
HAL Id: hal-02097321
https://hal.science/hal-02097321v1

Submitted on 11 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel parametric linear programming solving, and
application to polyhedral computations

Camille Coti, David Monniaux, Hang Yu

To cite this version:
Camille Coti, David Monniaux, Hang Yu. Parallel parametric linear programming solving, and ap-
plication to polyhedral computations. International conference on computational science, Jun 2019,
Faro, Portugal. pp.566-572, �10.1007/978-3-030-22750-0_52�. �hal-02097321�

https://hal.science/hal-02097321v1
https://hal.archives-ouvertes.fr

Parallel parametric linear programming solving,
and application to polyhedral computations

Camille Coti David Monniaux Hang Yu

April 11, 2019

Abstract

Parametric linear programming is central in polyhedral computa-
tions and in certain control applications. We propose a task-based
scheme for parallelizing it, with quasi-linear speedup over large prob-
lems.

1 Introduction

A convex polyhedron, or polyhedron for short here, in dimension n is the
solution set over Qn (or, equivalently, Rn) of a system of inequalities (with
integer or rational coefficients). Polyhedra in higher dimension are typically
used to enclose the reachable states of systems whose state can be expressed,
at least partially, as a vector of reals or rationals; e.g. hybrid systems or
software [3].

The conventional approaches for polyhedral computations are the dual
description (using both vertices and faces) and Fourier-Motzkin elimination.
They both suffer from high complexity on relevant cases. We instead ex-
press image, projection, convex hull etc. as solutions to parametric linear
programmings, where parameters occur linearly within the objective. A so-
lution to such a program is a quasi-partition of the space of parameters into
polyhedra, with one optimum associated to each polyhedron. The issue is
how to compute this solution efficiently. In this article, we describe how we
parallelized our algorithm.

2 Sequential algorithms

Here we are leaving out how polyhedral computations such as projection
and convex hull can be reduced to parametric linear programming — this is
covered in the literature [4, 7] — and focus on solving the parametric linear
programs.

1

2.1 Non-parametric linear programming (LP)

A linear program with n unknowns is defined by a system of equations AX =
B, where A is an m×n matrix; a solution is a vector X such that X ≥ 0 on
all coordinates and AX = B. The program is said to be feasible if it has at
least one solution, infeasible otherwise. In a non-parametric linear program
one considers an objective C: one wants the solution that maximizes CTX.
The program is deemed unbounded if it is feasible yet it has no such optimal
solution.

Example 1. Consider the polygon P defined by x1 ≥ 0, x2 ≥ 0, 3x1−x2 ≤ 6,
−x1 + 3x2 ≤ 6. Define x3 = 6− 3x1 + x2 and x4 = 6 + x1 − 3x2. Let X =
(x1, x2, x3, x4), and then P is the projection onto the first two coordinates of
the solution set of AX = B ∧X ≥ 0 where A =

[
1 −3 0 −1
−3 1 −1 0

]
and B = [6

6].

An LP solver takes as input (A,B,C) and outputs “infeasible”, “un-
bounded” or an optimal solution. Most solvers work with floating-point
numbers and their final answer may be incorrect: they may answer “infeasi-
ble” whereas the problem is feasible, or give “optimal solutions” that are not
solutions, or not optimal.

In addition to a solution X∗, solvers also provide the associated basis:
X∗ is defined by setting n −m of its coordinates to 0 (known as nonbasic
variables) and solving for the other coordinates (known as basic variables)
using AX∗ = B, and the solver provides the partition into basic and nonbasic
variables it used. If a floating-point solver is used, it is possible to reconstruct
an exact rational point X∗ using that information and a library for solving
linear systems in rational arithmetic. One then checks whether it is truly a
solution by checking X∗ ≥ 0.

The optimal basis also contains a proof of optimality of the solution. We
compute the objective function CTX as

∑
i∈N αiXi+c where N is the set of

indices of the nonbasic variables and c is a constant, and conclude that the
solution obtained by setting these nonbasic variables to 0 is maximal because
all the αi are nonpositive. If X∗ is not a solution of the problem (X∗ ≥ 0
fails) or is not optimal, then we fall back to an exact implementation of the
simplex algorithm.

Example 1 (continued). Assume the objective is C =
[
1 1 0 0

]
, that

is, CTX = x1 + x2. From AX = B we deduce x1 = 3 − 3
8x3 − 1

8x4 and
x2 = 3− 1

8x3 − 3
8x4. Thus x1 + x2 = 6− 1

2x3 − 1
2x4.

Assume x3 and x4 are nonbasic variables and thus set to 0, then X∗ =
(x1, x2, x3, x4) = (3, 3, 0, 0). It is impossible to improve upon this solution:
as X ≥ 0, changing the values of x3 and x4 can only decrease the objective
o = 6 − 1

2x3 − 1
2x4. This expression of o from the nonbasic variables can

be obtained by linear algebra once the partition into basic and nonbasic
variables is known.

While the optimal value CTX∗, if it exists, is unique for a given (A,B,C),

2

there may exist several X∗ for it, a situation known as dual degeneracy. The
same X∗ may be described by different bases, a situation known as primal
degeneracy, happening when more than n −m coordinates of X∗ are zero,
and thus some basic variables could be used as nonbasic and the converse.

2.2 Parametric linear programming (PLP)

For a parametric linear program, we replace the constant vector C by C0 +∑k
i=1 µiCi where the µi are parameters.1 When the µi change, the optimum

X∗ changes. Assume temporarily that there is no degeneracy. Then, for
given values of the µi, the problem is either unbounded, or there is one single
optimal solution X∗. It can be shown that the region of the (µ1, . . . , µk)
associated to a given optimum X∗ is a convex polyhedron (if C0 = 0, a
convex polyhedral cone), and that these regions form a quasi partition of the
space of parameters (two reegions may overlap at their boundary, but not
in their interior) [4, 5, 7]. The output of the parametric linear programming
solver is this quasi-partition, and the associated optima—in our applications,
the problem is always bounded in the optimization directions, so we do not
deal with the unbounded case.

Let us see in more details about how to compute these regions. We wish
to attach to each basis (at least, each basis that is optimal for at least one
vector of parameters) the region of parameters for which it is optimal.

Example 1 (continued). Instead of C =
[
1 1 0 0

]
we consider C =[

µ1 µ2 0 0
]
. Let us now express o = CTX as a function of the non-

basic variables x3 and x4:

o = (3µ1 + 3µ2) +
(
−3

8µ1 − 1
8µ2

)
x3 +

(
−1

8µ1 − 3
8µ2

)
x4 (1)

The coefficients of x3 and x4 are nonpositive if and only if 3µ1 +µ2 ≥ 0 and
µ1 + 3µ2 ≥ 0, which define the cone of optimality associated to that basis
and to the optimum X∗ = (3, 3, 0, 0).

The description of the optimality polyhedron by the constraints obtained
from the sign conditions in the objective function may be redundant: con-
taining constraints that can be removed without changing the polyhedron.
Our procedure [6] for removing redundant constraints from the description
of a region R1 also provides a set of vectors outside of R1, a feature that will
be useful.

Assume now we have solved the optimization problem for a vector of
parameters D1, and obtained a region R1 in the parameters (of course, D1 ∈
R1). We store the set of vectors outside of R1 provided by the redundancy
elimination procedure into a “working set” W to be processed, choose D2 in
it. We compute the region R2 associated to D2. Assume that R2 and R1

1There exists another flavor of PLP with parameters in the right-hand sides of the
constraints.

3

Algorithm 1 Concurrent push on the shared region structure.

procedure push_region(R)
atomic (i← nfill; nfill ← nfill +

1)
regions[i]← R
while nready < i do

possibly use a condition
variable instead of spinning

end while . nready = i
atomic nready ← i+ 1

end procedure

are adjacent, meaning that they have a common boundary. We get vectors
outside of R2 and add them to W . We pick D3 in W , check that it is not
covered by R1 or R2, and, if it is not, compute R3, etc. The algorithm
terminates when W becomes empty, meaning the R1, . . . produced form the
sought quasi-partition.

This simplistic algorithm can fail to work because it assumes that it is
discovering the adjacency relation of the graph. The problem is that, if we
move from a region Ri to a vector Dj /∈ Ri, it is not certain that the region
Rj generated from Dj is adjacent to Ri — we could miss some intermediate
region. We modify our traversal algorithm as follows. The working set
contains pairs (R,D′) where R is a region and D′ /∈ R a vector (there is a
special value none for R). The region R′ corresponding to D′ is computed.
If R and R′ are not adjacent, then a vector D′′ in between R and R′ is
computed, and (R,D′′) added to the working set. This ensures that we
obtain a quasi-partition in the end. Additionally, we obtain a spanning tree
of the region graph, with edges from R to R′.

The last difficulty is degeneracy. We have so far assumed that each
optimization direction corresponds to exactly one basis. In general this is
not the case, and the interiors of the optimality regions may overlap. This
hinders performance. The final result is no longer a quasi-partition, but
instead just a covering of the parameter space—enough for projection, convex
hull etc. being correct.

3 Parallel parametric linear programming

Our algorithms are designed in a task-based execution model. The sequential
algorithm executes tasks taken from a working set, which can themselves
spawn new tasks. In addition, it maintains the set regions of regions already
seen, used: i) for checking if a vector D belongs to a region already covered
(is_covered); ii) for checking adjacency of regions; iii) for adding new regions
found. Therefore, in a parallel task model, this algorithm is straightforwardly
parallel. The regions are inserted into a concurrent array. We investigated
two task scheduling strategies. A static approach starts all the available
tasks, waits for them to complete and collects all the new tasks (R,D) into
the working set, until no new task is created and the working set is empty. A

4

Algorithm 2 Task for parallel linear programming solver.
push_tasks adds new tasks to be processed (different under TBB and
OpenMP).
test_and_insert(T, x) checks whether x already belongs to the hash table
T , in which case it returns true; otherwise it adds it and returns false. This
operation is atomic.

procedure process_task((Rfrom, D))
Rcov ← is_covered(D, regions)
if Rcov == none then

basis ← float_lp(A,B,C(D))
if ¬test_and_insert(bases, basis)

then
X∗ ← exact_point(basis)
o← exact_objective(basis)
if ¬(X∗ ≥ 0 ∧ o ≤ 0)

then
(basis, X∗) ←

exact_lp(A,B,C(D))
end if
S ← sign_conditions(basis)
R← eliminate_redundancy(S)
for each constraint i in

R do
Dnext ← compute_next(R, i)
push_tasks(Dnext)

end for
push_region(R,X ∗)

Rcov ← R
end if

end if
if ¬are_adjacent(Rfrom, Rcov)

then
D′ ← midpoint(Rfrom, Rcov, D)
W ←W ∪ {(Rfrom, D

′)}
end if

end procedure

procedure is_covered(D, regions))
for i ∈ 0 . . . nready − 1 do .

nready to be read at every loop it-
eration

(R,X∗)← regions[i]
if D covered by R then

return(R)
end if

end for
return(none)

end procedure

dynamic approach allows adding new tasks to the working set dynamically
and runs the tasks until that set is empty.

The number of tasks running to completion (not aborted early due to a
test) is the same as the number of generated regions. The is_covered(D, regions)
loop can be easily parallelized as well. We opted against it as it would in-
troduce a difficult-to-tune second level of parallelism.

We implemented these algorithms using Intel’s Thread Building Blocks
(TBB [8]) and OpenMP tasks [1], both providing a task-based parallelism
model with different features.

The dynamic task queue can be implemented using TBB’s tbb::parallel_do,
which dynamically schedules tasks from the working set on a number of
threads. The static scheduling approach can simply be implemented by a
task synchronization barrier (such as OpenMP’s barrier).

That first implementation of the dynamic task scheduling approach was
slow. The working set often contained tasks such that the regions gener-

5

0 4 8 12 16 20 24 28 32
Number of threads

0

100

200

300

400

500

600

Ex
ec

ut
ion

 tim
e (

s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

Execution time
Speedup

(a) 2 dimensions projected

0 4 8 12 16 20 24 28 32
Number of threads

0

50

100

150

200

250

300

350

400

Ex
ec

ut
ion

 tim
e (

s)

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

Execution time
Speedup

(b) 5 dimensions projected

Figure 1: 9 constraints, no redundant ones, 16 variables, 2–36 regions,
OpenMP.

0 4 8 12 16 20 24 28 32
Number of threads

0

10000

20000

30000

40000

50000

60000

Ex
ec

ut
ion

 tim
e (

s)

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

Execution time
Speedup

(a) 2 dimensions projected, 4 redundant con-
straints

4 8 12 16 20 24 28 32
Number of threads

0

10000

20000

30000

40000

50000

Ex
ec

ut
ion

 tim
e (

s)

0

2

4

6

8

Sp
ee

du
p

Execution time
Speedup

(b) 5 dimensions projected, 4 redundant con-
straints

Figure 2: 24 constraints, 10 variables, 8–764 regions, OpenMP.

ated from them were the same, leading to redundant computations. The
workaround was to add a hash table storing the set of bases (each being
identified by the ordered set of its basic variables) that have been or are
currently being processed. A task will abort after solving the floating-point
linear program if it finds that its basis is already in the table.

4 Performance evaluation

We implemented our parallel algorithms in C++, with three alternate schemes
selectable at compile-time: no parallelism, OpenMP parallelism or TBB.

All benchmarks were run on the Paranoia cluster of Grid’5000 [2] and
on a server called Pressembois. Paranoia has 8 nodes, each with 2 Intel R©

Xeon R© E5-2660v2 CPUs (10 cores, 20 threads/CPU) and 128 GiB of RAM.
Code was compiled using GCC 6.3.1 and OpenMP 4.5 (201511). The nodes
run Linux Debian Stretch with a 4.9.0 kernel. Pressembois has 2 Intel Xeon
Gold 6138 CPU (20 cores/CPU, 40 threads/CPU) and 192 GiB of RAM. It
runs a 4.9 Linux kernel, and we used GCC 6.3. Every experiment was run

6

0 5 10 15 20 25 30 35 40
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
ion

 tim
e (

s)
1e8

0

5

10

15

20

25

Sp
ee

du
p

Execution time
Speedup

(a) OpenMP on Paranoia

0 10 20 30 40 50 60 70 80
Number of threads

0

1

2

3

4

5

Ex
ec

ut
ion

 tim
e (

s)

1e7

0

5

10

15

20

25

30

Sp
ee

du
p

Execution time
Speedup

(b) TBB on Pressembois

Figure 3: 120 constraints, 50 variables, 1 dimension projected, 3459–3718
regions.

10 times. The plots presented in this section provide the average and stan-
dard deviation. Paranoia was used for the OpenMP experiments, whereas
Pressembois was used for TBB.

We evaluated our parallel parametric linear programming implementa-
tion by using it to project polyhedra, a very fundamental operation. We
used a set of typical polyhedra, with different characteristics: numbers of di-
mensions, of dimensions to be projected and of constraints, sparsity. Here we
present a subset of these benchmarks, each comprising 50 to 100 polyhedra.

On problems that have only few regions, not enough parallelism can be
extracted to exploit all the cores of the machine. For instance, Figure 1
presents two experiments on 2 to 36 regions using the OpenMP version. It
gives an acceptable speed-up on a few cores (up to 10), then the computa-
tion does not generate enough tasks to keep the additional cores busy. As
expected, when the solution has many regions, computation scales better.
Figure 2 presents the performance obtained on polyhedra made of 24 con-
straints, involving 8 to 764 regions, using the OpenMP version. The speed-up
is sublinear, especially beyond 20 cores.

On larger polyhedra, with 120 constraints and 50 variables, the speedup
is close to linear with both OpenMP and TBB (Fig. 3). The parallelism
extracted from the computation is illustrated by Fig. 4, on a polyhedron
involving 29 constraints and 16 variables. Figure 4b shows the number of
parallel tasks.

References

[1] OpenMP Application Programming Interface, 4.5 edition, 2015.

[2] F. Cappello and al. Grid’5000: A large scale and highly reconfigurable
grid experimental testbed. In International Workshop on Grid Comput-
ing. IEEE/ACM, 2005.

7

0

1

2

3

4

5

6

7

8

9

10

31

32

33

34

11 12 13

14

29

15 16 17 18 19 20 21

22

28

23

25

24

26 27

30

(a) 1 thread

0

1 2 3 4 5 6 7

9 10 11 12 17 22 13 14 15 16 8 18 19 20 21

2423 25 28 30 26 31 27 29 37 33 32 34

35 36

(b) 30 threads

3 6 9 12 15 18
Number of threads

0

1000

2000

3000

4000

5000

Ex
ec

ut
io

n
tim

e
(s

)

0

1

2

3

4

5

6

Sp
ee

du
p

Execution time
Speedup

(c) Performance

Figure 4: Generation graph of the regions from one polyhedron, computed
with 1 and 30 threads. The region graphs, depending on overlaps etc., are
different; the numbers in both trees have no relationship.

[3] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In POPL, pages 84–96. ACM
Press, 1978.

[4] Colin. Jones and al. On polyhedral projections and parametric program-
ming. J. Optimization Theory and Applications, 138(2):207–220, 2008.

[5] Colin N. Jones, Eric C. Kerrigan, and Jan M. Maciejowski. Lexicographic
perturbation for multiparametric linear programming with applications
to control. Automatica, 2007.

[6] A. Maréchal and M. Périn. Efficient elimination of redundancies in poly-
hedra by raytracing. In VMCAI, volume 10145 of LNCS, pages 367–385.
Springer, 2017.

[7] Alexandre Maréchal, David Monniaux, and Michaël Périn. Scalable
minimizing-operators on polyhedra via parametric linear programming.
In SAS. Springer, 2017.

[8] James Reinders. Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. " O’Reilly Media, Inc.", 2007.

8

	Introduction
	Sequential algorithms
	Non-parametric linear programming (LP)
	Parametric linear programming (PLP)

	Parallel parametric linear programming
	Performance evaluation

