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Abstract

The word length effect in Lexical Decision (LD) has been studied in many behavioral experiments but no computa-
tional models has yet simulated this effect. We use a new Bayesian model of visual word recognition, the BRAID
model, that simulates expert readers performance. BRAID integrates an attentional component modeled by a Gaus-
sian probability distribution, a mechanism of lateral interference between adjacent letters and an acuity gradient, but
no phonological component. We explored the role of visual attention on the word length effect using 1,200 French
words from 4 to 11 letters. A series of five simulations was carried out to assess (a) the impact of a single attentional
focus versus multiple shifts of attention on the word length effect and (b) how this effect is modulated by variations
in the distribution of attention. Results show that the model successfully simulates the word length effect reported for
humans in the French Lexicon Project when allowing multiple shifts of attention for longer words. The magnitude
and direction of the effect can be modulated depending on the use of a uniform or narrow distribution of attention. The
present study provides evidence that visual attention is critical for the recognition of single words and that a narrowing
of the attention distribution might account for the exaggerated length effect reported in some reading disorders.

Keywords: Word length effect, Lexical decision, Bayesian modeling, Visual attention, Reading

1. Introduction

The effect of word length on visual word process-
ing has been examined with a variety of techniques,
including the lexical decision (LD) task in which the
participant has to decide as quickly and as accurately
as possible if the stimulus presented on the screen is
a word or not. Initial research in this field yielded in-
consistent results, the effect being in turn reported as
inhibitory – longer words yield longer latencies (Balota
et al., 2004; Hudson and Bergman, 1985; O’Regan and
Jacobs, 1992) – or null (Acha and Perea, 2008; Fred-
eriksen and Kroll, 1976; Richardson, 1976). In mea-
suring LD reaction times (RT) for a large sample of
words of different lengths, megastudies helped under-
stand these apparent inconsistencies. Indeed, it appears
that the effect of word length is not linear: reaction times
are constant for words between 5 to 8 letters, but they in-
crease with length for words longer than 8 letters (Fer-
rand et al., 2010, 2011, 2017; New et al., 2006).

Simulating the length effect in LD is challenging for
all classes of word processing models, namely the dual-

route model, the triangle model or the multi-trace mem-
ory model. These models typically attribute the length
effect to serial processing and can account for this effect
in reading aloud but not in LD. According to dual route
models (DRC: Coltheart et al., 2001; CDP, CDP+, Perry
et al., 2007, 2010), an effect of length on naming la-
tencies reflects serial processing within the non-lexical
route, due to left-to-right grapheme parsing (Perry and
Ziegler, 2002; Perry et al., 2007, 2010) or serial letter-
sound mapping (Coltheart et al., 2001). Serial process-
ing within the non-lexical route can straightforwardly
account for the strong length effect typically reported in
pseudo-word naming (Ferrand, 2000; Ferrand and New,
2003). The interaction between parallel processing by
the lexical route and serial processing by the non-lexical
route accounts for smaller length effects in word nam-
ing. Perry et al. (2007) showed that no length effect oc-
curred when the non-lexical route of the CDP+ model
was turned off, suggesting that serial processing is crit-
ical to explain length effects on words in naming. In a
comparison of the length effect in English and German,
Perry and Ziegler (2002) reported an effect of length on

Preprint submitted to Vision Research April 10, 2019



naming latency in German but not in English for words
from 3 to 6 letters. They simulated this differential ef-
fect within the DRC framework by changing the balance
between lexical and non-lexical processing. Decreasing
the strength of the lexical route while increasing that of
the non-lexical route resulted in the observed length ef-
fect on German words, suggesting again that length ef-
fect would be inherently related to serial processing for
phonological recoding. It follows that dual route models
cannot account for the word length effect in LD, except
by explaining it as following from serial phonological
recoding, that is to say, assuming that the phonology of
the word is generated in LD, as in naming, and that de-
cision would be based on the phonological output.

The triangle model of reading (Seidenberg and Mc-
Clelland, 1989; Plaut et al., 1996), that postulates par-
allel processing and does not include any serial mecha-
nism, failed to simulate any length effect in word nam-
ing (Seidenberg and McClelland, 1989; Seidenberg and
Plaut, 1998; Perry et al., 2007). In an attempt to accom-
modate the length effect on naming latency within this
framework, Plaut (1999) implemented a serial process-
ing mechanism that was orthographic and not phonolog-
ical. The network initially fixated the first letter of the
input string and tried to generate the appropriate phono-
logical output of the whole word. When unable to gen-
erate the appropriate output based on this first fixation,
the model had the ability to refixate the input string. Us-
ing the number of fixations as a proxy for naming la-
tency, an overall length effect was obtained for words.
This effect was null for 3-to-4 letter words that could
be accurately identified within a single fixation, but in-
hibitory for 4-to-6 letter words that required more than
one fixation. This study again emphasizes the critical
role of serial processing for an account of length ef-
fects in word naming but provides no explanation on
such effects in LD. Indeed, the number of refixations
reflects the degree of difficulty that the network experi-
ences in constructing word pronunciation without pos-
tulating any orthographic word recognition system that
would be critical to simulate the LD task.

While the two previous classes of models assume in-
volvement of phonological recoding in length effects,
the multitrace memory (MTM) model of reading (Ans
et al., 1998) postulates that such effects follow from vi-
sual attention processing at the orthographic level. The
model postulates an attentional device, the visual at-
tentional window, that delineates the amount of ortho-
graphic information under processing. Most familiar
words are processed as a whole following single visual
attention focusing, but shifts of focused attention are re-
quired to process unfamiliar letter strings. As a direct

consequence, simulations showed a strong length effect
for pseudo-words in naming (Ans et al., 1998; Valdois
et al., 2006). However, no length effect was simulated
in LD for either words or pseudo-words, since deci-
sion was taken following parallel processing (i.e., sin-
gle attention focusing) of the input letter-string (Valdois
et al., 2006). A length effect in LD was simulated within
this framework by assuming a reduced visual attentional
window. The simulations carried out to account for im-
paired reading due to limited visual attention capacity
showed significant length effect in both reading and LD
and a stronger length effect for pseudo-words than for
words (Juphard et al., 2004). Thus, the MTM model
offers an account of the length effect as deriving from
visual processing at the orthographic level, constrained
by attention, but failed to simulate the length effect on
words exhibited by typical readers in LD.

Overall, there is a relative consensus that the length
effect, when observed, would reflect some kind of serial
processing. What remains controversial is whether this
serial mechanism relates to phonological decoding or to
orthographic processing. Some behavioral data rather
support an orthographic processing interpretation. In-
deed, evidence that length effect can be seen in differ-
ent word recognition tasks and that a larger effect is
reported in tasks of progressive demasking, that more
tap into visual factors than in lexical decision or nam-
ing tasks (Ferrand et al., 2011), suggests that this ef-
fect may reflect visual-orthographic encoding processes
rather than orthography-to-phonology mapping. Fur-
thermore, strong evidence for a visual-orthographic ac-
count comes from pathological data on brain-damaged
patients and dyslexic children (Barton et al., 2014). The
reports of an increased length effect in word reading
following brain-damage in letter-by-letter readers (Ar-
guin and Bub, 2005; Rayner and Johnson, 2005) or after
surgical intervention at the level of visual-orthographic
brain regions in patients with preserved oral language
and phonological skills (Gaillard et al., 2006) support
a visual-orthographic origin of the word length effect.
In the same way, dyslexic children with a visual atten-
tion span disorder (i.e., a multiletter parallel processing
deficit) show an abnormally large length effect in nam-
ing and lexical decision tasks, despite preserved phono-
logical skills (Juphard et al., 2004; Valdois et al., 2003,
2011). These findings place important constraints on
recognition models in suggesting that a visual attention
mechanism may contribute to the word length effect.

The main contribution of the current paper is to use
an original Bayesian model of visual word recognition,
called BRAID (Phénix, 2018; Phénix et al., 2018) to
study and simulate the word length effect in LD. The
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BRAID model is a fully probabilistic model that in-
cludes a visual attention layer, an interference mecha-
nism between adjacent letters and an acuity gradient. It
was previously shown (Phénix, 2018) that it could ac-
count – as other models do – for classical effects in let-
ter perception (e.g., word and pseudo-word superiority
effects, context effects) and in word recognition and LD
(e.g., frequency and neighborhood effects). We further
showed that its visuo-attentional layer allowed to mod-
ulate some of these effects, accounting for more subtle
effects such as letter spacing or cueing in letter percep-
tion. We also showed how its temporal nature allowed
studying the dynamics of evidence accumulation about
letters and words, allowing to reconcile seemingly con-
tradictory effects of word neighborhood in LD (Phénix
et al., 2018). Here, we use this model to simulate the
length effect on LD latency for a large subset of words
from the French Lexicon Project (FLP; Ferrand et al.,
2010). We will specifically show the critical role of vi-
sual attention in the word length effect on LD latency.

The rest of this paper is structured in three main sec-
tions. In the first section, we describe the BRAID model
and how LD is simulated by Bayesian inference. In the
second section, we describe the stimuli used in the sim-
ulations and the method used to calibrate the simulated
LD task. The third section reports five simulation exper-
iments showing how the distribution of visual attention
over the word letter string modulates word length effects
in LD.

2. The BRAID model

The general structure of the BRAID model is illus-
trated in Figure 1. A full description of the model is pro-
vided elsewhere (Phénix, 2018), and beyond the scope
of this paper. Instead, we propose a rapid summary of
the salient points of the model, selected according to
their relevance to the simulations carried out in the cur-
rent study.

First, the overall architecture of the model is inspired
from classical word recognition models (e.g., McClel-
land and Rumelhart, 1981), featuring three main repre-
sentational levels. The first level, called, in our model,
“the letter sensory submodel”, implements low-level vi-
sual processing of letter stimuli. These are noted, con-
sidering time instant T , with variables S T

1 to S T
N (see

Figure 1), with N the length of the input string. Pro-
cessing at this level aims at recognizing letter iden-
tity and position (Grainger et al., 2016; Dehaene et al.,
2005), which is also classical. Feature extraction is par-
allel and results in probability distribution over “inter-
nal” letter representations (variables IT

1 to IT
N of Fig-

ure 1). The model implements several plausible com-
ponents of low-level visual processing, such as an acu-
ity gradient: information about letters decreases as dis-
tance from fixation position (variable GT in Figure 1)
increases. In probabilistic terms, this decrease of in-
formation is represented with increasing uncertainty in
the corresponding probability distributions, of the form
P(IT

n | S T
n ), which are identified from behavioral con-

fusion matrices (Geyer, 1977). This acuity effect is
symmetric around fixation (Whitney, 2001) and by de-
fault, we consider that gaze position GT is located at
word center. Concerning letter position identification,
the model features a distributed position coding scheme
(Gomez et al., 2008; Davis, 2010), such that informa-
tion about a letter combines with neighboring letters.
This mechanism is implemented by lateral interference
between letters (represented with diagonal green edges
in Figure 1).

The second submodel is the “letter perceptual sub-
model”. It implements how probability distributions
over variables IT

1 to IT
N , at each time step, feed infor-

mation to be accumulated into perceptual variables PT
1

to PT
N (see Figure 1); this creates an internal represen-

tation of the input letter string. The third level is the
“lexical knowledge submodel”, implements knowledge
about the spelling of 35,644 French words of the French
Lexicon Project (Ferrand et al., 2010). For each word
(variable WT in Figure 1), its spelling is encoded as
probability distributions over its letters (variables LT

1 to
LT

N in Figure 1). The probability to recognize a word is
modulated by its frequency (prior probability distribu-
tion P(W0), not shown in Figure 1).

The letter perceptual and lexical knowledge sub-
models are linked by a layer of “coherence variables”
(variables λL

T
1 to λL

T
N in Figure 1), which allow, dur-

ing word recognition or lexical decision, the compar-
ison between the letter sequence currently perceived
and those of known words. Coherence variables, here,
can be interpreted as “Bayesian switches” (Gilet et al.,
2011; Bessière et al., 2013). Depending on their state
(open/closed or unspecified), the coherence variables al-
low or do not allow propagation of information between
adjacent submodels. In that sense, they allow to con-
nect or disconnect portions of the model. In the BRAID
model, propagation of information through variables
λL

T
n is bidirectional between the lexical knowledge and

the letter perceptual submodels.
The BRAID features a fourth submodel, which is

more original: the “visual attentional submodel”. It
serves as an attentional filtering mechanism between the
letter sensory submodel and the letter perceptual sub-
model. “Control variables” (variables CT

1 to CT
N in Fig-
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Figure 1: Graphical representation of the structure of the BRAID
model. Submodels are represented as colored blocks, and group to-
gether variables of the model (nodes). The dependency structure of
the model is represented by arrows. This dependency structure cor-
responds to a 5-letter stimulus (e.g., note the 5 spatial positions of
variables S T

1 to S T
5 ); this structure also corresponds to time instant T

(note that variables PT
n , WT and DT , on which dynamical models are

defined, depend on their previous iterations, PT−1
n , WT−1 and DT−1).

See text for details.

ure 1) pilot the states of coherence variables between the
sensory and perceptual letter submodels (variables λP

T
1

to λP
T
N in Figure 1): this allows explicitly controlling

the transfer of information between these two submod-
els. We interpret this as an attentional model. We spa-
tially constrain attention to be described by a probability
distribution, so that sensory information cannot accu-
mulate into perceptual variables in full, in all positions
simultaneously: allocating attention to some positions
is to the detriment of other positions. Mathematically,
in the model, the distribution of attention over the letter
string is Gaussian (variable AT in Figure 1; the param-
eters of its distribution are its mean µT

A and standard-
deviation σT

A). In this paper, we assume that the peak
of attention is aligned with gaze position (µT

A = GT ).
This model affects perceptual accumulation of evidence
as acuity does: the further the letter from the attention

mean, the less attention it receives, the less information
is transferred, and hence, the slower it is identified.

The fifth and final submodel is the “lexical mem-
bership submodel”. It implements knowledge about
whether a sequence of letters (variables CD

T
1 to CD

T
N

in Figure 1) corresponds (variable DT in Figure 1 is
true) or not (variable DT is false) to a known word. The
knowledge encoded here can be interpreted as an “error
model”: assuming the input string is a word, the per-
ceived letters should match those of a known word in
all positions; on the contrary, if the input is not a word,
matching should fail in at least one position. This sub-
model is useful for simulating the lexical decision task.

2.1. Task simulation by Bayesian inference in BRAID

Variables appearing in Figure 1 form a state space
with many dimensions. To mathematically define the
BRAID model, the joint probability distribution over
this state space is decomposed as a product of elemen-
tary probabilistic terms. Their definition and calibra-
tion is described in full elsewhere (Phénix, 2018). The
model being defined, we then simulate tasks by comput-
ing a “question”, that is to say, a probability distribution
of interest. This question is solved using Bayesian in-
ference, that is to say, applying the rules of probabilistic
calculus to the model. Here, we show the questions that
allow simulating letter recognition, word recognition
and lexical decision. The corresponding mathematical
derivations cannot be provided here in full, due to lack
of space. Instead, we describe how these derivations can
be interpreted, in terms of simulated processes. The lex-
ical decision task is the task of interest here, but since
it involves the two previous ones, we describe them in
their nesting order, for clarity purpose.

2.1.1. Letter identification
Consider first letter identification, that is, the process

of sensory evidence accumulation, from a given stim-
ulus, to perceptual letter identity. We distinguish vari-
ables and their values by using uppercase and lowercase
notations, respectively. Furthermore, we use a short-
hand for denoting all positions 1 to N and all time-steps
1 to T of any variable X: X1:T

1:N . As an example, simu-
lating that the model is given a sequence of letters as an
input is setting variables S 1:T

1:N to s1:T
1:N .

Thus, to simulate letter identification, we set stim-
ulus s1:T

1:N , gaze position g1:T and attention parameters
µ1:T

A and σ1:T
A , we allow information propagation by set-

ting variables λP
1:T
n to their “closed” state, and we com-

pute the probability distribution, for a given time-step T
and a given position n, over perceived letter PT

n . Since
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variables λL are left unspecified, information does not
propagate to lexical submodels, and is constrained in
the letter sensory, visual attentional and letter percep-
tual submodels (see Figure 1).

As a result, we consider here letter identification
without lexical influence. We note that a variant in
which variables λL

1:T
1:N are closed results in a bidirec-

tional transfer of information, with both bottom-up per-
ceptual influence of letters on words and top-down pre-
dictive influence of words on letters. This “letter identi-
fication with lexical influence” variant allows account-
ing for the classical word superiority effect (Phénix,
2018). We do not consider it further here; letter iden-
tification is therefore modeled by the question:

QP
T
n = P(PT

n | s
1:T
1:N [λP

1:T
n = 1] µ1:T

A σ1:T
A g1:T ) . (1)

QP
T
n is a probability distribution over the perceived let-

ter (PT
n , at time T and position n). It is a discrete dis-

tribution, since PT
n is a variable with 27 possible values

(one for each letter plus one for missing or unknown
characters).

Computing QP
T
n involves two components, that are

classical of inference in dynamical probabilistic mod-
els, such as Dynamic Bayesian Networks or Bayesian
Filters (Bessière et al., 2013). The first component is a
dynamical prediction computation, whereas the second
describes sensory evidence processing. In the dynam-
ical term, the knowledge about letters at previous time
step is spread to the next time step. This involves infor-
mation decay such that, if stimuli were absent, the prob-
ability distribution over letters would decay towards its
initial state. In the BRAID model, this is a uniform
distribution, representing lack of information: all let-
ters are considered equally likely at the perceptual level
(i.e., lexical information is restricted to be expressed at
the lexical knowledge submodel).

The second component describes sensory evidence
processing at current time-step and its accumulation
into the dynamic state variable. Here, information is
extracted from stimulus sT

1:N , in the letter sensory sub-
model, to accumulate into variable PT

n . Details are not
provided here, but this feature processing involves in-
terference effects from adjacent letters, if any, and loss
of performance, due to the combined effects of acuity
and attention functions, when gaze and attention are not
located on the considered letter position n.

However, the output of the letter sensory submodel
is modulated by the visual attention submodel before
reaching perceptual variable PT

n . More precisely, atten-
tion allocation affects the balance between information
decay and sensory evidence accumulation. We note αn

the amount of attentional resources at position n (i.e., it
is the probability value P([AT = n] | µT

A σ
T
A)). When αn

is high, sufficient attentional resources are allocated to
position n, enough information from sensory processing
accumulates into the perceptual variable so that tempo-
ral decay is counterbalanced and surpassed by sensory
evidence. In this case, the probability distribution over
variable PT

n “acquires information” and gets more and
more peaked at each time step. That peak, in the space
of all possible letters, is always on the correct letter, pro-
vided enough attention (except for some pathological
cases). In other words, letter identification, as simulated
by the probability distribution QP

T
n , converges.

2.1.2. Word identification
Simulating word identification proceeds in a similar

fashion as in isolated letter recognition above, except
that information is allowed to propagate further into the
model architecture, and more precisely to the lexical
knowledge submodel, by setting [λL

1:T
1:N = 1] (see Fig-

ure 1). The probabilistic question is QW
T :

QW
T = P(WT | e1:T [λL

1:T
1:N = 1] µ1:T

A σ1:T
A ) , (2)

with et = st
1:N [λP

t
1:N = 1] gt.

QW
T is a probability distribution over words of a

given lexicon; at any time-step T , it encodes informa-
tion about which of these words is likely to correspond
to the letter sequence perceived from the stimulus. As
in letter identification, the resulting Bayesian inference
(not detailed here, see Phénix, 2018) involves a clas-
sical structure, combining a dynamical system simula-
tion with perceptual evidence accumulation. First, in-
formation in the probability distribution QW

T decays
over time, so that, if the sensory stimuli were absent,
it would converge back towards its resting and initial
state. Here, this is the prior distribution over words
P(W0), which encodes word frequency. Second, sen-
sory evidence accumulation is based on the probabilistic
comparison (through coherence variables λL

T
1 to λL

T
N)

between letter sequences associated to words w in lexi-
cal knowledge and the perceived identities of letters, as
computed by the letter recognition question QP

T
n . This

comparison, in BRAID, is influenced by the similar-
ity between the letter sequences of the stimulus and of
words of the lexicon, so that similar (neighbor) words
compete with each other for recognition.

This results in a dynamical process of word recogni-
tion that depends on letter recognition. In the first few
time-steps, QP

T
n is still close to uniform, so that QW

T

is, too. Sensory evidence accumulation then proceeds;
after some time, and even though all letters might not
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be perfectly identified yet (i.e., with high probability),
the probability distributions over letters become diag-
nostic enough so that the input word is identified. The
dynamics of this process are modulated, for instance,
by the target word neighborhood density: recognition
is faster when few perceptual evidence points toward a
word with few or no competitors. Assuming that the in-
put letter string corresponds to a known word, and with
few pathological exceptions, word recognition as simu-
lated by QW

T converges toward the correct word.

2.1.3. Lexical decision
The final task we consider is lexical decision, our task

of interest for the experiments that follow. It is modeled
by question QD

T :

QD
T = P(DT | e1:T [λD

1:T
1:N = 1] µ1:T

A σ1:T
A ) (3)

QD
T is a probability distribution, at each time-step, over

the lexical membership variable DT . It is a Boolean
variable, that is to say, it is true when the stimulus is
perceived to be a known word, and false otherwise. In
question QD

T , the states of coherence variables allow
information to propagate throughout the whole model,
from the input letter-string to the lexical submodels (see
Figure 1). Bayesian inference that derives from ques-
tion QD

T , as before, involves a dynamical component
(information decay towards a resting state) and percep-
tual evidence accumulation about lexical membership.
However, what constitutes perceptual evidence, here, is
less easily interpreted than in letter and word recogni-
tion. To explain, we consider, in turn, the two Boolean
alternatives.

First, consider the hypothesis that the stimulus is a
word (the DT = true case). Perceptual evidence of the
LD process is the process of word recognition. Evi-
dence about lexical membership is the probability that
coherence variables λL

T
1 to λL

T
N detect a match between

perceived letters and those of a known word. In other
words, lexical decision proceeds as if the lexical knowl-
edge submodel was “observing” the probability of a
match between the letter perceptual and lexical knowl-
edge submodels. When a known word can be reliably
identified from the stimulus by word recognition (or
when a set of neighbor words is activated enough), then
coherence variables λL

T
1:N have high probability, indi-

cating a match, so that the probability that DT = true is
high, indicating that the stimulus is recognized as being
a known word.

Second, consider now the hypothesis that the stim-
ulus is not a word (the DT = false case). Here, the
expected states of coherence variables λL

T
1:N indicates

that at least one letter of the stimulus should not match,
when compared to known words. In other words, accu-
mulating evidence from word recognition operates un-
der the assumption that there would be one error in the
stimulus, compared to known word forms. Technically,
since it is unknown, all possible positions for the er-
ror have to be evaluated. For a given error position,
word recognition QW

T in computed with the input let-
ter string in all other positions, and alternative letters in
the considered position. In other words, the stimulus is
probably not a word if changing at least a letter of the
stimulus is required to match it to a known word. Per-
ceptual evidence accumulation in QD

T proceeds by pit-
ting the two hypotheses against each other: lexical deci-
sion results from this competition. As in word recogni-
tion, which can recognize the input word even though its
letter are not fully identified, lexical decision, in some
cases, reaches high probability that the input is a known
word before it is identified. The overall dynamics are
further modulated by neighborhood density around the
target word.

3. Method

Having described the general structure of the BRAID
model and Bayesian inference involved in task simu-
lation, we now describe the dataset that was used in
the simulations and consider parameter calibration. The
majority of the parameters of BRAID have been cal-
ibrated on independent data, and thus have default val-
ues that we used in previous simulations (Phénix, 2018).
Here, we consider and calibrate the parameters that are
specific to LD. For this purpose, we first explore the
effect of these parameters on the simulated LD task to
identify the parameter values that best fit the LD RTs
reported for a large sample of French words in the FLP
(Ferrand et al., 2010).

3.1. Material

The words used in these simulations were extracted
from the FLP database (Ferrand et al., 2010). Given the
great variability of the characteristics of the words of
the FLP, we first chose to restrict the dataset to words
from 4 to 11 letters. Then, we trimmed each list by re-
moving words of very high frequency and those associ-
ated with high error rates. Finally, 150 words per length
were randomly selected. Thus, our final word set con-
sisted of 1,200 words from 4 to 11 letters, with a mean
written frequency of 57.9 per million ranging from 20.3
to 104.2 per million and with a mean number of ortho-
graphic neighbors of 1.9 ranging from 0.4 to 5.1.
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Figure 2: Illustration of attention distribution over the letter string
of the word IMAGE for different values of the σA parameter: Left:
σA = 0.5; Middle: σA = 1.75; Right: σA = 100.0.

An ANOVA on mean RTs for the selected word set
showed significant main effect of length (F(7, 1173) =

2.342, p = 0.022) but no main effect of frequency (
F < 1, ns) and no Length-by-Frequency interaction (
F < 1, ns).

3.2. Calibration of parameters

We now present some of the parameters that have
direct influence on simulating LD. First, we consider
decision thresholds for the YES and NO answers,
τYES and τNO. These parameters, with values be-
tween 0 and 1, are respectively linked to the probabil-
ity P([DT = true] | e1:T [λD

1:T
1:N = 1] µ1:T

A σ1:T
A ) that

the stimulus is a word and to the probability P([DT =

f alse] | e1:T [λD
1:T
1:N = 1] µ1:T

A σ1:T
A ) that the stimulus is

not a word. Thus, τYES and τNO set the probability to
be reached by evidence accumulation to generate a de-
cision. The relation between parameters τYES and τNO,
as well as the values for the prior distribution over D0,
adapt the model to various types of non-words, accord-
ing to their relation with real words (e.g., single-letter
difference or full-consonant strings).

In the FLP experiment, whatever the word length,
pseudowords were built in a single manner. Mono-
syllabic pseudowords were created by recombining on-
sets and rimes from the real words used. The same
method was used to build polysyllabic pseudowords, but
by recombining syllables instead of onsets and rimes.
Despite controlling the same criteria as those used for
the selection of real words, this method is questionable
since it sometimes results in pseudowords that do not
constitute plausible sequences in French. Thus, in our
study, we only use the real words of the FLP experi-
ment as stimuli. Therefore, we only consider simula-
tions where words have to be identified as such (i.e.,
stimuli are always words), so that the parameter for de-
ciding that a stimulus is not a word (τNO) should practi-
cally be irrelevant. To be precise, there could be fringe
cases where a word would be incorrectly recognized as
a non-word; such cases should be rare, especially for
high values of τNO.

Other parameters are easily set, thanks to their phys-
ical interpretations. For instance, we classically as-
sume that the gaze position (g) and the attentional fo-
cus (µA) coincide; thus, assuming a central fixation, we

set µA = g =
N + 1

2
, with N the word length. The

σA parameter characterizes the spread of attention, i.e.,
mathematically, the standard deviation of the Gaussian
distribution of attention. Thus, the higher the value, the
more spread out and uniform-like the distribution of at-
tention. Since attention is modeled by a probability dis-
tribution, the sum of attention quantity QAi over all let-
ters is 1. Figure 2 illustrates various attention distribu-
tions for a given input. A reduced σA parameter value
(σA = 0.5) induces an attention distribution such that
the central letter is efficiently processed, to the detri-
ment of external letters. Conversely, a large σA parame-
ter value (σA = 100.0) spreads attention uniformly over
all letters, such that they are equally processed but po-
tentially insufficiently. Indeed, uniformly distributing
a constant amount of attention will spread it too thinly
for long words. Finally, an intermediate σA parameter
value (σA = 1.75) allows to distribute attention to favor
some of the letters, but still provides enough processing
resources to all the letters of a 5 letter word.

To specifically calibrate the LD related parameters
σA, τYES and τNO, we applied a grid search method,
that is, we explored a set of regularly spaced points in
the domain of possible parameter value combinations
(including τNO to verify that it is indeed irrelevant). We
considered the grid search domain shown on Table 1.

The time unit of the BRAID model has been cali-
brated previously so that one iteration corresponds to
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Table 1: Definition domains of σA, τYES and τNO parameters for the calibration by grid search.

Parameters
Word length 4 L 5 L 6 L 7 L 8 L 9 L 10 L 11 L

σA

Min. value 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0
Max. value 3.25 3.25 3.25 3.25 4.0 4.0 4.5 4.5

Step 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

τYES

Min. value 0,6
Max. value 0,95

Step 0,05

τNO

Min. value 0,6
Max. value 0,95

Step 0,05

around 1 ms. Thus, we set the maximum duration
allocated for simulations to 2,000 iterations, which is
enough time if we consider the mean RTs observed in
the FLP (Ferrand et al., 2010).

Qualitative inspection of the results confirmed that
the decision threshold τNO has no influence on the per-
formance of the model. In the following, we therefore
set τNO arbitrarily to 0.65, and only consider the values
of couples (τYES , σA) for further analyses.

To calibrate σA and τYES , the model simulations were
compared with the experimental observations of the
FLP experiment. For this comparison, we used three
measures: the Mean Square Error (MSE) between simu-
lated and observed RTs for correct answers, the absolute
difference between simulated and observed variances of
RT distributions for correct answers, and, finally, the ab-
solute difference between simulated and observed error
rates. The MSE is calculated with:

MS E =
1
n

n∑
i=1

(tci − tmi)2, (4)

in which tci represents the observed RT (in ms) and tmi

the simulated RT (in number of iterations) for the i-th
word, and n is the number of words correctly identi-
fied as words by the model. Results for each of these
comparison measures, and for each explored (τYES , σA)
combination, are shown in Figure 3, aggregated for
all word lengths (with qualitative inspection confirming
that results behave consistently across word lengths).

As results suggest, each measure individually does
not provide a unique point where model simulations
and observations maximally correspond. Instead, each
measure suggests a one-dimensional curve, along which
combinations of τYES , σA provide good results. More
precisely, increasing decision threshold τYES can be
compensated by also increasing σA, with a non-linear
relationship in all three adequacy measures. This sug-
gests that the model is robust, that is to say, a large num-

ber of parameter values allow the model to capture the
experimental observations.

Combining the three adequacy measures was per-
formed “geometrically” (Figure 3, bottom right), by
considering the intersection of the three optimal curves
of each measure. They intersect in a small region of the
explored space, with σA between 1.6 and 1.8 and τYES

around 0.9.
In summary, simulating the LD task on 1,200 words

from 4 to 11 letter allowed to calibrate three parameters
(σA, τYES and τNO) of the BRAID model. Therefore, in
the remainder of this study, we consider the following
values: τNO = 0.65, τYES = 0.90 and σA = 1.75.

4. Simulation 1: simulation of the word length effect

Above, in Section 3, we have aggregated simulation
results over all word lengths, and shown that BRAID
could account very well for the experimental observa-
tions, in terms of overall MSE, variance of response dis-
tributions, and accuracy. We now consider simulation
results as a function of word length, to study the abil-
ity of the model to account for the word length effect.
In this section, we study two simulations of the word
length effect: in Simulation 1.A, as in parameter cali-
bration, the model simulates LD with a single centered
attentional focus, while in Simulation 1.B, the model
performs several shifts of focused attention.

4.1. Simulation 1.A

4.1.1. Procedure
All parameter values used for this simulation are the

same as those of parameter calibration (Section 3).

4.1.2. Results
For analysis, the errors made by the model were re-

moved, which, for the chosen parameters, represent 5
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Figure 3: Results of the grid search calibration of τYES and σA. Top left: MSE between simulated and observed RTs. Top right: absolute difference
between simulated and observed variance of RT distributions. Bottom left: absolute difference between simulated and observed error rate. All
measures are averaged over all considered word lengths (4 to 11 letters). Color gradients indicate measure values: the darker the color, the smaller
the difference between the observed and the simulated data. Colored curves highlight parameter space regions where measure is close to optimal.
Bottom right: superposition of the three curves of optimal parameter combinations, defining a small region where all measures are close to optimal
(delineated by dashed lines).

words out of 1,200 (i.e., 0.42% of errors). Results are
presented in Figure 4.

Figure 4 (left) shows mean behavioral and simulated
RTs. To compare them, we scaled the simulated RTs
by adding a constant, on the 4-letter word condition, so
as to align them with behavioral RTs for this condition.
Using this method, the simulation results for the other
word lengths are predictions. Note that we will use this
same method to present simulation results for all the fol-
lowing simulations.

Figure 4 (left) shows that the word length effect is
larger in the model than in the behavioral data. The
model simulates a substantial word length effect of 44.6
iterations per letter on average, well above the 7.25 ms
per letter found in the behavioral data. The linear regres-
sion computed between the simulated and behavioral
data (Figure 4, right) yields a high correlation coeffi-
cient (R2 = 0.895), which might suggest that the model,
overall, adequately reproduces the variation of RTs as a
function of word length. However, the linear regression
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Figure 4: Results of Simulation 1.A (simulation of LD with a unique
centered attentional focus). Left: mean RTs reported in the FLP study
(in ms; light gray) and simulated by the model (in number of itera-
tions; dark gray), as a function of word length. Mean simulated RTs
are scaled and adjusted by aligning them on the 4-letter word condi-
tion; other length conditions are thus model predictions. Right: linear
regression between simulated and observed mean RTs (R2 = 0.895).

parameters indicate that the relation between behavioral
data and model simulations is mostly supported by the
additional constant (592.7), thus decreasing strongly the
weight of the model (0.2079).

4.2. Simulation 1.B

4.2.1. Procedure
The results of Simulation 1.A suggest that the model

is able to reproduce the word length effect, but its mag-
nitude is larger than observed experimentally. In Simu-
lation 1.A, letters of long words are processed in a paral-
lel manner, using a unique, central gaze and attentional
focus. Attention distribution, in this case, allocates a
small amount of processing resources to outer letters,
basing word recognition essentially on a small number
of inner letters; this makes it inefficient. Therefore, in
Simulation 1.B, we explored a variant in which we as-
sume that, for words of 7 letters or more, the model per-
forms several shifts of attention.

Thus, we defined µA1 = g1 and µA2 = g2 as being
two positions of the attention focus used by the model

during the LD task. We adapted these values system-
atically for each word length (Table 2), following the
assumption that a long word would be treated as two
short words. For instance, we suppose that an 8-letter
word is processed as two 4-letter words. Therefore, ap-
plying the same calculations as before for central focus
(see Section 3.2) yields µA1 = 2.5 and µA2 = 6.5.

We set the maximum duration of the attention focus at
each position to three conditions: 50, 100 and 200 itera-
tions. Past this focus duration, the model shifts focused
attention from this position to the other one, alternating
either until the decision threshold or the time limit of
2,000 iterations is reached. All other parameter values
are identical to those used in Simulation 1.A.

4.2.2. Results
No errors were made by the model in Simulation 1.B

and the results were qualitatively similar, whatever the
number of iterations allocated to each attention focus
(50, 100 or 200). We here present the simulated length
effects for the condition with 100 iterations.

Figure 5 presents a comparison of simulation results
with experimental data. As previously, presented RTs
are adjusted. Compared with Simulation 1.A (Figure 4),
the main finding of Simulation 1.B is that allowing the
model to perform several shifts of focused attention de-
creases RTs for words from 7 to 11 letters. The word
length effect simulated by the model is characterized by
a slope of 8 iterations per letter, very close to the exper-
imentally observed slope in the FLP data (7.25 ms per
letter). Linear regression of Simulation 1.B is also very
satisfying (R2 = 0.868). Finally, coefficients of the lin-
ear regression (Figure 5, right) show that the weight of
the model is close to 1 (1.13), reducing the value of the
additional constant (414.5). This time constant could re-
flect motor response time, measured in the FLP but not
modeled in BRAID.

An additional simulation was carried out to explore
whether a good fit of the data was only found when
forcing multiple shifts of attention for words up to 7 let-
ters. Results of the simulations showed that allowing
multiple fixations for all word lengths resulted in a very
similar length effect of 9 ms per letter well within the
range of length effects reported in experimental studies
for word lexical decision.

5. Simulation 2: Effect of attention distribution

In previous sections, we simulated the word length ef-
fect with either one (Simulation 1.A) or two (Simulation
1.B) shifts of attention, and with attention parameters
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Table 2: Fixation positions used for Simulation 1.B.
4L 5L 6L 7L 8L 9L 10L 11L

µA1 = g1 2.5 3.0 3.5 2.5 2.5 3.0 3.0 3.5
µA2 = g2 – – – 5.5 6.5 7.0 8.0 8.5
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Figure 5: Results of Simulation 1.B (simulation of LD in the condition with two attention focuses up to 7 letter words and a focus duration of 100
iterations). Left: mean RTs reported in the FLP study (in ms; light gray) and simulated by the model (in number of iterations; dark gray) as a
function of word length. Mean simulated RTs are scaled and adjusted by aligning them on the 4-letter word condition; other length conditions are
thus model predictions. Right: linear regression between simulated and observed mean RTs (R2 = 0.895).

set to default values. We will now investigate the effect
of attention dispersion, that is, the σA parameter con-
trolling the standard deviation of attention distribution,
on the simulated word length effect. For this, we per-
form three simulations (Simulation 2.A, 2.B and 2.C),
using the same experimental material as previously.

In Simulations 2.A and 2.B, the model simulates a
single central focus of attention, and allocates identi-
cal attentional resources to each letter, using uniform-
like distributions of attention. In Simulation 2.A, the
total amount of attention is stable across lengths while
in Simulation 2.B, a similar amount of attention is ar-
bitrarily allocated to each letter whatever word length
(thus increasing total attention with word length). On
the contrary, Simulation 2.C explores the other extreme
case, in which attention is fully allocated to each letter,
in turn, in a serial manner.

5.1. Procedure
Using our Gaussian model of attention distribution

with σA = 100.0 closely approximates a uniform distri-
bution (see Figure 2, right). Recall that, in the model,
the sum of the attentional quantity QAi allocated to each
letter is equal to 1. For this reason, the longer the
word, the smaller QAi for each letter. Thus, in Simu-
lation 2.A, spreading attention uniformly gradually de-
creases the amount of attention allocated to each let-
ter. Considering words from 4 to 11 letters, this yields
0.09 ≤ QAi ≤ 0.25.

It follows that the uniform distribution of a fixed
amount of total attention interacts with word length,
to the detriment of longer words. This manipula-
tion of attention distribution thus predicts an effect of
word length in Simulation 2.A. Simulation 2.B was per-
formed to explore the impact of a uniform distribu-
tion of attention without a priori interacting with word
length. For this purpose, QAi was arbitrarily set to 0.5
whatever letter position and word length.

In Simulation 2.C, σA was set to 0.5 to simulate an
extreme case of narrow attention distribution, in which
attention is mostly allocated to a single letter at a time
(see Figure 2, left). After 100 iterations on the first let-
ter, the focus of attention shifts to the next letter and so
on, in a left-to-right manner (cycling back to the first
position after the last, if required), until either the LD
threshold is reached or 2,000 iterations have passed. All
the other parameters are identical to those used in pre-
vious simulations.

5.2. Results
No errors were made by the model in either Simu-

lation 2.A or Simulation 2.B. Around five percent er-
rors (64 words out of 1,200; 5.33% errors) that were re-
moved for subsequent analyses occurred in Simulation
2.C. Figure 6 presents a comparison of simulation re-
sults with experimental data, in which, as previously,
simulation results are adjusted by reference to the 4-
letter word condition.
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Figure 6: Results of the simulations of LD RTs for different conditions of attention distribution. Simulation 2A: uniform distribution of attention,
QAi varies from 0.25 to 0.09 depending on word length; Simulations 2.B: uniform attention distribution, QAi = 0.5 whatever word length; Simula-
tion 2.C: narrow distribution of attention, σA = 0.5. Left: mean RTs obtained in the FLP study (in ms) and simulated by the model (in number of
iterations) as a function of word length. Mean simulated RTs are scaled and adjusted by aligning them on the 4-letter word condition; other length
conditions are model predictions. Right: linear regression between simulated (2.A, 2.B and 2.C) and observed mean RTs (respectively: R2 = 0.911,
R2 = 0.36, R2 = 0.865).

As expected, Figure 6 (2.A, left) shows that the use
of a uniform distribution of a stable amount of total at-
tention across length resulted in a strong length effect
on word LD RTs. An increase of 19 iterations per letter
on average was obtained in the simulations against only
7.25 ms per letter in the behavioral data. The inhibitory

length effect obtained on word LD RTs in Simulation
2.A contrasts with the facilitatory effect observed in
Simulation 2.B. Indeed, as shown on Figure 6 (2.B),
longer words were processed faster when the amount of
attention allocated to each letter was constant across po-
sitions. Figure 6 (2.C, left) presents results obtained for
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Simulation 2.C. We observe that the magnitude of the
simulated word length effect is larger than observed in
the FLP study and this, starting from 6-letter words. The
32.6 iterations per letter found on average in the simu-
lated data contrast with the 7.25 ms per letter reported
in the behavioral data, showing that time of processing
is highly and abnormally sensitive to word length.

The linear regressions presented on Figure 6 (2.A and
2.C, right) indicate that the relation between the behav-
ioral and simulated data is almost linear (respectively
R2 = 0.911 and R2 = 0.865). However, the param-
eters of the linear regressions, as in Simulation 1.A,
show that these relations are mainly supported by the
additional constant (respectively 541.7 and 558.1) de-
creasing strongly the weight of the model (respectively
0.4519 and 0.2669). Conversely, Figure 6 (2.B, right)
shows that the relation between the behavioral and sim-
ulated data is not linear (R2 = 0.36).

6. Discussion

Our main purpose in this study was to provide new in-
sights on the role of visual attention on the word length
effect in lexical decision. The BRAID model was used
to perform a series of simulations and compare their re-
sults with LD RTs for 1,200 words from 4 to 11 letters
taken from the FLP (Ferrand et al., 2010). A first series
of two simulations (Simulation 1.A and 1.B) was per-
formed to simulate the behavioral word length effect in
LD. In Simulation 1.A, length effect was simulated fol-
lowing a single central attention focus, which resulted
in far stronger length effects than reported for humans in
the FLP. In Simulation 1.B, a very good fit to the behav-
ioral data was obtained using multiple shifts of attention
during processing.

Another set of three simulations was then performed
to manipulate the distribution of attention over the word
letter-string and explore more in depth whether and how
attention modulates the word length effect in LD. A uni-
form distribution of attention was used in Simulations
2.A and 2.B to explore processing in the absence of at-
tention filtering. In Simulation 2.A, the total amount
of attention remained constant across length so that
each letter was allocated a lesser amount of attention
as word length increased. In Simulation 2.B, the same
amount of attention was allocated to each letter what-
ever word length. Results showed a stronger inhibitory
word length effect than behaviorally reported, in Sim-
ulation 2.A, but a facilitatory effect in Simulation 2.B.
Last, a Gaussian but narrow distribution of attention was
used in Simulation 2.C that resulted in an exaggerated
word length effect as compared to the behavioral data.

The current work shows that the BRAID model can
successfully account for the length effect on word RTs
in lexical decision, provided that multiple attention
shifts across the letter-string are allowed for longer
words. As previously claimed for length effects on
naming latency (Plaut, 1999; Perry and Ziegler, 2002),
this finding might suggest that length effects inherently
relate to serial processing. Interestingly and rather
counter-intuitively however, our simulations show that
strong length effects can be generated with purely par-
allel processing (a single attention focus) and that, con-
trary to typical belief, additional shifts of attention lead
to weaker rather than stronger length effects.

Indeed, comparing the results of the different simu-
lations suggests that multiple shifts of attention fasten
word processing, at least for longer words. Indeed, the
most exaggerated word length effect on LD RTs was
generated by BRAID following a single attention fo-
cus (Simulation 1.A). This effect was quite stronger than
in conditions of multiple attention shifts, even as com-
pared to the extreme case in which attention was allo-
cated to each of the word letter successively (Simula-
tion 2.C). Supportive evidence that length effect can fol-
low from parallel processing comes from eye movement
studies showing that the amount of time spent fixating
a word increases with word length, even for single fix-
ations (Rayner and Raney, 1996). Comparative studies
of length effects in progressive demasking and lexical
decision provide further support to the present findings.
While visual target display duration is not experimen-
tally constrained in LD tasks, display time in progres-
sive demasking is short enough to prevent multiple fix-
ations. Comparison of the two tasks showed that the
word length effect was far stronger in progressive de-
masking than in LD (Ferrand et al., 2011), suggesting
larger length effects in conditions of parallel process-
ing. Thus, a first contribution of the current work is to
show that length effects cannot a priori be interpreted as
direct evidence for serial processing.

A reliable simulation of the word length effect re-
ported for humans on word LD RTs was here obtained
assuming multiple attention shifts, thus multiple fixa-
tions, for words of 7 letters or more. Evidence that
refixation probability and gaze duration increase with
word length in conditions of text reading (Juhasz and
Rayner, 2003; Pollatsek et al., 2008; Rayner and Raney,
1996; Rayner, 1998) or isolated word reading (Vitu
et al., 1990), and that gaze duration relates with LD
RTs (Schilling et al., 1998), makes plausible the predic-
tion of BRAID of multiple refixations for longer words.
However, multiple fixations have been reported on even
shorter words (5-to-6 letter long) in isolated word read-
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ing (Vitu et al., 1990), suggesting that multiple fixations
might concern a wider range of word length than hy-
pothesized in Simulation 1.B. Furthermore, the proba-
bility of a refixation is likely to gradually increase as
a function of length. In contrast, we simulated a sim-
ple mechanism based on a length threshold: below it,
refixations never happen; over it, refixations always oc-
cur. We also did not model the time delay induced by
attention shifts. Modeling these mechanisms more pre-
cisely could help better account for the non-linearity of
behavioral response times for words of lengths 5 to 7
(i.e., around our cutoff threshold for refixations in Sim-
ulation 1.B; see Figure 5). New experimental studies on
eye movements during the lexical decision task are re-
quired to address these issues, as precise data on these
mechanisms appear to be lacking. Overall however, the
current work already shows that extending the possi-
bility of multiple attention shifts/fixations to the entire
word-length range (from 4 to 11 letters) only marginally
affects the simulated word length effect on LD RTs. Ac-
cordingly, the capacity of BRAID to successfully ac-
count for the word length effect on LD RTs is quite ro-
bust provided that processing allows multiple attention
shifts (thus, refixations). Overall, the current findings
lead to conclude that refixating is beneficial to the reader
– processing time is improved and reading is more flu-
ent – which might explain why refixating is the rule in
all languages and all semantic contexts, independently
of the readers’ characteristics.

Another contribution of the current work is to show
that length effects can be simulated in a word recogni-
tion model that does not include any phonological pro-
cessing component. Previous computational accounts
of the word length effect in isolated word naming at-
tributed this effect to phonological recoding. For in-
stance, in previous studies (Perry et al., 2007; Plaut,
1999), simulating the length effect was largely depen-
dent on the capacity of the model to generate a plausi-
ble phonological output. As a direct consequence, such
models cannot account for word length effects in lexi-
cal decision. Evidence in BRAID that mechanisms in-
volved in visual word recognition can account for length
effects independently of any phonological processing is
well in line with evidence of word length effects in tasks
such as progressive demasking, that primarily tap visual
processing. This is also consistent with reports that the
number of letters is a better predictor of LD latency than
the number of phonemes (Balota et al., 2004). The fact
that typical readers show exaggerated word length ef-
fects in conditions of visually degraded stimuli brings
additional support for an early visual processing origin
of word length effects in reading (Fiset et al., 2006).

This is not to say that length effects in isolated word
naming exclusively derive from visual orthographic en-
coding skills. The current findings suggest that, in read-
ing as in LD, word length effects might reflect early or-
thographic processing skills without excluding that ad-
ditional effects due to phonological recoding may fur-
ther affect word length effects in reading aloud.

Importantly, the main contribution of our work is to
demonstrate the causal role of visual attention in LD
word length effects. The whole set of simulations shows
that variations in the distribution of visual attention over
the input word has direct impact on word length effect
patterns. The uniform distribution of a fixed amount
of attention resources over the letter string led to an ab-
normally strong word length effect, which resulted from
the combination of lower attentional resources and in-
creased visual acuity effects for longer words. In con-
trast and despite the acuity gradient, a large and sim-
ilar amount of attention allocated to each letter what-
ever word length led to faster LD latency for longer
words, thus a reversed length effect as compared to the
behavioral data. As a sidenote, these simulations also
clearly show that neither visual acuity nor lateral inter-
ference (i.e., crowding) - which remain constant across
simulations - are critical to account for word length ef-
fect. More importantly, the inability of BRAID to gen-
erate human-like word length effect through simulations
based on uniform distributions of visual attention is fur-
ther evidence that attention distribution is critical for
word processing. The role of attention is certainly not
to make the processing of multiple stimuli equal as il-
lustrated in these simulations but rather to act as a fil-
ter that, as in Simulations 1.A and 1.B, enhances letter
visibility in some portions of the word to the detriment
of others (Carrasco, 2011). The capacity of BRAID to
account for word length effect in LD primarily relies
on a Gaussian distribution of attention, thus modulating
attention across letters within the input word. Our ac-
count of visual attention as modulating letter process-
ing within single words is strongly supported by ex-
perimental findings that show an impact of visual at-
tention in single word processing (Besner et al., 2016;
Lien et al., 2010) and lexical decision (McCann et al.,
1992), that support early prelexical involvement of vi-
sual attention (Risko et al., 2010; Stolz and Stevanovski,
2004) and that assume modulation through visual atten-
tion of the rate of feature uptake (Stolz and Stevanovski,
2004; Carrasco, 2011). In BRAID, a fully defined vi-
sual attention device is for the first time implemented in
a word recognition model, showing how attention mod-
ulates sensory processing and what is the impact of this
modulation on word processing.
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Last, another very important issue for a word recogni-
tion model is to account not only for typical but also for
atypical reading. Although simulating patterns of ac-
quired or developmental dyslexia was beyond the scope
of the current paper, evidence suggests that a reduction
of visual attention distribution over the letter string re-
sults in exaggerated word length effects (Barton et al.,
2014; Duncan et al., 1999; Juphard et al., 2004; Valdois
et al., 2003, 2011). Our Simulation 2.C, with larger
length effects deriving from reduced attention disper-
sion, suggests that BRAID could be able to account
for a variety of reading disorders that show exagger-
ated length effects in the context of visual attention
deficits. Interestingly, providing an account of atypical
word recognition skills was beyond the scope of most
previous computational models of reading but the few
that were concerned with pathology and tried to simu-
late acquired disorders did postulate an attentional de-
vice (Ans et al., 1998; Mozer and Behrmann, 1990).
Recognizing the role of visual attention in single word
recognition and reading and implementing a visual at-
tention device in a computational model of reading like
BRAID is critical to offer a plausible and integrative ac-
count of human reading skills.

Acknowledgments

This work has been supported by a French Ministry
of Research MESR grant for EG, and a Fondation de
France research grant for TP.

References

Acha, J., Perea, M., 2008. The effects of length and transposed-letter
similarity in lexical decision: Evidence with beginning, intermedi-
ate, and adult readers. British Journal of Psychology 99 (2), 245–
264.

Ans, B., Carbonnel, S., Valdois, S., 1998. A connectionist multiple-
trace memory model for polysyllabic word reading. Psychological
Review 105 (4), 678–723.

Arguin, M., Bub, D., 2005. Parallel processing blocked by letter sim-
ilarity in letter by letter dyslexia: A replication. Cognitive Neu-
ropsychology 22 (5), 589–602.

Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H.,
Yap, M. J., 2004. Visual word recognition of single-syllable words.
Journal of Experimental Psychology: General 133 (2), 283.

Barton, J. S., M, H. H., E, B. L., Charlotte, H., 2014. The word length
effect in reading: A review. Cognitive Neuropsychology 31 (5-6),
378–412.

Besner, D., Risko, E. F., Stolz, J. A., White, D., Reynolds, M.,
O’Malley, S., Robidoux, S., 2016. Varieties of attention: Their
roles in visual word identification. Current Directions in Psycho-
logical Science 25 (3), 162–168.

Bessière, P., Mazer, E., Ahuactzin, J. M., Mekhnacha, K., 2013.
Bayesian Programming. CRC Press, Boca Raton, Florida.

Carrasco, M., 2011. Visual attention: The past 25 years. Vision Re-
search 51, 1484–1525.

Coltheart, M., Rastle, K., Perry, C., Langdon, R., Ziegler, J. C., 2001.
DRC: A dual route cascaded model of visual word recognition and
reading aloud. Psychological Review 108 (1), 204–256.

Davis, C. J., 2010. The spatial coding model of visual word identifi-
cation. Psychological Review 117 (3), 713.

Dehaene, S., Cohen, L., Sigman, M., Vinckier, F., 2005. The neural
code for written words: a proposal. Trends in Cognitive Sciences
9 (7), 335–341.

Duncan, J., Bundesen, C., Olson, A., Humphreys, G., Chavda, S.,
Chibuya, H., 1999. Systematic analysis of deficits in visual atten-
tion. Journal of Experimental Psychology: General 128 (4), 450–
478.

Ferrand, L., 2000. Reading aloud polysyllabic words and nonwords:
The syllabic length effect reexamined. Psychonomic Bulletin &
Review 7 (1), 142–148.

Ferrand, L., Brysbaert, M., Keuleers, E., New, B., Bonin, P., Méot,
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Ferrand, L., Méot, A., Spinelli, E., New, B., Pallier, C., Bonin, P.,
Dufau, S., Mathôt, S., Grainger, J., 2017. MEGALEX: A megas-
tudy of visual and auditory word recognition. Behavior Research
Methods, 1–23.

Ferrand, L., New, B., 2003. Syllabic length effects in visual word
recognition and naming. Acta Psychologica 113 (2), 167–183.

Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A.,
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