ∈ P(ν), and any i. We fix p ∈ P(ν). ν appears L(p, ν)
times as a child of p, so if (R∗)−1(∆[p]) appears ϕp(i) times in Ti, then the number of occurrences
of (R∗)−1(∆[ν]) in Ti as a child of (R∗)−1(∆[p]) is L(p, ν)ϕp(i). Summing over all p ∈ P(ν) leads
ϕν(i) to be correct as well. f

DAG weighting The last thing that we lack to compute the kernel is the weight function. Re-
member that it is defined for trees as a function w : T → R+. As we only need to know the
weights of the subtrees associated to vertices of ∆, we define the weight function for DAG as, for
any ν ∈ ∆,ων = w(R∗)−1(∆[ν]).

Remark 3.6. In light of Propositions 3.4 and 3.5, it should be noted that both o and ϕ can be calculated in
one exploration of ∆. By definition, this is also true forω.

DAG computation of the subtree kernel We introduce the matching subtrees functionM as

M : {1, . . . ,N}2 → 2∆

(i, j) 7→ {ν ∈ ∆ : {i, j} ⊆ o(ν)}

where 2∆ is the powerset of the vertices of ∆. Note that M is symmetric. This leads us to the
following proposition.

13



Proposition 3.7. For any Ti, Tj ∈ Xtrain ∪ Xpred, we have

K(Ti, Tj) =
∑

ν∈M(i,j)

ωνϕν(i)ϕν(j).

Proof. By construction, it suffices to show that R∗(S(Ti) ∩ S(Tj)) =M(i, j). Let τ ∈ S(Ti) ∩ S(Tj).
Then R∗(τ) ∈ R∗(Ti) and R∗(τ) ∈ R∗(Tj). Necessarily, R∗(τ) ∈ ∆ and {i, j} ⊆ o(R∗(τ)). So
R∗(τ) ∈ M(i, j). Reciprocally, let ν ∈ M(i, j). We denote τ = (R∗)−1(ν). As {i, j} ⊆ o(ν), then
τ ∈ S(Ti) ∩ S(Tj). f

Remark 3.8. M can be created in O(N2#∆) within one exploration of ∆ and allows afterward computa-
tions of the subtree kernel K(Ti, Tj) in O(#M(i, j)) = O(min(#Di, #Dj)), which is more efficient than the
O(#Ti + #Tj) algorithm proposed in [28] (the time-complexity is announced in [18, Section 1]). However,
since the whole process through Algorithm 1 is costly, the global method that we propose in this paper is
not faster than existing algorithms. Nonetheless, our algorithm is particularly adapted to repeated compu-
tations from the same data, e.g., for tuning parameters. Indeed, onceM and ∆ have been created, they can
be stored and are ready to use.

Remark 3.9. The DAG computation of the subtree kernel investigated in this section relies on the references
[1, 10]. Our work and the aforementioned papers are different and complementary. First, our framework
is valid for both ordered and unordered trees, while these papers focus only on ordered trees. In addition,
the method developed in [1, 10] is only adapted to exponential weights (see equations (3.12) and (6.2) from
[10]). Thus, even if this algorithm is also based on DAG reduction of trees, it is less general than ours since
the weight function is not constrained (see in particular Section 4 where the weight function is learned from
the data). Finally, in [1, Section 4], the time-complexities are studied only from a numerical point of view,
while we state theoretical results.

4 Discriminance weight function

For a given probability level and a given classification error, and under the stochastic model of
Subsection 2.2, we state in Subsection 2.4 that the sufficient size of the training dataset is minimum
when the weight of leaves is 0. In other words, counting the leaves, which appear in trees of both
classes, does not provide a relevant information to the classification problem associated to this
model. We propose to extrapolate this idea to any subtree by defining a new weight function,
learned from the data and called discriminance weight, that assigns a large weight to subtrees
that help to discriminate the classes, and a low weight otherwise.

The training dataset is divided into two parts: Xweight = (T1, . . . , Tm) to learn the weight function,
and Xclass = (Tm+1, . . . , Tn) to estimate the Gram matrix. For the sake of readability, ∆ denotes the
DAG reduction of the whole dataset, including Xweight, Xclass and Xpred. In addition, we assume
that the data are divided into K classes numbered from 1 to K.

For any vertex ν ∈ ∆ \R(∆), we define the vector ρν of length K as,

∀ 1 ≤ k ≤ K, ρν(k) =
1

#Ck

∑
Ti∈Ck

1{i∈ o(ν)},

14



where (Ck)1≤k≤K forms a partition of Xweight such that Ti ∈ Ck if and only if Ti is in class k. In other
words, ρν(k) is the proportion of data in class k that contain the subtree (R∗)−1(∆[ν]). Therefore,
ρν belongs to the K-dimensional hypercube. It should be noticed that ρν is a vector of zeros as
soon as (R∗)−1(∆[ν]) is not a subtree of a tree of Xweight.

For any 1 ≤ k ≤ K, let ek (ek, respectively) be the vector of zeros with a unique 1 in position k
(vector of ones with a unique 0 in position k, respectively). If ρν = ek, the vertex ν corresponds
to the subtree (R∗)−1(∆[ν]), which only appears in class k: ν is thus a good discriminator of this
class. Otherwise, if ρν = ek, the vertex ν appears in all the classes except class k and is still a good
discriminator of the class. For any vertex ν, δν measures the distance between ρν and its nearest
point of interest ek or ek,

δν =
K

min
k=1

min(|ρν − ek|, |ρν − ek|).

It should be noted that the maximum value of δν depends on the number of classes and can
be larger than 1. If δν is small, then ρν is close to a point of interest. Consequently, since ν
tends to discriminate a class, its weight should be large. In light of this remark, the discriminance
weight of a vertex ν is defined as ων = f(1 − δν), where f : (−∞, 1] → [0, 1] is increasing with
f(x) = 0 for x ≤ 0 and f(1) = 1. Fig. 5 illustrates some usual choices for f. In the sequel, we chose
ων = f∗(1 − δν) with the smoothstep function f∗ : x 7→ 3x2 − 2x3. We borrowed the smoothstep
function from computer graphics [12, p. 30], where it is mostly used to have smooth transition in
a threshold function.

Figure 5: The discriminance weight
is defined by ωτ = f(1 − δτ) where
f : (−∞, 1] → [0, 1] is increasing with
f(0) = 0 and f(1) = 1. This figure
presents some usual choices for f.

0

1

1ε

identity
smoothstep
smoothstep ◦ smoothstep
threshold

Since leaves appear in all the trees of the training dataset, ρ• is a vector of ones and thus δ• = 1,
which implies ω• = 0. This is consistent with the result developed in Subsection 2.4 on the
stochastic model. As aforementioned, the discriminance weight is inspired from the theoretical
results established in Subsection 2.4. The relevance in practice of this weight function will be
investigated in the sequel of the paper through two applications.

Remark 4.1. The discriminance weight is defined from the proportion of data in each class that contain
a given subtree, for all the subtrees appearing in the dataset. It is thus required to enumerate all these
subtrees. This is done, without redundancy, via the DAG reduction of the dataset defined and investigated
in Section 3.

5 Prediction of the language of a Wikipedia article from its topology

In this section, we compare exponential and discriminance weighting in the subtree kernel from a
dataset for which exponential weight decay achieves poor classification results. We point out that
discriminance weight manages to retrieve the relevant information from the data and shows great

15



performances in classification. Finally, we introduce a new visualization method of the dataset to
highlight the substructures that are relevant in the classification problem.

5.1 Classification problem

From a markup document (here, HTML pages), one can extract a tree structure, identifying each
couple of opening and closing tags as a vertex, which children are the inner tags. It should be no-
ticed that, during this transcription, semantic data is forgotten: the tree only describes the topol-
ogy of the document. Fig. 6 illustrates the conversion from HTML to tree on a small example. Such a
tree is ordered but can be considered as unordered. In this context, we are interested in the follow-
ing question: “does the (ordered or unordered) topology of a Wikipedia article (as a HTML page)
contain the information of the language in which it has been written ?” This can be formulated
as a supervised classification problem: given a training dataset composed of the tree structures
of Wikipedia articles labelled with their language, is a prediction algorithm able to predict the
language of a new data only from its topology?

<html>
<body>

<h1>
Lorem ipsum dolor sit amet, consectetur adipiscing elit.

</h1>
<p>

Sed non risus.
</p>
<ul>

<li>
Suspendisse lectus tortor, dignissim sit amet,
adipiscing nec, ultricies sed, dolor.

</li>
<li>

Cras elementum ultrices diam.
<ol>

<li>
Maecenas ligula massa, varius a,
semper congue, euismod non, mi.

</li>
<li>

Proin porttitor, orci nec nonummy
molestie, enim est eleifend mi,
non fermentum diam nisl sit amet erat.

</li>
</ol>

</li>
<li>

Duis semper. Duis arcu massa, scelerisque vitae,
consequat in, pretium a, enim.

</li>
</ul>
<p>

Pellentesque congue. Ut in risus volutpat libero
pharetra tempor.

</p>
</body>

</html>

Figure 6: Underlying ordered tree structure (right) present in a HTML document (left). Each level
in the tree is colored in the same way as the corresponding tags in the document. Natural order
from top to bottom in the HTML document corresponds to left-to-right order in the tree.

In order to tackle this problem, we have built 30 databases of tree structures of Wikipedia articles
as follows. Each of the databases is composed of 4 datasets:

• a dataset to predict Xpred made of 120 trees;

• a small train dataset X small
train made of 40 trees;

• a medium train dataset Xmedium
train made of 120 trees;

• and a large train dataset X large
train made of 200 trees.

Each dataset contains the same amount of data of each language among English, German, French
and Spanish. All the Wikipedia articles composing these databases have been picked at random.

16



For each database, we aim at predicting the language of the trees in Xpred using a SVM algorithm
based on the subtree kernel for ordered and unordered trees, and trained with X size

train where size ∈
{small,medium, large}.

5.2 Classification results

For quantifying the quality of a prediction, we use the Normalized Mutual Information (NMI),
as it shows interesting properties by taking into account (i) false positives, (ii) false negatives and
(iii) the number of data of each label. For the sake of self-containedness, we present the definition
of this indicator (reproduced from [27]).

Let N be the number of data to predict, U the predicted class vector and V the expected class
vector. We denote by R (C, respectively) the number of distinct values in U (in V , respectively).
For i ∈ {1, . . . , R}, Ui stands for the set of indices in {1, . . . ,N} that are assigned with class i. Vj is
defined analogous for j ∈ {1, . . . , C}. Let pick at random some index in {1, . . . ,N}. The probability
that is assigned with class i (with class j, respectively) in U (in V , respectively) is P(i) = #Ui/N
(P ′(j) = #Vj/N, respectively). The probability that is assigned with class i in U and class j in V is
P(i, j) = #(Ui ∩ Vj)/N. We define the entropy of U as H(U) = −

∑R
i=1 P(i) logP(i) and the entropy

of V as H(V) = −
∑C
j=1 P

′(j) logP ′(j). The Mutual Information (MI) is then defined as

MI(U,V) =

R∑
i=1

C∑
j=1

P(i, j) log
P(i, j)

P(i)P ′(j)
,

and finally the NMI is defined as

NMI(U,V) =
MI(U,V)√
H(U)H(V)

.

In order to evaluate the importance of the substructures weighting, the SVM has been trained
with the subtree kernel using (i) the discriminance weight presented in Section 4, and (ii) an ex-
ponential weight of the form τ 7→ λH(τ) for different values of λ. Classification results over the
30 databases are displayed through the boxplots of their NMI in Fig. 7. Discriminance weight-
ing achieves highly better results than exponential weighting, with an NMI greater than 90% on
average from only 200 training data. This points out that the language information exists in the
structure of Wikipedia pages, whether they are considered as ordered or unordered trees, unlike
what intuition as well as subtree kernel with exponential weighting suggest. It should be added
that the NMI computed with the subtree kernel with discriminance weight increases with the size
of the training dataset, as expected.

These numerical results show the great interest of the discriminance weight, in particular with
respect to an exponential weight decay. Nevertheless, it should be compelling in this context to
understand the classification rule learned by the algorithm. Indeed, this could lead to explain how
the information of the language is present in the topology of the article.

5.3 Comprehensive learning and data visualization

When a learning algorithm is efficient for a given prediction problem, it is interesting to under-
stand which features are significant. In the subtree kernel, the features are the subtrees appearing

17



λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0

20

40

60

80

100

N
or

m
al

iz
ed

M
u

tu
ta

l
In

fo
rm

at
io

n
(%

) X small
train ∪ Xpred. Xmedium

train ∪ Xpred. X large
train ∪ Xpred.

(a) Ordered trees

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0

20

40

60

80

100

N
or

m
al

iz
ed

M
u

tu
ta

l
In

fo
rm

at
io

n
(%

) X small
train ∪ Xpred. Xmedium

train ∪ Xpred. X large
train ∪ Xpred.

(b) Unordered trees

Figure 7: Classification results for the 30 Wikipedia databases. λ values stands for exponential
decay weight of the form τ 7→ λH(τ). Normalized Mutual Information measures the similarity
between the predicted class vector and the expected class vector, where a 100% score indicates
perfect prediction.

in all the trees of all the classes. Looking at (2), the contribution of any subtree τ to the subtree
kernel with discriminance weighting is the product of two terms: the discriminance weight wτ
quantifies the ability of τ to discriminate a class, while κ(Nτ(T1), Nτ(T2)) evaluates the similarity
between T1 and T2 with respect to τ through the kernel κ. As explained in Section 4, if wτ is close
to 1, τ is an important feature in the prediction problem.

As shown in Section 3, DAG reduction provides a tool to compress a dataset without loss. We
recall that each vertex of the DAG represents a subtree appearing in the data. Consequently, we
propose to visualize the important features on the DAG of the dataset where the radius of the
vertices is an increasing function of the discriminance weight. In addition, each vertex of the DAG
can be colored as the class that it helps to discrimine, either positively (the vertex of the DAG
corresponds to a subtree that is present almost only in the trees of this class), or negatively. This
provides a visualization at a glance of the whole dataset that highlights the significant features for
the underlying classification problem. We refer the reader to Fig. 8 for an application to one of our
datasets. Thanks to this tool, we have remarked that the subtree corresponding to the License at
the bottom of any article highly depends on the language, and thus helps to predict the class.

5.4 Distribution of discriminance weights

To provide a better understanding of our results, we have analyzed in Fig. 9 the distribution of
discriminance weights of one of our large training datasets. Fig. 9b shows that the discriminance
weight behaves on average as a shifted exponential. Considering the great performance achieved
by the discriminance weight, this illustrates that exponential weighting presented in the literature
is indeed a good idea, when setting w• = 0 as shown in Subsection 2.4 or suggested in [28, 6
Experimental results]. However, a closer look to the distribution in Fig. 9a reveals that important

18



en
:a

bs
en

ce

en
:p

re
se

nc
e

es
:a

bs
en

ce

es
:p

re
se

nc
e

de
:a

bs
en

ce

de
:p

re
se

nc
e

fr
:a

bs
en

ce

fr
:p

re
se

nc
e

Fi
gu

re
8:

V
is

ua
liz

at
io

n
of

on
e

da
ta

se
t
X

=
X

m
ed

iu
m

tr
ai

n
∪
X p

re
d

of
un

or
de

re
d

tr
ee

s
am

on
g

th
e
3
0

W
ik

ip
ed

ia
da

ta
ba

se
s.

Ea
ch

ve
rt

ex
ν
∈

R
∗ (
X
)

is
sc

al
ed

ac
co

rd
in

g
to

f∗
(1

−
δ
ν
)

so
th

at
th

e
la

rg
es

t
ve

rt
ic

es
ar

e
th

os
e

th
at

be
st

di
sc

ri
m

in
at

e
th

e
di

ff
er

en
t

cl
as

se
s.

Fo
r

ea
ch
ν

,
w

e
fin

d
th

e
cl

as
s
k

su
ch

th
at
ρ
ν

ha
s

m
in

im
al

di
st

an
ce

to
ei

th
er
e
k

or
e
k
.

If
it

is
e
k
,

w
e

sa
y

th
at
ν

di
sc

ri
m

in
at

es
by

it
s

pr
es

en
ce

,a
nd

if
it

is
e
k
,ν

di
sc

ri
m

in
at

es
by

it
s

ab
se

nc
e.

W
e

co
lo

r
ν

fo
llo

w
in

g
th

is
di

st
in

ct
io

n
ac

co
rd

in
g

to
th

e
le

ge
nd

,w
he

re
“e

n”
is

fo
r

En
gl

is
h

la
ng

ua
ge

,“
de

”
fo

r
G

er
m

an
,“

fr
”

fo
r

Fr
en

ch
,a

nd
“e

s”
fo

r
Sp

an
is

h.

19



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h

0.0

0.2

0.4

0.6

0.8

1.0

Average distribution

(a)

0 2 4 6 8 10 12 14

h

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Average distribution per height

Exp. fit : 0.108 exp(−0.609h)

(b)

Figure 9: Estimation of the distribution of the discriminance weight function h 7→ {wν : H(ν) =
h, ν ∈ R∗(X )} from one large training Wikipedia dataset of unordered trees. The empirical distri-
bution is presented in (a) with average value in red, while (b) focuses only on the average behavior
and its similarity with an exponential function (in blue). All ordered and unordered datasets show
a similar behavior.

features in the kernel are actually outliers: relevant information is both far from the average be-
havior and scarce. To a certain extent and regarding these results, discriminance weight is the
second order of the exponential weight.

6 Extension to labelled trees

In this section, we aim at illustrating that the methodology developed in the present paper can be
extended to labelled trees. In addition, we apply our method to a dataset of blood vasculatures.

6.1 DAG reduction with labels

A labelled tree is a tree which each vertex possesses a label. Two labelled ∗-trees are said iso-
morphic if (i) they are ∗-isomorphic, and (ii) the underlying one-to-one correspondence mapping
vertices of T1 into vertices of T2 is such that ∀ v ∈ T1, v and Φ(v) have the same label. The set of
labelled ∗-trees is the quotient set of rooted trees by this equivalence relation. It should be noticed
that the subtree kernel as well as DAG reduction are defined through only the concept of isomor-
phic subtrees. As a consequence, they can be straightforwardly extended to labelled ∗-trees. This
formalization is an extension of the definition introduced by the authors of [1, 10], as they consider
only ordered labelled trees, whereas we can consider unordered labelled trees as well.

20



For the sake of illustration, we use the Vascusynth dataset from [14, 17] composed of 120 un-
ordered trees that represent blood vasculatures with different bifurcations numbers. In a tree,
each vertex has a continuous label describing the radius r of the corresponding vessel. We have
discretized these continuous labels in three categories: small if r < 0.02, medium if 0.02 ≤ r < 0.04
and large if r ≥ 0.04 (all values are in arbitrary unit). From this original dataset, we have gener-
ated randomized trees as follows. The randomized trees have exactly the same topologies as the
original trees have but their labels are picked at random. Finally, the dataset is composed of 240
trees which class corresponds to the origin of the data: original dataset or randomized. It should
be emphasized that, by construction, the two classes can not be discriminated on the basis of the
topologies of the trees, but only on the distribution of the labels. Fig. 10 illustrates this construc-
tion. The operation has been repeated to obtain 50 datasets, each composed of the same original
trees but of different randomized trees. In the classification problem, each dataset has been equally
divided into two parts at random: a train dataset and a test dataset.

(a) (b)

(c) (d)

medium radius

large radius

small radius

Figure 10: (a) A labelled unordered tree T modeling a blood vessel network, (b) a randomized
version T ′ of T which labels have been randomly assigned, (c) the DAG reduction of T , and (d) the
DAG reduction of T ′. The vertices have been colored according to their discretized radius label.

6.2 Classification results

Classification results using SVM through the subtree kernel with either discriminance or exponen-
tial weighting can be found in Fig. 11. Exponential weighting achieve good results (NMI around
55% on average, regardless the value of the parameter) but discriminance weighting is better (NMI

21



around 70% on average with a similar variance), showing on this new example the relevance of
this new weighting scheme. These experiments prove that the subtree kernel can efficiently dis-
criminate tree data which topologies are identical only on the basis of their labels.

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0

20

40

60

80

100

N
or

m
al

iz
ed

M
u

tu
ta

l
In

fo
rm

at
io

n
(%

)

Figure 11: Classification results for the 50 Vas-
cusynth databases where λ values stand for
exponential decay weight. Normalized Mu-
tual Information measures the similarity be-
tween the predicted class vector and the ex-
pected class vector, where a 100% score indi-
cates perfect prediction.

7 Implementation and reproducibility

The treex library for Python [2] is designed to manipulate rooted trees, with a lot of diversity
(ordered or not, labelled or not). It offers options for random generation, visualization, edit oper-
ations, conversions to other formats, and various algorithms. We implemented the subtree kernel
as a module of treex so that the interested reader can manipulate the concepts discussed in this
paper in a ready-to-use manner.

Basically, the subtree_kernel module allows the computation of formula (2) with options
for choosing (i) κ among some classic choices of kernels [22, Section 2.3] and (ii) the weight
function among exponential decay or discriminance. Resorting to dependencies to pandas and
scikit-learn, tools for creating databases and compute SVM are also provided for the sake of
self-containedness. Finally, visualization tools are also made available to perform the comprehen-
sive learning approach discussed in Subsection 5.3.

Installing instructions and the documentation of treex can be found from [2]. Source code of
the subtree_kernel module and a tutorial are currently provided on the first author webpage1.
The module will be integrated in a future release of treex. For the sake of reproducibility, the
databases used in Sections 5 and 6, as well as the scripts that were designed to create them and
process them, have also been made available.

Acknowledgments

This work has been supported by the European Union’s H2020 project ROMI.

1http://perso.ens-lyon.fr/romain.azais/subtree-kernel/

22

http://perso.ens-lyon.fr/romain.azais/subtree-kernel/


References

[1] Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti, and Alessandro Moschitti. Fast
on-line kernel learning for trees. In Sixth International Conference on Data Mining (ICDM’06),
pages 787–791. IEEE, 2006.

[2] Romain Azaı̈s, Guillaume Cerutti, Didier Gemmerlé, and Florian Ingels. treex: a
Python package for manipulating rooted trees. Under review in Journal of Open Source
Software, https://github.com/openjournals/joss-papers/blob/joss.01351/
joss.01351/10.21105.joss.01351.pdf, 2019.

[3] Romain Azaı̈s, Alexandre Genadot, and Benoı̂t Henry. Inference for conditioned Galton-
Watson trees from their Harris path. To appear in ALEA, 2019.

[4] Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. A theory of learning with similarity
functions. Machine Learning, 72(1-2):89–112, 2008.

[5] Karthik Bharath, Prabhanjan Kambadur, Dipak Dey, Rao Arvin, and Veerabhadran Baladan-
dayuthapani. Statistical tests for large tree-structured data. Journal of the American Statistical
Association, 2016.

[6] Philip Bille. A survey on tree edit distance and related problems. Theoretical Computer Science,
337(1-3):217 – 239, 2005.

[7] Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Advances in
neural information processing systems, pages 625–632, 2002.

[8] Gianni Costa, Giuseppe Manco, Riccardo Ortale, and Andrea Tagarelli. A tree-based ap-
proach to clustering xml documents by structure. In Jean-François Boulicaut, Floriana Es-
posito, Fosca Giannotti, and Dino Pedreschi, editors, Knowledge Discovery in Databases: PKDD
2004, pages 137–148, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[9] Nello Cristianini, John Shawe-Taylor, et al. An introduction to support vector machines and other
kernel-based learning methods. Cambridge university press, 2000.

[10] Giovanni Da San Martino. Kernel methods for tree structured data. PhD thesis, alma, 2009.

[11] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpres-
sion problem. J. ACM, 27(4):758–771, October 1980.

[12] David S. Ebert and F. Kenton Musgrave. Texturing & modeling: a procedural approach. Morgan
Kaufmann, 2003.

[13] Christophe Godin and Pascal Ferraro. Quantifying the degree of self-nestedness of trees: ap-
plication to the structural analysis of plants. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB), 7(4):688–703, 2010.

[14] Ghassan Hamarneh and Preet Jassi. Vascusynth: Simulating vascular trees for generating vol-
umetric image data with ground truth segmentation and tree analysis. Computerized Medical
Imaging and Graphics, 34(8):605–616, 2010.

23

https://github.com/openjournals/joss-papers/blob/joss.01351/joss.01351/10.21105.joss.01351.pdf
https://github.com/openjournals/joss-papers/blob/joss.01351/joss.01351/10.21105.joss.01351.pdf


[15] John C. Hart and Thomas A. DeFanti. Efficient antialiased rendering of 3-d linear fractals.
SIGGRAPH Comput. Graph., 25(4):91–100, July 1991.

[16] David Haussler. Convolution kernels on discrete structures. Technical report, Department of
Computer Science, University of California, 1999.

[17] Preet Jassi and Ghassan Hamarneh. Vascusynth: Vascular tree synthesis software. Insight
Journal, January-June:1–12, 2011.

[18] Daisuke Kimura, Tetsuji Kuboyama, Tetsuo Shibuya, and Hisashi Kashima. A subpath kernel
for rooted unordered trees. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 62–74. Springer, 2011.

[19] Shu-Yun Le, Ruth Nussinov, and Jacob V. Maizel. Tree graphs of RNA secondary structures
and their comparisons. Computers and Biomedical Research, 22(5):461 – 473, 1989.

[20] M. A. Martı́n-Delgado, J. Rodriguez-Laguna, and G. Sierra. Density-matrix renormalization-
group study of excitons in dendrimers. Phys. Rev. B, 65:155116, Apr 2002.

[21] James Mercer. Xvi. functions of positive and negative type, and their connection the theory
of integral equations. Philosophical transactions of the royal society of London. Series A, containing
papers of a mathematical or physical character, 209(441-458):415–446, 1909.

[22] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

[23] John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis. Cambridge
university press, 2004.

[24] Dan Shen, Haipeng Shen, Shankar Bhamidi, Yolanda Muñoz Maldonado, Yongdai Kim, and
J. Stephen Marron. Functional data analysis of tree data objects. Journal of computational and
graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical
Statistics, Interface Foundation of North America, 23 2:418–438, 2014.

[25] Steven S Skiena. Sorting and searching. In The Algorithm Design Manual, pages 103–144.
Springer, 2012.

[26] Ivan E. Sutherland. Sketchpad: A man-machine graphical communication system. In Pro-
ceedings of the May 21-23, 1963, Spring Joint Computer Conference, AFIPS ’63 (Spring), pages
329–346, New York, NY, USA, 1963. ACM.

[27] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clus-
terings comparison: Is a correction for chance necessary? In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 1073–1080, New York, NY, USA,
2009. ACM.

[28] S.V.N. Vishwanathan and Alexander J Smola. Fast kernels on strings and trees. Advances on
Neural Information Proccessing Systems, 14, 2002.

[29] Haonan Wang and J. S. Marron. Object oriented data analysis: Sets of trees. Ann. Statist.,
35(5):1849–1873, 10 2007.

24



A Proof of Proposition 2.2

The proof is mainly based on the following technical lemma, which statement requires the follow-
ing notation. If u is a vertex of a tree T , F(u) denotes the family of u, i.e., the set composed of
the ascendants of u, u, and the descendants of u in T . We recall that D(u) stands for the set of
descendants of u.

Lemma A.1. Let u, v ∈ Ti, i ∈ {1, 2}. One has

K(Tui , T
v
i ) = K(Ti, Ti) −

∑
x∈Bu,v

ωTi[x] + K(τH(u), τH(v)),

where

Bu,v =
{
D(u) ∪ {u} if u = v,
F(u) ∪ F(v) else. (6)

Let u ∈ T1 and v ∈ T2. Then,
K(Tu1 , T

v
2 ) = K(τH(u), τH(v)).

Proof. We begin with the case u 6= v. The result relies on the following decomposition which is
valid under the assumptions made on Ti and the sequence (τh),

S(Tui ) ∩ S(T vi ) =
[
S(Ti) \ {Ti[z] : z ∈ F(u) ∪ F(v)}

]
∪
[
S(τH(u)) ∩ S(τH(v))

]
.

Together with (2),

K(Tui , T
v
i ) =

∑
θ∈S(Ti)\{Ti[z] : z∈F(u)∪F(v)}

wθNθ(T
u
i )Nθ(T

v
i )

+
∑

θ∈S(τH(u))∩S(τH(v))

wθNθ(T
u
i )Nθ(T

v
i ).

If θ ∈ S(τH(u)) ∩ S(τH(v)), then Nθ(T zi ) = Nθ(τH(z)), z ∈ {u, v}, because, for any h > 0, τh is not a
subtree of T0 nor T1 by assumption. Thus,∑

θ∈S(τH(u))∩S(τH(v))

wθNθ(T
u
i )Nθ(T

v
i ) =

∑
θ∈S(τH(u))∩S(τH(v))

wθNθ(τH(u))Nθ(τH(v))

= K(τH(u), τH(v)), (7)

in light of (2) again. Furthermore, if θ ∈ S(Ti) \ {Ti[z] : z ∈ F(u) ∪ F(v)}, then Nθ(T zi ) = Nθ(Ti),
z ∈ {u, v}, and ∑

θ∈S(Ti)\{Ti[z] : z∈F(u)∪F(v)}

wθNθ(T
u
i )Nθ(T

v
i ) =

∑
θ∈S(Ti)\{Ti[z] : z∈F(u)∪F(v)}

wθNθ(Ti)Nθ(Ti)

=
∑

θ∈S(Ti)

wθNθ(Ti)Nθ(Ti)

−
∑

θ∈{Ti[u] : u∈F(v)∪F(w)}

wθNθ(Ti)Nθ(Ti)

= K(Ti, Ti) −
∑

θ∈{Ti[z] : z∈F(u)∪F(v)}

wθ, (8)

25



sinceNθ(Ti) = 1 because of the first assumption on Ti. (7) and (8) state the first result. When u = v,
the decomposition is slightly different,

S(Tui ) =
[
S(Ti) \ {Ti[z] : z ∈ {u} ∪ D(u)}

]
∪ S(τH(u)),

but the rest of the proof is similar. Finally, the formula for K(Tu1 , T
v
2 ) is a direct consequence of the

third assumption on T1, T2 and the sequence (τh). f

By virtue of the previous lemma, one can derive the following result on the quantity ∆ix defined
by (3).

Lemma A.2. Let x ∈ Ti, i ∈ {1, 2}. One has

∆ix = K(Ti, Ti) − Eu

[ ∑
z∈Bx,u

wTi[z]

]
.

Proof. In light of Lemma A.1, one has

∆ix = K(Ti, Ti) − Eu

[ ∑
z∈Bx,u

wTi[z]

]
+ Eu

[
K(τH(x), τH(u))

]
− Ev

[
K(τH(x), τH(v))

]
.

By assumption on the stochastic model of random trees,H(u) andH(v) have the same distribution
and thus Eu[K(τH(x), τH(u))] = Ev[K(τH(x), τH(v))], which states the expected result. f

The next decomposition is useful to prove the result of interest. If cih denotes the number of
subtrees of height h appearing in Ti, h ≥ 0, then the probability of picking a particular vertex u is
Pρ(H(u))/ciH(u) and thus

Eu

[ ∑
z∈Bx,u

wTi[z]

]
=
Pρ(H(x))
ciH(x)

∑
z∈{x}∪D(x)

wTi[z] +
∑

u∈Ti\{x}

Pρ(H(u))
ciH(u)

∑
z∈Bx,u

wTi[z].

In addition, for u ∈ Ti \ {x},∑
z∈{x}∪D(x)

ωTi[z] = K(Ti[x], Ti[x]), (9)

∑
z∈Bx,u

ωTi[z] = K(Ti, Ti) −
∑

z/∈F(x)∪F(u)

ωTi[z]. (10)

(9) and (10) together with Lemma A.2 show that

∆ix =
Pρ(H(x))
ciH(x)

(K(Ti, Ti) − K(Ti[x], Ti[x]) +
∑

u∈Ti\{x}

Pρ(H(u))
ciH(u)

∑
z/∈F(x)∪F(u)

ωTi[z].

The left-hand term (and the right-hand term when wTi > 0) is null if and only if x = R(Ti), which
shows the first result. In addition,

∆ix ≥
Pρ(H(x))
ciH(x)

(K(Ti, Ti) − K(Ti[x], Ti[x]) ,

which states the expected formula (4) with Pρ(0) ≤ Pρ(H(x)) (true if ρ > H/2) and ciH(x) ≤ #L(Ti).
The conclusion comes from the fact that the probability of drawing a vertex x of height greater
than h is Gρ(h).

26



B Proof of Proposition 3.2

We denote by Dh the set of vertices at height h in any DAG D, and ∗ ∈ {ordered,unordered} the
type of isomorphism considered. From the forest (D1, . . . , DN), we construct the DAG ∆ such
that (i) Di is a subDAG of ∆ for all i, (ii) H(∆) = maxiH(Di), (iii) all vertices in ∆ have degree
maxi deg(Di), and (iv) at each height except 0 and H(D), #∆h = maxi #Dhi . If ∆ is placed N times
under an artificial root, and then recompressed by the algorithm, indeed the output contains the
recompression of the original forest. Therefore, this case is the worst possible for the algorithm,
and we claim that it achieves the proposed complexity.

Let ∆ be now a DAG with following properties : #∆ = m, H(∆) = H, at each height h /∈ {0,H},
#∆h = n (so that n(H − 2) + 2 = m), and all vertices have degree d. DF is the super-DAG
obtained after placing N copies of ∆ under an artificial root. We then have # DF = 1+Nm so that
O(# DF ) = O(Nm) = O(NHn) and deg(F) = deg(∆) = d.

At the beginning of the algorithm, constructing the mapping h 7→ DFh in one exploration of DF
has complexityO(# DF ). We will now examine the complexity of the further steps, with respect to
n,m, d,H and N. We introduce the following lemma :

Lemma B.1. Constructing σ(h) has time-complexity:

1. O
(∑

ν∈DFh # C(ν) log # C(ν)
)

for unordered trees;

2. O
(∑

ν∈DFh # C(ν)
)

for ordered trees.

Proof. When sorting lists of size L, merge sort is known to haveO(L logL) complexity in the worst
case [25]. Accordingly, we introduce

g∗(x) =

{
x if ∗ = ordered;

x(1+ log x) if ∗ = unordered.

At height h, we construct σ(h) = {f−1(S) : S ∈ Im(f), #f−1(S) ≥ 2} where f : ν ∈ DFh 7→ C(ν).
Finding the preimage of f requires first to construct f, by copying the children of each vertex in
DFh (in the unordered case, we also need to sort them, so that we get rid of the order and can
properly compare them). Then we only need to explore once the image and check whether an
element has two or more antecedents. The global cost is then O(∑ν∈DFh g∗(# C(ν))). f

We reuse the notation g∗ from the proof of Lemma B.1. With respect to ∆, the complexity for
constructing σ(·) is O(Nng∗(d)). Exploring the elements of σ(h) for (i) choosing a vertex νM to
remain, and (ii) delete the other elements δM has complexityO(Nn). In addition, at height h ′ > h,
exploring the children to replace them or not costs O(∑

ν∈DFh ′ # C(ν)) = O(Ndn).
The global complexity C(DF ) of the algorithm is then

C(DF ) = O(# DF ) +
H(∆)∑
h=0

O(Nng∗(d)) +O(Nn) +
∑
h ′>h

O(Ndn).

27



Remark that
∑H(D)
h=0 O(Nn) = O(Nm) = O(# DF ), this leads to

C(DF ) = O(# DF g
∗(deg(F))) +O

(
Ndn

H(D)∑
h=0

∑
h ′>h

1

)
.

The right-hand inner sum is in O(H2). As

O(NdnH2) = O(# DF Hd) = O(# DF H(DF )deg(F)),

this leads to our statement.

28


	Introduction
	Analysis of tree data
	Unordered and ordered rooted trees
	Subtree kernel
	Aim of the paper

	Theoretical study
	Two trees as different as possible
	A stochastic model of 2-classes tree data
	Theoretical guarantees on the subtree kernel
	Weight of leaves

	DAG computation of the subtree kernel
	DAG reduction of a tree
	DAG reduction of a forest
	DAG annotation and kernel computation

	Discriminance weight function
	Prediction of the language of a Wikipedia article from its topology
	Classification problem
	Classification results
	Comprehensive learning and data visualization
	Distribution of discriminance weights

	Extension to labelled trees
	DAG reduction with labels
	Classification results

	Implementation and reproducibility
	Proof of Proposition 2.2
	Proof of Proposition 3.2 

