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POTENTIALLY CRYSTALLINE DEFORMATION RINGS IN THE ORDINARY CASE

We study potentially crystalline deformation rings for a residual, ordinary Galois representation ρ : G Qp → GL 3 (Fp). We consider deformations with Hodge-Tate weights (0, 1, 2) and inertial type chosen to contain exactly one Fontaine-Laffaille modular weight for ρ. We show that, in this setting, the potentially crystalline deformation space is formally smooth over Zp and any potentially crystalline lift is ordinary. The proof requires an understanding of the condition imposed by the monodromy operator on Breuil modules with descent datum, in particular, that this locus mod p is formally smooth.

Introduction

One of the aims of the p-adic Local Langlands correspondence is a description of p-adic automorphic forms in terms of Galois parameters. From this perspective, Serre weight type conjectures (cf. [START_REF] Serre | Sur les représentations modulaires de degré 2 de Gal(Q/Q)[END_REF], [START_REF] Buzzard | On Serre's conjecture for mod Galois representations over totally real fields[END_REF], [START_REF] Herzig | The weight in a Serre-type conjecture for tame n-dimensional Galois representations[END_REF], [START_REF] Gee | Automorphic lifts of prescribed types[END_REF]) are the first milestone to investigate a p-modular correspondence ( [START_REF]Sur quelques représentations modulaires et p-adiques de GL 2 (Qp). I[END_REF], [START_REF] Breuil | Towards a modulo p langlands correspondence for GL 2[END_REF], [START_REF] Breuil | Ordinary representations of G(Qp) and fundamental algebraic representations[END_REF]) and predict the structure of certain local deformation rings which are relevant for the refined modularity lifting techniques ( [START_REF]Moduli of finite flat group schemes, and modularity[END_REF], [START_REF] Gee | The Breuil-Mézard conjecture for potentially Barsotti-Tate representations[END_REF]).

The Breuil-Mézard conjecture ([BM02], [START_REF]Multiplicités modulaires raffinées[END_REF], [START_REF] Emerton | A geometric perspective on the Breuil-Mézard conjecture[END_REF]) is intimately related to the above phenomena and gives an explicit relation between the irreducible components of the special fiber of local deformation rings and the representation theory of GL n (F q ). In the case of GL 2 , the conjecture is known in the potentially Barsotti-Tate case by [START_REF] Gee | The Breuil-Mézard conjecture for potentially Barsotti-Tate representations[END_REF] using modularity lifting techniques. In general, the conjecture is closely related to deep modularity results ([EG14], Theorem 5.5.2). In this paper, we confirm an instance of the Breuil-Mézard conjecture for potentially crystalline deformation rings for GL 3 with Hodge-Tate weights (0, 1, 2).

Let us be more precise. If ρ : G Qp → GL n (F) is a continuous Galois representation, where F/F p is a finite extension (the "field of coefficients") one can consider the Galois deformation ring R 2,τ,λ ρ parameterizing potentially semistable lifts of ρ having constraints from p-adic Hodge theory -a p-adic Hodge type λ ∈ Z n and an inertial type τ : I Qp → GL n (E), where I Qp is the inertia subgroup of G Qp and E/Q p is a finite extension of Q p , with residue field F.

If λ = (λ 1 , . . . , λ n ) with λ i < λ i+1 (i.e., regular Hodge-Tate weights), then one can naturally associate a semisimple GL n (F p )-representation F (λ, τ ) with F coefficients to the constraints (λ, τ ); in particular, if σ denotes a weight, i.e. an isomorphism class of irreducible GL n (F p )-representation, we can consider the multiplicity m σ (λ, τ ) ∈ N of σ appearing in F (λ, τ ).

Conjecture 1.1 (Breuil-Mézard conjecture). There exists integers µ σ (ρ) ∈ N such that, for any regular Hodge type λ ∈ Z n and any inertial type τ , one has

HS R 2,τ,λ ρ ⊗ F = σ m σ (λ, τ )µ σ (ρ)
where HS R 2,τ,λ ρ ⊗ F denotes the Hilbert-Samuel multiplicity of the special fiber of the deformation space R 2,τ,λ ρ .

When the Hodge type is given by λ = (0, 1, . . . , n -1) then F (λ, τ ) is the mod-p reduction of an automorphic type, and the Serre weight conjectures can be considered as a prediction for the intrinsic multiplicities µ σ (ρ). As soon as n ≥ 3, several complications arise in questions related to Breui-Mézard and modularity lifting. On the representation theory side, the mod p irreducible representations of GL n (F p ) no longer arise as reductions of lattices in algebraic representations over Z p . This leads to the phenomenon of shadow weights (see [START_REF] Herzig | The weight in a Serre-type conjecture for tame n-dimensional Galois representations[END_REF], [START_REF] Emerton | Weight cycling and Serre-type conjectures for unitary groups[END_REF]§6]). On the Galois side, the integral p-adic Hodge theory used to study potentially crystalline deformation rings of type λ becomes more subtle.

More precisely, let K/Q p finite extension (which we assume to be totally ramified for simplicity) and let π be a uniformizer of K. Choose a compatible system of ppower roots π 1/p n and define K ∞ = ∪ n K(π 1/p n ) ⊂ K. Let G K denote the absolute Galois group of K and let G K∞ := Gal(K/K ∞ ). In general, the restriction functor

Rep cris G K (Q p ) → Rep G K∞ (Q p )
is fully faithful and its image is contained in the finite height G K∞ -representations ([Kis06, Corollary 2.1.14]). Both these categories are described by linear algebra data using p-adic Hodge theory. From that perspective, the essential image of the functor is characterized by a Griffiths transversality condition. In the Barsotti-Tate case (i.e., height ≤ 1), Griffiths transversality is always satisfied and this gives more precise control over Barsotti-Tate deformation rings. The difficulty that arises in higher weight situations is to understand which representations of G K∞ descend to (potentially) crystalline representations of G K (integrally as well). In this paper, we address this question for tamely potentially crystalline deformation rings for Q p and GL 3 with Hodge-Tate weights (0, 1, 2) with some assumptions on ρ.

In order to state the main theorem, we let ρ : G Qp → GL 3 (F) be an ordinary three dimensional Galois representation of the form (1.1.1)

ρ| I Qp ∼ =   ω a2+2 * * 0 ω a1+1 * 0 0 ω a0  
where ω : I Qp → F p denotes the mod p cyclotomic character and a i ∈ N. Recall that ω : I Qp → Z × p denotes the Teichmüller lift of ω.

Theorem 1.2 (Theorem 5.7). Let ρ : G Qp → GL 3 (F) be an ordinary Galois representation as in (1.1.1). Assume that the integers a i ∈ N verify a 1 -a 0 , a 2a 1 > 3 and a 2 -a 0 < p -4 and define the inertial type τ def = ω a2 ⊕ ω a1 ⊕ ω a0 . Let R 2,(0,1,2),cris,τ ρ be the framed potentially crystalline deformation ring for ρ, with Galois type τ and Hodge type (0, 1, 2) and assume that SpfR 2,(0,1,2),cris,τ ρ is non-empty. Then R 2,(0,1,2),cris,τ ρ is formally smooth of relative dimension 12.

Theorem 1.2 is obtained by explicitly constructing a formally smooth morphism R 2,τ M → R 2,(0,1,2),cris,τ ρ , where R 2,τ M is a moduli space of strongly divisible modules M lifting ρ which we can control by means of integral p-adic Hodge theory. There are two key ingredients. First, for our choice of τ , a detailed study of the filtration and Frobenius building on techniques of [START_REF]Sur un problème de compatibilité local-global modulo p pour GL 2[END_REF] shows that any strongly divisible module lifting ρ is ordinary. This gives us a formally smooth family of ordinary quasi-Breuil modules (i.e., with no monodromy operator). Secondly, as a consequence of the genericity assumptions on τ , the condition imposed by the existence of monodromy on an ordinary rank 3 Breuil module mod p turns out to be exceedingly simple. In this case, the vanishing of a single variable of the smooth family of quasi-Breuil modules.

We now briefly discuss how Theorem 1.2 is predicted by the Breuil-Mézard conjecture. Recall that isomorphism classes of regular Serre weights are in bijection with triples (a 2 , a 1 , a 0 ) ∈ Z 3 satisfying p-1 > a 2 -a 1 , a 1 -a 0 ≥ 0 and p-1 > a 0 ≥ 0. In the hypotheses of theorem 5.7, the inertial type τ contains exactly one weight σ(a 2 , a 1 , a 0 ) in the conjectural set of Serre weights for ρ; it is an obvious weight for ρ in the terminology of [GHS], in the Fontaine-Laffaille range. In particular, the Breuil-Mézard conjecture then predicts that R 2,(0,1,2),cris,τ ρ should be formally smooth and so Theorem 1.2 confirms an instance of the conjecture for GL 3 .

Remark 1.3. While proving Theorem 1.2, we also explicitly exhibit the geometric Breuil-Mézard conjecture of [START_REF] Emerton | A geometric perspective on the Breuil-Mézard conjecture[END_REF] in this setting. Namely, we show that special fiber of SpfR 2,(0,1,2),cris,τ ρ inside the unrestricted universal framed Galois deformation space coincides with the special fiber of the (Fontaine-Laffaille) crystalline deformation ring with Hodge-Tate weights (a 2 + 2, a 1 + 1, a 0 ).

As a consequence of our careful study of the filtration and Frobenius on strongly divisible modules, we get the following nice corollary: Theorem 1.4. Let ρ : G Qp → GL 3 (F) be an ordinary Galois representation as in (1.1.1). Assume that the inertial type τ is as in Theorem 5.7 and that the integers a i verify p -4 > a 2 -a 1 , a 1 -a 0 > 3. Then, any potentially crystalline lift ρ of ρ, with Hodge type (0, 1, 2) and inertial type τ is ordinary.

We remark that for Theorem 1.4, we do not require a Fontaine-Laffaille condition on the inertial weights.

Remark 1.5. Work in progress of the two authors and Bao V. Le Hung and Daniel Le will use Kisin modules with descent datum to study potentially crystalline deformation rings for GL 3 for more general ρ (for example, semi-simple) where one expects the deformation ring not to be formally smooth. This will have applications to Serre weight conjectures, Breuil-Mézard and modularity lifting.

The paper is organized as follows.

In §2, we recall various categories of semilinear algebra objects with descent data: Breuil modules, strongly divisible lattices, étale ϕ-modules. We elucidate the relations among such categories and with the categories of Galois representations. We work in families, i.e. allowing coefficients in local, complete, Noetherian O Ealgebras.

The technical heart of the paper is in §3. After proving the uniqueness of framed Breuil module M associated to ρ, we perform a p-adic convergence argument which provides us with a complete description of the filtration and Frobenius on strongly divisible lattices lifting ρ.

In §4, we study the monodromy operator on Breuil modules associated to ρ. The main result, Proposition 4.3, provides us with explicit equations for the space of Breuil modules sitting inside the space of finite height modules.

The main results of the paper are in §5. We employ the techniques of [EGS15, §7] to study the moduli space R 2,τ M of framed strongly divisible modules lifting M. From the formal smoothness of the special fiber we deduce the main result on the formal smoothness of the potentially crystalline deformation ring over Z p (Theorem 5.7). For this, we use the technique of [START_REF]Multiplicités modulaires raffinées[END_REF] to compare the deformation space of strongly divisible lattices and the potentially crystalline deformation ring (5.5).

1.1. Notations. We write ε p for the p-adic cyclotomic character and ω for its mod p reduction. We normalize the Hodge-Tate weights in such a way that ε p has a Hodge-Tate weight -1.

We consider the tamely, totally ramified extension K/Q p defined by

K def = Q p ( e √ -p
) where e = p -1. Recall that the choice of a uniformizer π ∈ K provides us with a character

ω π : Gal(K/Q p ) → Z × p σ → σ(π) π which induces an isomorphism ω π : Gal(K/Q p ) ∼ → F ×
p after reduction modulo p. If no confusion is possible, we will simply write ω instead of ω π .

We fix a finite extension E/Q p such that Hom(K, E) = Hom(K, Q p ). We write O E for its ring of integers, F its residue field and = E ∈ O E to denote an uniformizer. If x ∈ F p , we write x to denote its Teichmüller lift and, conversely, the mod p reduction of an element x ∈ Z p will be denoted by x.

We fix an embedding K → E. Nothing in what follows depends on this choice. We usually write R (resp. R) to denote a local, complete noetherian O E -algebra (resp. local artinian F-algebra). If R is such an algebra, we write R to denote its special fiber R ⊗ O E F. All the representations and modules considered in this paper will be realized over one of the above rings E, O E , R.

Given a potentially semistable p-adic representation ρ : G Qp → GL n (E), we write WD(ρ) to denote the associated Weil-Deligne representation as defined in [START_REF] Conrad | Modularity of certain potentially Barsotti-Tate Galois representations[END_REF], Appendix B.1. We refer to WD(ρ)| I Qp as the inertial type associated to ρ. Note that, in particular, WD(ρ) is defined via the covariant Dieudonné module D st (ρ)

def = lim -→ H/Qp (B st ⊗ Qp ρ) G H .

Integral p-adic Hodge Theory

The aim of this section is to recall and extend a comparison result between Fontaine-Laffaille modules and Breuil modules with coefficients.

We write S Zp to denote the usual Breuil ring: the p-adic completion of the divided power envelope of Z p [u] with respect to the ideal generated by the Eisenstein polynomial E(u) def = u e +p (compatibly with the divided power on the ideal pZ p [u]). We write

S Fp def = S Zp / p, Fil p S Zp , recalling that S Fp ∼ = F p [u]/(u ep ). If R (resp. R) is a local noetherian O E -algebra (resp. local artinian F-algebra), we write S R (resp. S R ) to denote the m R -adic completion of the ring S Zp ⊗ Zp R (resp. the ring S Fp ⊗ Fp R). Note that S Fp ⊗ Fp R ∼ = R[u]/(u ep ). If the rings R, R
are clear from the context, we simply write S, S.

The rings S Zp , S Fp are endowed with additional structures. Namely, we have a continuous, semilinear Frobenius ϕ (defined by ϕ(u) = u p ), a monodromy operator N = -u d du and a continuous semilinear action of ∆

def = Gal(K/Q p ) (defined by g • u def = ω(g)u)
. By base change, we obtain the evident additional structures (Frobenius, monodromy and ∆ action) on S R , S R , endowing R, R with the trivial Frobenius, monodromy and ∆-action.

We now introduce the various categories of modules (Breuil modules, strongly divisible modules, étale ϕ-modules) and their relation to Galois representations.

A Breuil module over R is the datum of a quadruple (M R , Fil r M R , ϕ r , N ) where

(1)

M def = M R is a finitely generated, free S R -module; (2) Fil r M is a S R -submodule of M, verifying u er M ⊆ Fil r M;
(3) the morphism ϕ r : Fil r M → M is ϕ-semilinear and the associated fibered product S Fp ⊗ Fp Fil r M → M is surjective; (4) the operator N : M → M is R-linear and satisfies the following properties:

(a) N (P (u)x) = P (u)N (x) + N (P (u))x for all x ∈ M,

P (u) ∈ S R ; (b) u e N (Fil r M) ⊆ Fil r M; (c) ϕ r (u e N (x)) = N (ϕ r (x)) for all x ∈ Fil r M.
A morphism of Breuil modules is defined as an S R -linear morphism which is compatible, in the evident sense, with the additional structures (monodromy, Frobenius, filtration). If R is clear from the context, we simply write M instead of M R .

A descent data relative to Q p on a Breuil module M is the datum of an action of ∆ on M by semilinear automorphisms and which are compatible, in the evident sense, with the additional structures on M. We write R-BrMod r dd to denote the category of Breuil modules with descent data and R coefficients.

We recall ([HLM], §2.2.1) that R-BrMod r dd is an exact category and we have an exact, faithful, contravariant functor

T * st : R-BrMod r dd → Rep R (G Qp ) M R → T st (M) def = Hom(M R , A)
where A is the period ring defined in [EGH13, §3.2] based on [Bre99a, §2.2]. We define, in the evident analogous way, the category R-BrMod r dd,0 of quasi-Breuil module with descent data and coefficients: the objects and morphisms are defined as for R-BrMod r dd , the only difference being that we do not require M to be endowed with a monodromy operator.

Recall that for a sequence (p n ) n ∈ Q p N verifying p p n = p n-1 for all n we define the Kummer extension 

(Q p ) ∞ def = ∪ n∈N Q p (p n ).
(M) = T * st (M)| G (Qp) ∞ if M ∈ R-BrMod r dd . A Fontaine-Laffaille module (M R , Fil • M R , φ • ) over R is the datum of (1) a finite free R-module M = M R ;
(2) a separated, exhaustive and decreasing filtration {Fil j M } j∈Z on M by R submodules which are direct summands (the Hodge filtration);

(3) a linear Frobenius isomorphism φ • : gr • M → M Defining the morphisms in the obvious way, we obtain the abelian category R-FL of Fontaine-Laffaille modules over R. Given a Fontaine-Laffaille module M as above, the set of its Hodge-Tate weights is defined as

HT def = i ∈ N, rk R Fil i M Fil i+1 M = 0 .
Definition 2.1. Let M be a Fontaine-Laffaille module over R. An R-basis f = (f 1 , . . . , f n ) on M is compatible with the filtration if for all i ∈ N there exists

j i ∈ N such that Fil i M = n j=ji R • f j .
In particular, the principal symbols (gr(f 1 ), . . . , gr(f n )) provide an R-basis for gr • M .

Given a Fontaine-Laffaille module and a compatible basis f , it is convenient to describe the Frobenius action via a matrix Mat f (φ • ) ∈ GL n (R), defined in the obvious way using the principal symbols (gr(f 1 ), . . . , gr(f n )) as a basis on gr • M .

It is customary to write R-FL [0,p-2] to denote the full subcategory of R-FL formed by those modules M verifying Fil 0 M = M and Fil p-1 M = 0 (it is again an abelian category). We have the following description of mod p Galois representations of G Qp via Fontaine-Laffaille modules: Theorem 2.2. There is an exact, fully faithful contravariant functor

T * cris : R-FL [0,p-2] → Rep R (G Qp )
We finally recall the categories of étale ϕ-modules over R((π)) introduced by Fontaine ( [START_REF] Fontaine | Représentations p-adiques des corps locaux. II[END_REF]). Let F p ((p)) be the field of norms associated to (Q p , p). In particular, p is identified with a sequence (p n ) n ∈ Q p N verifying p p n = p n-1 for all n. We define the category R-Mod whose objects are free R ⊗ Fp F p ((p))-modules of finite rank D endowed with a semilinear Frobenius map ϕ : D → D whose action is étale.

A formal modification (allowing R-coefficients) of work of Fontaine [START_REF] Fontaine | Représentations p-adiques des corps locaux. II[END_REF] provides an anti-equivalence

R-Mod ∼ -→ Rep R (G (Qp)∞ ) D -→ Hom ϕ D, F p ((p)) sep . Let us consider π def = e √ -p ∈ K. We can fix a sequence (π n ) n ∈ Q p N
such that π e n = p n for all n ∈ N and which is compatible with the norm maps

K(π n+1 ) → K(π n ) (cf. [Bre14], Appendix A). Letting K ∞ def = ∪ n∈N K(π n ), we have a canonical isomorphism Gal(K ∞ /(Q p ) ∞ ) → ∆ and we identify ω to a char- acter on Gal(K ∞ /(Q p ) ∞ ).
The field of norms F p ((π)) associated to (K, π) is then endowed with an action of ∆ given by g • π = ω(g)π. We can therefore define the category R-Mod dd of étale (ϕ, R ⊗ Fp F p ((π)))-modules with descent data: an object D is defined in the analogous, evident way as for the category R-Mod, but we moreover require that D is endowed with a semilinear action of Gal(

K ∞ /(Q p ) ∞ ) and the Frobenius ϕ is Gal(K ∞ /(Q p ) ∞ )-equivariant.
By allowing R-coefficients we deduce from [HLM], Appendix A (building on the classical result of Fontaine) the anti-equivalence

R-Mod dd ∼ -→ Rep R (G (Qp)∞ ) D → Hom ϕ (D, F p ((π)) sep ) .
The main result concerning the relations between the various categories and functors introduced so far is the following: Proposition 2.3. There exist faithful functors

M Fp((π)) : R-BrMod r dd → R-Mod dd and F : R-FL [0,p-2] → R-Mod fitting in the following commutative diagram: R-BrMod r dd M Fp ((π)) / / T * st R-Mod dd Hom( ,Fp((p)) s ) x x Rep R (G Qp ) Res / / Rep R (G (Qp)∞ ) R-FL [0,p-2] T * cris O O F / / R-Mod Hom( ,Fp((p)) s ) f f ⊗ Fp ((p)) Fp((π)) O O
where the the functor Res • T * cris is fully faithful. The functors M Fp((π)) , F are defined in [HLM], Appendix A, building on the classical work of Breuil [START_REF]Une application de corps des normes[END_REF] and Caruso-Liu [START_REF] Caruso | Quasi-semi-stable representations[END_REF].

In certain cases, the description of the functor M Fp((π)) is particularly concrete. Assume that the Breuil module M R has rank n, with descent data associated to a niveau one Galois type τ :

I Qp → GL n (O E ).
By fixing a framing τ = ω a1 ⊕ . . . ω an we have a basis (e 1 , . . . , e n ) for M R and a system of generators (f 1 , . . . , f n ) for Fil r M R which are compatible with τ :

g • e i = (ω ai (g) ⊗ 1)e i , g • f i = (ω ai (g) ⊗ 1)f i
for all i = 1, . . . , n and all g ∈ ∆ (cf. [HLM], §2.2.3).

In this case we say that e, f are compatible with the Galois type τ , or that e, f are a framed basis and a framed system of generators respectively (in the terminology of [HLM] one would say that M R is of type τ , cf. Definition 2.2.6 in loc. cit.).

Lemma 2.4. Let M be a Breuil module of rank n over R, with descent data associated to a Galois type τ : I Qp → GL n (O E ) and let e, f be a basis for M and a system of generators for Fil r M respectively, which are moreover compatible with τ .

Write , discussion before Corollary 3.2.9), compatible with the dual descent data, such that the Frobenius action is described by

V = V e,f ∈ M n (R ⊗ F S)
Mat e (φ) = V t A -1 t ∈ M n (R ⊗ Fp F p [[π]]) where V , A are lifts of V, A in M n (R ⊗ Fp F p [[π]]) via the reduction morphism R ⊗ Fp F p [[π]] R ⊗ Fp S.
We now recall some result in characteristic zero. Fix a positive integer r < p -1 and let R be a complete local noetherian O E -algebra. The category R-Mod r dd of strongly divisible R-modules (in Hodge-Tate weights [0, r], with descent data) consists of finitely generated free S R -modules M together with a sub S R -module Fil r M, additive maps ϕ r : Fil r M → M, N : M → M and S R -semilinear bijections g : M → M for each g ∈ ∆ such that the following conditions hold:

• Fil r M contains (Fil r S R )M; • Fil r M ∩ IM = IFil r M for all ideals I of R; • ϕ r (sx) = ϕ(s)ϕ(x) for all s ∈ S R and x ∈ M; • ϕ r (Fil r M) generates M over S R ; • N (sx) = N (s)x + sN (x) for all s ∈ S R and x ∈ M; • N ϕ r = pϕ r N ; • E(u)N (Fil r M) ⊂ Fil r M;
• for all g ∈ ∆, g commutes with ϕ r and N , and preserves Fil r M;

• g 1 • g 2 = g 1 • g 2 for all g 1 , g 2 ∈ ∆. The morphisms are S-module homomorphisms that preserve Fil r M and commute with ϕ r , N , and the descent data action.

We have a contravariant functor (cf. [START_REF] Savitt | On a conjecture of Conrad, Diamond, and Taylor[END_REF], §4 and Corollary 4.12) T * st : R-Mod r dd → Rep R (G Qp ) which is compatible with reduction mod p:

T * st (M) ⊗ R F ∼ = T * st (M ⊗ R F). Let Rep K-st,[-r,0] O E
(G Qp ) be the category of G Qp -stable O E -lattices inside Evalued, finite dimensional p-adic Galois representation of G Qp becoming semi-stable over K and with Hodge-Tate weights in [-r, 0]. We have a contravariant functor The following deep theorem provides the link between lattices in potentially semi-stable Galois representations and strongly divisible modules over O E :

T * st : O E -Mod r dd → Rep K-st,[-r,0] O E (G Qp ) where Rep K-st,[-r,0] O E (G Qp ) is the category of G Qp -stable O E -lattices inside E-valued,
Theorem 2.5 ([Liu08], [EGH13]). The contravariant functor T * st : O E -Mod r dd → Rep K-st,[-r,0] O E (G Qp )
establishes an anti-equivalence of categories if r < p -1. Moreover, by letting

ρ def = T * st (M) ⊗ O E E and D * st (ρ) be the associated contravari- ant filtered (ϕ, N )-module, we have an isomorphism (2.5.1) M ⊗ S O E E ∼ = D * st (ρ) via the base change S O E → E defined by u → 0.
As for Breuil modules, we can define the category of quasi-strongly divisible Rmodules R-Mod r dd,0 , where we omit the requirement for a monodromy operator (cf. [Liu08], §2). Again we have a contravariant functor T * qst towards the category of G (Qp)∞ -representations over O E , inducing an anti-equivalence: Theorem 2.6 ( [START_REF] Liu | On lattices in semi-stable representations: a proof of a conjecture of Breuil[END_REF]). The contravariant functor

T * qst : O E -Mod r dd,0 → Rep K-st,[-r,0] O E (G (Qp)∞ )
establishes an anti-equivalence of categories if r < p -1.

Here, we wrote Rep

K-st,[-r,0] O E (G (Qp)∞ ) to denote the category of G (Qp)∞ -stable O E -
lattices inside E-valued, finite dimensional p-adic Galois representation of G Qp becoming semi-stable over K and with Hodge-Tate weights in [-r, 0].

We will be mainly concerned with the covariant version of the above functors towards Galois representations. For this reason we define T r st : R-Mod

r dd → Rep R (G Qp ) and T r st : R-BrMod r dd → Rep R (G Qp ) via T r st ( M) def = T * st ( M) ∨ ⊗ ε r p , T r st (M) def = (T * st (M)) ∨ ⊗ ω r
respectively (where we write • ∨ to denote the usual linear dual).

Ordinary strongly divisible lattices

The aim of this section is to describe quasi-strongly divisible lattices (with a carefully chosen descent datum) associated to potentially crystalline lift of an ordinary residual Galois representation. We first study the filtration modulo p and then lift to O E . We perform a p-adic convergent argument generalizing the technique from [START_REF]Sur un problème de compatibilité local-global modulo p pour GL 2[END_REF]§5] for GL 2 to diagonalize the Frobenius in this setting. The main result is Theorem 3.6.

Let ρ : G Qp → GL 3 (F) be a continuous Galois representation. We assume that ρ is ordinary, of the form

ρ ∼   ω a2+2 µ α2 * * 0 ω a1+1 µ α1 * 0 0 ω a0 µ α0  
where µ αi denotes the unramified character on Z p verifying µ αi (p) = α i ∈ E × and where the exponents

a i ∈ N verify (3.0.1) a 1 -a 0 , a 2 -a 1 > 3, and a 2 -a 0 < p -4
Provided the conditions (3.0.1) we say that ρ is strongly generic.

It will be convenient to introduce the following notation for the subquotients of ρ: for i ∈ {0, 1} (resp. j ∈ {0, 1, 2}) we define:

ρ j def = ω aj +j µ αj , ρ i,i+1 def = ω ai+1+i+1 * 0 ω ai+1 .
With this formalism, we have ρ 0,2 def = ρ.

3.1. Filtration on ordinary quasi-strongly divisible modules. We show here that the relative position of the descent data τ and the inertial weights of ρ provide strong constraints on the filtration of strongly divisible lattices lifting ρ. The main result is Theorem 3.1, which is the first step in the proof of Theorem 3.6. We keep the notations of the previous section. In particular, ρ : G Qp → GL 3 (F) is as in section 1.1. In all what follows, M (resp. M) denotes a quasi-strongly divisible module (resp. quasi-Breuil module) with descent data such that T 2 qst (M) is a lift of ρ| G (Qp )∞ (resp. such that T 2 st (M) ∼ = ρ| G (Qp )∞ ). We fix once and for all a niveau 1 descent data τ on M (resp. M), of the form τ def = ω a0 ⊕ ω a1 ⊕ ω a2 . We refer to τ as a principal series type.

If M is such a module, we have a S O E -basis e = (e 0 , e 1 , e 2 ) which is compatible with the action of ∆ (the tame descent). The goal of this section is to prove the following result describing the filtration Fil 2 M:

Theorem 3.1. Let T 2 qst (M) def = ρ be a lift of ρ| G (Qp)∞
, with principal series type τ . Assume that the integers a 0 , a 1 , a 2 verify the strong genericity assumption (3.0.1).

There exists an S O E -basis (e 0 , e 1 , e 2 ) for M, compatible the residual Galois action, such that

Fil 2 M = e 0 , E(u)e 1 , E(u) 2 e 2 S O E + Fil p S O E • M.
The remainder of this section is devoted to the proof of Theorem 3.1 and the first step is to study the filtration on the associated quasi-Breuil module M := M ⊗ S O E S. We start from recalling results from [HLM] concerning quasi-Breuil modules and their subobjects. Recall that K 0 = Q p in our setting.

Let M be an object in F-BrMod r dd,0 . An S-submodule N ⊆ M is said to be a quasi-Breuil submodule if N fulfills the following conditions: i) N is an S-direct summand in M; ii) N is stable under the descent data; iii) the Frobenius ϕ r on Fil r M restricts to a ϕ-semilinear morphism N ∩ Fil r M → N .

The relevant properties concerning quasi-Breuil submodules are summarized in the following statements. Their proofs are all contained in [HLM], Appendix A. Proposition 3.2. Let M be an object in F-BrMod r dd,0 and let N ⊆ M be a quasi-Breuil submodule. Then the S-modules N , M/N are naturally objects in F-BrMod r dd,0 and the sequence 0 → N → M → M/N → 0 is exact in F-BrMod r dd,0 . Moreover, with the above notion of exact sequence, the category F-BrMod r dd,0 is an exact category and T r qst is an exact functor. From [HLM], Proposition 2.2.4 and 2.2.5, we deduce the following important result:

Proposition 3.3. Let M ∈ F-BrMod r
dd,0 be a quasi-Breuil module. The functor T r qst induces an order preserving bijection:

Θ : quasi-Breuil submod. in M ∼ → G (Qp)∞ -subrep. in T r qst (M) which canonically identifies Θ(M)/Θ(N ) with T r qst (M/N ) for any quasi-Breuil submodule N ⊆ M. By Proposition 3.3, for 0 ≤ i ≤ j ≤ 2 there are unique subquotients M i,j of M such that T 2 qst (M i,j ) ∼ = ρ i,j | G (Qp )∞ . In particular, we have T 2 qst (M i,i ) ∼ = ω ai+i µ αi | G (Qp )∞ for all 0 ≤ i ≤ 2. Lemma 3.4. Assume that ρ is strongly generic (3.0.1). For 0 ≤ i ≤ 2 we have Fil 2 M i,i = u ie M i,i
and M i,i = (F[u]/u ep )e i where ∆ acts on e i by ω ai .

Proof. Specializing [EGS15, Lemma 3.3.2] to our situation, we have that Fil 2 M i,i = u r M i,i , and M i,i = (F[u]/u ep )e i where ∆ acts on e i by the character ω k with 0 ≤ r ≤ 2(p -1) and k ≡ p(k + r) mod p -1. Furthermore, since ρ i,i | I Qp = ω ai+i , we have

a i + i ≡ k + p r p -1 mod p -1.
By the first congruence, p -1 | r so r ∈ {0, p -1, 2(p -1)}. Since M has tame descent given by τ , we know k ∈ {a j } j=0,1,2 . The second congruence becomes a i -a j + i ≡ 0, 1 or 2 mod p -1 which is not possible unless i = j by our genericity assumption.

Proposition 3.5. Assume ρ| G (Qp )∞ def = T 2 qst (M) is strongly generic. There exists a basis (e 0 , e 1 , e 2 ) on M, compatible with the descent data, such that Fil 2 M is described by

Fil 2 M = e 0 , u e e 1 , u 2e e 2 S .

Proof. We fix a basis e = (e 0 , e 1 , e 2 ) on M, compatible with the descent data. We use the same notation for the image of the elements e i in the various subquotients of M, this will cause no confusion. By Lemma 3.4, M i is generated by e i and Fil 2 M i = u ie M i for all i.

From the exact sequences 0 → Fil 2 M i+1 → Fil 2 M i,i+1 → Fil 2 M i → 0 and Lemma 3.4 it follows that Fil 2 M admits a system of generators f = (f 0 , f 1 , f 2 ), compatible with the descent data, such that Mat e,f Fil 2 M =   1 0 0 (x 0 + x 1 u e )u e-(a1-a0) u e 0 (z 0 + z 1 u e )u e-(a2-a0) (y 0 + y 1 u e )u e-(a2-a1) u 2e   where x i , y i , z i ∈ F. We can assume that x 1 = 0 and write x = x 0 in what follows. Indeed, as e -(a 1 -a 0 ) > 0, Nakayama's lemma shows that (f 0x 1 u e-(a1-a0) f 1 , f 1 , f 2 ) is still a system of generators for Fil 2 M, compatible with the descent data. We also note that y 0 = 0 since Fil 2 M ⊃ u 2e M (in particular, u 2e e 1 ∈ Fil 2 M).

We finally deduce that the S-module Fil 2 M is generated by the following elements (described in their coordinates with respect to the basis (e 0 , e 1 , e 2 )):

f 0 def =   1 xu e-(a1-a0) (z 0 + z 1 u e )u e-(a2-a0)   , f 1 def = u e   0 1 yu e-(a2-a1)   , f 2 def = u 2e   0 0 1   .
By letting e 0 def = f 0 , e 1 def = e 1 + yu e-(a2-a1) e 2 , we immediately see that (e 0 , e 1 , e 2 ) is a basis on M with the required properties.

Thanks to Proposition 3.5, we are able to describe the filtration Fil r on the quasi-strongly divisible module M.

Proof of Theorem 3.1. Let ( m0 , m1 , m2 ) be an S def = S O E basis for M, compatible with the descent data. Let (e 0 , e 1 , e 2 ) denote a basis for M satisfying the condition from Proposition 3.5.

Since

Fil 2 M/Fil 2 S • M ω a 0 Fil 2 M/Fil 2 S • M ω a 0 = e 0 , u e-(a1-a0) u e e 1 S ω 0 +u 2e •(M) ω a 0
we have a lift ẽ0 ∈ Fil 2 M of e 0 . Notice that, by Nakayama's lemma, the family (ẽ 0 , m1 , m2 ) is again a basis for M, compatible with the descent data.

Let

D def = M ⊗ Zp Q p .
By virtue of [HLM] Lemma 2.3.9, the ω a0 -isotypical component Fil 2 D/Fil 2 S E • D ω a 0 is described as follows in terms of coordinates with respect to the basis (ẽ 0 , m1 , m2 ):

Fil 2 D/Fil 2 S E • D ω a 0 =   1 0 0   , E(u)   1 0 0   , E(u)   0 b 1 u e-(a1-a0) b 2 u e-(a2-a0)   E for some (b 1 , b 2 ) ∈ P 1 E (E).
The O E -saturation of the latter space is now easy to determine, and we get

Fil 2 M/Fil 2 S O E • M ω a 0 =   1 0 0   , E(u)   1 0 0   , E(u)   0 b 1 u e-(a1-a0) b 2 u e-(a2-a0)   O E for some (b 1 , b 2 ) ∈ P 1 O E (O E ).
Moreover, the ω a1 -isotypical component of Fil 2 D/Fil 2 S E • D is described by

Fil 2 D/Fil 2 S E • D ω a 1 =   u a1-a0 0 0   , E(u)   u a1-a0 0 0   , E(u)   0 c 1 c 2 u e-(a2-a1)   E for some (c 1 , c 2 ) ∈ P 1 E (E), hence Fil 2 M/Fil 2 S O E • M ω a 1 =   u a1-a0 0 0   , E(u)   u a1-a0 0 0   , E(u)   0 c 1 c 2 u e-(a2-a1)   O E for some (c 1 , c 2 ) ∈ P 1 O E (O E ).
In particular, we have

Fil 2 M/Fil 2 S • M ω a 1 ⊆   u a1-a0 0 0   O E + E(u) • M ω a 1 , and since Fil 2 M/Fil 2 S • M ω a 1 Fil 2 M/Fil 2 S•M ω a 1 = u a1-a0 e 0 , u e e 1 S ω 0 +u 2e (M) ω a 1 , a lift f 1 ∈ Fil 2 M ω a 1 of a generator of Fil 2 M/Fil 2 S • M ω a 1 has the form f 1 = λ 0 u a1-a0 ẽ0 + E(u)ẽ 1 for some λ 0 ∈ O E and some element ẽ1 ∈ M ω a 1 . We deduce that E(u)ẽ 1 ∈ Fil 2 M ω a 1 , as well as E(u)ẽ 1 ≡ E(u)e 1 modulo ( E , Fil 2 S O E ).
Hence, e 1 ≡ e 1 modulo ( E , u e(p-1) ). It follows that (ẽ 0 , ẽ1 , m2 ) is again a basis for M (compatible with the descent data). In terms of coordinates with respect the basis (ẽ 0 , ẽ1 , m2 ), we now have

Fil 2 M/Fil 2 S O E •M ω a 0 =   u [a0-a1] 0 0   , E(u)   u [a0-a1] 0 0   , E(u)   0 1 0   O E .
If we now let ẽ2 def = m2 it is elementary to conclude that, in the basis (ẽ 0 , ẽ1 , ẽ2 ), we have

Fil

2 M = E(u) j e j , j ∈ {0, 1, 2} S O E + Fil p S O E • M.
as claimed.

3.2. Diagonalization of the Frobenius action. The aim of this section is to provide quasi-strongly divisible modules M lifting M with a gauge basis (i.e., a basis for the filtration on which the Frobenius is diagonal). We keep the notations from previous sections. In particular, we let M denote a quasi-strongly divisible modules over S O E with principal series descent data τ and such that T 2 qst (M)

⊗ O E F ∼ = ρ| G (Qp )∞ .
Let us fix a framing on τ , i.e. a basis of eigenvector on the underlying vector space of τ .

From [HLM], Lemma 2.2.7 (and the fact that S O E is a local ring) we deduce the existence of a basis e def = (e 0 , e 1 , e 2 ) for M and a system of generators

f def = (f 0 , f 1 , f 2 ) for Fil 2 M modulo Fil p S O E M such that g(e i ) = ω ai (g)e i , g(f i ) = ω ai (g)f i
for all i ∈ {0, 1, 2}. We say that e, f are compatible with the descent datum τ .

The main result of this section is a complete description of Fil 2 M/(Fil p S O E • M) and the Frobenius action ϕ r on M in terms of a framed basis e, and generators f . Theorem 3.6. Let M be a quasi-strongly divisible lattice with tame descent data of type τ ∼ = ω a0 ⊕ ω a1 ⊕ ω a2 where a 0 , a 1 , a 2 are strongly generic (3.0.1). Fix a framing on τ , a framed basis e = (e 0 , e 1 , e 2 ) on M and assume that Fil 2 M/(Fil p S O E • M) is generated by (e 0 , E(u)e 1 , E(u) 2 e 2 ).

Then there exists a basis e (∞) def = (e

(∞) 0 , e (∞) 1 , e (∞) 2 
) for M, and a system of generators f (∞) def = (f

(∞) 0 , f (∞) 1 , f (∞) 2
) for Fil 2 M/(Fil p S O E • M) compatible with the framing on τ and such that:

Mat e (∞) ([f (∞) 0 , f (∞) 1 , f (∞) 2 ]) =   1 0 0 u e-(a 1 -a 0 ) v (∞) 1,0 E(u) 0 u e-(a 2 -a 0 ) v (∞) 2,0 u e-(a 2 -a 1 ) E(u)v (∞) 2,1 E(u) 2   Mat e (∞) ,f (∞) (ϕ 2 ) =   λ 0 0 0 0 λ 1 0 0 0 λ 2   where λ i ∈ O × E and v (∞) 1,0 , v (∞) 2,1 ∈ O E , v (∞) 2,0 ∈ O E ⊕ E(u)O E .
The proof of theorem 3.6 relies on a delicate p-adic convergence argument and occupies the remainder of this section.

Remark 3.7.

(1) The statement and proof of Theorem 3.6 generalizes, mutatis mutandis, to an n dimensional ordinary representation. Because of the technicality of the computations in the GL n case, and for sake of readability, we focus only on the case n = 3 (so r = 2).

(2) Similarly, Theorem 3.6 is stated for strongly divisible lattices with O Ecoefficient, but the statement and the proof generalizes line to line when In all what follows, we take r = 2 though the results can be generalized to r < p -1. Define

S O E is replaced by S R ,
R def = (S O E ) ω 0 = i≥0 O E • u ie i! .
We have a natural filtration Fil i R def = Fil i S O E ∩ R on R and we note that R is stable under the Frobenius on S O E . As R is complete and separated for the p-adic topology we have

n∈N O E + p n+1 R = O E .
The following closed ideals will be important for the p-adic convergence argument.

J def = pFil 2 R, Fil 3 R = Fil 2 R • (p, Fil 1 R), I def = pFil 1 R.
We collect some important lemmas on the nature of the filtration on R.

Lemma 3.8. Let p > n ≥ 1 and i ≥ n be integers. We have the following relation in the Breuil ring R:

u ie i! ∈ n-1 k=0 p n-k O E E(u) k + E(u) n • i≥0 O E • E(u) i .
In particular for 3 ≤ i ≤ p -1 we have

ϕ 2 (u i ) ∈ u i • p i + pI + J
and, more generally

R = O E ⊕ O E E(u) ⊕ O E E(u) 2 + I + J . Proof.
In all what follows we work modulo E(u) n • R. We have:

u ei i! = n-1 k=0 E(u) k k! 1 (i -k)! (-p) i-k
and hence we are done once we can show that

(i -k) - (i -k) -S p (i -k) p -1 ≥ n -k
where S p (t) denotes the sum of the digits in the p-adic development of t ∈ N. The last two statements now follow: from the above and the definition of J , I we have

If i ≤ p -1 this is obvious. Else, we show that (i -k) - (i-k)-Sp(i-k) p-1 ≥ p -k. Defining a s ∈ {0, . . . , p -1} via i -k = s≥0 a s p s we have (i -k) - (i -k) -S p (i -k) p -1 = a 0 + s≥1 a s p s - p s -1 p -1 ; if i = s b s p s ≥ p > k
i≥3 O E • u ie i! ⊆ J + pI + p 3 O E and u 2e ∈ O E E(u) 2 + I + p 2 O E , u e ∈ O E E(u) + pO E .
We introduce below the formalism of linear algebra with coefficients. It is the characteristic zero version of the formalism introduced in [HLM], §2.3.2. Definition 3.9. Let 0 ≤ a 0 ≤ a 1 ≤ a 2 ≤ e be the integers associated to the niveau one descent data. For a pair (a i , a j ) let [a i -a j ] ∈ {0, . . . , e -1} be defined by [a i -a j ] ≡ -(a i -a j ) modulo e. The R-module of matrices with descent data is defined as:

M dd,3 (R) def = M ∈ M 3 (S O E ), s.t. M i,j = u [ai-aj ] m i,j with m i,j ∈ R
The following result is an elementary check in linear algebra: Lemma 3.10. The subset M dd,3 (R) is a subring of M 3 (S O E ). Moreover, if M ∈ M dd,3 (R), then the adjugate matrix M adj is again an element of M dd,3 (R).

We introduce certain natural subsets of M dd,3 (R):

• GL dd,3 (R) the group of invertible elements in M dd,3 (R);

• B dd,3 (R) ⊂ GL dd,3 (R) the subgroup of upper triangular matrices;

• U opp dd,3 (R) ⊂ GL dd,3 (R) the subgroup of strictly lower triangular unipotent matrices; • L dd,3 (R) ⊂ M dd,3 (R) the multiplicative monoid of lower triangular matrices. • T 3 (O E ) is the subgroup of diagonal matrices with scalar entries. If M 1 , M 2 ∈ M dd,3 (R) and K is an ideal of R it is customary to write:

M 1 ≡ M 2 mod K to mean that M 1 = M 2 + M for some M ∈ M dd,3 (K). Also, if M ∈ M dd,3 (R)
we write M adj to denote its adjugate.

We record two elementary manipulations between matrices with descent data:

Lemma 3.11. Let A = u [ai-aj ] a i,j i,j ∈ M dd,3 (R) and W = u [ai-aj ] w i,j i,j ∈ M dd,3 (R). Assume moreover that W ∈ U opp dd,3 (R). Then (W • A) i,j =        u [ai-aj ] a i,j + u e i-1 k=0 w i,k a k,j if j ≥ i u [ai-aj ] a i,j + u e i-1 k=j+1 w i,k a k,j + j k=0 w i,k a k,j if j < i Proof. Omitted.
Lemma 3.12. Let W = u [ai-aj ] w i,j i,j be an element in U opp dd,3 (R). Assume that

w i,j ∈ i-j k=0 E(u) k O E for all 0 ≤ j ≤ i ≤ 2. Then W adj = u [ai-aj ] w adj i,j i,j ∈ U opp dd,3 (R) satisfies w adj i,j ∈ i-j k=0 E(u) k O E for all 0 ≤ j ≤ i ≤ 2. Proof. Omitted.
The following Lemma plays a crucial role in the p-adic convergence argument. It describes the effect of the Frobenius on the elements in M dd,3 (R).

Lemma 3.13. Let n ≥ 0 and let M ∈ GL dd,3 (R). If n ≥ 1, assume further that

M ∈ T 3 (O E ) + M dd,3 (p n R). i) If [a i -a j ] ≥ 3 for all 0 ≤ i, j ≤ 2 then ϕ (M ) ∈ T 3 (O E ) + M dd,3 (p n J + p n I + p n+1 R) and M ≡ ϕ (M ) mod p n R. ii) If M ∈ T 3 (O E ) + M dd,3 p n (p, Fil 1 R) then ϕ (M ) ∈ T 3 (O E ) + M dd,3 p n+1 R and M ≡ ϕ (M ) mod p n R. Proof. As ϕ(E(u)) ∈ pR × , claim ii) is obvious for any n ≥ 0.
Let us consider i). Note first that if x ∈ R × , then we can always write x ∈ x 0 + (p, Fil 1 R) for some x 0 ∈ O × E . If A ∈ M dd,3 (R) and since we assume [a i -a j ] ≥ 3 for all 0 ≤ i, j, ≤ 3, we deduce from Lemma 3.8 that ϕ (A) ∈ M dd,3 (J + pI + p 3 R) as soon as

A (i,i) ∈ Fil 1 R. Hence, if M ∈ GL dd,3 (R) if n = 0 (resp. M ∈ T 3 (O E ) + M dd,3 (p n R) when n ≥ 1) we can always write M ∈ T M + A + M dd,3 (p n (p, Fil 1 R)) for some A ∈ M dd,3 (p n R) verifying A (i,i) ∈ p n (p, Fil 1 R) and some T M ∈ T(O E ); the first claim follows.
3.3. Proof of Theorem 3.6. The proof of Theorem 3.6 is a p-adic convergence procedure. It involves an induction argument which consists in a careful change of basis on M. We again specialize to the case of n = 3 (so r = 2) though the procedure works more generally for ordinary families. We continue to assume that the triple (a 0 , a 1 , a 2 ) is strongly generic.

If e = (e 0 , e 1 , e 2 ), f = (f 0 , f 1 , f 2 ) are a basis for M and a generating family of Fil 2 M/(Fil p S O E • M), which are compatible with the framing on τ , we define the element V = V e,f ∈ M dd,3 (R) such that

f 0 = e • V   1 0 0   , f 1 = e • V   0 1 0   , f 2 = e • V   0 0 1   (roughly speaking, V ∈ M dd,3 (R) is the matrix of the filtration on M).
Let Mat e,f (ϕ 2 ) ∈ GL dd,3 (R) be the matrix such that

ϕ 2 (f 0 ) = e • Mat e,f (ϕ 2 )   1 0 0   , ϕ 2 (f 1 ) = e • Mat e,f (ϕ 2 )   0 1 0   , ϕ 2 (f 2 ) = e • Mat e,f (ϕ 2 )   0 0 1   .
(i.e. Mat e,f (ϕ 2 ) is the matrix of the Frobenius with respect to f ). We establish some preliminary lemmas to perform the induction argument to prove Theorem 3.6. The first lemma lets us translate the effect of a change of basis on the matrices describing the Frobenius and the filtration.

From now on any basis e = (e 0 , e 1 , e 2 ) and system of generators f = (f 0 , f 1 , f 2 ) for Fil 2 M/(Fil p S O E • M) are always understood to be compatible with the framing on τ . Lemma 3.14. Let A ∈ GL dd,3 (R). Let e def = e • A be a new S O E -basis for M, compatible with the framing on τ . Assume that there exist B ∈ GL dd,3 (R) and

V ∈ M dd,3 (R) satisfying AV = V B.
The elements

f 0 def = e • V   1 0 0   , f 1 def = e • V   0 1 0   , f 2 def = e • V   0 0 1   form a system of S O E -generators for Fil r M/ (Fil p S O E • M).
If we further assume that A = Mat e,f (ϕ r ), then we have

(3.14.1) Mat e ,f (ϕ 2 ) = ϕ(B).
Proof. The elements f 0 , f 1 , f 2 are obviously in Fil 2 M and, since B is invertible, they form a system of S O E generators for Fil 2 M modulo Fil p S O E •M. The last statement is a simple translation of the definition of Mat e ,f (ϕ 2 ), Mat e,f (ϕ 2 ), recalling that ϕ 2 is ϕ-semilinear.

The previous Lemma will be widely used when A, B ∈ T 3 (O E ) + M dd,3 (p n R), for n ≥ 1. We now give a criterion for when we can find a V = V e ,f which allows us to perform change of basis as in Lemma 3.14: Lemma 3.15. Let V ∈ M dd,3 (R) be a matrix associated to the filtration Fil 2 M on M. Then V adj ∈ E(u)M dd,3 (R). Moreover: i) Let A ∈ GL dd,3 (R) and assume there exists

V ∈ M dd,3 (R) such that 1 E(u) V adj AV ∈ E(u) 2 GL dd,3 (R) + M dd,3 (J ).
Then, there exist

B ∈ GL dd,3 (R) + M dd,3 (p, Fil 1 R) such that AV = V B. ii) Let A ∈ T 3 (O E ) + M dd,3 (p n R) and assume there exists V ∈ M dd,3 (R) such that 1 E(u) V adj AV ∈ E(u) 2 T 3 (O E ) + M dd,3 (p n J ).
Then, there exist

B ∈ T 3 (O E ) + M dd,3 (p n (p, Fil 1 R)) such that AV = V B.
Proof. The first assertion is clear from the height condition. We prove i), the proof of ii) being identical. Let us write

1 E(u) V adj AV = E(u) 2 (B + N 0 )
where B ∈ GL dd,3 (R) and N 0 ∈ M dd,3 (p, Fil 1 S O E ) .

We obtain

E(u) 2 V • (B + N 0 ) = 1 E(u) (V • V adj )AV = E(u) 2 AV
and the statement follows.

The proof of Theorem 3.6 is now a p-adic approximation argument, in which we distinguish two steps. The first one (Proposition 3.16) shows that at the 2n-th step of the p-convergence argument we are able to make the ϕ r -action lower triangular modulo p n+1 .

Proposition 3.16 (Even case). Let

A 0 ∈ GL dd,3 (R) and, for n ≥ 1, let A 2n ∈ T 3 (O E ) + M dd,3 (p n R). Let V (2n) =    1 0 0 u [a1-a0] v (2n) 1,0 1 0 u [a2-a0] v (2n) 2,0 u [a2-a1] v (2n) 2,1 1    Diag(1, E(u), E(u) 2 ) for some elements v (2n) 1,0 , v (2n) 2,1 ∈ O E , v (2n) 2,0 ∈ O E ⊕ E(u)O E . Lemma 3.18 (even ⇒ odd ). Let n ∈ N and write 1 E(u) V (2n),adj A (2n) V (2n+1) = E(u) 2 (B 2n )
where V (2n) , V (2n+1) , A (2n) and B 2n are as in the statement of Proposition 3.16.

Then the element A 2n+1 def = ϕ (B 2n ) veryfies the hypotheses of Proposition 3.17.

Proof. It is an immediate consequence of Lemma 3.13 i).

Lemma 3.19 (odd ⇒ even). Let n ∈ N and write

1 E(u) V (2n+1),adj A (2n+1) V (2n+2) = E(u) 2 B 2n+1
where V (2n+1) , V (2n+2) , A (2n+1) and B 2n+1 are as in the statement of Proposition 3.17. Then the element A 2n+2 def = ϕ B 2n+1 ) veryfies the hypotheses of Proposition 3.16.

Proof. It is an immediate consequence of Lemma 3.13 ii).

3.4. Proofs of Propositions 3.16, 3.17. The even case. In order to lighten notations we write -aj ] w i,j ) ∈ U opp dd,3 (R). An immediate computation gives:

A def = A 2n , V (2n) = V • Diag(1, E(u), E(u) 2 ), V (2n+1) = V • Diag(1, E(u), E(u) 2 ) for appropriate V, V ∈ U opp dd,3 (R) and define v i,j def = (V ) i,j . We therefore have 1 E(u) • V (2n),adj = Diag(E(u) 2 , E(u), 1)V adj and W def = V adj = (u [ai
(3.19.1)

Diag(E(u) 2 , E(u), 1) • W AV • Diag(1, E(u), E(u) 2 ) 1 E(u) V (2n),adj A (2n) V (2n+1) ∈ L dd,3 (R) + M dd,3 ((p n J )) .
so that, using Lemma 3.11 and A ∈ GL 3 (R) we see that (W AV ) i,i ∈ A i,i + p n (p, Fil 1 R). Hence the diagonal entries in the LHS of (3.19.1) lie actually in E(u) 2 O × E + p n J . In order to establish Proposition 3.16 we are therefore left to find, for i > j, elements v i,j ∈ R in such a way that (3.19.2)

Diag(E(u) 2 , E(u), 1) • W AV • Diag(1, E(u), E(u) 2 ) i,j ≡ 0 modulo u [ai-aj ] • p n Fil 2 R that is to say W AV i,j ≡ 0 modulo u [ai-aj ] • p n Fil i-j R . for 2 ≥ i > j ≥ 0. Let us write W A = (u [ai-aj ] m i,j ) i,j ∈ GL dd,3 (R)
where m i,j ∈ R. Then the condition (3.19.2) is equivalent to following systems of linear equations: (3.19.3)

D 0 m 1,1 m 1,2 u e m 2,1 m 2,2 M0 v 1,0 v 2,0 ≡ -D 0 m 1,0 m 2,0 modulo p n Fil 2 R (where D 0 def = Diag E(u)u [a1-a0] , u [a2-a0] ) and (3.19.4) E(u)u [a2-a1] m 2,2 • v 2,1 ≡ -E(u)u [a2-a1] m 2,1 modulo p n Fil 2 R
We have m i,i ∈ R × so that M 0 , m 2,2 are invertible and we are left to define

v 1,0 v 2,0 def = -M -1 0 • m 1,0 m 2,0 , v 2,1 def = -m -1 2,2 m 2,1 .
Note that the elements v 1,0 , v 2,1 can be assumed to be in O E and v 2,0 can be assumed to be in

O E ⊕ E(u)O E .
This concludes the proof of Proposition 3.16.

The odd case. As for the previous paragraph, in order to lighten notations we write A def = A 2n+1 and

V (2n+1) def = V Diag(1, E(u), E(u) 2 ), V (2n+2) = V Diag(1, E(u), E(u) 2 ) for appropriate V, V ∈ U opp dd,3 (R) and v i,j def = (V ) i,j . We therefore have 1 E(u) V (2n+1),adj = Diag(E(u) 2 , E(u), 1)V adj and W def = V adj = (u [ai-aj ] w i,j ) ∈ U opp dd,3 (R) for some w i,j ∈ R. Since A ∈ T 3 (O E ) + M dd,3 (p n R), we see that (W • A) i,j ≡ 0 modulo p n when- ever j > i, hence (3.19.5) Diag(E(u) 2 , E(u), 1)W AV Diag(1, E(u), E(u) 2 ) 1 E(u) V (2n+1),adj A (2n+1) V (2n+2) ∈ L dd,3 (R) + M dd,3 (p n J ) .
Again, an immediate manipulation (using Lemma 3.11 and the fact that

A ∈ T 3 (O E ) + M dd,3 (p n R)) shows that (W AV ) i,i ∈ A i,i + (p n (p, Fil 1 R))
so that the diagonal entries in the LHS of (3.19.5) lie actually in E(u) 2 O × E + p n J . In order to establish Proposition 3.17 we are left to determine, for 2 ≥ i > j ≥ 0, the elements v i,j ∈ R in such a way that (3.19.6)

Diag(E(u) 2 , E(u), 1)W AV Diag(1, E(u), E(u) 2 ) i,j ≡ 0 modulo u [ai-aj ] • (p n J ) , that is to say (W AV ) i,j ∈ u [ai-aj ] • p n pFil i-j R, Fil i-j+1 R (for 2 ≥ i > j ≥ 0) with the additional requirements that v 1,0 , v 2,1 ∈ O E , v 2,0 ∈ O E ⊕ E(u)O E . (3.19.7) Let us write W A = (u [ai-aj ] m i,j ) i,j ∈ GL dd,3 (R). Then we have (3.19.8) m i,j ∈ w i,j A j,j + p n J + p n I + p n+1 R for all 0 ≤ i, j ≤ 2, as A ∈ T 3 (O E ) + M dd,3 p n J + p n I + p n+1 R . In particular, m j,j ∈ R × .
Moreover, by hypotheses we have

V 1,0 , V 2,1 ∈ O E and V 2,0 ∈ O E ⊕ E(u)O E
so that, using Lemma 3.12 we obtain:

w 2,1 , w 1,0 ∈ O E , w 2,0 ∈ O E ⊕ E(u)O E . (3.19.9)
As we did in the previous paragraph (the proof of the even case 3.16) we are left consider the following systems of linear equations (3.19.10)

D 0 m 1,1 m 1,2 u e m 2,1 m 2,2 M0 v 1,0 v 2,0 ≡ -D 0 m 1,0 m 2,0 modulo p n J where D 0 def = Diag(E(u)u [a1-a0] , u [a2-a0]
) and

(3.19.11)

E(u)u [a2-a1] m 2,2 v 2,1 ≡ -E(u)u [a2-a1] m 2,1 modulo p n J .
Then 

∈ O × E + p n J + p n I + p n+1 R and M 0 ∈ O × E 0 (O E ⊕ E(u)O E ) O × E + M 2 (p n J + p n I + p n+1 R);
and hence, by Lemma 3.12 we have (3.19.12)

M -1 0 ∈ O × E 0 (O E ⊕ E(u)O E ) O × E + M 2 (p n J + p n I + p n+1 R). If we define v 2,1 def = -m 2,2 m 2,1 and v 1,0 v 2,0 def = -M -1 0 • m 1,0 m 2,0
we deduce from (3.19.12), (3.19.9) (and the important fact that

p n+1 R ∈ p n+1 O E + p n I + p n J , cf. Lemma 3.8) that v 1,0 , v 2,1 ∈ O E + (p n J , p n I) , v 2,0 ∈ O E ⊕ E(u)O E + (p n J , p n I) . Hence v 1,0 , v 2,1 ∈ O E + p n+1 E(u)O E + p n J v 2,0 ∈ O E ⊕ E(u)O E + p n J
and since E(u) • p n+1 E(u)O E ∈ p n J we deduce that the elements v i,j defined this way verify condition (3.19.10) and can be assumed, without loss of generality, to verify condition (3.19.7). This ends the proof of Proposition 3.17.

Monodromy on Breuil modules

The aim of this section is to give necessary and sufficient conditions on "ordinary" quasi-Breuil modules with descent data to admit a monodromy operator.

More precisely, we consider quasi-Breuil modules M over R with descent data of principal series type τ = ω a0 ⊕ ω a1 ⊕ ω a2 , where the integers a i verify the strongly genericity assumption (3.0.1) which arise as reductions modulo p of families of the form given in Theorem 3.6. The main result is Proposition 4.3. The proof is a fairly direct computation with the matrix for N relying crucially on the genericity condition on the descent data.

From Proposition 3.3 we have a lattice of quasi-Breuil submodules of M, whose constituents M i,j are characterized by T 2 qst (M i,j ) ∼ = ρ i,j | G (Qp )∞ . In particular, we have a filtration with rank one quotients:

(4.0.13) 0 ⊆ M 2 ⊆ M 2,1 ⊆ M.
We can describe quasi-Breuil modules M (with principal series type τ ) such that T 2 qst (M) ∼ = ρ| G (Qp )∞ :

Proposition 4.1. Let M ∈ F-BrMod 2 dd,0 be a quasi-Breuil module such that

T 2 st (M) ∼ = ρ| G (Qp )∞
, where ρ is ordinary Fontaine-Laffaille and strongly generic. Assume that M has descent data of type τ .

There exists a framed basis e = (e 0 , e 1 , e 2 ) and a framed system of generators f = (f 0 , f 1 , f 2 ) for Fil 2 M such that:

(4.1.1) Mat e (Fil 2 M) =   1 0 0 u [a 1 -a 0 ] v1,0 u e 0 u [a 2 -a 0 ] (v2,0 + u e v 2,0 ) u e+[a 2 -a 1 ] v2,1 u 2e   , Mat e,f (ϕ 2 ) =   α 0 0 0 0 α 1 0 0 0 α 2   where v i,j , v 2,0 ∈ F, α i ∈ F × .
Proof. In what follows, we write S 0 to denote the ω 0 -isotypical component of S (i.e. S 0 = F[u e ]/u ep ).

As in the proof of Proposition 3.5 we see that there exists a basis e = (e 0 , e 1 , e 2 ) and a system of generators f = (f 0 , f 1 , f 2 ), compatible with both the framing on τ and the filtration (4.0.13), and such that

V def = Mat e ([f 0 , f 1 , f 2 ]) =   1 0 0 u [a1-a0] v 1,0 u e 0 u [a2-a0] v 2,0 u e+[a2-a1] v 2,1 u 2e  
where v 1,0 , v 2,1 ∈ F and v 2,0 ∈ F ⊕ u e F. As e, f are compatible with the filtration (4.0.13) we moreover deduce that A def = Mat e,f (ϕ 2 ) ∈ GL dd,3 S 0 is actually in B opp 3,dd S 0 , the Borel of lower triangular matrices. We now apply Lemma 3.14: it is easy to see that there exists matrices V ∈ L dd,3 S 0 and B ∈ B opp dd,3 S 0 such that AV ∈ V B + u 3e M dd,3 S 0 and therefore A def = ϕ(B) is the matrix of the Frobenius action on M with respect to the basis e def = e • A and the system of generators f def = eV . Note that, as A, V are lower triangular, the new basis e and new system of generators f are compatible with the filtration (4.0.13).

We can now repeat the argument: at the end of the second iteration we end up with a framed basis for M and a framed system of generators for Fil 2 M which are compatible with both the framing on τ and the filtration (4.0.13), as in the statement.

Let R be a complete local Noetherian F-algebra with residue field F. Definition 4.2. Let M be a quasi-Breuil module over R with descent datum. We say that a framed basis e and a framed system of generators f for Fil 2 (M) is in ordinary form if

Mat e (Fil 2 M) =   1 0 0 u [a1-a0] v 1,0 u e 0 u [a2-a0] (v 2,0 + u e v 2,0 ) u e+[a2-a1] v 2,1 u 2e   and Mat e,f (ϕ 2 ) =   α 0 0 0 0 α 1 0 0 0 α 2   where v i,j , v 2,0 ∈ R, α i ∈ R × .
The above definition is closely related to the notion of gauge basis (5.1). The main difference being that here we are specifying both e and f . We are now in the position of state the main result of this section.

Proposition 4.3. Let M ∈ R-BrMod 2 dd,0 be a quasi-Breuil module with a framed basis e = (e 0 , e 1 , e 2 ) and a framed system of generators f = (f 0 , f 1 , f 2 ) for Fil 2 M in ordinary form (4.2). Assume a 0 , a 1 , a 2 satisfy the strong genericity hypothesis (3.0.1). Then M is endowed with a monodromy operator if and only if v 2,0 = 0.

In this case, one has -ai] for i = 0, 1 and -a0] . The rest of this section is devoted to the proof of Proposition 4.3. From now on, we fix a quasi-Breuil module M over R with descent data τ in ordinary form. To lighten notations, we write S = S R = R[u]/(u ep ) and, as in the proof of Proposition 4.1, we write S 0 to denote the ω 0 -isotypical component of S. As the monodromy operator is compatible with the descent data, we deduce from [START_REF] Emerton | Weight cycling and Serre-type conjectures for unitary groups[END_REF], Lemma 3.3.2 that the action of a monodromy N on M is described by

N =   0 0 0 u [a1-a0] P 1,0 (u e ) 0 0 u [a2-a0] P 2,0 (u e ) u [a2-a1] P 2,1 (u e ) 0   where P i+1,i = α i+1 α -1 i [a i+1 -a i ]v i+1,i u e[ai+2
P 2,0 = -α 2 α -1 0 (v 2,0 ([a 2 -a 0 ] -1) -v 1,0 v 1,2 [a 1 -a 0 ])u e[a2
N =   0 0 0 u [a1-a0] P 1,0 (u e ) 0 0 u [a2-a0] P 2,0 (u e ) u [a2-a1] P 2,1 (u e ) 0  
in the basis e for some P i,j (u e ) ∈ S 0 .

Recall that the monodromy operator

N satisfies i) u e N (f i ) ∈ Fil 2 M; ii) ϕ 2 (u e N (f i )) = N (ϕ 2 (f i )) and the usual Leibnitz relation (4.3.1) N (Q(u) • x) = -u ∂ ∂u (Q(u))x + Q(u)N (x)
for any Q(u) ∈ S, x ∈ M. We will write N S to denote the monodromy -u ∂ ∂u on S.

Proof of Propostion 4.3. Since M is in ordinary form, we can define the subquotients in M i,j as we did for M i,j . Let us first consider M 2,1 . A simple computation, using the Leibniz relation (4.3.1) gives

N (f 1 ) = -ef 1 + u e+[a2-a1]     0 0 P 2,1 (u e )   -[a 2 -a 1 ]v 2,1   0 0 1     hence u e N (f 1 ) = u e f 1 + u [a2-a1] (P 2,1 (u e ) -[a 2 -a 1 ]v 2,1 )f 2 ∈ Fil 2 M.
Using (4.3.1) and noticing that ϕ(Q(u e )) = Q(0) for any Q(u e ) ∈ S 0 , we further obtain

ϕ 2 (u e N (f 1 )) = u [a2-a1] u e[a2-a1] α 2 (P 2,1 (0) -[a 2 -a 1 ]v 2,1 )e 2 ,
and as M is ordinary we have

N (ϕ 2 (f 1 )) = α 1 u [a2-a1] P 2,1 (u e )e 2 .
Hence, from ii) we deduce P 2,1 -a1] . By a similar argument with M 1,0 , we deduce that P 1,0 a1-a0] . Note that both P 2,1 (u e ) and P 1,0 (u e ) are in Fil 2 S by the genericity condition.

(u e ) = -α 2 α -1 1 [a 2 -a 1 ]v 2,1 u e[a2
(u e ) = -α 1 α -1 0 v 1,0 [a 1 -a 0 ]u e[
We now consider N (f 0 ). A laborious manipulation but without difficulties, using the Leibniz relation and the definition of f 1 provides us with the following:

u e N (f 0 ) = u e     0 u [a1-a0] P 1,0 (u e ) u [a2-a0] P 2,0 (u e )   + N S (u [a1-a0] v 1,0 )   0 1 0   + +u [a1-a0] v 1,0   0 0 u [a2-a1] P 2,1 (u e )   + N S (u [a2-a0] (v 2,0 + u e v 2,0 ))   0 0 1     ∈ u [a1-a0] (P 1,0 (u e ) -[a 1 -a 0 ]v 1,0 ) f 1 + u [a2-a0] (1 -[a 2 -a 0 ])v 2,0 f 2 + +u e u [a2-a1]+[a1-a0] (-v 2,1 P 1,0 (u e ) + v 1,0 v 2,1 [a 1 -a 0 ]) +u [a2-a0] (P 2,0 (u e ) -v 2,0 [a 2 -a 0 ]) e 2 + u e Fil 2 M
(where we used that u e P 2,1 (u e )e 2 ∈ u e Fil 2 M).

Since we assume e > a 2 -a 1 , a 1 -a 0 > 0 we have [a

2 -a 1 ]-[a 1 -a 0 ] = e+[a 2 -a 0 ]. Therefore u e N (f 0 ) ∈ u [a1-a0] (P 1,0 (u e ) -[a 1 -a 0 ]v 1,0 ) f 1 + +u [a2-a0] -v 2,1 P 1,0 (u e ) + v 1,0 v 2,1 [a 1 -a 0 ] + (1 -[a 2 -a 0 ])v 2,0 f 2 + +u e u [a2-a0] (P 2,0 (u e ) -v 2,0 [a 2 -a 0 ]) e 2 + u e Fil 2 M so that Griffiths' transversality is verified if and only if (4.3.2) P 2,0 (u e ) -v 2,0 [a 2 -a 0 ] ∈ u e S 0 .
Let us write P 2,0 (u e ) = v 2,0 [a 2 -a 0 ] + u e P 2,0 (u e ) for some P 2,0 (u e ) ∈ S 0 . We now have

u e N (f 0 ) ∈ u [a1-a0] (P 1,0 (u e ) -[a 1 -a 0 ]v 1,0 ) f 1 + +u [a2-a0] -v 2,1 P 1,0 (u e ) + v 1,0 v 2,1 [a 1 -a 0 ] + (1 -[a 2 -a 0 ])v 2,0 + P 2,0 (u e ) f 2 +u e Fil 2 M
hence, imposing condition ii), we deduce that:

α 0 P 2,0 (u e ) = u e[a2-a0] α 2 -v 2,1 P 1,0 (0) + v 1,0 v 2,1 [a 1 -a 0 ] + (1 -[a 2 -a 0 ])v 2,0 + P 2,0 (0) .
In particular, P 2,0 (u e ) ∈ u 2e S 0 by the genericity assumption. Returning to (4.3.2), we conclude that [a 2 -a 0 ] v 2,0 = 0;

P 2,0 (u e ) = -α 2 α -1 0 v 2,0 ([a 2 -a 0 ] -1) -v 1,0 v 2,1 [a 1 -a 0 ] u e[a2-a0] .
This proves the only if direction. For the converse, it is enough to notice that, by virtue of the previous computations, a monodromy N : M → M defined by

N (e 0 ) def = -α 1 α -1 0 v 1,0 [a 1 -a 0 ]u e[a1-a0] e 1 + +α 2 α -1 0 v 1,0 v 2,1 [a 1 -a 0 ] -v 2,0 ([a 2 -a 0 ] -1) u e[a2-a0] e 2 , N (e 1 ) def = -α 2 α -1 1 v 2,1 [a 2 -a 1 ]u e[a2-a1] e 2 , N (e 2 ) def = 0
verifies both conditions i) and ii), and the quasi-Breuil module M is thus equipped with the structure of a Breuil module.

Remark 4.4. Following the same technique, it is possible to determine the monodromy operator even when the type τ lies in the upper alcove. More precisely, if τ = ω a2 ⊕ ω a1 ⊕ ω a0 , where (a 2 , a 1 , a 0 ) ∈ X * + (T) is a restricted, generic dominant weight in the upper alcove, then an ordinary quasi-Breuil module as in (4.1.1) is endowed with a monodromy operator if and only if [a 2 -a 0 ]v 2,0 = [a 1 -a 0 ]v 1,0 v 2,1 . This question is further explored in [LLHLM].

Potentially crystalline deformation rings

In this section we explicitly compute certain potentially crystalline deformation rings with niveau 1 type. The main result is Theorem 5.7. We recall that ρ :

G Qp → GL 3 (F) is ordinary, of the form ρ| I Qp ∼ =   ω a2+2 * 1 * 0 ω a1+1 * 2 0 0 ω a0  
verifying the genericity hypothesis a 1 -a 0 , a 2 -a 1 > 3, a 2 -a 0 < p -4. As before we fix the principal series tame type τ def = ω a2 ⊕ ω a1 ⊕ ω a0 . If R is a complete local Noetherian O E -algebra, recall from section 2 the following categories of semilinear algebra data:

R-Mod

2 dd ⊗ O E F / / R-Mod 2 dd,0 ⊗ O E F R-BrMod 2 dd / / R-BrMod 2 dd,0
endowed with faithful, covariant functors T 2

x towards Galois (with x ∈ {st, qst}), verifying the natural, evident compatibilities with respect to the forgetful, restriction and mod-p reduction functors.

Definition 5.1. Let M ∈ O E -Mod 2 dd be a strongly divisible lattice of type τ such that T 2 st (M) ⊗ F ∼ = ρ. A basis e = (e 0 , e 1 , e 2 ) on M is said to be a gauge basis for M if e is compatible with the descent data and there exists f

= (f 0 , f 1 , f 2 ) ∈ Fil 2 M such that Mat e ([f 0 , f 1 , f 2 ]) =   1 0 0 u [a1-a0] x E(u) 0 u [a2-a0] (y + E(u)y) E(u)u [a2-a1] z u 2e  
and Mat e,f (ϕ 2 ) = Diag(α 0 , α 1 , α 2 ), where x, y, y , z ∈ O E and α i ∈ O × E . If R is a complete local Noetherian O E -algebra we define in an analogous way the notion of gauge basis for modules

M ∈ R-Mod 2 dd , M ∈ R-BrMod 2 dd (resp. M ∈ R-Mod 2 dd,0 , M ∈ R-BrMod 2 dd,0 ) of type τ such that T 2 st (M) ⊗ R F ∼ = ρ (resp. T 2 qst (M) ⊗ R F ∼ = ρ| G (Qp )∞ ).
A morphism of strongly divisible lattices with gauge basis (M 1 , e 1 ) → (M 2 , e 2 ) is defined as a morphism

M 1 → M 2 in O E -Mod 2
dd such that e i,1 → e i,2 for i ∈ {0, 1, 2}. We have the analogous definition for a morphism of R-valued (quasi)strongly divisible lattices and (quasi)-Breuil modules, where R is a complete local Noetherian O E -algebra (resp. F-algebra).

We record the following: Lemma 5.2. Let M ∈ O E -Mod 2 dd be a strongly divisible lattice of type τ such that T 2 st (M) ⊗ F ∼ = ρ. Then M is endowed with a gauge basis e. Moreover if e, e are two gauge bases on M, then there exists t ∈ T 3 (O E ) such that e = e • t.

If R is a complete local noetherian O E -algebra we have the evident, analogous statement for Breuil modules and quasi-Breuil modules with R-coefficients.

Proof. The fact that M is endowed with a gauge basis is immediate from Theorem 3.6. Moreover, given two gauge basis e, e for M, one has

e • = s • e • for • ∈ {0, 1, 2}) and s • ∈ (S) ×
ω 0 (the latter denoting the invertible element in the ω 0 -isotypical component of the Breuil ring S).

As e , e are gauge basis, the effect of the change of basis on the Frobenius action gives In what follows, we need the unicity of Breuil modules M verifying T 2 st (M) = ρ. The following proposition shows that this is the case when the descent datum on M is sufficiently generic with respect to the inertial weights of ρ ss . Proposition 5.3. Let M 1 , M 2 ∈ F-BrMod 2 dd be Breuil modules with descent data of type τ . Assume that T 2 st (M i ) ∼ = ρ for i ∈ {1, 2}, where ρ is ordinary Fontaine-Laffaille and strongly generic as in (3.0.1).

α • = ϕ(s • ) s • α • for • ∈ {0, b, a}. As x • def = α • α -1 • ∈ O × E one
Then we have an isomorphism of Breuil modules M 1 ∼ -→ M 2 .

Proof. Let M ∈ F-BrMod 2 dd be a Breuil module with descent data of type τ . By Proposition 4.3 we have a gauge basis e and a system of generators f for Fil 2 M such that:

Mat e (Fil 2 M 0 ) =   1 0 0 u [a 1 -a 0 ]
x u e 0 u e u [a 2 -a 0 ] y u e u [a 2 -a 1 ] z u 2e   , Mat e,f (ϕ 2 ) = Diag(α 0 , α 1 , α 2 ) for some x, y, z ∈ F, α i ∈ F × . By Lemma 2.4 the (F((π)), φ)-module M for an appropriate basis f on M 0 . Hence, the (F((p)), φ)-module M 0 (-a 0 ) defined by

Mat f (φ) =   α -1 0 α -1 1 x α -1 2 y 0 α -1 1 α -1 2 z 0 0 α -1 2   Diag(1, p a1-a0+1 , p a2-a0+2 )
verifies Hom(M 0 (-a 0 ), F p ((p)) s ) ∼ = ρ ⊗ ω -a0 |G (Qp)∞ . By an evident change of basis and Proposition 2.3 we deduce that M 0 (-a 0 ) = F(M ) where M is the Fontaine-Laffaille module in Hodge-Tate weights (0, a 1a 0 + 1, a 2 -a 0 + 2) and whose Frobenii are described, in an appropriate basis, by

Mat(φ • ) =   1 x y 0 1 z 0 0 1   Diag(α -1 0 , α -1 1 , α -1 2 ).
We now specialize to our situation: for i ∈ {1, 2} we have:

Mat e (Fil 2 M i ) =   1 0 0 u [a 1 -a 0 ]
xi u e 0 u e u [a 2 -a 0 ] yi u e u [a 2 -a 1 ] zi u 2e   , Mat e,f (ϕ 2 ) = Diag(α 0 , α 1 , α 2 ) for some x i , y i , z i ∈ F (and the α i ∈ F × uniquely determined by ρ i (Frob p )) we deduce the Fontaine-Laffaille modules M i , in Hodge-Tate weights (0, a 1 -a 0 + 1, a 2 -a 0 + 2) Frobenii

Mat(φ • ) =   1 x i y i 0 1 z i 0 0 1   Diag(α -1 0 , α -1 1 , α -1 2 ).
As have T 2 st (M 1 ) ∼ = T 2 st (M 2 ) by assumption we deduce that the Fontaine-Laffaille modules above are isomorphic. By [HLM], Lemma 2.1.7, any change of basis on M i which is compatible with both the Hodge and the submodule filtration on M i is diagonal; in other words, one has  

1 x 1 y 1 0 1 z 1 0 0 1   =   1 x 2 y 2 0 1 z 2 0 0 1   Diag(λ, µ, ν)
for some λ, µ, ν ∈ F × . We deduce an isomorphism of Breuil modules with gauge basis M 1 ∼ -→ M 2 defined by e 1 → e 2 • Diag(λ, µ, ν).

We fix a pair (M, e) where M ∈ F-BrMod 2 dd has type τ and verifies T 2 st (M) ∼ = ρ and e is a gauge basis on it. The basic setup will be similar to §7.4 of [START_REF] Emerton | Lattices in the cohomology of Shimura curves[END_REF]. We now introduce the following deformation rings.

1) R 2 ρ def = R
2,(0,1,2),cris,τ ρ is the framed potentially crystalline deformation ring of ρ, with Galois type τ and p-adic Hodge type (0, 1, 2); 2) R τ M,∞ represents the deformation functor of pairs (M, e) where M is a quasi-strongly divisible module lifting M and e is a gauge basis on M reducing to the gauge basis e on M. 3) R τ M represents the deformation functor of pairs (M, e) as in 2) where M is now a strongly divisible lattice. 4) R 2,τ M represents deformation functor of triples (M, e, ρ) where the pair (M, e) is as in 3) and ρ ∼ = T 2 st (M) (i.e., the pair (M, e) comes with a framing on T 2 st (M)); 5) R 2 M parameterizing pairs (M, ρ) where M is as in 3) and ρ ∼ = T 2 st (M) (i.e. we fix a framing on T 2 st (M)). The relationship between the various deformation rings is summarized in the following diagram:

(5.3.1) SpfR 2,τ M f.s.

z z f.s. $ $ SpfR τ M,∞ SpfR τ M ? _ o o SpfR 2 M ∼ / / SpfR 2 ρ
Morphisms labelled f.s. are easily seen to be formally smooth. Since the existence of monodromy is a closed condition, the leftmost arrow is a closed immersion. We will show that the rightmost arrow is an isomorphism in Theorem 5.5 below.

We now deduce the two important consequences of our work in the previous sections:

Lemma 5.4. The rings R τ M ⊗ O E F, R τ M,∞ ⊗ O E F are formally smooth of dimension 6 and 7 respectively. Moreover we have a closed immersion

Spf(R τ M ) × F → Spf(R τ M,∞ ) × F
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  for the matrix giving the coordinates of f in the basis e and A def = Mat e,f (ϕ r ) ∈ GL n (R ⊗ F S) for the matrix describing the Frobenius action on M with respect to e, f . Then there exists a basis e for M Fp((π)) (M * ) (where M * denotes the associated dual Breuil module, cf. [EGH13]

  finite dimensional p-adic Galois representation of G Qp becoming semi-stable over K and with Hodge-Tate weights in {-r, 0} (cf.[START_REF] Emerton | Weight cycling and Serre-type conjectures for unitary groups[END_REF], Section 3.1, where the functor would be noted by T Qp st )

  with b s ∈ {0, . . . , p -1} then either a 0 = b 0 -k ≥ 0 and b s = 0 for some s ≥ 1 or a 0 = p + b 0 -k.

  deduces that s • ∈ S ϕ=x• = O E .The statement for Breuil modules and quasi-Breuil modules with R coefficients is deduced following the analogous argument, using Proposition 4.1.



  def = M Fp((π)) (M * ) is described by Mat e (φ) =   1 π [a1-a0] x π e+[a2-a0] y 0 π e π e+[a2-a1] z 0 0 π 2e Diag(α -1 0 , α -1 1 , α -1 2 ).By considering the change of basis e def = (π a0 e 0 , π a1 e 1 , π a2 e 2 ) (i.e., by considering the ω a0 -isotypical component of M), we obtainMat e (φ) =   π a0 π e(a1+1) x π e(a2+2) y 0 π e(a1+1) π e(a2+2) M is the base change to F((π)) of the (F((p)), φ)-module M 0 Diag(p a0 , p a1+1 , p a2+2 ).

  condition (3.19.6) is now translated into the existence of solutions to (3.19.10), (3.19.11), where v i,j verify moreover (3.19.7).

By (3.19.8

) and (3.19.9) we have m 2,2
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Then there exist elements v

where

In particular, any element B 2n ∈ GL dd,3 (R) + M dd,3 (p, Fil 1 R) deduced from the equation (3.16.1) via Lemma 3.15 verifies:

In a similar fashion, we can diagonalize the ϕ r -action modulo p n+1 at the step 2n + 1: Proposition 3.17 (Odd case). Let n ≥ 0 and let

for some elements v

Then there exist elements v

where

In particular, any element B 2n+1 GL dd,3 (R) + M dd,3 (p, Fil 1 R) deduced from the equation (3.17.1) via Lemma 3.15 verifies:

The proof of Proposition 3.16, 3.17, which is the key technical part in the approximation argument, is carried out in section §3.4 below.

We now show how Proposition 3.16 and 3.17 let us perform the p-adic convergence argument giving rise to Theorem 3.6.

By Theorem 3.6, Proposition 4.1 and Lemma 5.2 we see that Spf(R τ M,∞ ) is formally smooth, of relative dimension 7 over O E with a universal family of "ordinary" quasi-Breuil modules.

By Proposition 4.3, it follows immediately that R τ M ⊗ O E F is formally smooth, of relative dimension 6 and the closed immersion in the statement of the Lemma is defined by

Theorem 5.5. The natural map SpfR 2 M → SpfR 2 ρ is an isomorphism. Proof. By Theorem 2.5, Lemma 5.2 and the uniqueness of Proposition 5.3 we deduce that the forgetful functor induces an isomorphism on generic fibers

This can be done by Galois descent via Proposition 2.3, following the technique of the proof of Proposition 5.3. More precisely, let (N , ρ) be a point in Hom(R 2 M , F[ε]). By Lemma 5.2 N is endowed with a gauge basis e = (e 0 , e 1 , e 2 ); in particular we have (5.5.2)

where f = (f 0 , f 1 , f 2 ) is a system of generators for Fil 2 N and x, y, x ∈ F

As in the proof of Proposition 5.3, we deduce that ρ ∼ = T * cris (N ) ⊗ ω a0 where N is a Fontaine-Laffaille module over F[ε], in Hodge-Tate weights (0, a 1a 0 + 1, a 2 -a 0 + 2) and Frobenii given by:

Hence, the image of the reduced tangent map (5.5.1) consists of Fontaine-Laffaille tangent vectors, and the map is therefore injective.

The following elementary result is the reason we only needed to compute the monodromy on the special fiber:

where m R is the maximal ideal of R. By Nakayama, we have a surjective map

which is an isomorphism on the special fiber. As R is O E -flat, the above map is in fact an isomorphism. are now ready to prove our main result: Theorem 5.7. Let R 2,(0,1,2),cris,τ ρ be the framed potentially crystalline deformation ring for ρ, with Galois type τ and p-adic Hodge type (0, 1, 2). Assume that SpfR 2,(0,1,2),cris,τ ρ is non-empty. Then R 2,(0,1,2),cris,τ ρ is formally smooth over O E of relative dimension 12.

Proof of Theorem 5.7. By Theorem 5.5, we have SpfR 2

M is non-empty and flat over O E . Thus, the same is true for SpfR Remark 5.8. The condition that SpfR 2,(0,1,2),cris,τ ρ is non-empty arises because we only compute the monodromy on the special fiber. As a result, we do not exhibit any potentially crystalline lifts of ρ. This problem is addressed in [LLHLM]. In personal correspondence, Hui Gao informed us that he was able independently to prove that the ring SpfR 2,(0,1,2),cris,τ ρ in Theorem 5.7 is non-empty ( [Gao]).

We can also deduce the following:

Corollary 5.9. The ring R τ M,∞ is formally smooth over O E of relative dimension 7. Assume that R τ M ⊗ O E E is non-empty, then SpfR τ M is formally smooth over O E of dimension 6 respectively.

Proof. It follows immediately from Proposition 5.6 and Lemma 5.4 if the rings are O E -flat. The ring R τ M,∞ is flat since we produced families of quasi-strongly divisible modules lifting M in §3. If R τ M ⊗ O E E is non-empty then so is R 2 ρ ⊗ O E E and so we can argue as in the proof of Theorem 5.7.