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POTENTIALLY CRYSTALLINE DEFORMATION RINGS AND SERRE

WEIGHT CONJECTURES:

SHAPES AND SHADOWS

DANIEL LE, BAO V. LE HUNG, BRANDON LEVIN, AND STEFANO MORRA

Abstract. We prove the weight part of Serre’s conjecture in generic situations for forms

of U(3) which are compact at infinity and split at places dividing p as conjectured by

[Her09]. We also prove automorphy lifting theorems in dimension three. The key input

is an explicit description of tamely potentially crystalline deformation rings with Hodge-

Tate weights (2, 1, 0) for K/Qp unramified combined with patching techniques. Our results

show that the (geometric) Breuil-Mézard conjectures hold for these deformation rings.
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1. Introduction

Let p be a prime. Serre’s modularity conjecture ([Ser72]) predicts that any continuous,

irreducible, odd Galois representation r : GQ
def
= Gal(Q/Q)→ GL2(Fp) is modular. In other

words, there exists a cuspidal modular form f =
∑

n>0 anq
n, which is an eigenvector for

the Hecke operators, such that tr(r (Frob`)) ≡ a` mod p for all primes ` 6= p not dividing

the level of f . In [Ser87], Serre made his conjecture more precise, by specifying the minimal

weight (for prime to p level) of such a modular form. More precisely, if r is modular, then

the set of weights in which a modular form f associated to r occurs is determined in an

explicit way from the local datum ρ
def
= r|Gal(Qp/Qp). In generalizations of Serre’s conjecture

beyond GL2(Q), there is no obvious notion of minimality, and it is more natural to attach

to ρ a set of irreducible mod p representations, or Serre weights, of the rational points of

a general linear group over a finite field. This is referred to as the weight part of Serre’s

conjecture or more succinctly, the Serre weight conjectures.

There has been considerable progress on generalizations of Serre’s weight conjecture in di-

mension two (the Buzzard-Diamond-Jarvis conjecture) ([BDJ10], [Sch08], [GK14], [GLS15],

[New14],...), leading to complete results for 2-dimensional Galois representations. A key

insight in [GK14] connects the weight part of Serre’s conjecture to the Breuil-Mézard con-

jecture ([BM02], [BM14]), and its geometrization ([EG14], [EG]), which predicts the mul-

tiplicities of the special fibers of deformation spaces (or, more generally, moduli stacks) of

local Galois representations when ` = p in terms of Serre weights of general linear groups.

In particular, a good understanding of the geometry of local Galois deformation spaces

leads naturally to modularity lifting results, Breuil-Mézard, and the weight part of Serre’s

conjecture, via the patching techniques of Kisin-Taylor-Wiles.

In dimension two, potentially Barsotti-Tate (BT) deformation rings were studied via

moduli of finite flat group schemes ([Kis09b], [Bre00]) leading to explicit presentations when

K/Qp is unramified ([BM14, EGS15]). The geometry of these (potentially) BT-deformation

rings is a key input into the proof of the weight part of Serre’s conjecture in [GK14] and

provides evidence for mod p local Langlands. However, a satisfactory understanding of the

n-dimensional analogue, potentially crystalline deformation rings with Hodge-Tate weights

(n − 1, n − 2, . . . , 0), seemed out of reach, due to the difficulty of understanding the mon-

odromy operator in the theory of Breuil-Kisin modules.

In this paper, we overcome this difficulty in dimension 3 to give a description of the

local deformation rings R
(2,1,0),τ
ρ for K/Qp unramified and τ a generic tame inertial type.



POTENTIALLY CRYSTALLINE DEFORMATION RINGS & SERRE WEIGHT CONJECTURES 4

We thereby obtain the first examples in dimension greater than 2 of Galois deformation

rings which are neither ordinary nor Fontaine-Laffaille. Our results are consistent with the

Breuil-Mézard conjecture and lead to improvements in modularity lifting.

Results on local deformation spaces. Let K/Qp be a finite unramified extension. We

fix a sufficiently large finite extension E/Qp, O its ring of integers and F its residue field

(the rings of coefficients for our representations).

Let τ : IQp → GL3(O) be a tame inertial type and ρ : GK → GL3(F) be a continuous

Galois representation. In Definitions 2.1 and 3.7, we introduce a mild condition on the

inertial weights of τ and ρ, which we call genericity. Our main local results (cf. Corollary

5.13, Theorem 6.14 in the main body of the paper) are a detailed description of the framed

potentially crystalline deformation ring R
(2,1,0),τ
ρ (if it is nonzero) in terms of the notion of

shape attached to the pair (ρ, τ) (cf. Definition 3.3). The shape is an element of length ≤ 4

in the Iwahori-Weyl group of GL3 and arises from the study of moduli of Kisin modules

with descent datum in §2.1 (inspired by work of [Bre14, BM14, CDMb, EGS15] and further

pursued in [CL]); it generalizes the notion of genre which is crucial in [Bre14] in describing

tamely Barsotti-Tate deformation rings for GL2.

Theorem 1.1. Let ρ : GQp → GL3(F) be a continuous Galois representation. Let τ be

a strongly generic tame inertial type. Then the framed potentially crystalline deformation

ring R
(2,1,0),τ
ρ with Hodge-Tate weights (2, 1, 0) has connected generic fiber and its special

fiber is as predicted by the geometric Breuil-Mézard conjecture.

If R
(2,1,0),τ
ρ is nonzero and the shape of (ρ, τ) has length at least 2, then R

(2,1,0),τ
ρ has an

explicit presentation given in Table 7. If the shape of (ρ, τ) has length ≤ 1, then the special

fiber of R
(2,1,0),τ
ρ is described in Section 8.

The first step towards Theorem 1.1 is a detailed study of the moduli space of Kisin

modules with descent datum. The shapes of Kisin modules which arise from reductions

of potentially crystalline representations with Hodge-Tate weights (2, 1, 0) are indexed by

(2, 1, 0)-admissible elements (Adm(2, 1, 0)) in the Iwahori-Weyl group of GL3 as defined by

Kottwitz and Rapoport (cf. [PZ13, (9.17)]). For generic τ , the Kisin variety is trivial, and

so we can associate a shape to a pair (ρ, τ).

There are 25 elements in Adm(2, 1, 0) (cf. Table 1). Due to an additional symmetry,

we are able to reduce our analysis to nine cases. The shorter the length of the shape the

more complicated the deformation ring is. In seven cases (length ≥ 2), the deformation
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ring admits a simple description (see Table 7). The remaining two cases require separate

analysis undertaken in §8. Our strategy is as follows:

(1) Classify all Kisin modules of shape w̃ ∈ Adm(2, 1, 0) over Fp (Theorem 2.21);

(2) For M of shape w̃, construct the universal deformation space with height conditions

(Theorem 4.17);

(3) Impose monodromy condition on the universal family (§5).

Steps (1) and (2) generalize techniques of [Bre14, CDMb, EGS15] used to compute tamely

Barsotti-Tate deformation rings for GL2. Step (2) amounts to constructing local coordi-

nates for the Pappas-Zhu local model for (GL3, µ = (2, 1, 0), Iwahori level) (cf. [CL])

and requires a more systematic approach to the p-adic convergence algorithm employed by

[Bre14, CDMb, LM16].

Step (3) requires a genuinely new method not present in the tamely Barsotti-Tate case

where the link between moduli of finite flat groups schemes and Galois representations is

stronger. Kisin [Kis06] characterized when a torsion-free Kisin module M over Zp comes

from a crystalline representation in terms of the poles of a monodromy operator NMrig which

is naturally defined on the extension Mrig of M to the rigid analytic unit ball. This condition

on the poles of the monodromy operator is a subtle analogue of Griffiths transversality in

p-adic Hodge theory. While one cannot compute NMrig completely, it is possible to give an

explicit approximation using the genericity condition on τ . The error term turns out to be

good enough to understand the geometry of the deformation rings.

Global applications. Using Kisin-Taylor-Wiles patching methods, the local information

on the Galois deformation spaces leads to new modularity results and the Serre weight

conjectures. To state these results, we fix a global setup (cf. §7.1) and remark that the

weight part of Serre’s conjecture is expected to be independent of the global setup. Our

proofs only use the existence of patching functors in the sense of [EGS15, GHS] verifying

certain axioms (Definition 7.11) and so our results should hold in other situations as well.

Let F/Q be a CM field with totally real subfield F+. Assume that p splits completely

in F . Let r : Gal(F/F ) → GL3(F) be a continuous irreducible representation. Let G be a

unitary group over F+ which is isomorphic to U(3) at each infinite place and split above p.

Attached to this data, there is a well known notion of modularity for r (cf. Definition 7.1).

Roughly speaking, we can find a prime-to-p level Up in the finite adèlic points G(A∞,pF ) of

G and a maximal ideal mr in the Hecke algebra T acting on the space of mod p algebraic

automorphic forms S(Up,F) with infinite level at p, such that S(Up,F)mr 6= 0.



POTENTIALLY CRYSTALLINE DEFORMATION RINGS & SERRE WEIGHT CONJECTURES 6

Rather than specify a minimal weight for which r is modular, it is natural to consider local

systems attached to irreducible mod p-representations of G(OF+
p

) (also called Serre weights)

on the locally symmetric spaces of G. We let W (r) be the set of modular weights (i.e., the

set of Serre weights V for which HomG(O
F+
p

)(V, S(Up,F)mr) 6= 0). We define what it means

for Serre weights to be reachable (cf. Definition 7.2, which is an explicit condition on the

highest weight) and write Welim(r) for the set of reachable modular weights. (The notion

of reachable weight is due to the current weight elimination result when r is irreducible at

a place above p, cf. [EGH13], Theorem 5.2.5.)

If r is semisimple at each place above p, then there is a set of conjectural weights W ?(r)

defined in [Her09, GHS] which only depends on the restriction of r to the inertia subgroups

at the primes above p.

Theorem 1.2. Let r : GF → GL3(F) be a continuous Galois representation, verifying the

Taylor-Wiles conditions (cf. Definition 7.3). Assume that r|GFv is semisimple and 8-generic

for all v | p (cf. Definition 3.7), that r is automorphic of some reachable Serre weight, and

that r has split ramification outside p. Then

Welim(r) = W ?(r).

When r is irreducible at each prime above p, this is proven in [EGH13] using the technique

of weight cycling and without any Taylor-Wiles conditions. The inclusion Welim(r) ⊂W ?(r)

(weight elimination) is proven in [EGH13, HLM17, MP]. Recent improvements in weight

elimination results show that Welim(r) can be replaced by W (r) and ‘automorphic of some

reachable Serre weight’ with just ‘automorphic’, see Remark 7.10 for a precise discussion.

If [F+ : Q] = d, there are 9d conjectural weights appearing in W ?(r), 6d of which are

called obvious weights since they are directly related to the Hodge-Tate weights of “obvious”

crystalline lifts of (r|GFv )v|p. The precise relation between Serre weights of r and Hodge-

Tate weights of crystalline lifts of ρ was first made precise in [Gee11] and the obvious

weights are shown to be modular in [BLGG] using global methods (namely, modularity

lifting techniques) under the assumption that r is modular of a lower alcove weight.

The remaining weights in W ?(r) are more mysterious and are referred to as shadow

weights. The modularity of the shadow weights lies deeper than that of the obvious weights,

in part, because modularity of a shadow weight cannot be detected by modularity lifting

alone but requires characteristic p information. It is at this point that the computation

of the monodromy operator appears to play a critical role. The proof of Theorem 1.2

builds on the Breuil-Mézard philosophy introduced in [GK14]. The patching techniques of
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Gee-Kisin [GK14] and Emerton-Gee [EG14] connect the geometry of the local deformation

rings to modularity questions. We use geometric information about the local deformation

rings, especially the geometry of their special fibers, to prove the modularity of the shadow

weights.

Theorem 1.2 is stated only for r which are semisimple above p because those are the only

representations for which there is an explicit conjecture. Our computations, together with

work of [HLM17, MP], suggest a set W ?(ρ) for non-semisimple ρ for which the Theorem

should hold. We give one example in Proposition 7.17 and will return to this question in

future work. We also give counterexamples in Proposition 7.18 to Conjecture 4.3.2 (for

some non-semisimple ρ) of [Gee11], which predicts Serre weights in terms of the existence

of crystalline lifts.

The information on the deformation rings (Theorem 1.1), namely the connectedness of

their generic fiber, lets us deduce new modularity lifting theorems.

Theorem 1.3. Let r : GF → GL3(O) be a Galois representation and write r : GF →
GL3(F) for its associated residual representation.

Assume that:

(1) p splits completely in F+;

(2) r is unramified almost everywhere and satisfies rc ∼= r∨ε−2 (where c denotes the

complex conjugation on F/F+);

(3) for all places w ∈ Σp, the representation r|GFw is potentially crystalline, with parallel

Hodge type (2, 1, 0) and with strongly generic tame inertial type τΣ+
p

= ⊗v∈Σ+
p
τv (cf.

Definition 2.1);

(4) r verifies the Taylor-Wiles conditions (cf. Definition 7.3, in particular r is absolutely

irreducible) and r has split ramification;

(5) r ∼= rı(π) for a RACSDC representation π of GL3(AF ) with trivial infinitesimal

character and such that ⊗v∈Σ+
p
σ(τv) is a K-type for ⊗v∈Σ+

p
πv.

Then r is automorphic.

In Theorem 1.3, we do not assume that ρ is semisimple nor do we make any poten-

tial diagonalizability assumptions. We also allow any tame type not just principal series

types. Assumption (1) can be relaxed to the condition that p is unramified in F+. This

requires new representation theoretic techniques which will be discussed in a companion

paper ([LLHLMa]). We also believe that the genericity assumptions on the type τ can be

weakened with more work.
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Our results shed light on other questions in mod p and p-adic Langlands as well. For

example, Breuil [Bre14] formulates a conjecture, based on calculations of tamely Barsotti-

Tate deformation rings for GL2, on integral lattices in tame types cut out by completed

cohomology. When a tame principal series representation π of G(F+
p ) appears in the mr-part

(for a globalization of ρ) of the completed cohomology of an appropriate Shimura curve,

the natural integral structure on the cohomology induces an integral structure on the type

associated to π. Breuil conjectures that this lattice only depends on the local p-adic Galois

representation attached to π by the hypothetical p-adic local Langlands correspondence. A

related conjecture of Dembélé in [Bre14] is a “multiplicity one” statement for cohomology

at Iwahori level. Both conjectures for K/Qp unramified were proven by Emerton-Gee-Savitt

[EGS15] using the Taylor-Wiles method and geometric Breuil-Mézard realized by explicit

presentations of tamely Barsotti-Tate deformation rings.

The first author proved a generalization of Breuil’s conjecture to GL3 in the setting of

[EGH13]. In a companion work ([LLHLMa]), we address Breuil’s conjecture for GL3 and

K/Qp unramified using the methods developed in this paper. We will also extend the global

results of this paper to the case of K/Qp unramified. For ease of exposition, we restrict

ourselves to the case of GL3 throughout this paper, although §2-4, some of §5, and §6 could

be extended to GLn without serious difficulty.

Overview of the paper. We start in Section §2.1 with the basic formalism of Kisin modules

with tame descent data (notion of eigenbasis, genericity and the basic formulas of semilinear

algebra). This is further pursued in §2.2, where we obtain a complete classification of Kisin

modules with generic descent data in terms of shapes (cf. Definition 2.17 and Theorem

2.21). Section 3 compares the moduli of Kisin modules with generic tame descent data and

Galois deformation spaces. The genericity assumption guarantees the triviality of the Kisin

variety (Theorem 3.2) and injectivity on tangent spaces. We conclude the section with the

notion of shape and genericity for a mod p Galois representation (cf. Definitions 3.3, 3.7)

together with a Galois cohomology argument which shows that, under a mild assumption

on ρ, restriction to Galois deformations of some deeply ramified extension is fully faithful

on tangent spaces.

Section 4 and 5 are the technical heart of the paper. In §4, we develop an algorithm

to construct a “universal family” of Kisin modules of finite height, lifting a residual Kisin

module of a given shape (Theorem 4.1). The strategy is a wide generalization of the methods

already appearing in [Bre14, CDMa, LM16]. An algorithm is described to construct a
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gauge basis on the universal family in §4.1 on which we then impose the p-adic Hodge type

conditions (cf. Table 5 and Theorem 4.17)

In §5, we endow the rigid analytification of the universal family of Kisin modules with a

canonical monodromy operator, which we determine up to an error term which is divisible

by a power of p (Theorem 5.6); by imposing the monodromy to have logarithmic poles

(Proposition 5.3), we finally obtain explicit equations for the moduli of Kisin modules with

monodromy (Table 6), and hence for the Galois deformation ring (§5.2, Corollary 5.13, and

Table 7).

Section 6 extends the results of §5 to other tame types (cf. Theorem 6.14). We generalize

the formalism of “base change” for deformation rings as developed in [EGS15] in dimension

2.

The main global applications are discussed in §7. Via Kisin-Taylor-Wiles patching and

the formalism of patched functors (as introduced in [EGS15]), we prove the main theorems

discussed above. Section 8 is devoted to the analysis of the monodromy condition when the

shape has length ≤ 1 where the computations become more involved. In the Appendix, we

collect tables summarizing our results.

Acknowledgments: We would like to thank Matthew Emerton, Toby Gee, and Florian

Herzig for many helpful conversations and for comments on an earlier draft of the paper.

We thank the referee for the very careful reading and many suggestions on the first version

of this paper, which very much improved the exposition and the precision of our work.

1.1. Notation. If F is any field, we write GF
def
= Gal(F/F ) for the absolute Galois group,

where F is a separable closure of F . If F is moreover a p-adic field, we write IF to denote

the inertia subgroup of GF .

We fix once and for all an algebraic closure Q of Q. All number fields are considered

as subfields of our fixed Q. Similarly, if ` ∈ Q is a prime, we fix algebraic closures Q` as

well as embeddings Q ↪→ Q`. All finite extensions of Q` are considered as subfields of Q`.

Moreover, the residue field of Q` is denoted by F`.
Let p > 3 be a prime. For f > 0, we let K be the unramified extension of Qp of degree

f . We write k for its residue field and let W = W (k). We set e
def
= pf − 1 and consider the

Eisenstein polynomials E(u)
def
= ue + p ∈ K[u] and P (v)

def
= v + p ∈ K[v] where v = ue. We

fix a root π
def
= (−p)

1
e ∈ K, define the extension L = K(π) and set ∆

def
= Gal(L/K). The
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choice of the root π lets us define a character

ω̃π : ∆→W×

g 7→ g(π)

π

whose associated residual character is denoted by ωπ. In particular, for f = 1, ωπ is the

mod p cyclotomic character, which will be simply denoted by ω. The p-adic cyclotomic

character will be denoted by ε : GQp → Z×p . If Fw/Qp is a finite extension and WFw ≤ GFw
denotes the Weil group we normalize Artin’s reciprocity map ArtFw : F×w →W ab

Fw
in such a

way that uniformizers are sent to geometric Frobenius elements.

Let E be a finite extension of Qp. We write O for its ring of integers, fix an uniformizer

$ ∈ O and let mE = ($). We write F def
= O/mE for its residue field. We will always assume

that E is sufficiently large, i.e. that any embedding σ : K ↪→ Qp factors through E ⊂ Qp.

In particular, any embedding σ : k ↪→ Fp factors through F.

Let ρ : GK → GLn(E) be a p-adic, de Rham Galois representation. For σ : K ↪→ Qp,

we define HTσ(ρ) to be the multiset of σ-labeled Hodge-Tate weights of ρ, i.e. the set of

integers −i such that dimE

(
ρ⊗σ,K Cp(i)

)GK 6= 0 (with the usual notation for Tate twists).

In particular, we have HTσ(ε) = {1} for any σ. We define the Hodge type of ρ to be the

multiset
(
HTσ(ρ)

)
σ∈SK

∈
(
Zn
)SK where SK

def
=
{
σ | σ : K ↪→ Qp

}
and the inertial type of

ρ as the isomorphism class of WD(ρ)|IK , where WD(ρ) is the Weil-Deligne representation

attached to ρ as in [CDT99], Appendix B.1 (in particular, ρ 7→WD(ρ) is covariant). Recall

that an inertial type is a morphism τ : IK → GLn(O) with open kernel and which extends

to the Weil group WK of GK .

We fix an embedding σ0 : K ⊂ E, which induces maps W ↪→ O and k ↪→ F; by an abuse

of notation, we denote all of these by σ0. We let ϕ denote the p-th power Frobenius on

k and set σj
def
= σ0 ◦ ϕ−j . The choice of the embedding σ0 gives a fundamental character

ωf := σ0 ◦ ω̃π : IK → O× of niveau f .

Let S3 denote the symmetric group on {1, 2, 3}. We fix an injection S3 ↪→ GL3(Z)

sending s to the permutation matrix whose (k,m)-entry is δk,s(m) and δk,s(m) ∈ {0, 1} is the

Kronecker δ specialized at {k, s(m)}. We will abuse notation and simply use s to denote

the corresponding permutation matrix. Finally for m ≥ 0 and a collection (Bj)j=0,...,m of

square matrices of the same size, we write
∏m
j=0Bj = B0 ·B1 . . . Bm.
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2. Kisin modules modulo p

2.1. Kisin modules with descent datum. Let τ = η1⊕η2⊕η3 be an O×-valued inertial

type consisting of pairwise distinct characters.

Let a1 = (a1,j)j , a2 = (a2,j)j , and a3 = (a3,j)j where 0 ≤ j ≤ f − 1 and 0 ≤ ak,j ≤ p− 1.

For any 0 ≤ j ≤ f − 1, define

a
(j)
k =

f−1∑
i=0

ak,−j+ip
i.

For 1 ≤ k ≤ 3, we can write

ηk = (ωf )−a
(0)
k

for a unique choice of ak. We say that (a1,a2,a3) is associated to τ . We will need the

following genericity assumption throughout the paper.

Definition 2.1. Let n ∈ N. We say that the triple (a1,a2,a3) is n-generic if

n ≤ |a1,j − a2,j |, |a2,j − a3,j |, |a1,j − a3,j | ≤ p− 1− n(2.1)

for all j. We say that an inertial type τ = η1 ⊕ η2 ⊕ η3 is n-generic if the associated triple

(a1,a2,a3) is generic. We say that τ is generic (resp. weakly generic, resp. strongly generic)

if τ is 5-generic (resp. 3-generic, resp. 10-generic).

Let R be an O-algebra. Any W ⊗ZpR-module M decomposes as direct sum of R-modules

M =
⊕f−1

j=0 M
(j) where M (j) is the submodule such that (x ⊗ 1)m = (1 ⊗ σj(x))m for all

m ∈M (j) and x ∈W .

For any g ∈ ∆ and any O-algebra R, we let ĝ be the W ⊗Zp R-linear automorphism of

(W ⊗Zp R)[[u]] given by u 7→ (ωπ(g)⊗ 1)u.

Definition 2.2. Let MR be an (W ⊗Zp R)[[u]]-module. A semilinear action of ∆ on MR is

collection of ĝ-semilinear additive bijections ĝ : MR →MR for each g ∈ ∆ such that

ĝ ◦ ĥ = ĝh

for all g, h ∈ ∆.

Recall that for any O-algebra R, we define the Frobenius ϕ : (W ⊗Zp R)[[u]] → (W ⊗Zp

R)[[u]] to be trivial on R, the Frobenius on W , and with ϕ(u) = up. Note that ĝ ◦ϕ = ϕ ◦ ĝ.

Definition 2.3. Let R be any O-algebra. A Kisin module with height in [0, h] over R

is a finitely generated projective (W ⊗ R)[[u]]-module MR together with Frobenius φMR
:
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ϕ∗(MR)→MR such that the cokernel is killed by E(u)h. Here and throughout the paper the

notation ϕ∗(MR) stands for the base change of MR along ϕ : (W⊗ZpR)[[u]]→ (W⊗ZpR)[[u]].

Definition 2.4. A Kisin module with descent datum over R is a Kisin module (MR, φMR
)

together with a semilinear action of ∆ given by {ĝ}g∈∆ which commutes with φMR
, i.e., for

all g ∈ ∆,

ĝ ◦ φMR
= φMR

◦ ϕ∗(ĝ).

Let MR
∼=
⊕f−1

j=0 M
(j)
R . We say that the descent datum is of type τ if the linear representa-

tion of ∆ on the R-module satisfies M
(j)
R /uM

(j)
R
∼= τ ⊗O R for each 0 ≤ j ≤ f − 1.

For any O-algebra R, let Y [0,h],τ (R) be the category of Kisin modules over R with height

in [0, h], rank 3, and descent datum of type τ . For a given N ∈ N, it is shown in [CL] that

Y [0,h],τ mod (mE)N is represented by an Artin stack of finite type over O/(mE)N . The aim

of this section is to classify the F-points of Y [0,2],τ which are reductions of Kisin modules

with “Hodge-Tate” weights (2, 1, 0).

Definition 2.5. Let v
def
= ue and MR ∈ Y [0,2],τ (R). For k ∈ {1, 2, 3}, define MR,k to be the

(W ⊗ R)[[v]]-submodule of MR on which ∆ acts by ηk, i.e., MR,k
def
=
(
MR

)∆=ηk . Similarly,

we define ϕMR,k to be the (W ⊗ R)[[v]]-submodule of ϕ∗(MR) on which ∆ acts by ηk, i.e.,

ϕMR,k
def
=
(
ϕ∗(MR)

)∆=ηk .

By considering the decomposition MR
∼=
⊕f−1

j=0 M
(j)
R , we write M

(j+1)
R,k for the R[[v]]-

submodules of M
(j+1)
R on which ∆ acts by ηk and we write ϕM

(j)
R,k for the R[[v]]-submodules

of (ϕ∗(MR))(j+1) = ϕ∗(M
(j)
R ) on which ∆ acts by ηk (with the usual convention that

j + 1
def
= 0 if j = f − 1).

While we have made a choice of global ordering η1, η2, η3, it will be important for uniform

statements to order things (possibly) differently at each embedding σj : K → E. We

introduce this local ordering now.

Definition 2.6. Let (a1,a2,a3) be a triple as in Definition 2.1. An orientation of (a1,a2,a3)

is an f -tuple (sj)j ∈ Sf3 such that

a
(j)
sj(1) ≥ a

(j)
sj(2) ≥ a

(j)
sj(3).

If τ is an inertial type as above, an orientation of τ is defined to be an orientation of the

triple (a1,a2,a3) associated to it. In this case, we say that sj is an orientation at j of τ .
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Under the weak genericity condition (2.1), there exists a unique orientation on τ and the

orientation at j is determined by the values of a1,f−j−1, a2,f−j−1, a3,f−j−1 which are the

dominant terms of a
(j)
1 , a

(j)
2 , a

(j)
3 respectively. In particular, we have

(2.2) asj(1),f−j−1 > asj(2),f−j−1 > asj(3),f−j−1.

For any M ∈ Y [0,h],τ (R), we have the following commutative diagram relating the different

isotypic components:

(2.3)

ϕM
(j−1)
sj(3)

u
e−(a

(j)
sj(1)

−a
(j)
sj(3)

)

//

φ
(j−1)
M,sj(3)

��

ϕM
(j−1)
sj(1)

u
a
(j)
sj(1)

−a
(j)
sj(2)

//

φ
(j−1)
M,sj(1)

��

ϕM
(j−1)
sj(2)

φ
(j−1)
M,sj(2)

��

u
a
(j)
sj(2)

−a
(j)
sj(3)

// ϕM
(j−1)
sj(3)

φ
(j−1)
M,sj(3)

��

M
(j)
sj(3)

u
e−(a

(j)
sj(1)

−a
(j)
sj(3)

)

// M
(j)
sj(1)

u
a
(j)
sj(1)

−a
(j)
sj(2)

// M
(j)
sj(2)

u
a
(j)
sj(2)

−a
(j)
sj(3)

// M
(j)
sj(3)

where the composition along each row is multiplication by ue and the vertical arrows are

induced by φM. All the maps in the diagram are injective (again, with the standard conven-

tion that j−1
def
= f−1 if j = 0). In particular, any one of the three maps φ

(j−1)
M,1 , φ

(j−1)
M,2 , φ

(j−1)
M,3

determines the other two. We choose to focus on φ
(j−1)
M,sj(3). We discuss in more detail at the

end of the section how the Frobenii φ
(j−1)
M,sj(k), for 1 ≤ k ≤ 3, are related (Proposition 2.23).

Remark 2.7. The submodule ϕMk of ϕ∗(M) is NOT the same as the Frobenius pullback

of Mk. In particular, φM,k does not define a semilinear endomorphism of Mk. It is merely

a linear map from ϕMk → Mk. This fact is reflected again in the change of basis formula

(Proposition 2.15).

We want to consider
(
φ

(j)
M,sj+1(3)

)
j

as a collection of matrices with respect to a choice of

bases. We will refine the basis further in the next section.

Definition 2.8. Let M ∈ Y [0,2],τ (R). An eigenbasis β :=
{
β(j)

}
j

for M is a collection of

bases β(j) =
(
f

(j)
1 , f

(j)
2 , f

(j)
3

)
of each M(j) such that f

(j)
k ∈M

(j)
k for each k ∈ {1, 2, 3}.

Lemma 2.9. If β =
{(
f

(j)
1 , f

(j)
2 , f

(j)
3

)}
j

is an eigenbasis for M, then for any 0 ≤ j ≤ f−1,

β
(j)
sj(3) :=

(
u
a

(j)
sj(1)

−a(j)
sj(3)f

(j)
sj(1), u

a
(j)
sj(2)

−a(j)
sj(3)f

(j)
sj(2), f

(j)
sj(3)

)
,

is a basis for M
(j)
sj(3). Similarly,

ϕβ
(j−1)
sj(3) :=

(
u
a

(j)
sj(1)

−a(j)
sj(3) ⊗ f (j−1)

sj(1) , u
a

(j)
sj(2)

−a(j)
sj(3) ⊗ f (j−1)

sj(2) , 1⊗ f
(j−1)
sj(3)

)
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is a basis for ϕM
(j−1)
sj(3) .

Remark 2.10. We always order an eigenbasis β(j) with respect to the ordering on the char-

acters η1, η2, η3. On the other hand, when we work with the isotypic pieces M
(j)
sj(3) we order

our bases using the orientation (sj) of τ . It will be important to keep track of this difference.

Definition 2.11. Given an eigenbasis β for M, the matrix C(j) of φ
(j)
M with respect to β(j)

is defined to be the matrix C(j) such that

φ
(j)
M

(
ϕ∗
(
β(j)

))
= β(j+1)C(j).

The matrix A(j) of φ
(j)
M,sj+1(3) with respect to β(j) is defined to be the matrix A(j) such that

φ
(j)
M,sj+1(3)

(
ϕβ

(j)
sj+1(3)

)
= β

(j+1)
sj+1(3)A

(j).

It is customary to write C(j) = Matβ
(
φ

(j)
M

)
and A(j) = Matβ

(
φ

(j)
M,sj+1(3)

)
for short. To

understand how C(j) and A(j) relate to each other we define the following conjugation action

by diagonal matrices:

Definition 2.12. For any b1, b2, b3 ∈ Z and for any M ∈ Mat3(R((u))), we define

Ad(ub1 , ub2 , ub3)(M) :=


ub1 0 0

0 ub2 0

0 0 ub3

M


u−b1 0 0

0 u−b2 0

0 0 u−b3

 .

For any 0 ≤ j ≤ f − 1 and any M ∈ Mat3(R((u))), we define conjugation with orientation

by

Adsj (u
a1 , ua2 , ua3)(M) := sj

(
Ad
(
u
a

(j)
sj(1) , u

a
(j)
sj(2) , u

a
(j)
sj(3)

)
(M)

)
s−1
j

and

Ad−1
sj (ua1 , ua2 , ua3)(M) := Ad

(
u
−a(j)

sj(1) , u
−a(j)

sj(2) , u
−a(j)

sj(3)

)
(s−1
j Msj).

In particular, ifM has the form C(j) ∈ GL3(R((u))) as in Definition 2.11 then Ad−1
sj+1

(ua1 , ua2 , ua3)(M)

is a matrix in GL3(R((v))) (and the above conjugation can be thought as “removing the de-

scent datum”). For M ∈ Y [0,h],τ (R), the following Proposition relates the matrix for φ
(j)
M to

the matrix for φ
(j)
M,sj+1(3).

Proposition 2.13. Let β be an eigenbasis for M and (sj) be the orientation of τ . Let

A(j) = Matβ
(
φ

(j)
M,sj+1(3)

)
be as in Definition 2.11. Then

C(j) = Matβ
(
φ

(j)
M

)
= Adsj+1

(
ua1 , ua2 , ua3

)(
A(j)

)
.(2.4)
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Proof. This is straightforward from Definition 2.11 and Lemma 2.9 noting that:

β
(j+1)
sj+1(3) = β(j+1)sj+1


u
a

(j+1)
sj+1(1) 0 0

0 u
a

(j+1)
sj+1(2) 0

0 0 u
a

(j+1)
sj+1(3)

u
−a(j+1)

sj+1(3) .

�

For any O-algebra R, define

• LGL3(R) := GL3(R((v)))

• L+ GL3(R) := GL3(R[[v]])

• I(R) := {M ∈ L+ GL3(R) |M mod v is upper triangular }
• I1(R) := {M ∈ L+ GL3(R) |M mod v is upper triangular unipotent }
• D3(R) := {M ∈ L+ GL3(R) |M mod v3 is diagonal }.

Lemma 2.14. Let I ∈ Mat3(R((v))). For any integers b1, b2, b3 with e > b1−b3 > b2−b3 > 0,

consider

D = Ad
(
ub1 , ub2 , ub3

)
(I).

Then D ∈ Mat3(R[[u]]) if and only if I is in Mat3(R[[v]]) and is upper triangular modulo v.

Proof. The proof is a straightforward computation. �

We will now describe the effect of change of basis for the eigenbasis coordinates. Re-

call that (sj) ∈ Sf3 is the orientation of τ (Definition 2.6), and we associate to sj the

corresponding permutation matrix in GL3(O) as described in §1.1.

Proposition 2.15. Let R be an O-algebra. Let M ∈ Y [0,2],τ (R) together with two eigenbases

β
(j)
1 :=

(
f

(j)
1 , f

(j)
2 , f

(j)
3

)
and β

(j)
2 :=

(
f
′(j)
1 , f

′(j)
2 , f

′(j)
3

)
related by(

f
′(j)
1 , f

′(j)
2 , f

′(j)
3

)
D(j) =

(
f

(j)
1 , f

(j)
2 , f

(j)
3

)
with D(j) ∈ GL3(R[[u]]). Let us write A

(j)
1

def
= Matβ1

(
φ

(j)
M,sj+1(3)

)
and A

(j)
2

def
= Matβ2

(
φ

(j)
M,sj+1(3)

)
as in Definition 2.11. Then

(2.5) A
(j)
2 = I(j+1)A

(j)
1

(
s−1
j+1sj

(
I(j),ϕ

)
s−1
j sj+1

)
where, for all 0 ≤ j ≤ f − 1, we have I(j) def

= Ad−1
sj (ua1 , ua2 , ua3)(D(j)) ∈ I(R) and

I(j),ϕ def
= Ad(v

asj(1),f−j−1 , v
asj(2),f−j−1 , v

asj(3),f−j−1)(ϕ(I(j))−1).
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Proof. The proof is a direct computation using Proposition 2.13. More precisely, let us

write C
(j)
i

def
= Matβi(φ

(j)
M ) for i ∈ {1, 2} as in Definition 2.11. We have

(2.6) C
(j)
2 = D(j+1)C

(j)
1 ϕ

(
D(j)

)−1
.

Since D(j) respects the descent datum, I(j) := Ad−1
sj (ua1 , ua2 , ua3)(D(j)) is in GL3(R((v))),

hence in I(R) by Lemma 2.14. Using (2.6) and Proposition 2.13, one obtains:

Adsj+1(ua1 , ua2 , ua3)
(
A

(j)
2

)
= D(j+1)C

(j)
1 ϕ

(
D(j)

)−1

= D(j+1)
(

Adsj+1(ua1 , ua2 , ua3)
(
A

(j)
1

))
ϕ
(
D(j)

)−1
.

Conjugating on both sides, we further deduce that

A
(j)
2 = I(j+1)A

(j)
1 Ad−1

sj+1
(ua1 , ua2 , ua3)

(
ϕ
(
D(j)

)−1
)
.(2.7)

We now study the final term of the right-hand side of (2.7). Let sj+1,j := s−1
j+1sj . We have

Ad−1
sj+1

(ua1 , ua2 , ua3)

(
ϕ
(
D(j)

)−1
)(2.8)

= Ad
(
u
−a(j+1)

sj+1(1) , u
−a(j+1)

sj+1(2) , u
−a(j+1)

sj+1(3)

)(
sj+1,j Ad

(
u
pa

(j)
sj(1) , u

pa
(j)
sj(2) , u

pa
(j)
sj(3)

)(
ϕ(I(j))−1

)
s−1
j+1,j

)
=sj+1,j Ad

(
v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1

)
(ϕ(I(j))−1)s−1

j+1,j .

where the last step follows from pa
(j)
k − a

(j+1)
k = ak,f−j−1e and

s−1
j+1,j


u
−a(j+1)

sj+1(1) 0 0

0 u
−a(j+1)

sj+1(2) 0

0 0 u
−a(j+1)

sj+1(3)

 sj+1,j =


u
−a(j+1)

sj(1) 0 0

0 u
−a(j+1)

sj(2) 0

0 0 u
−a(j+1)

sj(3)

 .

The conclusion follows by combining (2.7) and (2.8). �

Proposition 2.16. Assume that τ is weakly generic (Definition 2.1). Let I(j) ∈ I(R) be

as in Proposition 2.15. Then

I(j),ϕ = Ad
(
v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1

)
(ϕ(I(j))−1) ∈ D3(R).

Proof. By the weak genericity assumptions and choice of orientation, asj(1),f−j−1−asj(2),f−j−1 ≥
3 and

p− 4 ≥ asj(1),f−j−1 − asj(3),f−j−1 > asj(2),f−j−1 − asj(3),f−j−1 ≥ 3.
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Since
(
I(j)
)−1 ∈ I(R), the entries of ϕ

(
I(j)
)−1

below the diagonal are divisible by vp. A

direct computation then shows that

Ad
(
v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1

)(
ϕ(I(j))−1

)
∈ D3(R).

�

2.2. Classification over F. We keep the notations of the previous section except we now

work over F as opposed to O. In this subsection, we assume that τ is weakly generic. We

are now ready to define the shape (or genre in French) of a Kisin module. Let T be the

diagonal torus of GL3 and let NGL3(T ) denote the normalizer of T . The (extended) affine

Weyl group of GL3 is given by

W̃ := NGL3(T )(F((v)))/T (F[[v]]).

Recall that W̃ sits in an exact sequence

0→ X∗(T )→ W̃ → S3 → 0

where S3 is the ordinary Weyl group of GL3 and X∗(T ) ∼= Z3 are the cocharacters of T . If

λ ∈ X∗(T ) is a cocharacter, it is customary to write tλ to denote the corresponding element

(a translation) in W̃ .

For any finite extension F′ of F, Bruhat-Tits theory gives the following double coset

decomposition

(2.9) LGL3(F′) =
⋃
w̃∈W̃

I(F′)w̃ I(F′).

Definition 2.17. Let w = (w̃0, w̃1, . . . , w̃f−1) ∈ W̃ f . A Kisin module M ∈ Y [0,h],τ (F′)
has shape w if for any eigenbasis β, the matrices

(
A(j)

)
j

=
(

Matβ
(
φ

(j)
M,sj+1(3)

))
j

have the

property that A(j) ∈ I(F′)w̃j I(F′).

It follows immediately from Propositions 2.15 and 2.16 that the shape of a Kisin module

is well-defined, i.e., it does not depend on the choice of the eigenbasis. The motivation

for this definition comes from the theory of local models and a corresponding stratification

there. We now give an overview of this connection which is described in detail in the joint

work [CL] of the third author. We turn our attention to the study of Kisin modules with

“parallel” weight (2, 1, 0). Precisely, let µ = (µj) with µj = (2, 1, 0) for all j considered as
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a geometric cocharacter of ResK/Qp GL3. Then, [CL] constructs a closed substack Y µ,τ ⊂
Y [0,2],τ together with a “local model diagram”

Ỹ µ,τ

π

||

Ψ

##

Y µ,τ M(µ),

where M(µ) is the Pappas-Zhu local model for ResK/QpGL3 with Iwahori level structure

and cocharacter µ (cf. [CL, §5] in particular Proposition 5.2 and Theorem 5.3). Both π

and Ψ are smooth maps. For any w ∈ W̃ f , define Y
µ,τ
w (F) ⊂ Y µ,τ

(F) to be the set of points

with shape w.

Proposition 2.18. Let M(µ) and Y
µ,τ

denote the special fibers of M(µ) and Y µ,τ . Then

M(µ) has a stratification by locally closed affine Schubert varieties S0
w indexed by ele-

ments w ∈ W̃ f . Furthermore, the set of points Y
µ,τ
w (F) ⊂ Y

µ,τ
(F) of shape w is given

by π
(
Ψ−1

(
S0
w

))
.

The set of w ∈ W̃ f such that S0
w is a nonempty subscheme of M(µ) is given by the

µ-admissible set Adm(µ) =
∏
j Adm(2, 1, 0) (see [CL, §5.2] for details).

Corollary 2.19. The set Y
µ,τ
w (F) is nonempty if and only if w = (w̃0, w̃1, . . . , w̃f−1) where

w̃j is a (2, 1, 0)-admissible element of W̃ .

One can describe Adm(2, 1, 0) quite concretely. Let W̃ 0 be the affine Weyl group of SL3.

It is a Coxeter group generated by three reflections α, β and γ. We represent the elements

α and β which generate the finite Weyl group by

α =


0 1 0

1 0 0

0 0 1

 , β =


1 0 0

0 0 1

0 1 0

 .

The element γ is given by

γ =


0 0 v−1

0 1 0

v 0 0

 .

The set Adm(2, 1, 0) is a subset of vW̃ 0 ⊂ W̃ (i.e., those matrices with determinant

v3(unit)). In particular, the element t(2,1,0) ∈ W̃ corresponding to the GL3-cocharacter

(2, 1, 0) is in vW̃ 0. Recall that W̃ 0 is endowed with a Bruhat ordering, and for w̃1, w̃2 ∈ W̃ 0,
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we say vw̃1 ≤ vw̃2 if and only if w̃1 ≤ w̃2. Adm(2, 1, 0) is then defined to be the subset of

elements w̃ ∈ vW̃ 0 such that w̃ ≤ ts(2,1,0) for some permutation s ∈ S3.

There are six extremal elements in Adm(2, 1, 0) of length 4, corresponding to the six

permutations of (2, 1, 0). The length three shapes are divided into two different sets which

reflect different behavior on the Galois side. The set Adm(2, 1, 0) is given in Table 1.

The following is the key result for classifying Kisin modules with F′-coefficients, where

F′ is a finite extension of F.

Lemma 2.20. Let M, M′ ∈ Y µ,τ (F′) and let β, β′ be eigenbases of M, M′ respectively.

We define A(j) def
= Matβ

(
φ

(j)
R,sj+1(3)

)
(resp. A′(j)

def
= Matβ′

(
φ

(j)
R,sj+1(3)

)
) as in Definition

2.11. Assume further that there exists J (j+1) ∈ I1(F′) such that A′(j) = J (j+1)A(j) for all

0 ≤ j ≤ f − 1. Then there is an isomorphism M
∼−→M′ in Y µ,τ (F′).

Proof. We define, by induction, the following sequence
(
J

(j)
n

)
n∈N of elements in I1(F′). For

all j ∈ Z/fZ, set J
(j)
0

def
= Id3. For n ≥ 1, set

J
(j+1)
n+1 = J (j+1)A(j)

(
A(j)sj+1,jJ

(j),ϕ
n s−1

j+1,j

)−1

where J
(j),ϕ
n is constructed from J

(j)
n ∈ I(F′) as in Proposition 2.15. Note that this defines

a sequence in the pro-v Iwahori I1(F′).
From the definition of J

(j)
n and the hypothesis A′(j) = J (j+1)A(j), we obtain

(2.10) A′(j) = J
(j+1)
n+1 A(j)

(
sj+1,jJ

(j),ϕ
n s−1

j+1,j

)
.

Provided that the sequence
(
J

(j)
n

)
n

converges, we deduce the desired isomorphism M
∼−→M′

via Proposition 2.15.

We now prove the convergence of the sequence
(
J

(j)
n

)
n
. By the definition of the v-adic

topology on I(F′), it is enough to prove that

(2.11) vp(n−2)
∣∣(J (j+1)

n+1 − J
(j+1)
n

)
for all n ≥ 3. We induct on n.

It follows directly from the definitions that for all n ≥ 1 the element J
(j+1)
n+1 − J

(j+1)
n

equals

(2.12)

J (j+1)A(j)sj+1,j

(
Ad
(
v
asj(1),f−1−j , v

asj(2),f−1−j , v
asj(3),f−1−j

)
ϕ
(
J (j)
n − J

(j)
n−1

))
s−1
j+1,j

(
A(j)

)−1
.
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First, let n = 1. Then J
(j)
1 = J (j) ∈ I1(F′) and hence:

ϕ
(
J

(j)
1 − Id3

)
∈


(vp) F′[[v]] F′[[v]]

(vp) (vp) F′[[v]]

(vp) (vp) (vp)

 .

By the weak genericity condition (2.1) and the height condition, we deduce that

v3 | Ad
(
v
asj(1),f−1−j , v

asj(2),f−1−j , v
asj(3),f−1−j

)
· ϕ
(
J (j) − Id3

)
and v2

(
A(j)

)−1 ∈ Mat3(F′[[v]]), respectively. We conclude from (2.12) that v
∣∣(J (j+1)

2 −
J

(j+1)
1

)
.

For n = 2, we have vp
∣∣ϕ(J (j)

2 − J (j)
1

)
by the previous step, and hence v2

∣∣(J (j)
3 − J (j)

2

)
by the weak genericity condition (2.1). Finally, we conclude that vp

∣∣(J (j)
4 − J

(j)
3

)
since

v2p
∣∣ϕ(J (j)

3 − J (j)
2

)
.

For n ≥ 3, we see by induction, the weak genericity condition, and the height condition

on A(j), that

(2.13)

vp
2(n−2)−(p−4)−2

∣∣(Ad
(
v
asj(1),f−1−j , v

asj(2),f−1−j , v
asj(3),f−1−j

)(
ϕ
(
J (j)
n − J

(j)
n−1

)))(
A(j)

)−1
.

Hence

p2(n− 2)− p+ 2 ≥ p(p(n− 2)− 1) ≥ p(n− 1)

since p ≥ 3. �

With more careful analysis, Lemma 2.20 probably holds with even weaker genericity

conditions. However, we do not attempt such an analysis here.

Theorem 2.21. Let F′ be a finite extension of F. Let M ∈ Y µ,τ
w (F′) with w = (w̃0, w̃1, . . . , w̃f−1).

Fix a choice of representatives for w̃j ·
(
Pw̃j\ I(F′)

)
, where

Pw̃j
def
=
(
w̃−1
j I1(F′)w̃j

)
∩ I(F′).

Then there exists an eigenbasis β of M such that for each j ∈ Z/fZ the matrix A(j) =

Matβ
(
φ

(j)
M,sj+1(3)

)
lies in our fixed choice of representatives.

Proof. LetA
(j)
1 := Mat

β
(j)
1

(
φ

(j)
M,sj+1(3)

)
for some eigenbasis β

(j)
1 of M(j). IfA(j) ∈ I(F′)w̃j I(F′)

is such that A(j) and A
(j)
1 lie in the same left coset I1(F′)\ I(F′)w̃j I(F′), then by Lemma

2.20 there exists an eigenbasis of β(j) of M(j) such that A(j) = Matβ(j)

(
φ

(j)
M′,sj+1(3)

)
.

By considering the obvious isomorphism

w̃j ·
(
Pw̃j\ I(F′)

) ∼−→ I1(F′)\ I1(F′)w̃j I(F′) = I1(F′)\ I(F′)w̃j I(F′),
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we conclude that if M(j) has shape w̃j , then there exists an eigenbasis β of M such that

Matβ
(
φ

(j)
M,sj+1(3)

)
= A(j) where A(j) lies in our choice of representatives in w̃j ·

(
Pw̃j\ I(F′)

)
.

�

In Table 4, we have listed a choice of representatives for w̃j ·
(
Pw̃j\ I(F′)

)
for 9 out of

the 25 elements in Adm(2, 1, 0). As we will see below, a choice of representatives for the

remaining 16 can be easily obtained from these 9 elements by cyclic symmetry.

We now introduce the notion of a gauge basis of a mod p Kisin module:

Definition 2.22. Let M ∈ Y
µ,τ
w (F′). A gauge basis β = (β(j))j of M is an eigenbasis

such that for each 0 ≤ j ≤ f − 1, the matrix Matβ
(
φ

(j)
M,sj+1(3)

)
is in the form given by the

w̃j-entry in Table 4.

Note that a gauge basis always exists by Theorem 2.21.

In the above discussion, one could just as well have chosen to use φ
(j)
M,sj+1(2) or φ

(j)
M,sj+1(1)

instead of φ
(j)
M,sj+1(3). There is a simple way of determining the matrices for φ

(j)
M,sj+1(2) or

φ
(j)
M,sj+1(1) in terms of φ

(j)
M,sj+1(3). Furthermore, while the shape of the Kisin module depends

on the choice of the isotypic piece, there is a simple recipe which relates them. As a

consequence we can restrict ourselves to the study of the shapes listed in Table 4, and the

results for any other shape can be easily deduced by cyclic symmetry via Corollary 2.24

below.

Let

δ =


0 0 v−1

1 0 0

0 1 0

 ∈ W̃ .

Conjugation by δ induces an outer automorphism of W̃ 0 of order 3 satisfying

δαδ−1 = β, δβδ−1 = γ, δγδ−1 = α.

It is furthermore easy to check that

δ I(R)δ−1 = I(R)

for any O-algebra R.
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Proposition 2.23. Let M ∈ Y [0,h],τ (R). Let β(j) =
(
f

(j)
1 , f

(j)
2 , f

(j)
3

)
be an eigenbasis for

M and let A
(j)
3

def
= Matβ

(
φ

(j)
M,sj+1(3)

)
be as in Definition 2.11. Then

{
u
e−a

(j)
sj(2)

+a
(j)
sj(3) ⊗ f

(j−1)

sj(3)
, u

a
(j)
sj(1)

−a
(j)
sj(2) ⊗ f

(j−1)

sj(1)
, 1⊗ f

(j−1)

sj(2)

}
,
{
u
e−a

(j)
sj(2)

+a
(j)
sj(3)f

(j)

sj(3)
, u

a
(j)
sj(1)

−a
(j)
sj(2)f

(j)

sj(1)
, f

(j)

sj(2)

}({
u
e−a

(j)
sj(1)

+a
(j)
sj(2) ⊗ f

(j−1)

sj(2)
, u

e−a
(j)
sj(1)

+a
(j)
sj(3) ⊗ f

(j−1)

sj(3)
, 1⊗ f

(j−1)

sj(1)

}
,

{
u
e−a

(j)
sj(1)

+a
(j)
sj(2)f

(j)

sj(2)
, u

e−a
(j)
sj(1)

+a
(j)
sj(3)f

(j)

sj(3)
, f

(j)

sj(1)

})
are bases for ϕM

(j−1)
sj(2) and M

(j)
sj(2) respectively (resp. for ϕM

(j−1)
sj(1) and M

(j)
sj(1) respectively).

If A
(j)
2

def
= Matβ

(
φ

(j)
M,asj+1(2)

)
and A

(j)
1

def
= Matβ

(
φ

(j)
M,asj+1(1)

)
are defined in the evident way

following Definition 2.11, then

A
(j)
2 = δA

(j)
3 δ−1, A

(j)
1 = δ2A

(j)
3 δ−2.

Proof. We give the proof for M
(j−1)
sj(2) as the other proof is similar. Let C(j) def

= Matβ
(
φ

(j)
M

)
be as in Definition 2.11 so that by Proposition 2.13 we have

(2.14) C(j−1) = Adsj (u
a1 , ua2 , ua3)

(
A(j−1)

)
.

Let c1 = βα be the permutation matrix corresponding to the cycle (132). It is clear that

the elements listed in the statement form a basis for ϕM
(j−1)
sj(2) and M

(j)
sj(2) respectively and

hence the same argument as in Proposition 2.13 shows that

A
(j−1)
2 = Ad

(
u
−a(j)

sj(3)
−e
, u
−a(j)

sj(1) , u
−a(j)

sj(2)
)(
c−1

1 s−1
j C(j−1)sjc1

)
,(2.15)

Combining (2.14) and (2.15), we see that

A
(j)
2 = Ad(δ2)

(
A

(j)
3

)
,

where

δ2 = Diag
(
u
−a(j)

sj(3)
−e
, u
−a(j)

sj(1) , u
−a(j)

sj(2)
)
c−1

1 Diag
(
u
a

(j)
sj(1) , u

a
(j)
sj(2) , u

a
(j)
sj(3)

)
.

A direct computation shows that δ2 = δ. �

Corollary 2.24. Let M ∈ Y [0,h],τ (F′). If M has shape w = (w̃0, . . . , w̃f−1) then for any

eigenbasis β = (β(j)),

Matβ(φ
(j)
M,asj+1(2)

) ∈ I(F′)(δw̃jδ−1) I(F′), Matβ(φ
(j)
M,asj+1(1)

) ∈ I(F′)(δ2w̃jδ
−2) I(F′)

for all 0 ≤ j ≤ f − 1.
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Remark 2.25. As a consequence of Corollary 2.24, there is symmetry among the 25 shapes

of Adm(2, 1, 0). It is easy to see that δAdm(2, 1, 0)δ−1 = Adm(2, 1, 0) and that there are 9

orbits under conjugation by δ. In Table 4, we choose representatives for these 9 orbits and

restrict our attention to those 9 shapes. One can deduce all our results for the remaining

18 shapes simply by conjugating by δ or δ2.

2.3. Étale ϕ-modules. We recall briefly some properties of étale ϕ-modules which are

well-known. We refer to [CDMa, §2.1] and [CL, §5.3] for proofs.

Let OE,K denote the p-adic completion of S[ 1
v ], where S

def
= W [[v]], endowed with the

unique continuous Frobenius morphism such that the natural inclusion S[ 1
v ] ↪→ OE,K is

Frobenius-equivariant. Let R be a local, complete Noetherian O-algebra. By base change,

the ring OE,K⊗̂ZpR is naturally endowed with a Frobenius endomorphism ϕ and we write

Φ- Modét(R) for the category of étale (ϕ,OE,K⊗̂ZpR)-modules. We fix once and for all a

sequence p
def
= (pn)n∈N where pn ∈ Qp verify ppn+1 = pn and p0 = −p. We let K∞

def
=⋃

n∈N
K(pn) and GK∞

def
= Gal(Qp/K∞).

By classical work of Fontaine ([Fon90]) we have an exact anti-equivalence of ⊗-categories:

Φ- Modét(R)
∼−→ RepGK∞ (R)

M 7−→ V∗(M)
def
= HomΦ-Mod

(
M,OEun,K

)
where OEun,K is the étale extension of OE,K corresponding to a separable closure of k((v)).

The above construction can also be carried out with descent datum. More precisely,

choose (πn)n∈N to be the sequence satisfying πen = pn and πpn+1 = πn with π0 = π.

Then L∞
def
=
⋃
n∈N

L(πn) and GL∞
def
= Gal(Qp/L∞). We have Gal(L∞/K∞) ∼= Gal(L/K) =

∆. Let OE,L denote the p-adic completion of (W [[u]])[1/u] equipped with an action of

Gal(L∞/K∞) ∼= ∆ characterized by ĝ(u)
def
= ωπ(g)u. We define, in the evident way, the

category Φ- Modét
dd(R) of étale ϕ-module over OE,L⊗̂ZpR with descent data and note that

OE,L is an OE,K-algebra (by “ramifying the variable” u = v1/e).

We have an exact anti-equivalence of categories:

Φ- Modét
dd(R)

∼−→ RepGK∞ (R)

M 7−→ V∗dd(M)
def
= Homφ,OE,L

(
M,OEun,K

)
where we make GK∞ act on Homφ,OE,L

(
M,OEun,K

)
via g · f def

= g ◦ f ◦ ĝ−1
(here we write

ĝ to denote the automorphism of M associated to g ∈ Gal(L∞/K∞) ∼= ∆ via the descent

data).
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Define T ∗dd to be the composition Y [0,h],τ (R) → Φ- Modét
dd(R) → RepGK∞ (R), where the

first map is given by tensoring with OE,L (over (W [[u]])).

In order to compute T ∗dd, it is convenient to both remove the descent datum and pass to a

single Frobenius. This is carried out in [CDMa, §2.1.3]. We briefly recall the construction.

For anyO-algebraR, we considerR as aW -algebra via σ0. We endow the ringOE,K⊗̂W,σ0R

with a Frobenius ϕf (by base change). We can now define in the evident fashion the cate-

gory Φf - Modét
W,σ0

(R) of étale (ϕf ,OE,K⊗̂W,σ0R)-modules and we have an exact equivalence

of categories:

Φf - Modét
W,σ0

(R)
∼−→ RepGK∞ (R)

M 7−→ V∗W (M)
def
= HomΦf -Mod

(
M,OEun,K

)
.

In particular, if (M, φM) ∈ Φ- Modét(R), then (M(0), φfM) ∈ Φf - Modét
W,σ0

(R). This

defines a functor ε0 : Φ- Modét(R)→ Φf - Modét
W,σ0

(R).

We have the following compatibility between the above constructions (cf. Theorem 2.1.6

and equation (12) in [CDMa]):

Y [0,2],τ (R) //

T ∗dd

++

Φ- Modét
dd(R)

V∗dd
//

(•)∆=1

��

RepGK∞ (R)

Φ- Modét(R)
ε0·(•)

//

V∗

99

−⊗OE,KOE,L

BB

Φf - Modét
W (R)

V∗W

OO

If R is a F-algebra and M ∈ Y [0,2],τ (R), it will be useful to describe the étale (ϕf , R((v)))-

module ε0

(
(M⊗F[[u]] F((u)))∆=1

)
explicitly in terms of the A(j).

Proposition 2.26. Let M ∈ Y [0,2],τ (R) and β be an eigenbasis of M. Write (sj) for an

orientation of τ ,
(
A(j)

)
= Matβ

(
φ

(j)
M,sj+1(3)

)
and consider M = M[1/u] ∈ Φ- Modét

dd(R).

Then the étale (ϕf , R((v)))-module ε0

(
M∆=1

)
is described with respect to the basis f =

(ua
(0)
1 f

(0)
1 , ua

(0)
2 f

(0)
2 , ua

(0)
3 f

(0)
3 ) by

Matf(φ
f

M(0)) =

f−1∏
j=0

sf−j · ϕj
(
A(f−1−j)


v
asf−j(1),j 0 0

0 v
asf−j(2),j 0

0 0 v
asf−j(3),j


)
· s−1
f−j .

Proof. This is a direct computation (cf. [CDMa, (24)]). �
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3. Kisin varieties and tangent spaces

In this section, we show that under the weak genericity assumption (Definition 2.1) the

Kisin variety is trivial; in particular, if ρ : GK → GL3(F′) comes from a Kisin module

M ∈ Y µ,τ (F′), then M is unique. As a consequence, one can attach a shape w(ρ, τ) to

ρ. Later, in Proposition 7.16 (also Table 9), we show that the shape w(ρ, τ) is closely

related to the Serre weights of ρ which appear in the principal series type σ(τ) (as was

the case for GL2 [Bre14]). In this section, we also show that the map on tangent spaces

from deformations of Kisin modules to deformations of étale φ-modules is injective and that

under mild assumptions the same is true for the restriction on Galois deformations from

GK to GK∞ .

3.1. Kisin varieties. In what follows, let F′ denote a finite extension of F. If M ∈
Φ- Modét

dd(F) is an étale OE,L ⊗Zp F-module with descent data (cf. §2.3) and R is any

F′-algebra, we set MR
def
= M⊗F′((u)) R((u)) ∈ Φ- Modét

dd(R).

Definition 3.1. The Kisin variety Y
[0,2],τ
M (R) of M is a projective scheme over Spec (F)

which represents the functor:

Y
[0,2],τ
M (R)

def
=
{
MR ⊂MR | MR[1/u] =MR, φMR

(MR) ⊂MR, MR ∈ Y [0,2],τ (R)
}

In other words, Y
[0,2],τ
M (R) is the set of (k⊗Fp R)[[u]]-lattices in MR which have type τ and

height ≤ 2. We can also consider

Y µ,τ
M =

{
MR ⊂MR |MR[1/u] =MR, φMR

(MR) ⊂MR, MR ∈ Y µ,τ (R)
}
.

There is an obvious inclusion Y µ,τ
M ⊂ Y [0,2],τ

M . These are projective schemes because they

are closed subschemes of finite type in the affine Grassmannian for the group Resk/FpGL3.

(cf. [Kis09b, Proposition 2.1.7]: the proof there is in the height 1 case, but works for all

heights.) The result for Y µ,τ
M follows from the fact that Y µ,τ is a closed substack of Y [0,2],τ

(cf. [CL, Proposition 5.2]).

Theorem 3.2. If τ is weakly generic (Definition 2.1), then Y µ,τ
M (F′) is either empty or a

single point.

Proof. We show that Y
[0,2],τ
M (F′) is either empty or a single point. Assume we have two

(k ⊗Fp F′)[[u]]-lattices M1 and M2 in MF′ . For i ∈ {1, 2} choose an eigenbasis βi for

Mi, such that Matβi
(
φ

(j)
Mi,sj+1(3)

)
= A

(j)
i , where (sj) denotes the orientation on τ . Let(

D(j)
)
∈
(
GL3(F′((u)))

)f
be the f -tuple of matrices which gives the basis for M2 in terms
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of M1 as in Proposition 2.15. Note that, a priori, the matrices D(j) have denominators in

u.

We want to show that D(j) ∈ GL3(F′[[u]]) for all j. For all j ∈ Z/fZ, let us define

I(j) = Ad−1
sj (ua1 , ua2 , ua3)

(
D(j)

)
∈ GL3(F′((v))) and recall the change of basis formula (2.5)

which remains valid for M:

(3.1)

A
(j)
2 = I(j+1)A

(j)
1 sj+1,j

(
Ad
(
v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1

)(
ϕ
(
I(j)
)−1))

s−1
j+1,j .

For each j ∈ Z/fZ, define kj ∈ Z such that vkjI(j) =: I(j),+ ∈ Mat3(F′[[v]]) and such that

I(j),+ 6≡ 0 mod v. Rearranging (3.1), we get

(3.2)

v−pkj · sj+1,j

(
Ad
(
vasj(1),f−j−1 , vasj(2),f−j−1 , vasj(3),f−j−1

)
· ϕ
(
I(j),+

))
s−1j+1,j = v−kj+1

(
A

(j)
2

)−1
I(j+1),+A

(j)
1 .

Multiplying through by v2+kj+1 the right side of (3.2) becomes integral. Since
(
I(j),+

)
i,k
∈

(F′)×+ vF′[[v]] for some 1 ≤ i, k ≤ 3, Ad
(
v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1

)(
ϕ
(
I(j),+

))
is

at most divisible by v
asj(1),f−1−j−asj(3),f−1−j . We conclude that

(3.3) kj+1 ≥ pkj − (asj(1),f−1−j − asj(3),f−1−j)− 2.

Since τ is weakly generic, maxj{asj(1),f−1−j − asj(3),f−1−j} < p − 3. Thus, if kj ≥ 1 for

any j, then by iterating (3.3) we deduce that all kj become arbitrary large. Thus, kj ≤ 0

for all j and I(j) ∈ Mat3(F′[[v]]). Interchanging the roles of M1 and M2, we conclude that

I(j) ∈ GL3(F′[[v]]).

It remains to show that I(j) ∈ I(F′): by Lemma 2.14, this is equivalent to D(j) ∈
GL3(F′[[u]]). Rearranging again the change of basis formula (2.5), we have

(3.4)(
A

(j)
2

)−1
I(j+1)A

(j)
1 = sj+1,j

(
Ad
(
v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1

)(
ϕ
(
I(j)
))
s−1
j+1,j .

For 1 ≤ k, h ≤ 3, we have(
Ad
(
v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1

)(
ϕ
(
I(j)
)))

hk
∈
(
v
pαhk−(asj(k),f−1−j−asj(h),f−1−j)

)
where the integers αhk ∈ N are defined by

(
I(j)
)
h,k
∈ (vαh,k). On the other hand, the height

condition on A
(j)
2 forces the LHS in (3.4) to be an element in 1

v2 Mat3(F′[[v]]). In particular,

we have pαhk − (asj(k),f−1−j − asj(h),f−1−j) ≥ −2 for all 1 ≤ k, h ≤ 3 and this implies

αh,k ≥ 1 when h > k since τ is weakly generic. Therefore, I(j) ∈ I(F′), as required.

�
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Theorem 3.2 allows us to attach a shape w(ρ, τ) to ρ : GK → GL3(F′) when the type τ

is weakly generic:

Definition 3.3. Let ρ : GK → GL3(F) and τ be as in Theorem 3.2. Assume there exists

Mρ ∈ Y µ,τ (F) such that T ∗dd(Mρ) ∼= ρ|GK∞ . We define w(ρ, τ) ∈ Adm(2, 1, 0)f to be the

shape of Mρ. Whenever we invoke the shape w(ρ, τ) implicit in that is the assertion that

there exists a Kisin module Mρ as above.

Next, we study the tangent space at a closed point of M ∈ Y µ,τ (F′). Since M often has

automorphisms, we work at the categorical level. Define

tM =
{

(M, δ0) |M ∈ Y µ,τ (F′[ε]/ε2), δ0 : M/εM
∼−→M

}
which we consider as a category where morphisms are maps in Y µ,τ (F′[ε]/ε2) commuting

with trivializations.

Proposition 3.4. Assume that τ is weakly generic. The functor T ∗dd induces a fully faithful

functor

T ∗tan : tM → RepF′[ε]/ε2(GK∞).

Proof. The functor V∗dd : Φ- Modét
dd(F′[ε]/ε2) → RepF′[ε]/ε2(GK∞) is an anti-equivalence of

categories so we are reduced to showing that

M 7→M[1/u]

is fully faithful on tM. Let M1,M2 ∈ tM. Choose an eigenbasis β of M and let A(j) =

Matβ
(
φ

(j)

M,sj+1(3)

)
. For i ∈ {1, 2}, we fix eigenbases βi of Mi lifting β and write A(j)+εB

(j)
i =

Matβi
(
φ

(j)
Mi,sj+1(3)

)
for some B

(j)
i ∈ Mat3(F′[[v]]). An isomorphism ι : M1[1/u]

∼−→M2[1/u]

which is trivial modulo (ε) satisfies Matβ1,β2(ι) = id3 + εD(j) for some D(j) ∈ Mat3(F′((u))).

Define Y (j) def
= Ad−1

sj (ua1 , ua2 , ua3)
(
D(j)

)
∈ Mat3(F′((v))). A direct computation using

Proposition 2.15 gives

B
(j)
2 = B

(j)
1 +Y (j+1)A(j)−A(j)sj+1,j

(
Ad
(
v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1

)(
ϕ
(
Y (j)

)))
s−1
j+1,j .

Arguing as in Theorem 3.2, we deduce that Y (j) ∈ Mat3(F′[[v]]). More precisely, for each

i ∈ Z/fZ such that Y (i) 6= 0, define ki ∈ Z by vkiY (i) = Y (i),+ ∈ Mat(F′[[v]]), where

Y (i),+ 6≡ 0 modulo v. We define ki
def
= 0 if Y (i) = 0. We deduce as in Theorem 3.2 that

v−pkjsj+1,j

(
Ad
(
v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1

)(
ϕ
(
Y (j),+

)))
s−1
j+1,j =(3.5)

=
(
A(j)

)−1
(
−B(j)

2 + v−kj+1Y (j+1),+A(j) +B
(j)
1

)
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and therefore, by the height condition on A(j):

v2−pkj+kj+1

(
Ad
(
v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1

)(
ϕ
(
Y (j),+

)))
∈ Mat3(F′[[v]]).

If Y (j) 6= 0, we obtain the key inequality (3.3). The same iterative argument as above then

shows that kj ≤ 0.

It remains to show that D(j) ∈ Mat3(F′[[u]]), which is equivalent to proving that Y (j) is

upper triangular modulo v. This is immediate if kj < 0; otherwise, specializing (3.5) at

kj = 0 and Y (j),+ = Y (j), we see that v2 Ad
(
v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1

)(
ϕ
(
Y (j)

))
is integral. By the weak genericity assumption, the same argument in the proof of Theorem

3.2 shows that Y (j) is upper triangular mod v. �

Corollary 3.5. Assume that τ is weakly generic. If Y µ,τ
M (F) 6= ∅ then Y µ,τ

M = Spec (F).

3.2. Kisin resolution. We now apply the computations from the previous section to ob-

tain preliminary results in our study of potentially crystalline deformation rings. Fix a

representation ρ : GK → GL3(F).

Let Rµ,τρ be the framed potentially crystalline deformation ring with parallel Hodge-Tate

weights (2, 1, 0) and inertial type τ as in [Kis08]. Consider the projective morphism

Θ : Y µ,τ
ρ → SpfRµ,τρ

as constructed in [CL] (see Theorem 5.19 and discussion before). This is a version with

descent datum of the partial resolution introduced in [Kis08, § (1.4)]. Note that

(3.6) Y µ,τ
ρ ×SpfRµ,τρ

Spf(Rµ,τρ /m) = Y µ,τ
M

with Y µ,τ
M as defined in the previous section. Here M is the étale ϕ-module of ρ.

Since we always work in parallel weight (2, 1, 0), we drop µ from the notation. Set

D�,τρ
def
= SpfRµ,τρ . For τ weakly generic, by (3.6) and Corollary 3.5, Θ is quasi-finite and

hence finite since it is proper. Thus Y µ,τ
ρ = SpfRτ,�

M,ρ
with SpfRτ,�

M,ρ
local and finite over

SpfRµ,τρ .

Corollary 3.6. Let ρ : GK → GL3(F). If τ is weakly generic, then

Θ : Y µ,τ
ρ → SpfRµ,τρ

is an isomorphism.
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Proof. We saw above that Θ is a finite morphism. By [CL, Theorem 5.19], Θ[1/p] is an

isomorphism. Proposition 3.4 implies that the induced map

SpfRτ,�
M,ρ
→ SpfRµ,τρ

is an injective on tangent spaces. Hence Θ is a closed immersion. Since Rµ,τρ is O-flat, we

conclude that Θ is an isomorphism. �

Thus Rτ,�
M,ρ

is the complete local O-algebra representing the deformation problem

(3.7)

Dτ,�
M,ρ

(A)
def
=
{

(MA, ρA, δA) |MA ∈ Y µ,τ (A), ρA ∈ D�,τρ (A), δA : T ∗dd(MA) ∼= (ρA)|GK∞
}
.

3.3. Galois cohomology. In this section, we work with Galois cohomology to prove that -

under mild hypotheses- the natural restriction map fromGK-deformations toGK∞-deformations

is a closed immersion. This will be important in §5.2.

Definition 3.7. Let ρ : GK → GL3(F) be a continuous semisimple Galois representation

and let m ∈ N be an integer. Let ak = (ak,j)j with 0 ≤ ak,j ≤ p − 1 and j ∈ Z/fZ be

f -tuples such that ρ|IK ∼= ω
a

(0)
1
f ⊕ ωa

(0)
2
f ⊕ ωa

(0)
3
f . We say that ρ is m-generic if

m ≤ |a1,j − a2,j |, |a2,j − a3,j |, |a1,j − a3,j | ≤ p− 1−m

for all j. We say that a continuous Galois representation ρ : GK → GL3(F) is m-generic

if there exists a finite unramified extension K ′/K such that ρss|IK′ is the direct sum of

characters and is m-generic in the previous sense. This does not depend on the extension

K ′/K.

There is a weaker genericity condition which suffices for our Galois cohomology argu-

ments:

Definition 3.8. Let ρ : GK → GLn(F) be a continuous Galois representation. We say ρ is

cyclotomic free if ρ becomes upper triangular over an unramified extension K ′/K of degree

prime to p such that

H0
(
GK′ ,

(
ρ|ssGK′

)
⊗ ω−1

)
= 0.

Proposition 3.9. If p > 3 and ρ : GK → GL3(F) is 2-generic, then ad(ρ) is cyclotomic

free.

Proof. Let K ′ denote the unramified extension of K of degree 6. Then ρ|GK′ is upper

triangular and we can write
(
ρ|GK′

)ss |IK′ = ⊕3
i=1ω

a
(0)
i

6f where the 6f -tuple ai ∈ {0, 1, . . . , p−
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1}6f is 2-generic. In particular, it follows that ad(ρ)|GK′ = ad(ρ|GK′ ) is upper triangular

with diagonal characters of the form ω
a

(0)
i −a

(0)

i′
6f , where i, i′ ∈ {1, 2, 3}. Its semisimplification

does not have cyclotomic constituents as long as a
(0)
i −a

(0)
i′ 6≡ 1+p+ · · ·+p6f−1 mod p6f−1

which follows easily from the 2-genericity assumption. �

Lemma 3.10. Let ρ : GK → GLn(F) be cyclotomic free. Then the restriction map

H1(K, ρ)→ H1(K∞, ρ) is injective.

Proof. We first assume that ρ is upper triangular. In this case the proof is a standard

dévissage. More precisely, we have an exact sequence 0 → ρ1 → ρ → χ → 0 where

χ : GK → F× is not the cyclotomic character and ρ1 : GK → GLn−1(F) is upper triangular

(and ρ1|ssGK′ does not contain the cyclotomic character).

Group cohomology provides us with the following commutative diagram, with exact rows:

H0(K,χ)
δ
//

f0

��

H1(K, ρ1) //

f1

��

H1(K, ρ) //

f2

��

H1(K,χ)

f3

��

H0(K∞, χ)
δ
// H1(K∞, ρ1) // H1(K∞, ρ) // H1(K∞, χ)

the vertical maps being induced by restriction to GK∞ . By [GLS15, Lemma 5.4.2], the

morphism f3 is injective. By dévissage, we can assume that f1 is injective. Finally, as χ

is a character and as all characters are tame, f0 is surjective. Hence f2 is injective by the

“four lemma.”

As for the general case, letting K ′∞ = K∞ ·K ′ we have an exact sequence of groups

1 // GK′
C
// GK // Gal(K ′/K) // 1

1 // GK′∞
C
//

?�

OO

GK∞ //
?�

OO

Gal(K ′∞/K∞) //

o

OO

1

and hence restriction to GK∞ induces a morphism between the Hochschild-Serre spectral

sequences

(3.8) Hr
(
Gal(K ′/K), Hs(K ′, ρ)

)
+3

��

Hr+s(K, ρ)

��

Hr
(
Gal(K ′∞/K∞), Hs(K ′∞, ρ)

)
+3 Hr+s(K∞, ρ).
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As p - [K ′ : K], the category of Gal(K ′/K)-representations over F is semisimple and the

above spectral sequence becomes simply

(3.9) H0
(
Gal(K ′/K), Hs(K ′, ρ)

) ∼
//

��

Hs(K, ρ)

��

H0
(
Gal(K ′∞/K∞), Hs(K ′∞, ρ)

) ∼
// Hs(K∞, ρ).

The conclusion follows from the result in the upper triangular case. �

A statement similar to Lemma 3.10 (via a slightly different argument) has been obtained

in [Gao, Proposition 6.1].

A similar argument yields the following:

Lemma 3.11. Let ρ : GK → GLn(F) be cyclotomic free. Then the natural restriction map

B1(K, ρ)→ B1(K∞, ρ) on Galois cohomology boundaries is an isomorphism.

Proof. The argument follows closely the proof of Lemma 3.10 above. Let Vρ be the F-linear

space underlying ρ. Then one has

Vρ
(Vρ)GK

∼→ B1(K, ρ),
Vρ

(Vρ)GK∞
∼→ B1(K∞, ρ);

therefore it is enough to prove that the (obviously injective) restriction map H0(K, ρ) →
H0(K∞, ρ) is surjective.

We assume first that ρ is upper triangular. Let us fix an extension 0→ ρ1 → ρ→ χ→ 0,

where (ρ1)ss and the character χ : GK → F× do not have cyclotomic constituents. The re-

striction functor to GK∞ and classical group cohomology give us the following commutative

diagram, with exact lines:

H0(K, ρ1) //

f0

��

H0(K, ρ) //

f1

��

H0(K,χ)

f2

��

δ
// H1(K, ρ1)

f3

��

H0(K∞, ρ1) // H0(K∞, ρ) // H0(K∞, χ)
δ
// H1(K∞, ρ1).

By Lemma 3.10, the morphism f3 is injective; for i ∈ {0, 1, 2} the morphisms fi are obviously

injective. If f0, f2 are both surjective, the “four lemma” again shows that f1 is surjective

as well. Therefore, by dévissage, it is enough to show that H0(K∞, χ) 6= 0 if and only if χ

is the trivial character of GK . This is immediate as all characters are tame.

The deduction for the general case is formal: as in the proof of Lemma 3.10, the hy-

potheses on [K ′ : K] give us the commutative diagram (3.9). Again, as the natural map
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GK∞/GK′∞ → GK/GK′ is an isomorphism, the isomorphism H0(K ′, ρ)
∼→ H0(K ′∞, ρ)

obtained in the upper triangular case respects the residual Galois action on both sides.

Therefore H0
(
(Gal(K ′/K), H0(K ′, ρ)

)
↪→ H0

(
(Gal(K ′∞/K∞), H0(K ′∞, ρ)

)
is an isomor-

phism. �

Proposition 3.12. Let ρ : GK → GLn(F) be cyclotomic free. Then the map on Galois

cohomology cycles

Z1(K, ρ)→ Z1(K∞, ρ)

is injective.

Proof. If ρ is cyclotomic free, we can apply Lemmas 3.10 and 3.11 to ρ and the claim follows

from the snake lemma applied to the defining sequences of Z1:

0 // B1(K, ρ) ////

��

Z1(K, ρ) //

��

H1(K, ρ) //

��

0

0 // B1(K∞, ρ) //// Z1(K∞, ρ) // H1(K∞, ρ) // 0.

�
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4. Finite height K∞-deformations

In this section, τ will denote a weakly generic tame principal series type (Definition 2.1).

Let M ∈ Y µ,τ (F) with a basis β as in Theorem 2.21. We will now compute the defor-

mations of (M, β) according to the shape of M. Roughly, we are giving local coordinates

for Y µ,τ at M. This amounts to giving coordinates for the Pappas-Zhu local model M(µ)

discussed after Definition 2.17, though this won’t be used. The strategy will be to start with

an arbitrary lift of M to a local Noetherian O-algebra R with finite residue field and then by

a convergence process put the Frobenius into a special form where entries are polynomials

with coefficients in R with controlled degree. In this special form, it is straightforward to

impose the height [0, 2] condition as well as a determinant condition. The algorithm com-

bines the u-adic and max adic topologies. For GL2, a similar strategy was introduced in

setting of Breuil modules in [Bre14] and was implemented for Kisin modules for non-generic

types in [CDMa].

Theorem 4.1. Let R be a complete local Noetherian O-algebra with finite residue field F
and let τ be a weakly generic tame type as in Definition 2.1. Write (sj)j ∈ Sf3 for the

orientation of τ . Let M ∈ Y µ,τ (R) with M := M ⊗R F of shape w = (w̃0, w̃1, . . . , w̃f−1).

Then there exists an eigenbasis β for M such that for each 0 ≤ j ≤ f − 1 the matrix

Ã(j) = Matβ(φ
(j)
M,sj+1(3)) has the form given in row w̃j in Table 5.

4.1. Algorithm. Let R be a complete local Noetherian O-algebra with maximal ideal mR

and residue field R/mR
∼= F. Let P ∈ R[[u]]. For any r ∈ R, let vR(r) = max{i ∈ N | k ≥

0, r ∈ mk
R} . This is finite unless r = 0, by Krull’s intersection theorem.

Definition 4.2. Let P =
∑

i riv
i ∈ R[[v]]. Define

dR(P ) = min
i
{3vR(ri) + i}.

We define Trl : R[[v]]→ R[[v]] to be the order vl-truncation map, defined by Trl
(∑

i riv
i
) def

=∑
i≥l+1 riv

i.

Given a matrix M = (Mik) ∈ Matn(R[[v]]), we define

dR(M) = min
i,k
{dR(Mik)}

and Trl(M)
def
= (Trl(Mik)).

Proposition 4.3. For any P,Q ∈ Matn(R[[v]]) and any l ∈ N, we have

(1) dR(P +Q) ≥ min(dR(P ), dR(Q));
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(2) dR(PQ) ≥ dR(P ) + dR(Q);

(3) dR(Trl(P )) ≥ dR(P ).

Proof. This follows from vR(ab) ≥ vR(a) + vR(b) and vR(a + b) ≥ min(vR(a), vR(b)) for

a, b ∈ R. �

Remark 4.4. In Definition 4.2, we could have considered dR,m(P ) = mini{mvR(ri) + i} for

m ≥ 3; mutatis mutandis, the statement of Proposition 4.3 still holds true.

The algorithm proceeds by successive row operations which we introduce now. For any

x ∈ R[[v]], we define

U12(x) :=


1 x 0

0 1 0

0 0 1

 , U13(x) :=


1 0 x

0 1 0

0 0 1

 , U23(x) :=


1 0 0

0 1 x

0 0 1

 .

Similarly, for any x ∈ vR[[v]], we define

L21(x) :=


1 0 0

x 1 0

0 0 1

 , L31(x) :=


1 0 0

0 1 0

x 0 1

 , L32(x) :=


1 0 0

0 1 0

0 x 1

 .

D11(x) :=


1 + x 0 0

0 1 0

0 0 1

 , D22(x) :=


1 0 0

0 1 + x 0

0 0 1

 , D33(x) :=


1 0 0

0 1 0

0 0 1 + x

 .

The essence of the algorithm is as follows. Let βn = (β
(j)
n ) be an eigenbasis for MR at

the n-th step of the algorithm. If A
(j)
n = Matβn(φ

(j)
M,sj+1(3)), we can always write

A(j)
n = B

(j)
w̃j ,n

+ E(j)
n

where the entries of B
(j)
w̃j ,n
∈ Mat3(R[[v]]) satisfy degree bound conditions according to the

shape w̃j of M
(j)
R (the degree bound conditions are listed in Table 5; this will be made

precise in Definition 4.5 below.)

We call E
(j)
n the error term associated to βn. The inductive step is to show that there

exists a new eigenbasis βn+1 with error E
(j)
n+1 such that

min
j

(dR(E
(j)
n+1)) > min

j
(dR(E(j)

n )).

We start with a few definitions.
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Definition 4.5. Let A(j) ∈ Mat3(R[[v]]) and w̃j ∈ W̃ be the shape of M at j. Then there

exists a unique decomposition in Mat3(R[[v]])

A(j) = B
(j)
w̃j

+ E(j)

such that B
(j)
w̃j
∈ Mat3(R[v]) and for all i, k one has

degv
((
B

(j)
w̃j

)
ik

)
= degv

((
Ã

(j)
w̃j

)
ik

)
< valv(E

(j)
ik )

where degv
((
Ã

(j)
w̃j

)
ik

)
∈ {−∞, 0, 1, 2} is defined in the third column of Table 5. (In the

notations of Table 5, an entry of the form i∗, i ∈ N, stands for a polynomial in R[v] of

degree i and whose leading coefficient is a unit in R; an entry of the form v(≤ i) stands for

a polynomial in R[v] of degree at most i+ 1 and which is moreover divisible by v; a similar

comment applies for entries of the form ≤ i and v(i∗).)

The defect of A(j) at the entry (ik) is defined as δ(A
(j)
ik )

def
= dR(E

(j)
ik ). Similarly, the total

defect of A(j) is defined as

δ(A(j))
def
= dR(E(j)).

Typically, the matrix A(j) in definition 4.5 is either Matβ(φ
(j)
M,sj+1(3)) in some eigenba-

sis β on MR, or its modification by row and (adjoint ϕ-twisted)-column operations by

Uik(x
(j)), Lik(x

(j)) (cf. Proposition 4.6, Proposition 4.11).

Let (x(j)) denote an f -tuple of elements of R[[v]]. An elementary operation (associated

to (x(j))) is a change of eigenbasis on MR such that for each embedding j, the associated

matrix D(j) as in Proposition 2.15 can be written as D(j) = Adsj (u
a1 , ua2 , ua3)

(
I(j)
)

for

some I(j) ∈ {Uik(x(j)), Lki(x
(j)) | i < k} ∪ {Dii(x

(j))}.
The following proposition controls the change in precision after right multiplication by

s−1
j+1sjI

(j),ϕs−1
j sj+1 (cf. (2.5)) in terms of the precision of an elementary operation I(j).

Proposition 4.6. Let M ∈ Y [0,2],τ (R), with eigenbasis β, and let A(j) = B
(j)
w̃j

+ E(j) as

in Definition 4.5, where we have set A(j) def
= Matβ(φ

(j)
M,sj+1(3)

). Let (I(j)) be an elementary

operation associated to the f -tuple (x(j)) and define

I(j),ϕ def
= Ad(v

asj(1),f−1−j , v
asj(2),f−1−j , v

asj(3),f−1−j ) · ϕ
(
I(j)
)−1

.

Then one has

A(j)s−1
j+1sjI

(j),ϕs−1
j sj+1 = B

(j)
w̃j

+ E′(j)

where

(1) dR(E′(j)) ≥ min(δ(A(j)), 3 + dR(x(j)));
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(2) dR(E′(j) − E(j)) ≥ 3 + dR(x(j)).

Proof. We saw in Proposition 2.16 that

I(j),ϕ = id + v3X

where X ∈ Mat(R[[v]]). The same calculation shows that dR(X) ≥ dR(x(j)). Therefore

A(j) · sj+1,j · I(j),ϕ · s−1
j+1,j = B

(j)
w̃j

+ E(j)
(

id + v3sj+1,jXs
−1
j+1,j

)
+ v3B

(j)
w̃j
sj+1,jXs

−1
j+1,j

which immediately implies items (1) and (2) in the statement of the Proposition. Note that

E′(j) is actually the error term associated to A(j) · sj+1,j · I(j),ϕ · s−1
j+1,j , since v3|E′(j)−E(j)

and the degree bounds appearing in Table 5 are at most 2. �

Corollary 4.7. In the setting of Proposition 4.6, assume that in the elementary operation

(I(j)) only the element I(j+1) is not the identity. Set (A
(j)
1 )

def
= (A(j)) and let (A

(j)
2 ) be the

f -tuple obtained by performing the elementary operation (I(j)) on (A
(j)
1 ). Then if f > 1,

one has:

(1) A
(j)
2 = I(j+1)A

(j)
1 ; and

(2) δ(A
(j+1)
2 ) ≥ min(δ(A

(j+1)
1 ), 3 + dR(x(j+1))).

If f = 1, then dR(A
(j)
2 − I(j+1)A

(j)
1 ) ≥ 3 + dR(x(j+1)).

We introduce the crucial notion of pivots associated to a shape:

Definition 4.8. Let w̃j ∈ W̃ be the shape at j of M ∈ Y [0,2],τ (F). The pivots of w̃j are

the pairs (m, k) such that the (m, k)-entry of w̃j ∈ NGL3(T )(F((v))) is non-zero.

Let M ∈ Y [0,2],τ (R) be a Kisin module and let w̃j be the shape of M
def
= M⊗R F at j. If

A(j) = Matβ(φ
(j)
M,sj+1(3)) with respect to an eigenbasis β, and such that A

(j)
is given by the

second column of Table 5, we say that the pair (m, k) ∈ {1, 2, 3}2 is a pivot of A(j) if (m, k)

is a pivot of the shape w̃j . We define the degree of the pivot (m, k) to be degv(A
(j)
mk).

Remark 4.9. We explain how to produce the bounded degree conditions in the third column

of Table 5, starting from the position and the degree of the pivots. (Note that the pivots of

the matrices in the third column of Table 5 are exactly the starred entries.) Heuristically

the effect of change of eigenbases on (A(j)) is very close to left-multiplication by elements

in (I1(R))f . If we literally use left multiplication, we would be able to make A(j) have

polynomial entries and moreover if (m, k) is a pivot of A(j) of degree i, we see that any

entry above (m, k) has degree strictly less than i and any entry below (m, k) has degree at

most i. All the strict lower triangular entries of A(j) must be divisible by v by construction.
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The key lemma that enables us to control the convergence is the following:

Lemma 4.10. Keep the notation as in Definition 4.8. Assume that the eigenbasis β lifts a

gauge basis β of MR (cf. Definition 2.22; in particular A
(j)

= A
(j)
w̃j

as in Table 4).

Let (m, k) be a pivot for A(j) of degree i. For all k′ ≥ k, we can write

A
(j)
mk′ = viPmk′ +Qmk′

where all the coefficients of Qmk′ lie in the maximal ideal of R. For all k′ < k, we can write

A
(j)
mk′ = vi+1Pmk′ +Qmk′

where all the coefficients of Qmk′ lie in the maximal ideal of R.

In particular, if k′ ≥ k, then dR(A
(j)
mk′) ≥ i whereas if k′ < k then dR(A

(j)
mk′) ≥ i+ 1.

Proof. Modulo mR, the matrices A
(j)

are of the form w̃jI, and thus every entry to the left

(in the same row) of a pivot of degree i is divisible by vi+1, while every entry to the right

is divisible by vi. The last statement follows noting that i ≤ 2 and dR(Qmk′) ≥ 3. �

The following Proposition shows that by suitable row operations via the elementary

matrices Uik(x
(j)), Lik(x

(j)), Dii(x
(j)), we can strictly increase the defect of an entry of A(j)

without decreasing the total defect of A(j).

Proposition 4.11. Keep the notations and assumptions of Lemma 4.10. Assume that

(m, k) is a pivot of A(j). There exists x ∈ R[[v]] such that, by letting

A′,(j)
def
=


Um′m(x)A(j) if m′ < m,

Dmm(x)A(j) if m′ = m,

Lm′m(x)A(j) if m′ > m,

one has δ(A′,(j)) ≥ δ(A(j)) and moreover δ(A
′,(j)
m′k) > δ(A

(j)
m′k), δ(A

′,(j)
rs ) ≥ min(δ(A

(j)
rs ), δ(A(j))+

1) unless r = m′, s > k.

Proof. Let us write A(j) = B
(j)
w̃j

+ E(j) as in Definition 4.5 and let δ = δ(A(j)) be the total

defect of A(j). Let i ∈ {0, 1, 2} be the degree of the pivot of A(j) at (m, k). As A
(j)
mk ∈ F[[v]]

is a monomial in v (cf. Definition 4.8), we can write A
(j)
mk = umkv

i + Qmk for some unit

umk ∈ R× and some element Qmk ∈ R[[v]] verifying dR(Qmk) ≥ 3.

Let us consider the case m′ < m. By the definition of the error term E(j), we have

E
(j)
m′k ∈ v

iR[[v]]. In particular, we can write E
(j)
m′k = viPm′k for some Pm′k ∈ R[[v]] verifying
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dR(Pm′k) = dR(E
(j)
m′k)−i ≥ δ−i. We set x

def
= −u−1

mkPm′k. We have A
′,(j)
m′k = (B

(j)
w̃j

)m′k+xQmk.

Letting E′,(j) be the error term of A′,(j), by Proposition 4.3, we have

dR(E
′,(j)
m′k ) ≥ dR(Qmk) + dR(Pm′k)

≥ 3 + δ − i > δ.

We now verify that δ(A′,(j)) ≥ δ. Indeed, we have A
′,(j)
ik′ = A

(j)
ik′ for all i 6= m′ and

1 ≤ k′ ≤ 3.

If i = m′ and k′ 6= k, we have

A
′,(j)
m′k′ = A

(j)
m′k′ − u

−1
mkPm′kA

(j)
mk′ .

By Lemma 4.10, we conclude that dR(Pm′kA
(j)
mk′) ≥ i+dR(Pm′k) ≥ δ and that the inequality

is strict unless k′ > k. This completes the proof in the case m′ < m. The other cases are

similar. �

Remark 4.12. The element x ∈ R[[v]] used in the proof of Proposition 4.11 always has the

property that dR(x) ≥ δ(A(j))− 2, since i ≤ 2.

Proposition 4.13. Let M ∈ Y [0,2],τ (R) and let β be a gauge basis of M. Let β be an

eigenbasis of M lifting β and for all 0 ≤ j ≤ f−1 set A(j) = Matβ(φ
(j)
M,sj+1(3)). There exists

another eigenbasis β′ lifting β such that

min
j
δ(A′,(j)) > min

j
δ(A(j))

for all 0 ≤ j ≤ f − 1, where A′,(j)
def
= Matβ′(φ

(j)
M,sj+1(3)). Furthermore, if

Ad−1
sj (ua1 , ua2 , ua3)

(
D(j)

)
= I(j)

as in Proposition 2.15, then dR(I(j)) ≥ δ(A(j))− 2

Proof. Let (m1, 1), (m2, 2) and (m3, 3) be the pivot entries forA(j), and put δ = minj δ(A
(j)).

We consider first the case f > 1. Using the operations as in Corollary 4.7 with I(j+1) given

by the matrices in Proposition 4.11 for the pivot (m1, 1), we can find a change of basis such

that with respect to the new basis, the matrix A(j) will have entries in its first column of

defect > δ. Apply the same argument for the second and the third column, we can make

also the second and third column entries have defect > δ noting that by performing the

elementary operations in this order, the last part of Proposition 4.11 guarantees that we do

not lose the increased defect of an entry of A(j) that was already made to have defect > δ.

During this process, Corollary 4.7 and Remark 4.12 show that even though δ(A(j+1)) may
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decrease, whenever it decreases then the decreased value is automatically ≥ δ + 1. Thus,

by performing this process for each j, we arrive at an eigenbasis satisfying the first part of

the Proposition.

The claim on dR(I(j)) follows now by Remark 4.12. �

Lemma 4.14. Let (x`)`≥1 be elements of R[[v]]. If lim`→∞ dR(x`) = ∞, then there exists

x ∈ R[[v]] such that x =
∑∞

`=1 x`.

Proof. This is because R[[v]] is (mR, v)-adically complete. �

Proof of Theorem 4.1: By a repeated application of Proposition 4.13, we can find a sequence

of bases whose change of basis matrix converge by the above Lemma. Taking the limit

change of basis matrix produces an eigenbasis with respect to which A(j) has the desired

form. �

4.2. Gauge basis. We introduce the crucial notion of gauge basis for a Kisin module

M ∈ Y [0,2],τ (R), and study some of its properties.

Definition 4.15. Let R be a complete local Noetherian O-algebra and let M ∈ Y [0,2],τ (R)

lifting M. An eigenbasis β lifting β is called a gauge basis if the matrix Ã
(j)
w̃j

def
= Matβ(φ

(j)
M,sj+1(3))

satisfies the degree conditions in the third column, row w̃j in Table 5.

We now consider the question of the uniqueness of the gauge basis constructed by the

algorithm from the previous section. While the basis is not unique, it is unique up to

component-wise scaling by a torus. Let M ∈ Y [0,2],τ

M
(R). Any eigenbasis β for M induces

an eigenbasis on M/uM (i.e., a basis for M(j)/uM(j) for each j compatible with the linear

action of descent datum). We denote this by β mod u.

Theorem 4.16. Let M,M, β be as in Definition 4.15. The map

β 7→ β mod u

induces a bijection between gauge bases of M and eigenbases of M/uM lifting β mod u.

The key consequence of Theorem 4.16 which we will use in the next section is that the

addition of a gauge basis is a formally smooth operation.

Proof. Given a gauge basis β = (β(j)), scaling any β(j) by the diagonal torus T (R) gives a

new gauge basis. Hence, the map is surjective.
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It suffices then to show that if β1 and β2 are two gauge bases such that

(4.1) β1 mod u = β2 mod u

then β1 = β2.

Let us write Ã
(j)
i

def
= Matβi(φM,sj+1(3)) for i = {1, 2} (we omit the subscript w̃j to ease

notation). Then the change of basis formula (2.5) gives us

Ã
(j)
2 s−1

j+1sj
(

Ad(v
asj(1),f−j−1 , v

asj(2),f−j−1 , v
asj(3),f−j−1)·ϕ(id3+I(j))

)
s−1
j sj+1 = (id3+I(j+1))Ã

(j)
1

where all entries of I(j) which are on or below the diagonal are divisible by v. By the weak

genericity assumption, we see as in the proof of Proposition 4.6 that

s−1
j+1sj

(
Ad(v

asj(1),f−j−1 , v
asj(2),f−j−1 , v

asj(3),f−j−1) · ϕ(I(j))
)
s−1
j sj+1 = v3M (j)

where M (j) ∈ Mat3(R[[v]]) verifies dR(M (j)) ≥ dR(I(j)). We obtain:

(4.2) Ã
(j)
2 + v3Ã

(j)
2 M (j) = Ã

(j)
1 + I(j+1)Ã

(j)
1 .

From equation (4.2), we now show that for all n ∈ N, dR(I(j)) ≥ n for all j = 0, . . . , f−1,

i.e., that I(j) = 0, for all j = 0, . . . , f − 1. Suppose we have dR(I(j)) ≥ δ for all j.

Set A
(j) def

= Ã
(j)
1 ⊗RF = Ã

(j)
2 ⊗RF. We define a pivot (k(1),m(1)) ∈ {1, 2, 3}2 of degree i(1)

(cf. Definition 4.8) via the requirement that Akm(1) = 0 for all k 6= k(1) and i(1) is minimal

among the degrees of the pivots of A
(j)

. Similarly, we define a pivot (k(2),m(2)) ∈ {1, 2, 3}2

of degree i(2) via the requirement that Akm(2) = 0 for all k 6= k(1), k(2) and i(2) is minimal

among the degrees of the pivots of A
(j)

which are different from (k(1),m(1)). We write

(k(3),m(3)) for the remaining pivot, of degree i(3). Table 4 shows that a choice of pivots

like this exists, because each A
(j)

is obtained from an upper triangular matrix by permuting

rows and columns. Note that (i(1), i(2), i(3)) = (0, 1, 2) or (1, 1, 1).

For instance, in shape αβα, we have (k(1),m(1)) = (3, 1), (k(2),m(2)) = (2, 2) and

(k(3),m(3)) = (1, 3) and they all have degree 1.

For l ∈ {1, 2}, we have dR((Ã
(j)
1 )km(l)) ≥ i(l) for all k ∈ {1, 2, 3}. Furthermore,

dR((Ã
(j)
1 )km(1)) ≥ 3 if k 6= k(1) and dR((Ã

(j)
1 )km(2)) ≥ 3 for k 6= k(1), k(2).

If i(3) = 1, then one still has dR((Ã
(j)
1 )km(3)) ≥ i(3) for all k but, when i(3) = 2 then one

loses precision and we just have dR((Ã
(j)
1 )km(3)) + 1 ≥ i(3) for k 6= k(3). Moreover, since

a pivot reduces to a monomial modulo the maximal ideal of R, we have (Ã
(j)
1 )k(l)m(l) =

x∗l v
i(l) + El where dR(El) ≥ 3 and x∗l ∈ R×.

For all n ∈ {1, 2, 3}, we now compare the nm(1)-th entry of equation (4.2). We use

Trs for truncation (cf. Proposition 4.3) which deletes the terms of degree ≤ s. Taking
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s = i(1)− δn<k(1) (the degree at the entry (nm(1))), one has

I
(j+1)
nk(1) x

∗
1v

i(1) + I
(j+1)
nk(1)E1 + Trs

(
I
(j+1)
nk(2) (Ã

(j)
1 )k(2)m(1)

)
+ Trs

(
I
(j+1)
nk(3) (Ã

(j)
1 )k(3)m(1)

)
= v3

(
Ã

(j)
2 M (j)

)
nm(1)

.

Here we use that the truncation kills off the contribution of Ã
(j)
2 −Ã

(j)
1 , and that vs−i(1)|I(j+1)

nk(1) .

Since every term in the equation except the leftmost term has dR ≥ δ+ 3, we conclude that

dR(I
(j+1)
nk(1) ) ≥ δ + 2.

Similarly, by comparing the nk(2) entries and truncating, using that dR(I
(j+1)
nk(1) ) ≥ δ + 2,

we also have dR(I
(j+1)
nk(2) ) ≥ δ + 2. Finally, comparing the nk(3) entries and truncating, and

using dR(I
(j+1)
nk(l) ) ≥ δ+2 for l = 1, 2, we get dR(I

(j+1)
nk(3) ) ≥ δ+1 (note the loss of -1 in the lower

bound for dR(I
(j+1)
nk(3) ), which is due to the weaker estimate dR((Ã

(j)
1 )km(3)) + 1 ≥ i(3)). �

4.3. Height conditions. Let M ∈ Y µ,τ
w (F). We now compute the universal lift of M with

height conditions. Fix a gauge basis β mod p of M (Definition 2.22).

We consider the problem of deforming (M, β). Recall the closed substack Y µ,τ ⊂ Y [0,2],τ

introduced in §3.1 and constructed in [CL, Proposition 5.2]. For any Artinian O-algebra

A with residue field F, let Dτ,β

M
(A) be the category of pairs (MA, βA) deforming (M, β)

where MA ∈ Y µ,τ (A) and βA is a gauge basis of MA. By Theorem 4.16, the morphism

Dτ,β

M
→ Y µ,τ

M
is a torsor for Ĝ3f

m .

The main result of this subsection is the following:

Theorem 4.17. The deformation problem Dτ,β

M
is representable by a complete local Noether-

ian O-algebra Rτ,β
M

. Let (Muniv, βuniv) be the universal family over Rτ,β
M

. Then Matβuniv(φ
(j)

Muniv,sj+1(3)
)

is given in column 4 of Table 5. Furthermore,

(4.3) Rτ,β
M
∼= ⊗̂j(Rexpl

w̃j
)p-flat, red

where Rexpl
w̃j

is given in the second column of Table 6 and (Rexpl
w̃j

)p-flat, red denotes its p-flat

and reduced quotient.

In order to prove Theorem 4.17, we need the following preliminary result from [CL].

Recall that the p-adic Hodge type ≤ (2, 1, 0) condition is imposed by flat closure from the

generic fiber; Theorem 5.13 and Corollary 5.12 in [CL] give a characterization of points of

Y τ,µ for p-flat and reduced O-algebras R. In our setting, this translates into the following:

Proposition 4.18. Let R be a complete local Noetherian flat reduced O-algebra. Consider

MR ∈ Y [0,h],τ (R) for some h and let A(j) = Matβ

(
φ

(j)
M,sj+1(3)

)
for any eigenbasis β of MR.

Then MR ∈ Y µ,τ (R) if and only if
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(1) det(A(j)) = x∗jP (v)3 for x∗j ∈ R[[v]]×;

(2) P (v)2(A(j))−1 ∈ Mat3(R[[v]][1/p])

(recall that P (v) = v + p).

We explain how 4.18 was used to generate column 4 of Table 5 and hence column 2

of Table 6. Letting Ã
(j)
w̃j

be the universal matrix lifting A
(j)

which satisfies the degree

conditions in the third column, row w̃j of Table 5, then Rexpl
w̃j

is obtained by first imposing

the conditions

i) for all 1 ≤ i, k ≤ 3 the (ik)-minor satisfies
(
Ã

(j)
w̃j

)(ik)
≡ 0 modulo P (v);

ii) det
(
Ã

(j)
w̃j

)
= x∗jP (v)3.

and then performing a partial p-saturation process of the relations. For example, whenever

we have the condition (v + p) | vkQ(v), we actually get (v + p) | Q(v). The resulting Rexpl
w̃j

in rows from αβαγ to αβγ in Table 5 are p-flat and reduced. We do not claim that the

remaining rings are p-flat and reduced, and we will not need that information.

Proof of Theorem 4.17. Since Dτ,β

M
is a formal torus torsor on Y µ,τ

M
and has no non-trivial

automorphisms, we deduce that Dτ,β

M
is representable. The representing ring Rτ,β

M
is p-flat

and reduced, as it is equisingular to a complete local ring of M(µ).

Let R denote the right hand side of (4.3). Since R is p-flat and reduced, the relations

in R implies that the obvious Kisin module M with gauge basis over R is actually inside

Y µ,τ

M
by Proposition 4.18. (The Kisin module M is defined as the unique Kisin module with

descent data of type τ endowed with an eigenbasis β such that Matβ

(
φ

(j)
M,sj+1(3)

)
= Ã

(j)
w̃j

.

Note that M has finite height since by construction it satisfies the determinant condition.)

Thus there exists a unique map g : Rτ,β
M
→ R such that g∗(M

univ, βuniv) = (M, β). On

the other hand the definition of the gauge basis, the elementary divisors condition satisfied

by Muniv and the fact that Rτ,β
M

is reduced and p-flat show that there is a map h : R→ Rτ,β
M

such that (Muniv, βuniv) = h∗(M, β). One easily checks that the maps g and h are inverse

of each other.

�

Remark 4.19. Under the hypotheses of Theorem 4.17, it can be shown that Y µ,τ

M
has di-

mension 4f over O which implies that Rτ,β
M

has dimension 7f over O. However, we will not

need this information in this paper.

We end this section by giving some sample computations of the partial p-saturation

process mentioned above:
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4.3.1. The αβα cell. Assume that M
(j)

has shape w̃j = αβα. From Theorem 4.1, we deduce

that

Ã
(j)
αβα =


c11 c12 c13 + P (v)c∗13

0 c̃22 + P (v)c∗22 c̃23 + P (v)c23

c∗31v c32v c33 + P (v)c′33


where c∗13, c

∗
31, c

∗
22 are units.

Let us consider first condition i). The congruence
(
Ã

(j)
αβα

)(13)
≡ 0 produces (after killing

off an extra v factor) c̃22 = 0 and, similarly,
(
Ã

(j)
αβα

)(12)
≡ 0 implies c̃23 = 0. This implies

in particular that
(
Ã

(j)
αβα

)(11)
≡ 0 and

(
Ã

(j)
αβα

)(3k)
≡ 0 for all k = 1, 2, 3.

Similarly, we deduce from
(
Ã

(j)
αβα

)(2k)
≡ 0 that

c12c33 = −pc32c13, c11c33 = −pc∗31c13, c11c32 = c∗31c12

(for k = 1, 2, 3 respectively).

Now condition ii) becomes equivalent to

(c11c33 + pc∗31c13) + P (v)
(
c′33c11 − c∗31c13 + pc∗31c

∗
13

)
− c∗31c

∗
13P (v)2 = x∗P (v)2

which implies that

P (v)
(
c′33c11 − c∗31c13 + pc∗31c

∗
13

)
− c∗31c

∗
13P (v)2 = x∗P (v)2.

We conclude that conditions i) and ii) and the partial p-saturation process above implies

the following relations

c12c33 = −pc32c13, c11c33 = −pc∗31c13, c11c32 = c∗31c12

c′33c11 − c∗31c13 + pc∗31c
∗
13 = 0

On the other hand, these relations imply that conditions i) and ii) are satisfied. This

explains the fourth column, αβα-row in the table 5.

4.3.2. The βα cell. Assume that w̃j = βα. We have

Ã
(j)
βα =


c11 c12 + P (v)c∗12 c13

0 c22 + P (v)c′22 c23 + P (v)c∗23

vc∗31 vc32 c33 + P (v)c′33


where c∗12, c

∗
23, c

∗
31 are units.

We consider first condition i). From
(
Ã

(j)
βα

)(12)
≡ 0 and

(
Ã

(j)
βα

)(13)
≡ 0, we deduce c23 = 0

and c22 = 0 respectively.
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These equations imply
(
Ã

(j)
βα

)(11)
≡ 0 and

(
Ã

(j)
βα

)(3k)
≡ 0 are automatically satisfied for

all k = 1, 2, 3. From
(
Ã

(j)
βα

)(2k)
≡ 0, we deduce, for k = 2, 3 respectively,

c11c33 = −pc∗31c13, c11c32 = c∗31c12(4.4)

These relations together with the fact c∗31 being a unit implies
(
Ã

(j)
βα

)(21)
≡ 0.

As for the determinant condition, we obtain:

P (v)
(
c′22(c11c33 + pc∗31c13) + pc∗23(c32c11 − c∗31c12)

)
+

P (v)2
(
c11c

′
22c
′
33 + c12c

∗
23c
∗
31 − pc∗31c

∗
12c
∗
23 − c∗31c

′
22c13 − c11c32c

∗
23

)
+

c∗12c
∗
23c
∗
31P (v)3 = x∗P (v)3

which gives the equation

c11c
′
22c
′
33 + c12c

∗
23c
∗
31 − pc∗31c

∗
12c
∗
23 − c∗31c

′
22c13 − c11c32c

∗
23 = 0.(4.5)

As c11c32c
∗
23 = c∗31c12c

∗
23, the equations (4.4), (4.5) yield precisely the conditions appear-

ing in the fourth column, βα-row in the table 5. Conversely, these relations imply that

conditions i) and ii) are satisfied.

The computations for the other cells are analogous and left to the reader.
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5. Monodromy and potentially crystalline deformation rings

In the previous section, we essentially computed certain finite height GK∞ Galois de-

formation rings. We will now describe (framed) potentially crystalline deformation rings

R
(2,1,0),τ
ρ of p-adic Hodge type (2, 1, 0) at each embedding and Galois type τ . The codimen-

sion of Spec R
(2,1,0),τ
ρ [1/p] in the finite height GK∞-deformation space is f , the difference

being the existence of a monodromy operator (cf. [Kis06]). We describe this condition

explicitly in Theorem 5.6. In most cases, it can be described by f equations on the generic

fiber (one for each embedding of K into Qp). Although the equations involve power-series,

they can be expressed as polynomial conditions plus a transcendental part which is divisible

by a high power of p (due to the genericity condition).

In section §5.3, we obtain (in most cases) integral equations for the deformation rings by

analyzing the p-flatness properties of these equations. As a result, we obtain descriptions

of the special fibers of the deformation spaces. In §7, we use these descriptions to prove

instances of the Serre weight conjectures and modularity lifting.

5.1. Monodromy condition. We begin by recalling some notations from [Kis06]. Let

Orig denote the ring of rigid analytic functions on the open unit disc over K. We fix an

embedding Orig ↪→ K[[u]], i.e. identify Orig with the ring of power series
∑∞

i=0 anu
n where

an ∈ K verify |an|prn → 0 for all r < 1 (and hence S[1/p] is identified with the subring of

bounded functions on the open unit disc). Set

λ =

∞∏
n=0

ϕn
(
E(u)

p

)
∈ Orig.

We define a derivation on Orig by N∇
def
= −uλ d

du ; the Frobenius on S extends to a Frobenius

ϕ on Orig. If Λ is a finite flat O-algebra, we define Orig
Λ

def
= Orig⊗Zp Λ. For any Kisin module

MΛ ∈ Y [0,2],τ (Λ), we define its base change to Orig as Mrig
Λ

def
= MΛ ⊗S Orig. We have a

decomposition Mrig
Λ = ⊕f−1

j=0M
rig,(j)
Λ .

One has the following important result:

Theorem 5.1. The module Mrig
Λ [1/λ] is equipped with a canonical derivation N

Mrig
Λ

over

N∇ such that

(5.1) N
Mrig

Λ
φ
Mrig

Λ
= E(u)φ

Mrig
Λ
N

Mrig
Λ

and N
Mrig

Λ
mod u = 0. The module Mrig

Λ is stable under N
Mrig

Λ
if and only if T ∗dd(MΛ)[1/p]

is the restriction to GK∞ of a potentially crystalline representation of GK which becomes

crystalline when restricted to GL.
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Proof. This is essentially [Kis06, Corollary 1.3.15]. It is stated there without tame de-

scent data, however, using the full faithfulness of the restriction from crystalline GL-

representations to GL∞-representations (Corollary 2.1.14 loc. cit.) one can extend the

result to the potentially crystalline case. �

We remark that the monodromy operator N
Mrig

Λ
respects the decomposition Mrig

Λ =

⊕f−1
j=0M

rig,(j)
Λ . In particular, one has N

(j+1)

Mrig
Λ

φ
(j)

Mrig
Λ

= E(u)φ
(j)

Mrig
Λ

N
(j)

Mrig
Λ

where N
(j)

Mrig
Λ

is the

monodromy operator induced by N
Mrig

Λ
on M

rig,(j)
Λ .

Let MΛ ∈ Y [0,2],τ (Λ) be as above and let β = {β(j)} be an eigenbasis for MΛ. Given

the finite height conditions on MΛ, we always have N
Mrig

Λ
(MΛ) ⊂ 1

λM
rig
Λ by same argument

from [Kis06, Proposition 2.2.2]. In what follows, we set C(j−1) def
= Matβ(φ

(j−1)
MΛ

) and define

the matrix of the monodromy at j as N
(j)
∞

def
= Matβ(N

(j)

Mrig
Λ

).

The following Lemma shows that we can construct N
(j)
∞ by successive approximation.

We state it in a slightly greater generality than our specific situation.

Lemma 5.2. Let τ be a tame inertial type and let MΛ ∈ Y [0,2],τ (Λ) be a Kisin module over

Λ. Let N
(j)
0 = 0 for all j ∈ Z/fZ. For each i ≥ 1, set

N
(j)
i

def
= E(u)C(j−1)ϕ(N

(j−1)
i−1 )(C(j−1))−1 −N∇(C(j−1))(C(j−1))−1.

Then N
(j)
i converges in 1

λ Mat(OrigΛ ) to N
(j)
∞ . Moreover, Adsj (u

a1 , ua2 , ua3)
(
N

(j)
∞
)
∈ Mat3

(
(OrigΛ )∆=1

)
.

Proof. We show by induction that

(5.2) λ(N
(j)
i+1 −N

(j)
i ) ∈ upi−1

Mat(Orig
Λ )

for all j and i ≥ 1. This proves that λN
(j)
i converges to λÑ

(j)
∞ in Mat(Λ[1/p][[u]]) and satisfies

the commutation relation with Frobenius, and thus we conclude that λÑ
(j)
∞ = λN

(j)
∞ ∈

Mat3(Orig
Λ ) (a priori, the convergence happens in a formal power series ring, however one

can estimate the Gauss norms to see that sequence actually converges in Orig
Λ ).

The inductive step for i ≥ 1 follows easily from the relation

λ
(
N

(j)
i+1 −N

(j)
i

)
=
E(u)2

p
C(j−1)ϕ

(
λ
(
N

(j−1)
i −N (j−1)

i−1

))
(C(j−1))−1

since we have E(u)2
(
C(j−1)

)−1 ∈ Mat(Λ[[u]]) by the height condition. For the base case, we

consider

λN
(j)
1 = −λN∇(C(j−1))(C(j−1))−1.
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By the height condition, λ2
(
C(j−1)

)−1 ∈ Mat(Orig
Λ ) so it suffices to show that

(5.3)
1

λ
N∇(C(j−1)) ∈ uMat(Λ[[u]])

which is obvious.

The last assertion is an immediate consequence of the compatibility between the descent

data action on Mrig
Λ and the monodromy operator. �

We now state the condition which controls the poles of the monodromy operator. Recall

that we fixed π
def
= (−p)

1

pf−1 as a uniformizer for L.

Proposition 5.3. Let MΛ ∈ Y [0,2],τ (Λ) with eigenbasis β, and write Matβ(N
(j)

Mrig
Λ

) = N
(j)
∞ =

lim
i→∞

N
(j)
i as in Lemma 5.2. Then Mrig

Λ is stable under N
Mrig

Λ
if and only if

λN (j)
∞ |u=π= 0

for all j.

Proof. Since λN
(j)
∞ ∈ Mat(Orig

Λ ), Mrig
Λ is stable under N

Mrig
Λ

if and only if λN
(j)
∞ is divisible

by λ. Since λ has simple zeroes exactly at
{
ζπ1/pn |n ≥ 0, ζ ∈ O, ζpne = 1

}
, it suffices to

show that

λN (j)
∞ |u=ζπ1/pn= 0

for all n ≥ 0, ζ and all j. The commutation relation N
(j)

Mrig
Λ

φ
(j−1)

Mrig
Λ

= E(u)φ
(j−1)

Mrig
Λ

N
(j−1)

Mrig
Λ

translates into

N (j)
∞ C(j−1) +N∇(C(j−1)) = E(u)C(j−1)ϕ

(
N (j−1)
∞

)
.

Since C(j−1) is invertible at ζπ1/pn when n > 0 and N∇(C(j−1)) is divisible by λ, we see

that

λN (j−1)
∞ |

u=ζpπ1/pn−1 = 0 =⇒ λN (j)
∞ |u=ζπ1/pn= 0.

for all n > 0. Thus, we are reduced to checking the pole condition at u = ζπ for ζ being

an e-th root of unity. As N
(j)
∞ are all conjugate to matrices in Λ[1/p][[v]] by Lemma 5.2, we

are reduced to check the condition at u = π. �

By construction, N
(j)
∞ only depends on the (C(j)). So, of course, λN

(j)
∞ |u=π also only

depends on the C(j). In general, however this could be a complicated condition on the

coefficients of (C(j)). We now show in fact this condition can be written as an explicit

polynomial equation plus an “error” term which is divisible by a power of p depending on

the genericity of τ . If τ is sufficiently generic, the special fiber of R
(2,1,0),τ
ρ will only depend

on the “leading term.”
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We will want to apply our condition to the universal finite height deformations con-

structed in §4.2. Let R be any complete local Noetherian flat O-algebra with finite residue

field. Define Orig
R to be the power series

∑∞
i=0 anu

n with an ∈ R[1/p] such that pnakn → 0

for all k > 0.

Let MR ∈ Y [0,2],τ (R) equipped with an eigenbasis β. As before, we let C(j) def
= Matβ(φ

(j)
MR

)

and write Matβ(N
(j)

Mrig
R

) = N
(j)
∞ = lim

i→∞
N

(j)
i as in Lemma 5.2. Note that N

(j)
∞ ∈ 1

λ Mat3(Orig
R ).

We will now study the convergence in Lemma 5.2 more carefully.

Lemma 5.4. We have

1

λ
N∇(C(j−1)) = Adsj (u

a1 , ua2 , ua3)(A(j−1),†)

where A(j),† ∈ Mat3(R[[v]]). Furthermore, A(j),† mod v is upper triangular nilpotent.

Proof. Applying Leibniz rule to (2.4), we see that

(5.4)

A(j−1),† = −u d
du
A(j−1) −Diag(a

(j)
sj(1),a

(j)
sj(2),a

(j)
sj(3))A

(j−1) +A(j−1)Diag(a
(j)
sj(1),a

(j)
sj(2),a

(j)
sj(3))

which is a matrix in v. Furthermore, −u d
duA

(j−1) is divisible by v and the rest is 0 modulo

v along the diagonal. �

Definition 5.5. We define the leading term as

PN (A(j−1))
def
= A(j−1),†P (v)2(A(j−1))−1.

Note that

PN (A(j−1)) ≡ zj
(
−ev d

dv
A(j−1) +A(j−1)Diag(a

(j)
sj(1),a

(j)
sj(2),a

(j)
sj(3))

)(
1

P (v)
adj(A(j−1))

)
modulo P (v), where zj ∈ R∗ is a suitable unit.

The following theorem is the main result of this section:

Theorem 5.6. Let MR ∈ Y [0,2],τ (R) equipped with an eigenbasis β and let N
(j)
∞ ∈ 1

λ Mat3(Orig
R )

be defined as in Lemma 5.2 above. Assume that τ is n-generic with n ≥ 2. Then

Ad−1
sj (ua1 , ua2 , ua3)(λN (j)

∞ ) |u=π= z
(
PN (A(j−1)) |u=π −pn−1M (j)

err

)
where z is a unit in R[1/p], PN (A(j−1)) is as in Definition 5.5 and M

(j)
err ∈ Mat3(R).

Moreover there exists a matrix Z(j) ∈ Mat3(R) such that

M (j)
err =

(
A(j−1)|v=−p

)
Z(j)

((
P (v)2(A(j−1))−1

)
|v=−p

)
.
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Proof. Let’s examine the sequence from Lemma 5.2 in more detail. Consider that

N (j)
∞ = N

(j)
1 +

∞∑
i≥1

(N
(j)
i+1 −N

(j)
i )

= N
(j)
1 +

∞∑
i≥1

C(j−1)ϕ(N
(j−1)
i −N (j−1)

i−1 )E(u)(C(j−1))−1

= N
(j)
1 +

∞∑
i≥1

(
i−1∏
k=0

ϕk(C(j−k−1))

)
ϕi(N

(j−i)
1 )

(
0∏

k=i−1

ϕk(C(j−k−1),∗)

)

where C(j),∗ := E(u)(C(j))−1.

From Lemma 5.4, we deduce that

λN
(j)
1 = −ϕ(λ)2

p2
Adsj (u

a1 , ua2 , ua3)(PN (A(j−1))).

Let z = −ϕ(λ)2

p2 |u=π which is in 1
p2O×K since ϕn(E(u)/p) has constant term 1. Now consider

the trailing term

p2λ

(
i−1∏
k=0

ϕk(C(j−k−1))

)
ϕi(N

(j−i)
1 )

(
0∏

k=i−1

ϕk(C(j−k−1),∗)

)

for i ≥ 1. Substituting N
(j−i)
1 = ϕ(λ)

p

(
u d
duC

(j−i−1)
)
C(j−i−1),∗, we can rewrite this as

(5.5)

X
(j)
i :=

ϕi+1(λ)2

pi

(
i−1∏
k=0

ϕk(C(j−k−1))

)
ϕi
(
u
d

du
C(j−i−1)

)( 0∏
k=i

ϕk
(
E(u)C(j−k−1),∗

))
.

We would now “remove the descent datum” and write this as an expression in the A(j)’s.

Define

(5.6) Z
(j)
i = Ad−1

sj (ua1 , ua2 , ua3)

(
1

ϕi+1(λ)2
X

(j)
i

)
;

and note that so far we can write

p2 Ad−1
sj (ua1 , ua2 , ua3)(λN (j)

∞ ) = −ϕ(λ)2PN (A(j−1)) +
∞∑
i≥1

ϕi+1(λ)2Z
(j)
i .

We inductively show that Z
(j)
i ∈

v(n−1)pi−1

pi
Mat(R[[v]]) when i > 1 and Z

(j)
1 ∈ vn

p Mat(R[[v]])

(recall that n ≤ p−1
2 ). This suffices to prove the first part of the Theorem by evaluating at

u = π (i.e. v = −p), and shows in particular that

(5.7) M (j)
err =

1

ϕ(λ)2

∞∑
i≥1

ϕi+1(λ)2Z
(j)
i |v=−p
pn−1
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with
Z

(j)
i |v=−p
pn−1 ∈ Mat3(R) for all i ≥ 1.

First observe that by compatibility with descent datum and by the height condition

Ad−1
sj (ua1 , ua2 , ua3)(ϕk(C(j−k−1))),Ad−1

sj (ua1 , ua2 , ua3)(ϕk(E(u)C(j−k−1),∗)) ∈ Mat(R[[v]]).

The key divisibility comes from the middle term. Take ` = j − i, then

Y
(j),†
i :=−Ad−1

sj (ua1 , ua2 , ua3)

(
ϕi
(
u
d

du
C(`−1)

))
=sAd

(
u
pia

(`)
s`(1)

−a(j)
s`(1) , u

pia
(`)
s`(2)

−a(j)
s`(2) , u

pia
(`)
s`(3)

−a(j)
s`(3)

)(
ϕi(A(`−1),†)

)
s−1

=sAd (vri,1 , vri,2 , vri,3)
(
ϕi(A(`−1),†)

)
s−1

for some s ∈ S3, by the same calculation as in (2.8). We have u
pia

(`)
s`(k)

−a(j)
s`(k) = ueri,k = vri,k

for some ri,k where ri,1 > ri,2 > ri,3. When i = 1, we have r1,k = as`(k),f−`−1 and by the

n-genericity condition,

p− 1− n ≥ |r1,1 − r1,2|, |r1,2 − r1,3| ≥ n

which implies that vn | Y (j),†
1 . When i > 1, an elementary calculation shows that

(p− 1− n)pi−1 ≥ |r1,1 − r1,2|, |r1,2 − r1,3| ≥ (n− 1)pi−1

and so v(n−1)pi−1 | Y (j),†
i . We now prove the second statement in the Theorem. An easy

computation shows that, by letting sj,j−1
def
= s−1

j sj−1 (cf. the proof of Proposition 2.15),

one has

Z
(j)
i = A(j−1)

(
Ad−1

sj (ua1 , ua2 , ua3)

(
Adsj−1(upa1 , upa2 , upa3)

(
ϕ(Z

(j−1)
i−1 )

p

)))
P (v)2(A(j−1))−1

= A(j−1)sj,j−1

(
Ad(v

asj−1(1),f−j , v
asj−1(2),f−j , v

asj−1(3),f−j )

(
ϕ(Z

(j−1)
i−1 )

p

))
s−1
j,j−1P (v)2(A(j−1))−1

for all j = 0, . . . , f−1 and i ≥ 1 (and where we define Z
(j−1)
0

def
= Adsj−1(ua1 , ua2 , ua3)

(
u d
duC

(j−2)
)

for all j). We now prove that(
Ad(v

asj−1(1),f−j , v
asj−1(2),f−j , v

asj−1(3),f−j )

(
ϕ(Z

(j−1)
i−1 )

p

))
|v=−p ∈ pn−1 Mat3(R)

for all i ≥ 1 from which the conclusion follows easily from (5.7).

For i > 1 we have (
ϕ(Z

(j−1)
i−1 )

p

)
|v=−p ∈ pp−2 Mat3(R)
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using the fact that
ϕ(Z

(j−1)
i−1 )

p ∈ v(n−1)pi−1

pi
Mat3(R[[v]]) for i ≥ 3 and

ϕ(Z
(j−1)
1 )
p ∈ vpn

p2 Mat3(R[[v]]).

This together with the n-genericity of τ gives the desired inclusion in this case. For i = 1

the inclusion follows from Lemma 5.4. �

Let M ∈ Y µ,τ (F) with shape w = (w̃0, w̃1, . . . , w̃f−1). Fix a gauge basis β on M. Let

Rτ,β
M

= ⊗̂j∈Z/fZ(Rexpl
w̃j

)p-flat, red where Rexpl
w̃j

is given in the first column and w̃j row of Table

6. This represents the universal family (Muniv, βuniv) of deformations of (M, β) (Theorem

4.17).

Definition 5.7. Assume that τ is n-generic. Let A(j−1) = Matβ(φ
(j−1)

Muniv,sj(3)
). The mon-

odromy condition at j on (Muniv, βuniv) is

PN (A(j−1))|v=−p = pn−1M (j)
err .

Let I
(j)
mon ⊂ Rτ,βM

be the ideal generated by the nine equations from the monodromy condition

at j.

The following proposition allows us to reduce, in most cases, the monodromy condition

to just one equation.

Proposition 5.8. Keep the hypotheses of Theorem 5.6. If w̃j−1 6= id, then I
(j)
mon[1/p] is

principal.

Proof. Recall from Theorem 5.6 that we can write

pn−1M (j)
err =

(
A(j−1)|v=−p

)
Z̃(j) = Z̃ ′,(j)

((
P (v)2(A(j−1))−1

)
|v=−p

)
for some Z̃(j), Z̃ ′,(j) ∈ Mat3(Rτ,β

M
[1/p]).

Furthermore, we have PN (A(j−1)) = A(j−1),†P (v)2(A(j−1))−1. We also claim that PN (A(j−1)) ≡
A(j−1)Y mod P (v). This follows from (5.4) and the fact that

−u d
du

(
A(j−1)P (v)2(A(j−1))−1

)
≡ 0 mod P (v),

which implies

−u d
du

(A(j−1))P (v)2(A(j−1))−1 ≡ A(j−1)u
d

du
(P (v)2(A(j−1))−1) mod P (v).

We conclude then the monodromy condition satisfies

(5.8) PN (A(j−1))|v=−p − pn−1M (j)
err = A(j−1)|v=−pX = X ′(P (v)2(A(j−1))−1)|v=−p

for some X,X ′ ∈ Mat3(Rτ,β
M

[1/p]).
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Each 2× 2 minor of the matrices A(j−1)|v=−p and (P (v)2(A(j−1))−1)|v=−p is zero by the

height conditions, in particular these matrices have rank at most one. It follows from

5.8 that the ratios between the rows and the columns of PN (A(j−1))|v=−p − pn−1Merr

are the same as the ratios of the rows of A(j−1)|v=−p and the ratios of the columns of

(P (v)2(A(j−1))−1)|v=−p respectively. A survey of Table 5 shows that as long as w̃j−1 6= id

the matrix A(j−1)|v=−p ∈ Mat3(Rτ,β
M

[1/p]) has at least one unit entry (say in row m) and

the same is true for (P (v)2(A(j−1))−1)v=−p (say in column k).

It follows that I
(j)
mon[1/p] is generated by the (m, k)-entry of PN (A(j−1))|v=−p− pn−1Merr,

hence is principal. �

In Table 6, we list the one equation which generates I
(j)
mon[1/p].

Remark 5.9. Proposition 5.8 is false for the case w̃j−1 = id. The reason is that the mon-

odromy conditions only cut out potentially crystalline representations whose Hodge-Tate

weights are ≤ (2, 1, 0), and so the Hodge-Tate weights could be either (2, 1, 0) or (1, 1, 1).

In case of id shape, the representations with Hodge-Tate weights (1, 1, 1) do show up, and

one must further refine the monodromy condition to get rid of them. This will be addressed

separately in §8.

5.2. Potentially crystalline deformation rings. In the previous section, we gave a

condition for Kisin module with descent datum and p-adic Hodge type (2, 1, 0) to come

from a potentially crystalline representation (Proposition 5.3). We will now construct a

candidate for the (framed) potentially crystalline Galois deformation ring.

We begin by introducing some deformation problems. Let ρ : GK → GL3(F). Recall

that R
(2,1,0),τ
ρ is the universal framed potentially crystalline deformation ring with p-adic

Hodge type (2, 1, 0). Let Dτ,�
ρ := SpfR

(2,1,0),τ
ρ denote the deformation functor. Since we will

always be working in parallel weight (2, 1, 0), we omit the p-adic Hodge type in the notation.

Assume there exists M ∈ Y µ,τ (F) such that T ∗dd(M) ∼= ρ|GK∞ . Note that this is a

necessary condition for R
(2,1,0),τ
ρ to be non-zero. By Theorem 3.2, if such a Kisin module

exists, then it is unique. Furthermore, we fix an isomorphism γ : T ∗dd(M) ∼= ρ|GK∞ .

We fix a gauge basis β of M (in particular, Matβ(φ
(j)

M,sj+1(3)
) has the form given in Table

4).

Definition 5.10. In the following definitions, all data is taken to be compatible with the

corresponding data on M when reduced modulo the maximal ideal.
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(1) Let Rτ,�
M,ρ

denote the complete local Noetherian O-algebra which represents the

deformation problem

Dτ,�
M,ρ

(A) :=
{

(MA, ρA, δA) |MA ∈ Y µ,τ (A), ρA ∈ Dτ,�
ρ (A), δA : T ∗dd(MA) ∼= (ρA)|GK∞

}
(2) Let Rτ,β,�

M,ρ
denote the complete local Noetherian O-algebra which represents the

deformation problem

Dτ,β,�
M,ρ

(A) =
{

(MA, ρA, δA, βA) | (MA, ρA, δA) ∈ Dτ,�
M,ρ

(A), βA a gauge basis for MA

}
(3) Let Rτ,β

M
be as in Theorem 4.17 which represents the deformation problem Dτ,β

M
(A).

(4) Let Rτ,β,�
M

denote the complete local Noetherian O-algebra which represents the

deformation problem of triples (MA, βA, eA) where (MA, βA) ∈ Dτ,β

M
(A) and eA is

a basis of T ∗dd(MA) lifting the basis on ρ|GK∞ so that (T ∗dd(MA), eA) is a framed

deformation of ρ|GK∞ .

(5) Let Rτ,β,∇
M

denote the O-flat and reduced quotient of Rτ,β
M

such that Spec Rτ,β,∇
M

[1/p]

is the vanishing locus of the monodromy equations on Spec Rτ,β
M

[1/p]. We define

Rτ,β,�,∇
M

from Rτ,β,�
M

in a similar way.

The relationships between the various deformation problems are summarized in the fol-

lowing diagram. The square is Cartesian and f.s. stands for formally smooth.

(5.9) SpfRτ,β,�,∇
M

f.s.
//

� _

��

SpfRτ,β,∇
M� _

��

SpfRτ,β,�
M,ρ

f.s.

��

+ �

ξ
99

� � // SpfRτ,β,�
M

f.s.
// SpfRτ,β

M

SpfRµ,τρ SpfRτ,�
M,ρ

∼
oo

The maps which are formally smooth correspond to forgetting either a framing on the

Galois representation or a gauge basis on the Kisin module. The former is clearly formally

smooth while the latter is formally smooth by Theorem 4.16. The dotted arrows will be

proved in Proposition 5.11 and Theorem 5.12 below to exist and be closed immersions when

ad(ρ) is cyclotomic free.

The isomorphism between SpfRµ,τρ and SpfRτ,�
M,ρ

is Corollary 3.6. If M has shape (w̃0, . . . , w̃f−1),

then Rτ,β
M

= ⊗̂(Rexpl
w̃j

)p-flat, red where Rexpl
w̃j

is given in Table 6 (Theorem 4.17). As we will

see, as long as w̃j 6= id for all j, the map ξ will be an isomorphism (see Remark 5.9).
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The following Proposition follows from Proposition 3.12:

Proposition 5.11. Assume that ad(ρ) is cyclotomic free (Definition 3.8). The obvious

map

SpfRτ,β,�
M,ρ

→ SpfRτ,β,�
M

between the deformation spaces defined in Definition 5.10 is a closed immersion.

Theorem 5.12. Assume that ad(ρ) is cyclotomic free. The map

SpfRτ,β,�
M,ρ

↪→ SpfRτ,β,�
M

factors through SpfRτ,β,�,∇
M

inducing a surjective map Rτ,β,�,∇
M

ξ−→ Rτ,β,�
M,ρ

. Furthermore, if

w̃j 6= id for all j ∈ Z/fZ, then ξ is an isomorphism.

Proof. Both Rτ,β,�
M

and Rτ,β,�
M,ρ

are flat O-algebras. Furthermore, Rτ,β,�
M,ρ

[1/p] is reduced since

the same is true for the potentially crystalline deformation ring Rµ,τρ . Thus, it suffices to

show factorization at the level of Qp-points.

For any O′ finite over O, an O′-point of Rτ,β,�
M,ρ

corresponds to a Kisin module MO′ ∈
Y µ,τ (O′) such that T ∗dd(MO′) is a lattice in a potentially crystalline representation with

Hodge-Tate weights (2, 1, 0). By Theorem 5.1, the monodromy condition holds at the

corresponding O′[1/p] point.

Any homomorphism Rτ,β,�,∇
M

→ O′ gives rise to a Kisin module MO′ together with a

gauge basis on which A(j) = Matβ(φ
(j)
MO′ ,sj+1(3)) has the form given in Table 5. Furthermore,

MO′ ⊗S Orig is stable under the monodromy operator and hence T ∗dd(MO′)[1/p] =: VE′

extends to a potentially crystalline representation of GK . The claim is as long as w̃j 6= id,

then VE′ has p-adic Hodge type of parallel weight (2, 1, 0). The p-adic Hodge type at the

embedding σj is (1, 1, 1) if and only if the Frobenius C(j) is divisible by E(u), equivalently

A(j) is divisible by P (v). A survey of last column of Table 5 shows that this can only happen

when w̃j = id. �

Corollary 5.13. Assume that ad(ρ) is cyclotomic free. If w̃j 6= id for all j ∈ Z/fZ, then

Rµ,τρ [[S1, . . . , S3f ]] ∼= Rτ,β,∇
M

[[T1, . . . , T8]].

Remark 5.14. The assumption that ad(ρ) is cyclotomic free is automatic (by Proposition

3.9) if one assumes a slightly stronger genericity condition on τ which forces ρ to be 2-

generic. In any case, it is likely that this assumption could be removed by using more about

the tangent space of the potentially crystalline deformation ring.
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5.3. Explicit deformation rings. We now proceed to compute Rτ,β,∇
M

for generic τ (which

means 5-generic cf. Definition 2.1) in many cases thus obtaining by Corollary 5.13 a de-

scription of Rµ,τρ . Assume that w̃j 6∈ {α, β, γ, id} for all j.

Recall that Rτ,β
M

:= ⊗̂(Rexpl
w̃j

)p-flat, red where Rexpl
w̃j

is the O-algebra corresponding to shape

w̃j in Table 6. Let Ĩmon ⊂ Rτ,β
M

denote the p-saturation of the sum of the ideals I
(j)
mon

generated by the monodromy conditions (Definition 5.7). By definition,

Rτ,β,∇
M

= (Rτ,β
M
/Ĩmon)red.

Now, we can consider the explicit quotient Rexpl,∇
M

of Rτ,β
M

given by imposing the single

monodromy equation for each j in Table 6. By Proposition 5.8,

Rexpl,∇
M

[1/p] = Rτ,β
M
/Ĩmon[1/p].

The aim is to determine the p-torsion free and reduced quotient Rτ,β,∇
M

of Rexpl,∇
M

. As long

as w̃j has length at least 2 for all j, this is non-canonically isomorphic to a completed tensor

product of the explicit rings Rexpl,∇
M,w̃j

given in Table 7. Note that Table 7 gives Rexpl,∇
M,w̃j

for

each shape of length at least 2, with further conditions from M.

Remark 5.15. Table 7 only includes the Rexpl,∇
M,w̃j

for our chosen representatives for the δ-

orbits on Adm(2, 1, 0) (see Corollary 2.24 and Remark 2.25). If w̃′ is in the same δ-orbit as

w̃, then the explicit ring for that shape is isomorphic to Rexpl,∇
M,w̃j

, only the labelling of the

variables by entry changes.

We give two sample calculations of Rτ,β,∇
M

with the rest being similar. The computations

below show that this is a quotient of (a completed tensor product of) the ring appearing in

Table 7. Since the rings in Table 7 are reduced and p-flat and satisfy the defining relations

of Rexpl
w̃j

and the monodromy conditions, this gives us Rτ,β,∇
M

.

5.3.1. The αβα cell. From the monodromy equation in Table 6, we have

(5.10) (e− (a− c))c33c
∗
22 − p(a− b)c23c32 + pec∗22c

′
33 +O(pn−2).

By the finite height and determinant equations, we see that

c11(c33 + pc′33) ≡ −p2c∗13c
∗
31

hence c11 is a unit in Rτ,β
M

[1/p]. We multiply (5.10) by c11: using the finite height and the

determinant equations, we obtain after easy manipulations:

c11

(
(a− b)c23c32 − (a− c)c∗22c

′
33

)
+ p(e− a+ c)c∗31c

∗
22c
∗
13 +O(pn−3).
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In particular if the descent data is generic, we can write

c11

(
(a− b)c23c32 − (a− c)c∗22c

′
33

)
= pz∗

where z∗ is a unit in Rτ,β
M

. Let y′33 = ((a− b)c23c32− (a− c)c∗22c
′
33)(z∗)−1 which replaces c′33.

(Note that the former change of variables in Rτ,β
M

makes sense even if the unit z∗ involves

c′33.) We have

(5.11) c11y
′
33 = p.

By p-flatness, y′33 is not a zero-divisor, and we can multiply the first height equation by y′33

to get

y′33c11c33 = −py′33c13c
∗
31

(5.11)
=⇒ c33 = −c13y

′
33c
∗
31

thereby eliminating c33. The second finite height equation can be solved to eliminate c13.

We are left then with the one equation

c11y
′
33 = p.

There are two cases. When (a− b)c23c32 − (a− c)c∗22c
′
33 6= 0, then y′33 is unit in which case

we can solve for c11. Otherwise, y′33 is in the maximal ideal, and we are left with this one

equation as in Table 7.

5.3.2. The βα cell. From Table 6, the monodromy condition gives

(5.12) (−e+ a− c)c33c
′
22 + p(a− b)c32c

∗
23 − pec′22c

′
33 +O(pn−2).

By the finite height and determinant equations, we see that

c11(c′22c
′
33 +

1

p
c33c

′
22) ≡ pc∗12c

∗
23c
∗
31

hence c11 is a unit in Rτ,β
M

[1/p]. We multiply (5.12) by c11: using the finite height and the

determinant equations, we obtain

p
(
c11((a− b)c32c

∗
23 − (a− c)c′22c

′
33)− p(e− a+ c)c∗12c

∗
23c
∗
31

)
+O(pn−2).

In particular if the descent data is generic, we can write

c11

(
(a− b)c32c

∗
23 − (a− c)c′22c

′
33

)
= pz∗

where z∗ is a unit. Let y32 = ((a− b)c32c
∗
23− (a− c)c′22c

′
33)(z∗)−1 which replaces c32 so that

we have

c11y32 = p.
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Multiplying the first height equation by y32, we get

y32c11c33 = −pc∗31c13y32 =⇒ c33 = −c∗31c13y32

thereby eliminating c33. Let y13 = −(c11c
′
33 − c13c

∗
31)(c∗23c

∗
12c
∗
31)−1 which replaces c13. We

have reduced the equations to

c11y32 = p, c′22y13 = p.

There are again two cases. When c32 6= 0, y32 is a unit in which case we can solve the

first equation. Otherwise, y32 is in the maximal ideal in which case this is a minimal set of

equations. Note that c13 ≡ 0 modulo $ so y13 is never a unit.

5.3.3. The αβ cell. The computations are similar to the βα case and we only outline how to

obtain the relevant monodromy equations. From Table 6, the monodromy condition gives

(5.13) (e− a+ c)c31c23 + p(e− a+ b)c∗21c
′
33 + p(a− b)c31c

′
23 +O(pn−2).

Note that c22 is a unit in Rτ,β
M

[1/p]. Multiplying the determinant equation by c22 and using

the finite height relation c22c13 = c12c23, we obtain

c12(c23c
∗
32 − c′33c22) = pc∗32c

∗
13c22

hence c12 is a unit in Rτ,β
M

[1/p]. We multiply (5.13) by c12: using the finite height equations,

we obtain

−(e− a+ c)pc∗13c
∗
21c
∗
32 + p(e− a+ b)c12c

∗
21c
′
33 + p(a− b)c12c31c

′
23 +O(pn−2).

Using now the determinant condition, we finally get

p
(
c12((a− b)c31c

′
23 + (b− c)c∗21c

′
33)− p(e− a+ c)c∗21c

∗
32c
∗
13

)
+O(pn−2).

In particular if the descent data is generic, we can write

c12((a− b)c31c
′
23 + (b− c)c∗21c

′
33) = pz∗

where z∗ is a unit. The computations are now similar to those of the βα case.
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6. Base change

In this section, we extend the results of §4-5 to non-principal series tame types. These

tame inertial types provide more flexibility in isolating certain combinations of Serre weights

in global applications. The setup is similar to [EGS15] where deformation rings for tame

cuspidal types are computed for GL2. The end result is that the deformation rings have

essentially the same form and shapes as for the principal series types.

Let r ∈ {2, 3} and define f ′
def
= fr, K ′

def
= Qpf ′ . We write e′

def
= pf

′ − 1, let π′
def
= π

e
e′ and

set L′
def
= K ′(π′). We fix a sequence of p-power roots π′n of π′, such that π′n

e
e′ = πn, and set

L′∞
def
=
⋃
n∈N

L′(π′n), K ′∞
def
=
⋃
n∈N

K ′(pn), L∞
def
=
⋃
n∈N

L(πn) and K∞
def
=
⋃
n∈N

K(pn).

We have Gal(L′∞/K∞) ∼= Gal(L′/K) is generated by ∆′
def
= Gal(L′/K ′) and σ̃ subject to

the relations σ̃gσ̃−1 = gp
f

and σ̃r = 1 (here σ̃ is characterized by σ̃(π′) = π′ and σ̃(ζ) = ζp
f

for ζ any e′-th root of unity). We will fix once and for all a lift of σ̃ to GK∞ , and abusively

also call it σ̃. Note that the image of σ̃ in Gal(K ′∞/K∞) is a generator.

As in Section 2.3, we have the rings OEun,K = OEun,K′ with an action of GK∞ , and

subrings OE,K , OE,L, OE,K′ and OE,L′ which are the ring of invariants under GK∞ , GL∞ ,

GK′∞ and GL′∞ , respectively.

Recall the character ωπ′ : IK′ →W (k′)×. By fixing an embedding σ′0 : k′ ↪→ F extending

σ0 : k ↪→ F, we obtain a fundamental character ωf ′ satisfying ω
e′
e
f ′ = ωf . We also fix a

compatible embedding σ′0 : W (k′) ↪→ O, which allows us to regard ωf ′ as an O× -valued

character.

6.1. Tame descent datum. Recall the notations and the general setting of §2.1. Consider

f -tuples ak ∈ {0, . . . , p − 1}f for 1 ≤ k ≤ 3 and the following tame (non-principal series)

inertial types τ :
ω
−a(0)

1 −pfa
(0)
1

f ′ ⊕ ω−a
(0)
2 −pfa

(0)
3

f ′ ⊕ ω−a
(0)
3 −pfa

(0)
2

f ′ when r = 2

ω
−a(0)

1 −pfa
(0)
2 −p2fa

(0)
3

f ′ ⊕ ω−a
(0)
2 −pfa

(0)
3 −p2fa

(0)
1

f ′ ⊕ ω−a
(0)
3 −pfa

(0)
1 −p2fa

(0)
2

f ′ when r = 3.

We write τ ′ for the base change of τ to K ′/K (which is just τ considered as a representation

of IK′). There is a triple (a′1,a
′
2,a
′
3) with a′k ∈ {0, . . . , p − 1}f ′ associated to τ ′ such that

τ ′ = η1 ⊕ η2 ⊕ η3 with ηk = ω
−a′(0)

k
f ′ (with the characters ordered as above). We say that

the type τ is n-generic if τ ′ is n-generic (equivalently, the triple (a1,a2,a3) is n-generic).

Similar conventions apply for the notion of genericity, weak genericity and strong genericity.

Let (sj) ∈ Sf3 be the orientation of (a1,a2,a3) (cf. Definition 2.6)
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The following lemma records the effect of base change on the orientation:

Proposition 6.1. Let τ be a weakly generic tame type. For 0 ≤ j ≤ f−1 and 0 ≤ i ≤ r−1,

define

s′j+if = si+1
τ ◦ sj ∈ S3

where sτ = (23) (resp. sτ = (123)) if r = 2 (resp. r = 3). Then, the f ′-tuple (s′j′) ∈ S
f ′

3 is

an orientation of τ ′.

Proof. This is a casewise computation, remarking that the orientation at j′ on (a′1,a
′
2,a
′
3) is

determined, under the weak genericity assumption, by (a′1,f ′−1−j′ , a
′
2,f ′−1−j′ , a

′
3,f ′−1−j′). �

We now study Kisin modules with descent datum of type τ in relation to Kisin modules

with descent datum of type τ ′. In the next subsection, we will apply this to potentially

crystalline deformation rings with tame Galois type τ . We write σ ∈ Gal(K ′/Qp) for

the absolute Frobenius on K ′ and recall ∆′ = Gal(L′/K ′). We also denote by σ the

automorphism of W (k′)[[u]] which fixes u and acts as σ on W (k). This extends to an

automorphism of OE,L′ , also denoted by σ, and σf agrees with the Galois automorphism

σ̃ ∈ GK∞ on OEun,K restricted to OE,L′ . We define a Frobenius-twist morphism

(σf )∗ : Y [0,h],τ ′ → Y [0,h],(τ ′)p
f

.

Let R be any O-algebra and let M ∈ Y [0,h],τ ′(R). Define (σf )∗(M) to be the (W (k′) ⊗Zp

R)[[u]]-module obtained from M via the base change σf : W (k′) → W (k′). We define the

Frobenius by φ(σf )∗(M)
def
= (σf )∗(φM) and an action of ∆′ via the canonical isomorphism

(ĝpf )∗
(

(σf )∗(M)
)
∼= (σf )∗ (ĝ∗(M))

using that g 7→ gp
f

is an automorphism of ∆′. In the Lemma below, we see that if M has

type τ ′, then (σf )∗(M) has type (τ ′)p
−f

:= (η′1)p
−f ⊕ (η′2)p

−f ⊕ (η′3)p
−f

.

We have a canonical σ−f semilinear bijection (σf )∗(M)→M given by a⊗m 7→ σ−f (a)m.

Lemma 6.2. Let M ∈ Y [0,h],τ ′(R). For all j ∈ {0, . . . , f ′ − 1}, one has the following

commutative diagram of R[[u]]-modules

ϕ∗(((σf )∗(M))(j))
φ

(j)

(σf )∗(M)
//

o
��

((σf )∗(M))(j+1)

o
��

ϕ∗(M(j−f))
φ

(j−f)
M

// M(j−f+1).
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Furthermore, for any character η : ∆′ → O×, one has the following commutative diagram

of R[[v]]-modules

ϕ((σf )∗(M))(j)
η

//

o
��

((σf )∗(M))(j+1)
η

o
��

ϕM
(j−f)

ηp
f

// M
(j−f+1)

ηp
f .

with horizontal maps induced by the Frobenius.

Since τ ′ is the base change of the tame inertial type for IK , (τ ′)p
−f

= τ ′ and the Frobenius-

twist induces an automorphism of Y µ,τ ′ . We define the ‘fixed points’ of this automorphism:

Definition 6.3. For any O-algebra R, define

Y µ,τ (R) = {(M, ι) |M ∈ Y µ,τ ′(R), ι : (σf )∗(M)
∼→M}

such that the following cocycle condition holds: ι◦ (σf )∗ι = idM (resp. ι◦ (σf )∗ι◦ (σ2f )∗ι =

idM) when r = 2 (resp. r = 3).

We define Y [0,2],τ in a similar fashion.

A morphism (M1, ι1) → (M2, ι2) in Y µ,τ (R) is a morphism M1 → M2 in Y µ,τ ′ which

commutes with the Frobenius twist.

Let R be a complete local Noetherian O-algebra. Recall from Section 2.3 the functor T ∗dd

from Y µ,τ ′(R) to GK′∞-representations given by

T ∗dd(M) = V∗dd(M) = Homϕ,OE,L′ (M,OEun,K′)

whereM = M⊗W (k′)[[u]]OE,L′ is the étale ϕ-module with descent data corresponding to M.

If (ρ, V ) is a linear representation of a group G and ψ is an automorphism of G, the

ψ-twist of V is the G-representation obtained by the composition ρ ◦ ψ : G→ GL(V ).

The following computes the effect of Frobenius twisting under T ∗dd:

Proposition 6.4. There is a canonical bijection

can : T ∗dd(M)
∼→ T ∗dd((σ

f )∗(M))

which identifies T ∗dd((σ
f )∗(M)) as the Ad(σ̃)-twist of T ∗dd(M)

Proof. We construct the map by sending h ∈ Homϕ,OE,L′ (M,OEun,K′) to σ̃ ◦ h, which

is a σf -semilinear map from M to OEun,K′ commuting with ϕ, hence gives an element
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of T ∗dd((σ
f )∗(M)) (namely id ⊗σf h). One easily checks it has the correct equivariance

properties. �

Lemma 6.5. Let G be a group and G′ a normal subgroup of G such that G/G′ is a cyclic

group of order d. Let g ∈ G be an element lifting a generator of G/G′. Let V be a linear

G′-representation. Then the data of an extension of the G′-action to a G-action is the same

as the data of a linear isomorphism h : V
∼→ V such that

(1) h(g′v) = (Ad(g)(g′))h(v),

(2) hd(v) = gd(v),

for all v ∈ V and g′ ∈ G′.

Proof. The data of h is exactly equivalent to the action of the element g, and the conditions

are exactly what is needed to make it a group action of G. �

Proposition 6.6. Let R be a complete local Noetherian O-algebra and let (M, ι) ∈ Y µ,τ (R).

Let M be the étale ϕ-module associated to M. Then the data of an extension of the GK′∞-

representation T ∗dd(M) = V∗dd(M) to a GK∞-representation is equivalent to the data of an

isomorphism

ι : (σf )∗(M)
∼→M

satisfying the cocycle condition (cf Definition 6.3).

Proof. This follows from Proposition 6.4, Lemma 6.5 and the fact that V∗dd is an anti-

equivalence. Note that the action of σ̃ on V∗dd(M) is given by V∗dd(ι−1) ◦ can. �

Corollary 6.7. Let R be a complete local Noetherian O-algebra and let (M, ι) ∈ Y µ,τ (R).

The GK′∞-representation T ∗dd(M) admits a canonical extension to a GK∞-representation

which we denote by T ∗dd′(M).

Remark 6.8. The étale φ-moduleM over OE,L′ associated to M has an action of the group

∆′ from the descent datum. The isomorphism ι extends this to an action of Gal(L′/K).

One can describe T ∗dd′ as

T ∗dd′(M) = V∗dd(M) = Homϕ,OE,L′ (M,OEun,K′)

with the GK∞-action given by g ·f def
= g◦f ◦g−1, where GK∞-acts onM through Gal(L′/K).

Proposition 6.9. Let (M, ι) ∈ Y µ,τ (F). If w = (w̃0, . . . , w̃f ′−1) ∈ W̃ f ′ is the shape of M

considered as an element of Y µ,τ ′(F), then

w̃j′1 = w̃j′2 whenever j′1 ≡ j′2 mod f.
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In other words, M has parallel shape.

Proof. The isomorphism ι induces an isomorphism M
(j)
ηs′
j
(3)
∼= M

(j−f)

(ηs′
j
(3))

pf
(Lemma 6.2). The

Proposition follows from the fact that (ηs′j(3))
pf = ηs′j−f (3). �

Definition 6.10. Let ρ : GK → GL3(F) such that T ∗dd′(M) ∼= ρ|GK∞ for some (M, ι) ∈
Y µ,τ (F). Define w(ρ, τ) = (w̃0, . . . , w̃f−1) ∈ Adm(2, 1, 0)f where w̃j is the shape of M ∈
Y µ,τ ′(F) at j′ for any j′ ≡ j mod f . This is well defined by Proposition 6.9 and Theorem

3.2 applied to ρ|GK′ and τ ′.

We now discuss gauge bases in the current setting.

Definition 6.11. Assume τ is weakly generic. Let R be a complete local Noetherian

O-algebra and let (M, ι) ∈ Y [0,2],τ (R) . A gauge basis of (M, ι) is a gauge basis β of

M ∈ Y [0,2],τ ′(R) which is compatible with ι, that is, ι((σf )∗(β)) = β.

Proposition 6.12. Assume τ is weakly generic. Let R be a complete local Noetherian O-

algebra and let (M, ι) ∈ Y [0,2],τ (R). Then the set of gauge bases of (M, ι) is a torsor for

(ResW (k′)/ZpT (R))σ
f=id = T (W (k′)⊗Zp R)σ

f=id

Proof. Let β1 be a gauge basis of M ∈ Y [0,2],τ ′(R). Then β2 = ι((σf )∗(β1)) is also a gauge

basis of M. By Theorem 4.16, the set of gauge bases of M is exactly T (W (k′)⊗ZpR)β1 (note

that the proof of Theorem 4.16 also implies that gauge bases of M are uniquely determined

up scalings). Thus β2 = cβ1 for a unique c ∈ T (W (k′) ⊗Zp R). The cocycle condition

satisfied by ι is equivalent to c · σf (c) · · ·σ(r−1)f (c) = 1. Observe that ι((σf )∗(tβ1)) =

σf (t)ι((σf )∗(β1)) = σf (t)cβ1. Thus the set of gauge bases of (M, ι) is exactly the set of

solutions t ∈ T (W (k′)⊗Zp R) to the equation t = σf (t)c. As ResW (k′)/Zp splits over O, the

equation has a solution, and the solution set is a torsor over (ResW (k′)/ZpT (R))σ
f=id. �

Finally, we observe that by Lemma 6.2, if β is a gauge basis of (M, ι), and A(j) =

Matβ
(
φ

(j)
M,s′j+1(3)

)
, then A(j) = A(j+f). The analogue of Theorem 4.17 also holds in our set-

ting, namely the problem of deforming a pair (M, ι) is representable by ⊗̂fj=1(Rexpl
w̃j

)p-flat, red.

This is obtained as the quotient of the universal deformation of (M, β) over Y µ,τ ′ by im-

posing the condition A(j) = A(j+f).

6.2. Tame deformation rings. Throughout this section, we assume that τ is weakly

generic. Let (M, ι) ∈ Y µ,τ (F). Fix a gauge basis β of (M, ι), which exists by Proposition

6.12. We define the same deformation problems from Definition 5.10 but with Y µ,τ as in
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Definition 6.3, using T ∗dd′ (Proposition 6.6) in place of T ∗dd, and with the notion of gauge

basis as in Definition 6.11. For instance, we now have

Dτ,�
M,ρ

(R)
def
=

{
(MR, ι, ρR, δR) | (MR, ι) ∈ Y µ,τ

M
(R), ρR ∈ Dτ,�

ρ (R)

and δR : T ∗dd′(MR)
∼→ ρR|GK∞

}

We obtain a diagram analogous to (5.9). We stress that the universal Kisin module living

over Rτ,β
M

is a Kisin module of type (µ, τ ′), and Rτ,β,∇
M

is obtained by imposing the mon-

odromy condition on a Kisin module of type (µ, τ ′). The arguments from §5.2 will largely

go through, so we will only discuss the modifications that need to be made.

The fact that the map SpfRτ,�
M,ρ
→ SpfRµ,τρ is an isomorphism is due to the following: By

Corollary 3.6, there is a unique Kisin module M of type (µ, τ ′) living over SpfRµ,τρ . What

needs to be checked is that there is a unique isomorphism ι : (σf )∗(M)
∼→M verifying the

cocycle condition. Proposition 6.6 shows that the extension to GK∞ of T ∗dd(M) given by the

universal Galois deformation corresponds exactly to an isomorphism ι : (σf )∗(M)
∼→ M

verifying the cocycle condition, where M is the étale ϕ-module of M. But the uniqueness

of M shows that this ι respects M ⊂M.

The fact that adding gauge bases on (M, ι) is a formally smooth operation follows from

Proposition 6.12.

The analogue of Theorem 5.12 holds by the following Lemma:

Lemma 6.13. Let E′/E be a finite extension. Let VE′ be a continuous representation of

GK∞. Then VE′ extends to a potentially (for L′/K) crystalline representation of GK if only

if VE′ extends to a potentially (for L′/K ′) crystalline representation of GK′.

Proof. This is a consequence of the fact that the restriction from crystallineGL′-representations

to GL′∞ is fully faithful which is Corollary 2.1.14 in [Kis06]. �

We deduce, with the same hypotheses as in Corollary 5.13, that

Rµ,τρ [[S1, . . . , S3f ]] ∼= Rτ,β,∇
M

[[T1, . . . , T8]].

Finally, we deduce an explicit description of Rτ,β,∇
M

as in Section 5.3.

Theorem 6.14. Let τ be a generic type. If w̃j /∈ {α, β, γ, id} for all j, then

Rτ,β,∇
M

∼= ⊗̂j∈{0,...,f−1}R
expl,∇
M,w̃j

where Rexpl,∇
M,w̃j

is as in Table 7, using e′ in place of e and a
′(j)
k in place of a

(j)
k .
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Proof. Let R = Rτ,β
M

. The monodromy condition on (MR, ι) ∈ Y µ,τ

M
(R) is by definition

the monodromy condition on MR ∈ Y µ,τ ′

M
(R) (with M being considered as an element of

Y µ,τ ′(F) as well). Let A(j) = Matβ
(
φ

(j)
M,s′j+1(3)

)
. We already saw that A(j+f) = A(j). Fur-

thermore, the isomorphism ι shows that the monodromy conditions at the j-th embedding

and the (j + f)-th embedding are exactly the same. �
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7. Applications

In this section, we apply the descriptions of the deformation rings to modularity lifting

and the Serre weight conjectures. Before stating the main theorems, we describe a global

setup, the particulars of which are not so important. The proofs of the main theorems only

rely on the existence of patched modules satisfying the axioms spelled out in Definition

7.11.

7.1. Global setup. Let F/Q be a CM field with maximal totally real subfield F+ 6= Q
and write Σ+

p (resp. Σp) for the places of F+ (resp. of F ) lying above p. Let c denote the

generator of Gal(F/F+) and assume that for all places v ∈ Σ+
p , v decomposes as wwc in F .

Let G/F+ be a reductive group which is an outer form for GL3 which is quasi-split at

all finite places of F+ and which splits over F . Suppose that G(F+
v ) ∼= U3(R) for all v|∞.

Recall from [EGH13, §7.1] that G admits a reductive model G defined over OF+ [1/N ], for

some N ∈ N which is prime to p, together with an isomorphism

(7.1) ι : G/OF [1/N ]
ι→ GL3/OF [1/N ]

which specializes to ιw : G(OF+
v

)
∼→ G(OFw)

ι→ GL3(OFw) for all places v ∈ Σ+
p .

Define F+
p := F+ ⊗Q Qp and OF+,p := OF+ ⊗Z Zp. If W is a finite O-module endowed

with a continuous action of G(OF+,p) and U ≤ G(A∞,p
F+ ) × G(OF+,p) is a compact open

subgroup, the space of algebraic automorphic forms on G of level U and coefficients in W

is the O-module defined as:

(7.2) S(U,W )
def
=
{
f : G(F+)\G(A∞F+)→W | f(gu) = u−1

p f(g) ∀ g ∈ G(A∞F+), u ∈ U
}
.

We recall that the level U is said to be sufficiently small if for all t ∈ G(A∞F+), the order

of the finite group t−1G(F+)t ∩ U is prime to p. For a finite place v of F+ that splits in

F , we say that U is unramified at v if one has a decomposition U = G(OF+
v

)Uv for some

compact open subgroup Uv ≤ G(A∞,v
F+ ). If w is a finite place of F we say, with an abuse,

that w is an unramified place for U if its restriction w|F+ is unramified for U .

Let PU be the set of finite places w of F such that v
def
= w|F+ is split in F , v - p and U is

unramified at v. For any subset P ⊆ PU of finite complement that is closed under complex

conjugation, we write TP = O[T
(i)
w , w ∈ P, i ∈ {0, 1, 2, 3}] for the universal Hecke algebra

on P. The space of algebraic automorphic forms S(U,W ) is endowed with an action of TP ,
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where T
(i)
w acts by the usual double coset operator

ι−1
w

[
GL3(OFw)

(
$wIdi 0

0 Id3−i

)
GL3(OFw)

]
.

A Serre weight (for G) is an isomorphism class of a smooth, absolutely irreducible rep-

resentation V of G(OF+,p). If v|p is a place of F+, a Serre weight at v is an isomorphism

class of a smooth, absolutely irreducible representation Vv of G(OF+
v

). Finally, if w|p is a

place of F , a Serre weight at w is an isomorphism class of a smooth, absolutely irreducible

representation Vw of GL3(OFw). Note that if Vv is a Serre weight at a place v such that

v = wwc in F , then the Serre weights at wc defined by Vv ◦ ι−1
w ◦ c, Vv ◦ ι−1

wc are dual to each

other. Any Serre weight V for G(OF+,p) can be written as V ∼=
⊗
v|p
Vv where Vv are Serre

weights at v.

Definition 7.1. Let r : GF → GL3(F) be a continuous Galois representation and let V be

a Serre weight for G. We say that r is automorphic of weight V (or that V is a Serre weight

of r) if there exists a compact open subgroup U of G(A∞,pF )×G(OF+,p) which is unramified

at places v|p, and a cofinite subset P ⊂ PU such that

S(U, V )m 6= 0

where m is the kernel of the system of Hecke eigenvalues α : TP → F associated to r, and

α satisfies the equality

det
(
1− r∨(Frobw)X

)
=

3∑
j=0

(−1)j(NF/Q(w))(
j
2)α(T (j)

w )Xj

for all w ∈ P. We write W (r) for the set of all Serre weights of r. We say that r is

automorphic if W (r) 6= ∅.

From now until the end of this subsection, we assume that p splits completely in F . If w|p
is a place of F and w|F+ = v, following [GHS] we write (X

(3)
1 )v for the set of p-restricted pairs

{aw, awc} ⊂ Z3 such that ai,w + a2−i,wc = 0 for all 0 ≤ i ≤ 2 (recall that p-restricted means

that p−1 ≥ ai,w−ai+1,w ≥ 0 for i ∈ {0, 1}). To a p-restricted element aw ∈ Z3, we associate

an irreducible representation Faw of GL3(kw) and, by inflation, GL3(OFw) as in [GHS, §3.1]

(cf. also [EGH13, (4.1.3)]). To an element av = {aw, awc} ∈ (X
(3)
1 )v, we associate an

irreducible representation Fav
def
= Faw ◦ ιw of G(OF+

v
) that is independent of the choice of

place w dividing v. Let (X
(3)
1 )

Σp
0 be the set of a = (aw)w|p where {aw, awc} ∈ (X

(3)
1 )v.

Given an element a ∈ (X
(3)
1 )

Σp
0 , we associate an irreducible representation Fa

def
=
⊗
v|p
Fav of
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G(OF+,p), or in other words a Serre weight for G. All Serre weights are of the form Fa for

some a ∈ (X
(3)
1 )

Σp
0 and Fa ∼= Fa′ if and only if a ∼ a′ as in Section 3.1 of [GHS].

Definition 7.2. If w|p and aw = (a, b, c) ∈ Z3 is p-restricted, let F (a, b, c) := Faw be the

corresponding weight at w. Then F (a, b, c) is lower alcove if a− c < p− 2 and it is in the

upper alcove if a − c > p − 2. We say that F (a, b, c) is regular if 0 ≤ a − b, b − c < p.

Following [EGH13, Theorem 5.2.5], we say that F (a, b, c) is reachable if either

a− c ≤ p− 4

or

a− b, b− c ≤ p− 6 and a− c ≥ p+ 2.

An inspection on Table 3 shows that JH(σ(τ)) consists of reachable weights as soon as τ is

6-generic.

Let v|p be a place of F+. From the definition of (X
(3)
1 )v, if av = {aw, awc} ∈ (X

(3)
1 )v,

then Faw is regular (resp. reachable) if and only if Fawc is regular (resp. reachable. For

av = {aw, awc} ∈ (X
(3)
1 )v, we say that Fav is regular (resp. reachable) if Faw is regular

(resp. reachable). Finally, if a ∈ (X
(3)
1 )

Σp
0 , we say that Fa =

⊗
v|p
Fav is regular (resp. reach-

able) if Fav is regular (resp. reachable) for all v|p. If r : GF → GL3(F) is as in Definition 7.1,

we write Wreg(r) (resp. Welim(r)) to denote the set of regular (resp. reachable) elements

of W (ρ).

We now recall the tame types for GL3(Qp). Let τ : IQp → O× be a tame inertial type.

We define a GL3(Fp)-representation σ(τ), valued in E, via the “inertial local Langlands

correspondence” (cf. [CEG+16, Theorem 3.7]). For each tame type τ , σ(τ) is given in

Table 2.

If σ(τ)◦ is a GL3(Fp)-stable O-lattice inside σ(τ), we write JH(σ(τ)) to denote the set of

Jordan–Hölder constituents of σ(τ)◦
def
= σ(τ)◦ ⊗O F. The set JH(σ(τ)) does not depend on

the choice of the lattice σ(τ)◦. When τ is weakly generic, the set JH(σ(τ)) consists of nine

Serre weights which we list in Table 3.

7.2. Modularity lifting and Serre weight conjectures. We are now ready to state our

main theorems. Fix once and for all an isomorphism ı : Qp
∼→ C.

If r : GF → GL3(E) is a continuous Galois representation, we say (following [BLGG])

that r is automorphic if there exists a RACSDC representation π of GL3(AF ) such that

r ⊗E Qp
∼= rı(π) where rı(π) : GF → GL3(Qp) is the continuous representation attached to

π by [BLGG, Theorem 2.1.2].
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Definition 7.3. Let r : GF → GL3(F) be a continuous Galois representation. We say that

r satisfies the Taylor-Wiles conditions if

• r has image containing GL3(F0) for some F0 ⊂ F with #F0 > 9.

• F ker adr
does not contain F (ζp).

From now on, we further assume that

• the extension F/F+ is unramified at all finite places; and

• If r : GF → GL3(F) is ramified at a place w of F , then v = w|F+ splits as wwc (split

ramification).

We make these two assumptions in order to construct a minimal patching functor in Section

7.3. These assumptions can be removed by using not necessarily minimal patched modules,

but we avoid this for ease of exposition.

Theorem 7.4. Let r : GF → GL3(E) be an absolutely irreducible Galois representation

and write r for the reduction of a GF -stable O-lattice in r.

Assume that:

(1) p splits completely in F+;

(2) r is unramified almost everywhere and satisfies rc ∼= r∨ε−2;

(3) for all places w ∈ Σp, the representation r|GFw is potentially crystalline, with parallel

Hodge type (2, 1, 0) and with strongly generic tame inertial type τΣ+
p

= ⊗v∈Σ+
p
τv (cf.

Definition 2.1);

(4) r verifies the Taylor-Wiles conditions (cf. Definition 7.3) and r has split ramifica-

tion;

(5) r ∼= rı(π) for a RACSDC representation π of GL3(AF ) with trivial infinitesimal

character such that ⊗v∈Σ+
p
σ(τv) is a K-type for ⊗v∈Σ+

p
πv.

Then r is automorphic.

Remark 7.5. Note that we do not make any potentially diagonalizability assumption. In

fact, we do not know whether or not r|GFw in the theorem is potentially diagonalizable. We

also do not assume that r|GFw has any particular form.

Remark 7.6. The first assumption and the strong genericity condition can both be relaxed

if one assumes that at each place w the shape is not one of {α, β, γ, id}. The difficulty comes

from the absence of a general, explicit description of the deformation ring (rather than its

special fiber) in those cases, where we need the Serre weight conjectures as input to show

Theorem 7.7.
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Theorem 7.4 is a consequence of the following Theorem using standard Kisin-Taylor-

Wiles patching methods. (Note that, in the setup of Theorem 7.4, the representation r|GFw
satisfies the hypotheses of Theorem 7.7 for all w ∈ Σp.)

Theorem 7.7. Let ρ : GQp → GL3(F) be a continuous Galois representation and let τ

be a generic tame inertial type such that R
(2,1,0),τ
ρ 6= 0. If w(ρ, τ) ∈ {α, β, γ, id}, assume

furthermore that τ is strongly generic. Then the framed potentially crystalline deformation

ring R
(2,1,0),τ
ρ with Hodge-Tate weights (2, 1, 0) has connected generic fiber.

Proof. If w(ρ, τ) /∈ {α, β, γ, id}, then this is immediate upon inspection of Table 7. The

remaining cases will be proved in §8. �

If ρ : GQp → GL3(F) is a continuous semisimple Galois representation an explicit set of

weights W ?(ρ|IQp ) is defined in [Her09, Conjecture 6.9]. The main conjecture in loc. cit. is

that W ?(ρ|IQp ) should give the set of regular modular weights. More precisely, fix a place

ṽ above each v ∈ Σ+
p , we prove the following generalization of the weight part of Serre’s

conjecture as conjectured in [Her09, Conjecture 6.9] (cf. §7.4):

Theorem 7.8. Assume that p splits completely in F . Let r : GF → GL3(F) be a con-

tinuous Galois representation, verifying the Taylor-Wiles conditions. Assume that r|GFṽ is

semisimple and 8-generic (Definition 3.7) for all v ∈ Σ+
p , that r is automorphic of some

reachable Serre weight, and that r has split ramification outside p. Then⊗
v∈Σ+

p

Fav ∈Welim(r)⇐⇒ Fav ◦ ι
−1
ṽ ∈W

?(r|IFṽ ) for all v ∈ Σ+
p .

Remark 7.9. Theorem 7.8 is stated only for r which are semisimple above p because those

are the only representations for which there is an explicit conjecture. Our computations

together with work of [HLM17], [MP] suggest a set W ?(r|GFṽ ) for non-semisimple r|GFṽ for

which the analogue of Theorem 7.8 should hold. One example is worked out in Proposition

7.17. A complete analysis for a set W ?(r|GFṽ ) when r|GFṽ is not semisimple is carried out

in [LLHLMb].

Remark 7.10. The restriction to reachable weights in the statement of Theorem 7.8 is due to

the current weight elimination results. For the niveau 1 and 2 case the works [HLM17], [MP],

[LMP] provide weight elimination for all weights (not just reachable ones). Specifically,

[HLM17, §2.5] and [MP] deals with the niveau 1 case (when (r|GFṽ )ss is 3-generic) and

[LMP, §3] with the niveau 2 case (when (r|GFṽ )ss is 4-generic). For the niveau 3 case
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the weight elimination for reachable weights has been established in [EGH13, Theorem

5.2.5] (this is the reason for our definition and restriction to reachable weights). December 2017: the

work of John Enns is

now available at

https://arxiv.org/

pdf/1711.11533.pdf,

where weight

elimination for all

weights is proved

when r|GFṽ
is

irreducible at places

above p and 4-generic.

This has

been improved by unpublished work from John Enns (private communication) to eliminate

also non-reachable weights when r|GFṽ is irreducible at places above p and 9-generic. In

particular, granting the work of John Enns, Theorem 7.8 would hold for W (r) instead of

Welim(r) and assuming only that r is automorphic.

On the other hand, our arguments and the elimination results of [LLHL] suffice to show

Theorem 7.8 when Welim(r) is replaced by Wreg(r) (which is the analogue of Conjecture 6.9

in [Her09] in our setting). If we make the stronger assumption that ρ is 9-generic, we can

even replace Wreg(r) by W (r).

The rest of §7 is devoted to the proof of Theorem 7.8, which uses the Breuil-Mézard

philosophy introduced in [GK14]. Namely, we use the descriptions of the special fibers

of deformation rings to determine the Hilbert-Samuel multiplicities of minimal patched

modules. The argument only requires Theorem 7.7 in the case where w(ρ, τ) has length at

least 2, and thus makes no use of the results in §8.

Assuming first that r is modular of a lower alcove weight, we use an inductive argument

involving carefully chosen tame types to prove modularity of the shadow weights (Proposi-

tion 7.16). A slightly more intricate argument shows that if r is modular, then it is modular

of a lower alcove weight.

7.3. Weak minimal patched modules. As before, let F/F+ be a CM extension. With

an eye towards future applications, in this subsection, we assume that every place v|p of F+

splits in F , but nothing more about the splitting behavior at p. Let r : GF → GL3(F) be a

Galois representation. For each place v|p of F+, fix a place ṽ of F such that ṽ|F+ = v. Let

R�ṽ denote the unrestricted universal O-framed deformation ring of r|GFṽ . Fix a natural

number h and let

R∞ =
( ⊗̂
v∈Σ+

p

R�ṽ

)
[[x1, x2, . . . , xh]] and X∞ = SpfR∞.

If τṽ is an inertial type for GFṽ , then let R�,τṽṽ be the universal O-framed potentially

crystalline deformation ring of r|GFṽ of inertial type τṽ (and p-adic Hodge type (2, 1, 0)). If

τ =
⊗
v∈Σ+

p

τṽ, then let

R∞(τ) =
(⊗̂
v∈Σp

R�,τṽṽ

)
[[x1, x2, . . . , xh]] and X∞(τ) = SpfR∞(τ).

https://arxiv.org/pdf/1711.11533.pdf
https://arxiv.org/pdf/1711.11533.pdf
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Let d+ 1 be the dimension of R∞(τ) (the dimension is independent of τ by Theorem 3.3.4

of [Kis08]). Note that X∞(τ)[1/p] is regular by [Kis08, Theorem 3.3.8]. We denote by R
�
ṽ ,

R∞, etc. the reduction of these objects modulo $. The following definition is adapted from

Definition 4.1.1 of [GHS].

Definition 7.11. A weak minimal patching functor for r is defined to be a covariant exact

functor M∞ : RepK(O)→ Mod(X∞) satisfying the following axioms:

(1) Let τ
def
=

⊗
v∈Σ+

p

τṽ, where for all v ∈ Σ+
p , τṽ is an inertial type, and let σ(τ)

def
=⊗

v∈Σ+
p

σ(τṽ) ◦ ιṽ be the associated K-type as in [CEG+16, Theorem 3.7]. If σ(τ)◦ an

O-lattice in it, then M∞(σ(τ)◦) is p-torsion free and is maximally Cohen-Macaulay

over R∞(τ);

(2) if V =
⊗
v∈Σ+

p

Vv, where for all v ∈ Σ+
p the Vv are irreducible G(kv)-representations

over F (i.e. V is a Serre weight for G), the module M∞(V ) has nonempty support

if and only if r is automorphic of weight V ; furthermore if M∞(V ) 6= 0 then its

support is equidimensional of dimension d; and

(3) the sheaf M∞(σ(τ)◦)[1/p] over X∞(τ)[1/p] (which is locally free, being maximal

Cohen-Macaulay over a regular scheme) has rank at most one on each connected

component.

Remark 7.12. The adjective “weak” corresponds to the fact that M∞(σ(τ)◦) is not assumed

to have full support on X∞(τ) for all inertial types τ in contrast to Definition 4.1.1 of [GHS].

Remark 7.13. The adjective “minimal” corresponds to the multiplicity one property in

condition (3). Our results on automorphy of global Serre weights could be proved without

requiring minimality using the geometric perspective of [EG14], but we have avoided this

for ease of exposition.

Given a Noetherian ring R and an R-module M , we denote the Hilbert-Samuel multiplic-

ity of M by e(M,R). If R = R∞, let e(M) = e(M,R∞). The following proposition is the

key to relating automorphy of global Serre weights to multiplicities of deformation rings.

Proposition 7.14. If M∞ is a weak minimal patching functor, then e(M∞(σ(τ))) ≤
e(R∞(τ)), and we have equality if and only if M∞(σ(τ)◦) has full support on X∞(τ) (for

any choice of lattice σ(τ)◦).
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Proof. Let T∞(τ) be the quotient of R∞(τ) which acts faithfully on M∞(σ(τ)◦). Then

e(M∞(σ(τ)◦)) = e(T∞(τ)) ≤ e(R∞(τ))

where the equality follows from Definition 7.11(3) and Corollary 1.3.5 of [Kis09a] and the

inequality follows from the fact that dimT∞(τ) = dimR∞(τ) by Definition 7.11(1). The

inequality is an equality if and only if T∞(τ) = R∞(τ) since R∞(τ) is reduced and equidi-

mensional. �

We now construct a weak minimal patching functor for r under some hypotheses using

the Taylor-Wiles method. We write Σ0 to denote the finite primes of F where r ramifies and

define Σ+
0

def
= {w|F+ , w ∈ Σ0} and Σ+ def

= Σ+
p ∪Σ+

0 . Assume for the rest of this section that

r satisfies the Taylor-Wiles conditions of Definition 7.3. Note that the first condition, which

is stronger than the usual condition of adequacy, allows us (see Section 2.3 of [CEG+16])

to choose a place v1 /∈ Σ+ of F+ such that

• v1 splits in F as v1 = ṽ1ṽ
c
1;

• v1 does not split completely in F (ζp); and

• ρ(Frobṽ1
) has distinct F-rational eigenvalues, no two of which have ratio (NF+/Qv1)±1.

In order to satisfy the minimality condition, recall (cf. §7.2) that we have made the following

two further assumptions.

• The extension F/F+ is unramified at all finite places.

• If r : GF → GL3(F) is ramified at a place w of F , then v = w|F+ splits as wwc.

As mentioned in Remark 7.13, these two assumptions can be removed by working with

weak patched modules which are not necessarily minimal. For v ∈ Σ+
0 , let τṽ be the type

which is minimally ramified with respect to r|GFw (τṽ is the restriction to inertia of the

Weil-Deligne representation attached to a Galois representation which is minimal in the

sense of Definition 2.4.14 of [CHT08]). Let R�,τṽṽ be the corresponding universal O-framed

deformation ring of r|GFṽ . Let R�ṽ1
be the unrestricted universal O-framed deformation ring

of r|GFṽ1 . Let

Rloc =
⊗̂
v∈Σ+

p

R�ṽ ⊗̂
⊗̂
v∈Σ+

0

R�,τṽṽ ⊗̂R�ṽ1
.

Choose an integer q ≥ 3[F+ : Q] as in Section 2.5 of [CEG+16], and let

R∞ = Rloc[[x1, . . . , xq−3[F+:Q]]].
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By [CHT08, Corollary 2.4.21], R�,τṽ is formally smooth over O for v ∈ Σ+
0 . By the

choice of v1, R�ṽ1
is formally smooth over O by [CEG+16, Proposition 2.5]. We con-

clude that R∞ is formally smooth over
⊗̂
v∈Σ+

p

R�ṽ and hence there is an isomorphism R∞ ∼=⊗̂
v∈Σ+

p

R�ṽ [[x1, x2, . . . , xh]] for some natural number h.

One can construct an R∞[[G(OF+,p)]]-module M∞ as in [Le, Section 4.2] (p is assumed

to split in F in [Le], however the construction, results, and proofs of Section 4 extend ver-

batim). Then define a covariant functor M∞ : RepG(OF+,p)(O)→ Mod(X∞) by M∞(W ) =

HomG(OF+,p)(W,M
∨
∞)∨ where ·∨ denotes the Pontriagin dual.

Proposition 7.15. If E is sufficiently large, M∞ is a weak minimal patching functor.

Proof. This proof is adapted from various proofs in [CEG+16] and [Le]. While the contexts

differ slightly, the proofs apply verbatim. Note that the definition of M∞(σ(τ)◦) agrees with

the definition given after 4.13 of [CEG+16] by [CEG+16, Remark 4.15]. This definition

guarantees that M∞(σ(τ)◦) is p-torsion free. Exactness of M∞ follows from [CEG+16,

Proposition 2.10] (the choice of place v1 guarantees projectivity). (1) and (3) are proved

similarly to [CEG+16, Lemma 4.18(1)].

If V is a Serre weight for G, by Theorem 5.2.1(iii) of [HLM17] and Nakayama’s lemma

(using Theorem 5.2.1(i) of [HLM17]), M∞(V ) is nonzero if and only if r is automorphic of

weight V . By Theorem 4.1.4(2) of [Le], M∞(V ) is maximal Cohen-Macaulay of depth d,

which shows (2). �

7.4. Shapes and Serre weights. We now prove Theorem 7.8. The key ingredient in the

proof of Theorem 7.8 is the description of the deformation rings in Table 7 and combinatorics

of the sets W ?(ρ) and JH(σ(τ)) for generic tame types τ . We first recall the notion of

shadow weight. For ρ : GQp → GL3(F) semisimple and weakly generic, W ?(ρ) contains

a set of six obvious weights denoted Wobv(ρ) (three upper alcove weights and three lower

alcove weights, cf. [GHS, Definition 7.1.4 ]) and an additional three weights called shadow

weights, as summarized in Table 9. Each lower alcove weight F (a, b, c) ∈ Wobv(ρ) has a

corresponding shadow weight F (p−2+c, b, a−p+2) ∈W ?(ρ) (cf. [GHS, Definition 7.2.3]).

The following combinatorial result matches shapes with predicted Serre weights. The

terms shadow and non-shadow shapes are defined in Table 1.

Proposition 7.16. Let ρ : GQp → GL3(F) be semisimple and n-generic with n ≥ 5.
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(1) If F (a, b, c) ∈ Wobv(ρ|IQp ), then there is a (n − 2)-generic tame type τ such that

JH(σ(τ)) ∩W ?(ρ|IQp ) = {F (a, b, c)} and w(ρ, τ) has length 4.

(2) If F (p− 2 + c, b, a− p+ 2) ∈W ?(ρ|IQp ) is a shadow weight, then there is a (n− 2)-

generic tame type τ such that JH(σ(τ))∩W ?(ρ|IQp ) = {F (a, b, c), F (p− 2 + c, b, a−
p+ 2)} and w(ρ, τ) is a length 3 shadow shape.

(3) If F (a, b, c) ∈W ?(ρ|IQp ) is an obvious upper (resp. lower) alcove weight, then there

is a (n− 2)-generic tame type τ such that JH(σ(τ)) ∩W ?(ρ|IQp ) contains F (a, b, c)

plus one other obvious lower (resp. upper) alcove weight and w(ρ, τ) is a length 3

non-shadow shape.

(4) If F (p− 2 + c, b, a− p+ 2) ∈W ?(ρ|IQp ) is a shadow weight, then there is a (n− 2)-

generic tame type τ such that JH(σ(τ))∩W ?(ρ|IQp ) contains F (p−2+c, b, a−p+2)

plus three obvious weights of W ?(ρ|IQp ) and w(ρ, τ) has length 2.

Proof. The strategy is the same in all four cases so we focus on the proof of (2). The type

τ for (2) is given in Table 8. The table is constructed starting with a tame type τ over

Qp. For each shape w̃ ∈ {αβα, γβγ, αγα}, one can consider the mod p Kisin modules of

shape w̃ as in Table 4. We consider the special Kisin modules of this shape where Aw̃ is

a monomial matrix—these Kisin modules give rise to semisimple ρ. For example, when

τ = ω−a ⊕ ω−b ⊕ ω−c, the Kisin module with

Aαβα =


0 0 vc∗13

0 vc∗22 0

vc∗31 0 0


corresponds (under T ∗dd) to a GQp,∞-representation which extends to a GQp-representation

ρ with ρ|IQp = ωb+1 ⊕ Ind(ω
(a+1)+p(c+1)
2 ). This confirms the shape w(ρ, τ) in the 10th row

of Table 8.

As another example, consider σ(τ) = Ind
GL3(Fp)
P1(Fp)

(
ω̃b+1⊗Θ(ω̃

(c−1)+pa
2 )

)
and parallel shape

βγβ which appears in the third section of Table 8. Define τ ′
def
= ω

(b+1)+p(b+1)
2 ⊕ ω(c−1)+pa

2 ⊕
ω
a+p(c−1)
2 which has the orientation s′0 = (12) and s′1 = (132). The special point of (M, ι) ∈
Y µ,τ (F) of shape βγβ has

A
(j)
βγβ =


0 c∗12 0

c∗21v
2 0 0

0 0 c∗33v


We are only interested in the restriction to inertia and so we can forget ι and set the constants

to 1. LetM def
= M⊗F[[u]]F((u)) ∈ Φ- Modét

dd(F) be the associated étale ϕ-module with descent
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datum. By Proposition 2.26, the étale (ϕ2, k′ ⊗Fp F((v)))-module M0
def
= ε0

(
(M)∆′=id

)
is

described, in an appropriate basis f
def
= (e1, e2, e3), as follows:

Mat(φM) =

(
s′0A

(1)


v
c−1

0 0

0 v
b+1

0

0 0 v
a

s′0
)
· ϕ

(
s′1A

(0)


v
c−1

0 0

0 v
b+1

0

0 0 v
a

(s′1)−1

)

=


0 v

(c+1)+p(a+1)
0

0 0 v
(b+1)+p(c+1)

v
(a+1)+p(b+1)

0 0



up to constants. In particular, we see that the ϕ6-action on e1 is described by

e1 7→ v(p3+1)((c+1)+p(a+1)+p2(b+1))e1.

We conclude that ρ := T ∗dd′(M) is tame with

ρ|IQp ∼= ω
(a+1)+p(b+1)+p2(c+1)
3 ⊕ ω(b+1)+p(c+1)+p2(a+1)

3 ⊕ ω(c+1)+p(a+1)+p2(b+1)
3 .

We conclude that (up to unramified twist) ρ = Ind
GQp
GQ

p3
ω

(a+1)+p(b+1)+p2(c+1)
3 and so w(ρ, τ) =

βγβ, confirming the 9th row of Table 8. Each semisimple ρ arises in this way from exactly

three types. Comparing JH(σ(τ)) and W ?(ρ|IQp ) is a tedious but not difficult computation.

We see that in each case the intersection JH(σ(τ)) ∩W ?(ρ|IQp ) is exactly a lower alcove

weight together with its shadow.

A similar computation can be done for the other shapes and cuspidal types using Propo-

sition 2.26. Briefly, regarding parts (1), (3), and (4), for each tame type τ , there are six

shapes of length 4, six non-shadow shapes of length 3, and six shapes of length 2. For each

semisimple ρ, there are exactly six types for which w(ρ, τ) has length 4, six types for which

w(ρ, τ) has non-shadow length 3 and six types for which w(ρ, τ) has length 2. For each

obvious weight, there is a unique type satisfying (1) and two types satisfying (3). For each

shadow weight, there are two types which work for part (4). �

Proof of Theorem 7.8. For generic tame types τv and ρv := r|GFṽ , if w(ρv, τv) has length

greater than or equal 2 for all v | p, then by Theorem 6.14 and Table 7, R∞(τ) has connected

generic fiber and so if M∞(σ(τ)◦) is nonzero, then it has full support. By Proposition

7.14, we know the Hilbert-Samuel multiplicity of M∞(σ(τ)◦). The strategy is to compute

e(M∞(⊗v∈Σ+
p
Vv)) by varying the tame type. In fact, we show that e(M∞(⊗v∈Σ+

p
Vv)) = 1

whenever Vv ◦ ι−1
ṽ ∈W

?(r|IFṽ ) for all v.

Let W ?(ρv) be W ?(r|IFṽ ) ◦ ιṽ. As usual, this does not depend on the choice of place ṽ|v.

Similarly define Wobv(ρv). Our assumptions imply that if r is modular of a reachable weight
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⊗v∈Σ+
p
Vv then Vv ∈W ?(ρv) for all v ∈ Σ+

p (cf. Remark 7.10), and all weights in W ?(ρv) are

reachable.

First, assume that r is modular of a reachable weight ⊗v∈Σ+
p
Vv such that all Vv are lower

alcove. Under these hypotheses, the modularity of the obvious weights is known by [BLGG,

Theorem 5.1.4] (alternatively, one could deduce the modularity of the obvious weights using

the arguments two paragraphs below and Proposition 7.16(3)). Choose Vv ∈ W ?(ρv) for

each v ∈ Σ+
p . Let S+

p ⊂ Σ+
p be the set of places for which Vv is a shadow weight. For

each v ∈ S+
p , let V ′v denote the lower alcove weight corresponding to Vv. We induct on

the size of S+
p . If S+

p is empty, then by Proposition 7.16(1), we can choose types τv for

each v ∈ Σ+
p such that JH(σ(τv)) ∩ W ?(ρv) = {Vv}. In this case, M∞(⊗v∈Σ+

p
σ(τv)

◦) =

M∞(⊗v∈Σ+
p
Vv) is nonzero by Definition 7.11(2) and modularity of the obvious weights, and

so e(M∞(⊗v∈Σ+
p
Vv)) = e(M∞(⊗v∈Σ+

p
σ(τv)

◦)) = 1 since the corresponding deformation ring

is a power-series ring.

In general, for each v ∈ Σ+
p \S+

p , we choose τv as in 7.16(1). For each v ∈ S+
p , we

choose τv as in 7.16(2) to contain exactly Vv and V ′v . Consider M∞(σ(τ)) over R∞(τ). The

deformation rings for v /∈ S+
p are again formally smooth. By the previous paragraph, r is

modular of all the obvious weights and so M∞(σ(τ)) is nonzero. By Table 7 and Proposition

7.14, we deduce that

e(M∞(σ(τ))) = e(R∞(τ)) = 2|S
+
p |.

By the inductive hypothesis, the contribution to e(M∞(σ(τ))) of any Serre weight inW ?(r)∩
JH(σ(τ)) not equal to ⊗v∈Σ+

p
Vv is 1. We deduce that e(M∞(⊗v∈Σ+

p
Vv)) = 1.

Finally, we show that if r is modular of any reachable weight then it is modular of a

reachable weight ⊗v∈Σ+
p
Vv where Vv lower alcove for each v. Assume r is modular of a

reachable weight ⊗vVv. As above, let S+
p ⊂ Σ+

p be the set of places for which Vv is a shadow

weight. Assume |S+
p | is minimal among such weights and is nonzero. Choosing types τv as

above, we conclude that e(M∞(σ(τ))) = 2|S
+
p | and so

e(M∞(⊗v∈Σ+
p
Vv)) ≤ 2|S

+
p |.

Choose now a place v0 ∈ S+
p , and replace τv0 by a tame type τ ′v0

for the shadow weight Vv0

as in Proposition 7.16(4). (Note that since ρv is 8-generic, then τ ′v is 6-generic; this implies

that weights in JH(σ(τ ′v)) are reachable.) For the new type τ ′, we have

e(M∞(σ(τ ′))) = 2|S
+
p |+1.
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By comparing multiplicities and using that M∞ vanishes on reachable weights ⊗vV ′v if

V ′v /∈ W ?(ρv) for some v ∈ Σ+
p , we conclude that M∞(⊗vV ′v) 6= 0 for some Serre weight

⊗vV ′v of r such that V ′v ∈ Wobv(ρv) if Vv ∈ Wobv(ρv) for all v and V ′v0
∈ Wobv(ρv0

). This

contradicts the minimality of |S+
p |.

To prove that r is modular of a weight ⊗v∈Σ+
p
V ′v with V ′v reachable and lower alcove for

all v, one repeats the argument of the last paragraph beginning with a modular weight

⊗v∈Σ+
p
Vv with Vv reachable and obvious for all v, defining S+

p ⊂ Σ+
p using upper alcove in

place of shadow, and defining τ and τ ′ using Proposition 7.16(1) and (3). �

We provide an example of a calculation of modular reachable Serre weights for a non-

semisimple ρ. This will be needed in §8.2.2 for the proof of Theorem 7.7.

Proposition 7.17. Let τ be a strongly generic tame type. Let ρ be a non-semisimple

representation such that w(ρ, τ) = α (i.e., c′22 6= 0 in Table 4). Then there is a subset

W ?(ρ) ⊂W ?(ρss) consisting of six weights such that the following holds:

There exists a CM field F and a continuous Galois representation r : GF → GL3(F) as

in the statement of Theorem 7.8, except that r|GFṽ
∼= ρ at all places v ∈ Σ+

p and such that⊗
v∈Σ+

p

Fav ∈W (r)⇐⇒ Fav ◦ ι
−1
ṽ ∈W

?(ρ) for all v ∈ Σ+
p .

Proof. We focus on the case of principal series type as the other cases are similar. Let

τ = ω−a ⊕ ω−b ⊕ ω−c with a− b, b− c > 3. Let ρ be the unique non-split representation of

GQp of the form

ρ ∼=


χ1ω

a+1 ∗ 0

0 χ2ω
b+1 0

0 0 χ3ω
c+1


for fixed unramified characters χi. Then w(ρ, τ) = α. To see this, consider a Kisin mod-

ule M ∈ Y µ,τ (F) such that Matβ(φM,ωc) = Aα. Then by Lemma 2.20 which allows row

operations, there is another eigenbasis β
′

for M such that Mat
β
′(φM,ωc) is given by

A′α =


−vc∗21

c∗12
c′22

0 0

vc∗21 vc′22 0

0 0 vc∗33


It can be seen, for instance via [HLM17, Lemma 2.2.7], that such Kisin module comes from a

Fontaine-Laffaille module with Hodge-Tate weights (a+1, b+1, c+1) and the corresponding

Galois representation must be ρ (up to unramified twist).
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Note that ρ admits a Fontaine-Laffaille and hence a potentially diagonalizable lift with

Hodge-Tate weights (a+1, b+1, c+1). We can now apply Lemma A.5 and Proposition A.6

of [EG14] to produce an r : GF → GL3(F) such that r|GFṽ
∼= ρ, and such that the setting

of §7.2 and Theorem 7.8 holds. Furthermore we can arrange so that r has an automorphic

lift r such that r|GFṽ is Fontaine-Laffaille with Hodge-Tate weights (a+ 1, b+ 1, c+ 1) (this

is achieved by choosing the potential diagonalizable lift of r|GFṽ featuring in the proof of

[EG14], Lemma A.5—which refers back to Theorem 4.3.1 in [BLGGT14]—to be Fontaine-

Laffaille with Hodge-Tate weights (a+ 1, b+ 1, c+ 1)).

Let

W ?(ρ) =

{
F (a− 1, b, c+ 1), F (p− 2 + c, a, b+ 1), F (a− 1, c, b− p+ 2),

F (p− 1 + b, a, c), F (c+ p− 1, b, a− p+ 1), F (a, c, b− p+ 1)

}
⊂W ?(ρss).

The top row are obvious weights for ρss; the bottom row are shadow weights. Define

Wobv(ρ)
def
= Wobv(ρss) ∩W ?(ρ).

To prepare for the proof, we observe:

(1) There exists a generic tame type τ ′ such that JH(σ(τ ′))∩W ?(ρ) = {F (a−1, b, c+1)}
and w(ρ, τ ′) is a length 4 shape;

(2) There exists a generic tame type τ ′ such that JH(σ(τ ′)) ∩W ?(ρ) = {F (a− 1, b, c+

1), F (a− 1, c, b− p+ 2)} and w(ρ, τ ′) is a length 3 non-shadow shape;

(3) There exists a generic tame type τ ′ such that JH(σ(τ ′)) ∩ W ?(ρ) = {F (c + p −
2, a, b+ 1), F (a− 1, c, b− p+ 2)} and w(ρ, τ ′) is a length 3 non-shadow shape;

(4) For each F ∈ Wobv(ρ) such that F is lower alcove with shadow F ′ ∈ W ?(ρ), there

is a generic tame type τ ′ such that w(ρ, τ ′) is a length 3 shadow shape;

(5) For the type τ ′
def
= ω

−(a+1)−p(b−1)−p2c
3 ⊕ ω−(b−1)−pc−p2(a+1)

3 ⊕ ω−c−p(a+1)−p2(b−1)
3 , we

have that JH(σ(τ ′))∩W ?(ρ) = {F (c+p−2, a, b+ 1), F (a, c, b−p+ 1)} and w(ρ, τ ′)

is a length 3 non-shadow shape.

For items (1)-(4), we pick the type τ ′ which satisfies the analogous properties for ρss (cf.

Proposition 7.16). What needs to be checked are the claims about the shapes of ρ with

respect to τ ′.

We will do it for item (5), the other cases will be similar. Note that by Proposition

6.1, the orientation for the type τ ′v is s′0 = (123), s′1 = (123)2 and s′2 = id. We claim that

w(ρ, τ ′) = αβγ. To do this, it suffices to show that there exists a matrix A ∈ I(F)αβγ I(F)
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such that the étale ϕ-module M′ with Mat(ϕ3
M′) given by

s′0As
′
0
−1
s′1


va+1 0 0

0 vb−1 0

0 0 vc

ϕ(A)s′1
−1
s′2


vp(a+1) 0 0

0 vp(b−1) 0

0 0 vpc

ϕ2(A)s′2
−1


vp

2c 0 0

0 vp
2(a+1) 0

0 0 vp
2(b−1)


(cf. Proposition 2.26) is isomorphic to the étale ϕ3-moduleM associated to ρ|GQ

p3,∞
, which

has matrix Mat(ϕ3
M) given by

Aα


va 0 0

0 vb 0

0 0 vc

ϕ(Aα)


vpa 0 0

0 vpb 0

0 0 vpc

ϕ2(Aα)


vp

2a 0 0

0 vp
2b 0

0 0 vp
2c

 .

Indeed we can set A
def
= Aα


v−1 0 0

0 v 0

0 0 1

s′1−1s′0, and this has the required properties.

We now address the proof of the proposition. We pick a weak minimal patching functor

for r (it exists since r and F/F+ satisfy the setup of §7.2). Note that M∞(⊗v∈Σ+
p
F (a −

1, b, c + 1) ◦ ιṽ) 6= 0 in our situation. First note that if ⊗vVv ∈ W (r) then Vv ∈ W ?(ρ)

for all v ∈ Σ+
p by Theorem 1.1 in [MP]. To finish the proof, it suffices to show that

e(M∞(⊗vVv)) = 1 if Vv ∈W ?(ρ) for all v.

We first show this statement in the case where Vv ∈ {F (a − 1, b, c + 1), F (a − 1, c, b −
p + 2)} for all v. Let S be the set of v ∈ Σ+

p such that Vv = F (a − 1, c, b − p + 2). We

induct on the size of S. Consider the type ⊗v∈Σ+
p
σ(τ ′v) where τ ′v is as in item (1). Then

M∞(⊗v∈Σ+
p
σ(τ ′v)) = M∞(⊗v∈Σ+

p
F (a− 1, b, c+ 1) ◦ ιṽ). By Table 7, this gives the base case

for the induction. In general, we pick the type ⊗v∈Σ+
p
σ(τ ′v) where τ ′v is as in item (1) if v /∈ S

and τ ′v is as in item (2) otherwise. By Table 7, we have e(M∞(⊗v∈Σ+
p
σ(τ ′v))) = 2|S|. Every

⊗v∈Σ+
p
V ′v ∈ JH(⊗v∈Σ+

p
σ(τ ′v))∩W (r) we have V ′v ∈ {F (a−1, b, c+1), F (a−1, c, b−p+2)} for

all v. All such factors other than ⊗v∈Σ+
p
Vv will have V ′v = F (a−1, c, b−p+2) for strictly less

than |S| embeddings v. From the inductive hypothesis we deduce that e(M∞(⊗vVv)) = 1.

A similar argument using the type τ ′ as in item (3) deals with the case where Vv ∈Wobv(ρ).

Finally we deal with the shadow weights in W ?(ρ) exactly as in Theorem 7.8, using the

type τ ′ as in item (5) to deal with the weight F (a, c, b− p+ 1) and the types as in item (4)

for the remaining shadows. �

We conclude this section with a counterexample to [Gee11, Conjecture 4.3.2] (the crys-

talline conjecture).
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Proposition 7.18. Let F = F (a− 1, b, c+ 1) be a lower alcove weight such that the triple

(a, b, c) is generic and write FSh
def
= F (c+p−1, b, a−p+1). There exists a CM field F where

p splits completely and a continuous automorphic Galois representation r : GF → GL3(F)

such that ⊗v∈Σ+
p
F ◦ ιṽ ∈ W (r) but (⊗v∈Σ+

p \SFv ◦ ιṽ) ⊗ (⊗v∈SFSh ◦ ιṽ) /∈ W (r) for any

∅ 6= S ⊆ Σ+
p and Fv any weight at v ∈ Σ+

p \S. Moreover, for any v ∈ Σ+
p the representation

r|GFṽ has a crystalline lift of weight (c+ p+ 1, b+ 1, a− p+ 1).

Proof. We consider the generic type τ
def
= ω−a ⊕ ω−b ⊕ ω−c. It satisfies F, FSh ∈ JH(σ(τ)).

Then there exists M ∈ Y µ,τ (F) over Fp⊗Fp F[[u]] endowed with an eigenbasis β such that

A
def
= Matβ(φM,ωc) is given by the matrix in row αβα in Table 4, satisfying (a− b)c23c32 −

(a− c)c∗22c
′
33 6= 0, c23c32 − c∗22c

′
33 6= 0, c23c32 6= 0, and c′33 6= 0. Moreover, Tdd(M) ∼= ρ|GQp,∞

for a continuous Galois representation ρ : GQp → GL3(F). This is checked as in the proof of

Proposition 7.17 by showing that the étale ϕ-module associated to M comes from a Fontaine-

Laffaille module M over Fp ⊗Fp F with Hodge-Tate weights (a + 1, b + 1, c + 1). In fact it

can be shown, using the Fontaine-Laffaille module M , that the associated ρ is maximally

non-split with ωa+1 ⊆ ρ and ρ � ωc+1, ρss ∼= ωa+1 ⊕ ωb+1 ⊕ ωc+1 and Fontaine-Laffaille

parameter FL(ρ) 6= 0, ∞: cf. [HLM17, Definition 2.1.10, Corollary 2.1.8 and Lemma 2.2.7].

Note that w(ρ, τ) = αβα by construction.

By the same argument as in the proof of Proposition 7.17, we find a CM field F/F+ which

is unramified at all finite places and an automorphic Galois representation r : GF → GL3(F)

satisfying the Taylor-Wiles conditions such that r|GFw ∼= ρ for all w ∈ Σp (note that ρ admits

a crystalline lift of weight (a+ 1, b+ 1, c+ 1)).

Let M∞ be a weak minimal patching functor for r (which exists by Proposition 7.15).

Let σ(τ)◦ be the unique lattice in σ(τ) such that σ(τ)◦ has irreducible cosocle isomorphic

to ⊗v∈Σ+
p
F ◦ ιṽ. Then the kernel N of the surjection σ(τ)◦ � ⊗v∈Σ+

p
F ◦ ιṽ contains all the

weights of the form (⊗v∈Σ+
p \SF ◦ ιṽ)⊗ (⊗v∈SFSh ◦ ιṽ) where ∅ 6= S ⊆ Σ+

p .

By [HLM17, Theorem D], if a weight ⊗v∈Σ+
p
Fv ◦ ιṽ is modular, then necessarily Fv ∈

{F, FSh} for all v. Thus for the first claim of the Proposition, it suffices to show M∞(N) = 0.

Indeed on one hand, we have e
(
M∞(⊗v∈Σ+

p
F ◦ ιṽ)

)
≥ 1 (since r is modular of the lower

alcove weight ⊗v∈Σ+
p
F ◦ ιṽ). On the other hand, we have e (M∞(σ(τ)◦)) = e

(
R∞(τ)

)
= 1

since R∞(τ) is formally smooth over O (cf. row 6 in Table 7).

By exactness of M∞, we conclude that e(M∞(N)), and hence M∞(N), is 0 as required.

As for the last part of the statement, let W
def
= W (c + p − 1, b, a − p + 1) denote the

GL3(Fp)-representation over F obtained by taking the GL3(Fp)-rational points of the Weyl
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module of highest weight (c + p − 1, b, a − p + 1), and extending the coefficient field to F.

Then JH(W ) = {F, FSh}.
For any ∅ 6= S ⊆ Σ+

p , we have M∞

(
(⊗v∈Σ+

p \SF ◦ ιṽ)⊗ (⊗v∈SW ◦ ιṽ)
)
6= 0 and hence by

classical local-global compatibility r|GFṽ admits a crystalline lift of weight (c + p + 1, b +

1, a− p+ 1) for v ∈ S. �
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8. The α and id shapes

The aim of this section is complete the proof of Theorems 7.4 and 7.7 by studying the

deformation rings in the most complicated cases when the shape has length 0 or 1. To recall

the assumptions, τ will be a generic tame inertial type and ρ : GQp → GL3(F) satisfies

w(ρ, τ) ∈ {α, id}. There are three cases to consider: the identity shape w(ρ, τ) = id (§ 8.1),

the case where w(ρ, τ) = α and ρ is semisimple (§ 8.2.1) and the case where w(ρ, τ) = α

and ρ is non-semisimple (§ 8.2.2) In the three cases, the cardinality of the intersection

JH(σ(τ))∩W ?(ρ) is 6, 6 and 5 respectively (see Proposition 7.17 when ρ is non-semisimple).

The difficulty of these cases is that the monodromy equations in characteristic 0 become

too complicated to manipulate, and in particular it is hard to see exactly the effect of

p-saturation. Nevertheless, one can guess an explicit candidate for the mod p fiber of

the deformation ring, because the monodromy equations (and the relations implied by p-

saturation) become much simpler mod p. A priori, this candidate could be strictly larger

than the mod p fiber of the deformation ring, but we then invoke global arguments in the

form of the Serre weight conjectures (Theorem 7.8 and Proposition 7.17) to show that this

does not happen.

The genericity condition is used to guarantee that the error terms in the monodromy

equations are divisible by a large enough power of p so that they can be ignored in our

manipulations after reducing modulo p.

With respect to the notations of § 2.1, we have f = 1 and set a
def
= as0(1),0, b

def
= as0(2),0

and c
def
= as0(3),0.

8.1. The identity shape. We now assume that τ is n-generic with n ≥ 4 and that

w(ρ, τ) = id. Let

A =


c11 + c∗11(v + p) c12 c13

vc21 c22 + c∗22(v + p) c23

vc31 vc32 c33 + c∗33(v + p)

 .

In this section, we work over the ring Raux which is defined to be the p-saturation of the

quotient of O[cij , (c∗ii)
±1, 1 ≤ i, j ≤ 3] by the following relations: all 2 by 2 minors of

A|v=−p =


c11 c12 c13

−pc21 c22 c23

−pc31 −pc32 c33
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vanish and the determinant condition

c11c
∗
22c
∗
33 + c22c

∗
33c
∗
11 + c33c

∗
11c
∗
22 − c∗11c23c32 − c∗22c13c31 − c∗33c12c21 + c21c13c32 = 0.

We have

−A†|v=−p =


−pec∗11 (a− b)c12 (a− c)c13

−p(e+ b− a)c21 −pec∗22 (b− c)c23

−p(e+ c− a)c31 −p(e+ c− b)c32 −pec∗33

 , det(A)
P (v) A

−1 |v=−p=


c∗22c33 + c∗33c22 − c23c32 c13c32 − c∗33c12 −c∗22c13

pc∗33c21 c∗11c33 + c∗33c11 − c13c31 c13c21 − c∗11c23

−pc21c32 + pc∗22c31 pc∗11c32 c∗11c22 + c∗22c11 − c12c21

.

In the following lemmas, let us abbreviate U
def
= A|v=−p and V

def
= det(A)

P (v) A
−1 |v=−p.

Lemma 8.1. The ring Raux is a domain and cij 6= 0 in Raux for all 1 ≤ i, j ≤ 3.

Proof. It suffices to prove the statements for Raux[1/p]. Let Det be the determinantal variety

over E on the entries of U obtained by imposing that the 2 by 2 minors of U vanish. Then

the map Spec (Raux[1/p])→ Det obtained by forgetting c∗ii is smooth and surjective. This

gives both statements of the lemma. �

Lemma 8.2. Keep the setting and notation above. For any matrix Z = (Zij)1≤i,j≤3 of

formal variables Zij, we have the following equality

(A|v=−p)Z

(
det(A)

P (v)
A−1 |v=−p

)
= (UijXj)1≤i,j≤3

with pXj ∈ Raux[Zij , 1 ≤ i, j ≤ 3].

Proof. It suffices to show that for any 1 ≤ i, k, l, j ≤ 3, one has

(8.1) UikVlj = UijXjkl

for some Xjkl ∈ 1
pO[cij , c

∗
ii, 1 ≤ i, j,≤ 3] independent of i.

The fact that the (UikVlj) ∈
cij
p O[cij , c

∗
ii, 1 ≤ i, j,≤ 3] follows from the fact that Vlj is

a Raux-linear combination of cmj ’s (for example, c∗22c33 + c∗33c22 − c23c32 = −(c∗22c
∗
33c11 +

c∗22c13c31 + c∗33c12c21 − c21c13c32)/c∗11), and the minor conditions allows us to convert from

cijckl to cilckj , at possibly a cost of a p in the denominator.

The fact that Xjkl is independent of i can also be checked on the locus (using Lemma

8.1) where all the Uij ’s are invertible, where it follows immediately from the 2 by 2 minor

condition (UikUij =
Ui′k
Ui′j

). �

We now study the deformation ring. We observe that the finite height ring Rτ,β,�
M

is an

Raux-algebra in an obvious way.

Recall the O-algebra Rτ,β,�
M,ρ

from Definition 5.10 (2). By (5.9) and Theorem 4.16, it is

isomorphic to a power series ring in 3 variables over the potentially crystalline ring Rµ,τρ , and
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hence has relative dimension 14 over O. Recall also (cf. (5.9)) that we have a surjection

π : Rτ,β,�
M

� Rτ,β,�
M,ρ

, where we quotient out by the monodromy equations (and take the

reduced and p-flat quotient of the result).

The leading term for the monodromy is given by (A†P (v)2A−1)v=−p (cf. Definition 5.5).

Define

Mon1 =(e− a+ c)c∗22c33 + (e− a+ b)c22c
∗
33 − (e− a+ c)c23c32 + pec∗22c

∗
33

Mon2 =(a− b)c∗33c11 + (e− b+ c)c33c
∗
11 − (a− b)c13c31 + pec∗33c

∗
11

Mon3 =(b− c)c∗11c22 + (a− c)c11c
∗
22 − (b− c)c12c21 + pec∗11c

∗
22.

A direct computation shows that in Raux we have the equality

(A†P (v)2A−1)v=−p = A|v=−p ·


Mon1 0 0

0 Mon2 0

0 0 Mon3


Thus Theorem 5.6 and Lemma 8.2 show that in Rτ,β,�

M,ρ
we have the equation

A|v=−p ·


Mon1 +O1(pn−2) 0 0

0 Mon2 +O2(pn−2) 0

0 0 Mon3 +O3(pn−2)

 = 0

where Oi(p
n−2) stands for an error term which is divisible by pn−2.

The following proposition refines Theorem 5.12 in the present situation:

Proposition 8.3. The surjection π factors through the quotient of Rτ,β,�
M

by the relations

(8.2) Moni +Oi(p
2) = 0,∀i ∈ {1, 2, 3}.

Proof. We already know that (Monj + Oj(p
2))cij = 0. The refinement will come from the

fact that Rµ,τρ classifies representations with Hodge-Tate weights exactly (2, 1, 0) instead of

just being in [0, 2].

Since Rµ,τρ is flat and Rµ,τρ [1
p ] is regular, it suffices to show that the equations (8.2) hold

in the p-flat closure of each connected component of Rτ,β,�
M,ρ

[1
p ]. Let R denote the p-flat

closure of a connected component of Rτ,β,�
M,ρ

[1
p ] and assume that we have Mon1 +O1(p2) 6= 0

in R. Since R is a domain, we conclude that ci1 = 0 in R for all i. On the other hand, cij

cannot be 0 in R for all i, j since the Hodge–Tate weights are exactly (2, 1, 0), so at least

one of the equations Monj + Oj(p
2) = 0 for j = 2, 3 holds in R. Assume without loss of

generality that Mon2 +O2(p2) = 0. This implies that c33 ∈ pR× and in particular c33 6= 0.
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Thus Mon3 + O3(p2) = 0 and hence c22 ∈ pR×. Now the relation c12c33 = −pc13c32 gives

c12 = −pc13c32

c33
in R and c23c32 = −1

pc22c33 = 0 in R/$. Thus we see R/$ is a quotient of

a power series ring in 8 variables over F[[c13, c32, c23, c
∗
ii − [c∗ii], i = 1, 2, 3]]/(c23c32). This

shows that R/$ has dimension at most 13, a contradiction. �

Corollary 8.4. Let R̃ be the quotient of F[[cij , 1 ≤ i, j,≤ 3]] by the relations:

ciicjj = 0, for i 6= j;

c11c23 = 0; c31c22 = 0; c12c23 = c22c13; c11c32 = c12c31; c21c33 = c31c23;

(e− a+ c)c33 + (e− a+ b)c22 − (e− a+ c)c23c32 = 0;

(b− c)c22 + (a− c)c11 − (b− c)c12c21 = 0;

(a− b)c11 + (e− b+ c)c33 − (a− b)c13c31 = 0;

c11 + c22 + c33 − c12c21 − c13c31 − c23c32 + c21c13c32 = 0.

Then the ring Rτ,β,�
M,ρ

/$ is a power series ring over a quotient of R̃.

Proof. This is a direct consequence of Proposition 8.3 and the observation that replacing

cij by
cij
c∗jj

eliminates the c∗ii from all the equations. �

The following Proposition gives basic structural information about R̃:

Proposition 8.5. The ring R̃ is a reduced 3-dimensional Cohen-Macaulay ring. It has 6

minimal primes and each irreducible component is formally smooth over F. Thus e(R̃) = 6.

Proof. Observe that the relations defining R̃ are actually polynomials instead of genuine

power series, so R̃ can be viewed as a completion of a quotient of a polynomial ring by the

ideal I generated by the relations above. We use some standard terminology from the theory

of Gröbner bases [Eis95]. We pick the monomial order on F[cij ]
def
= F[cij , 1 ≤ i, j ≤ 3] given

by c11 > c12 > c13 > c21 > c22 > c23 > c31 > c32 > c33 and write I for the ideal generated

by the relations of Proposition 8.4. An easy but tedious calculation (using Buchberger’s

algorithm, for example) shows that the ideal I has the following Gröbner basis with our
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choice of monomial order:

c11 − c13c31 +
e− b+ c

a− b
c33,

c12c21 −
a− c
b− c

c13c31 −
e− a+ c

e− a+ b
c23c32 +

((a− c)(e− b+ c)

(b− c)(a− b)
− e− a+ c

e− a+ b

)
c33,

c12c23 −
e− a+ c

e− a+ b
c13c33,

c12c33, c13c21c32 −
a− c
b− c

c13c31 − c23c32 +
e

b− c
c33,

c12c23c31 −
e− b+ c

a− b
c23c33, c13c31c33 −

e− b+ c

a− b
c2

33,

c21c33 − c23c31, c22 −
e− a+ c

e− a+ b
c23c32 +

e− a+ c

e− a+ b
c33,

c23c31c32 − c31c33, and c23c32c33 − c2
33.

In each of the above polynomials, the leading monomial is exactly the left-most term. Thus

we see that the initial ideal in(I) of I is generated by square-free monomials. This implies

that I is radical: Suppose fk ∈ I, then in(f)k ∈ in(I), so in(f) ∈ in(I). But then we can

divide f by elements in I and get some f ′ < f with f ′k ∈ I. Continuing this way, we see

that f ∈ I.

Furthermore, as in [Eis95, §15.8], we can realize F[cij ]/I as the fiber Ft (for any t 6= 0)

of a flat family F over F[t], such that the fiber F0 is F[cij ]/in(I). Since this quotient is

Cohen-Macaulay by an explicit check, and the Cohen-Macaulay locus is open in F , we

conclude that F is Cohen-Macaulay at some closed point of the form cij = 0 for all i and

j, and t = t0 6= 0. But then (t − t0) is a regular element in the localization of F at this

point, and hence the localization of F[cij ]/I at the closed point cij = 0 for all i and j is

Cohen-Macaulay.

The computation of the irreducible components is left as an easy exercise to the reader.

�

For the following Proposition, we need to assume that τ is strongly generic.

Proposition 8.6. Assume that τ is strongly generic. Then Rτ,β,�
M,ρ

/$ is isomorphic to a

power series ring over R̃.

Proof. We globalize ρ to a r : GF → GL3(F) such that the following conditions hold:

• The assumptions of Theorem 7.8 are satisfied;

• r is unramified away from p;
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• p splits completely in F . Make a choice ṽ above each place v|p in F+;

• For each ṽ|p, there is an isomorphism Fṽ ∼= Qp and r|GFṽ
∼= ρ

(cf. the proof of Proposition 7.17). With this global setting, we can choose a weak minimal

patching functor M∞. We now choose a tame type ⊗v∈Σ+
p
τv such that r|GFṽ has a shape of

length 4 with respect to τv for all but one place v0|p, while r|GFṽ0 has id shape with respect

to τv0

def
= τ . Since τ is strongly generic, we deduce from Lemma 8.7 below that ρ is 8-generic.

Moreover JH(σ(τ)) consists of reachable weights. With this choice, the intersection

JH(⊗v∈Σ+
p
σ(τv)) ∩W ?(⊗v∈Σ+

p
r|GFṽ )

(with obvious notation) consists of exactly 6 weights. By Theorem 7.8, we conclude that if

W is any Serre weight for G in this intersection we have M∞(W ) 6= 0. Thus we have

e(M∞(σ(⊗v∈Σ+
p
τv))) ≥ 6.

On the other hand, by our choice of τv and the knowledge of Galois deformation rings for

length 4 shapes (Corollary 5.13 and Table 7), R∞(⊗v∈Σ+
p
τv) is isomorphic to a power series

ring over R
µ,τv0
ρ . It follows that e(Rµ,τρ /$) ≥ 6. The Proposition now follows from Lemma

8.8 below, the fact that Rτ,β,�
M,ρ

/$ receives a surjection from a power series ring over R̃

(Corollary 8.4) and has the same Hilbert-Samuel multiplicity as Rµ,τρ /$. �

Lemma 8.7. Let n ≥ 2. Let τ0 be an n-generic inertial type for IQp and ρ0 : GQp → GL3(F)

be a Galois representation such that there exists M ∈ Φ- Modét
dd(F) with Y µ,τ0

M (F) 6= ∅ (and

thus a single point by Theorem 3.2) and V∗dd(M) ∼= ρ0|GQp,∞ . Then ρ0 is an (n− 2)-generic

continuous Galois representation.

Proof. This follows from a direct computation using Proposition 2.26. �

Lemma 8.8. Suppose R, S are complete Noetherian local rings over F, with R � S.

Assume that R is reduced, that R and S are equidimensional with dimR = dimS and that

e(R) = e(S). Then R ∼= S.

Proof. Let I be the kernel of R� S. Because e(R) = e(S) and dimR = dimS, the support

of I as an R-module does not contain any minimal primes, hence Ip = 0 for all minimal

primes p of R. But this implies that I is inside the intersection of all the minimal primes

of R, hence I = 0 because R is reduced. �

Corollary 8.9. Assume that τ is strongly generic. The ring Rµ,τρ is normal, Cohen-

Macaulay, and Rµ,τρ [1
p ] is a domain.
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Proof. By Propositions 8.5, 8.6 above, Rτ,β,�
M,ρ

/$ is reduced and Cohen-Macaulay, hence

Rµ,τρ /$ inherits those properties by formal smoothness (cf. (5.9)). This implies Cohen-

Macaulayness.

Since Rµ,τρ [1
p ] is regular, to show it is a domain it suffices to show it has no non-trivial

idempotent. Suppose e is a non-trivial idempotent. Then there is a maximal k ∈ Z such

that $−ke ∈ Rµ,τρ . By maximality and e = e2 ∈ $2kRµ,τρ , we have k ≥ 2k. On the other

hand ($−ke)2 = $−k($−ke) and $−ke 6= 0 mod $, hence we must have k = 0 since

Rµ,τρ /$ is reduced. But then e is an idempotent of the local ring Rµ,τρ , hence it must be a

trivial idempotent.

Finally, since Rµ,τρ [1
p ] is regular and Rµ,τρ /$ is reduced, Rµ,τρ satisfies conditions R1 and

S2, hence is normal. �

Remark 8.10. The reason for which we need τ to be 10-generic in Proposition 8.6 is due to

Lemma 8.7 and the 8-genericity assumption on ρ appearing in Theorem 7.8. By Remark

7.10 an improvement on weight elimination for a niveau three ρ could relax the genericity

assumption on τ . (An inspection of the proof of Theorem 7.8 and Table 8 shows however

that any improvement of Theorem 7.8 based on stronger weight elimination results will

require ρ to be at least 7-generic: in order to obtain a further relaxation on the genericity

hypotheses on ρ, hence on τ , one should be able to perform the explicit computations in

§ 5.3 with types which are m-generic with m ≤ 4).

We also observe that in the specific situation of Proposition 8.6 we could have avoided

Lemma 8.7, noting that w(ρ, τ) = id implies that ρ and τ have the same degree of genericity.

However, this is no longer true when w(ρ, τ) = γ, in which case we need to invoke Lemma

8.7 to have the analogous statement of Proposition 8.6 for shape γ.

8.2. The α shape. We assume that τ is n-generic with n ≥ 4 and that w(ρ, τ) = α. The

universal family of shape α is given by

A =


c11 c12 + (v + p)c∗12 c13

c∗21v c22 + (v + p)c′22 c23

c31v c32v (c33 + (v + p)c∗33)


subject to the condition that all 2 by 2 minors of

A|v=−p =


c11 c12 c13

−pc∗21 c22 c23

−pc31 −pc32 c33
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vanish and the determinant condition

c11c
′
22c
∗
33 + c13c

∗
21c32 − c13c

′
22c31 − c12c

∗
21c
∗
33 + pc∗21c

∗
12c
∗
33 = 0.

We have

−A†v=−p =


0 (a− b)c12 − epc∗12 (a− c)c13

−p(e− a+ b)c∗21 −epc′22 (b− c)c23

−p(e− a+ c)c31 −p(e− b+ c)c32 −pec∗33

 , det(A)
P (v) A

−1 |v=−p=


−c23c32 + c22c

∗
33 + c33c

′
22 c13c32 − c12c

∗
33 − c∗12c33 c∗12c23 − c13c

′
22

pc∗33c
∗
21 −c13c31 + c11c

∗
33 c∗21c13

−pc∗21c32 + pc′22c31 pc31c
∗
12 −c∗21c12 + c11c

′
22 + pc∗12c

∗
21



Define c̃32
def
= c32−

c′22c31

c∗21
. By looking at the (1, 1), (2, 1), (3, 3) entries of (A†P (v)2A−1)v=−p

(the leading term for monodromy, cf. Definition 5.5) we get the following monodromy

equations:

(a− b)c12c
∗
33 − (a− c)c13c̃32 = pec∗12c

∗
33 +O(p2)

(e− a+ c)c23c̃32 − (e− a+ b)c22c
∗
33 = epc′22c

∗
33 +O(p2)

(e− a+ c)c31c23c
∗
12 − (e− a+ c)c31c13c

′
22 + (e− b+ c)c32c13c

∗
21 − ec12c

∗
33c
∗
21 + ec11c

′
22c
∗
33 + pec∗12c

∗
21c
∗
33 = O(p2)

8.2.1. The semisimple case. Let us first consider the case when c′22 = 0, that is ρ is semisim-

ple.

Proposition 8.11. Let R̃ be the quotient of F[[c11, c13, c23, c31, c̃32, c
′
22]] by the relations:

c11c23 = 0; c11c̃32 = c13c31c̃32; c11c
′
22 =

b− c
a− b

c13c̃32; c13c23c̃32 = 0; c23c31c̃32 = 0;

(a− b)c13c31c
′
22 + (c− b)c13c̃32 + (e− a+ c)c23c31 = 0.

Then the ring Rτ,β,�
M,ρ

/$ is a power series ring over a quotient of R̃.

Proof. We need to check that the relations defining R̃ are satisfied in Rτ,β,�
M,ρ

/$. Throughout

the proof, we work modulo $. First, observe that replacing ci1 with ci1
c∗21

, ci2 with ci2
c∗12

and ci3

with ci3
c∗33

, we eliminate c∗12, c
∗
21, c

∗
33 from all equations, so we can assume c∗12 = c∗21 = c∗33 = 1

in what follows. The monodromy equations mod $ solves c12, c22 in terms of the remaining

variables:

c12 =
a− c
a− b

c13c̃32,(8.3)

c22 =
e− a+ c

e− a+ b
c23c̃32.(8.4)

The determinant condition thus gives

c11c
′
22 =

b− c
a− b

c13c̃32.(8.5)
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From the relation c11c32 = c12c31, using (8.3), the definition of c̃32 and (8.5), we obtain:

c11c̃32 =c13c31c̃32.

Multiplying (8.4) by c13, (8.3) by c23 and using the relation c12c23 = c13c22, we obtain:

c13c23c̃32 =0.

Using c22c31 = 0 and (8.4), we get

c23c31c̃32 =0.

Finally, using the third monodromy equation and the previous relations, we obtain

(a− b)c13c31c
′
22 + (c− b)c13c̃32 + (e− a+ c)c23c31 = 0.

�

Proposition 8.12. The ring R̃ is a reduced 3-dimensional Cohen-Macaulay ring. It has 6

minimal primes, and each irreducible component is formally smooth over F. Thus e(R̃) = 6.

Furthermore, the minimal primes of R̃ are exactly

(c11 − c13c31, c23, (a− b)c31c
′
22 + (c− b)c̃32); (c11, (a− b)c13c

′
22 + (e− a+ c)c23, c̃32);

(c11, c13, c23); (c11, c13, c31); (c11, c31, c̃32); (c23, c̃32, c
′
22).

Proof. The proof is very similar to the proof of Proposition 8.5, so we will only sketch it.

The relation ideal I defining R̃ consists of polynomials, and indeed form a Gröbner basis

with respect to the monomial order c11 > c13 > c21 > c23 > c31 > c̃32 > c′22. Since the initial

ideal of I is generated by square-free monomials, we get reducedness. Cohen-Macaulayness

follows as in Proposition 8.5. �

8.2.2. The non-semisimple case. Finally, we handle the case where ρ is non-semisimple.

Then we have that c′22 is a unit instead of a topologically nilpotent element. The relations

of Propositions 8.11, 8.12 continue to hold, the only difference is that R̃ is not a quotient of

F[[c11, c13, c21, c23, c31, c̃32, c
′
22]], but rather a quotient of F[[c11, c13, c21, c23, c31, c̃32, c

′
22−[c′22]]].

The effect of c′22 being a unit is that R̃ only has 5 minimal primes instead of 6 (the minimal

prime (c23, c32, c
′
22) is no longer present).

The proofs of the following results for the α shape are exactly the same as the proofs for

the id shape, so we will not repeat them.
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Proposition 8.13. Assume that τ is strongly generic. Then Rτ,β,�
M,ρ

/$ is isomorphic to a

power series ring over R̃.

Corollary 8.14. Assume that τ is strongly generic. Then the ring Rµ,τρ is normal, Cohen-

Macaulay, and Rµ,τ
M

[1
p ] is a domain.

This completes the proof of Theorem 7.7.
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9. Appendix: Tables

Table 1. The (2, 1, 0)-admissible elements

Length 4
αβαγ = t(2,1,0), βγαγ = t(1,2,0), βγβα = t(0,2,1),

γαβα = t(0,1,2), αγαβ = t(1,0,2), αβγβ = t(2,0,1)

Length 3 (ordinary) γαβ, αγβ, αβγ βαγ, βγα, γβα

Length 3 (shadow) γαγ, αβα, βγβ

Length 2 γα, αγ, βα, αβ, βγ, γβ

Length 1 α, β, γ

Length 0 id

There are 25 different (2, 1, 0)-admissible elements. For simplicity, we label them by the

corresponding element in the affine Weyl group of SL3, e.g. αβαγ corresponds to v(αβαγ)

in W̃ . If (x, y, z) ∈ X∗(T ) ∼= Z3 is a cocharacter, we write t(x,y,z) for the image of

translation by (x, y, z) in W̃ .

Table 2. Inertial local Langlands

τ σ(τ)

ω
−a(0)

1
f ⊕ ω−a

(0)
2

f ⊕ ω−a
(0)
3

f Ind
GL3(k)
B(k) (ω̃

a
(0)
1
f ⊗ ω̃a

(0)
2
f ⊗ ω̃a

(0)
3
f )

ω
−a(0)

1
f ⊕ ω−a

(0)
2 −pfa

(0)
3

2f ⊕ ω−a
(0)
3 −pfa

(0)
2

2f Ind
GL3(k)
P2(k) ω̃

a
(0)
1
f ⊗Θ(ω̃

a
(0)
2 +pfa

(0)
3

2f )

ω
−a(0)

1 −pfa
(0)
2 −p2fa

(0)
3

3f ⊕ ω−a
(0)
2 −pfa

(0)
3 −p2fa

(0)
1

3f ⊕ ω−a
(0)
3 −pfa

(0)
1 −p2fa

(0)
2

3f Θ(ω̃
a

(0)
1 +pfa

(0)
2 +p2fa

(0)
3

3f )

In the table above, we set P2
def
=


∗ ∗ ∗
∗ ∗
∗ ∗

 and write Θ(ψ) for the cuspidal repre-

sentation of GLr(k) associated to a k′-primitive character ψ : (k′)× → E× as in [Her09,

Lemma 4.4].
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Table 3. Jordan–Hölder factors of Deligne–Lusztig GL3(Fp)-
representations

σ(τ) JH(σ(τ))

Ind
GL3(Fp)
B(Fp) (ω̃a1 ⊗ ω̃b1 ⊗ ω̃c1)

F (a, b, c),

F (c+ p− 1, a, b),

F (b, c, a− p+ 1),

F (a, c, b− p+ 1),

F (c+ p− 1, b, a− p+ 1),

F (b+ p− 1, a, c),

F (a− 1, b, c+ 1),

F (c+ p− 2, a, b+ 1),

F (b− 1, c, a− p+ 2)

Ind
GL3(Fp)
P2(Fp) ω̃a1 ⊗Θ(ω̃b+pc2 )

F (a, b− 1, c+ 1),

F (c+ p− 2, a, b+ 1),

F (b− 1, c+ 1, a− p+ 1),

F (a, c, b− p+ 1),

F (c+ p− 1, b, a− p+ 1),

F (b+ p− 2, a, c+ 1),

F (a− 1, b, c+ 1),

F (c+ p− 1, a, b),

F (b− 1, c, a− p+ 2)

Θ(ω̃a+pb+p2c
3 )

F (a− 2, b+ 1, c+ 1),

F (c+ p− 2, a, b+ 1),

F (b− 1, c+ 1, a− p+ 1),

F (a− 1, c, b− p+ 2),

F (c+ p− 1, b, a− p+ 1),

F (b+ p− 1, a− 1, c+ 1),

F (a− 1, b, c+ 1),

F (c+ p− 1, a− 1, b+ 1),

F (b, c, a− p+ 1)

In the table above, the triple (a, b, c) is assumed to be weakly generic, we set P2
def
=

∗ ∗ ∗
∗ ∗
∗ ∗

, and we write Θ(ψ) for the cuspidal representation of GLr(Fp) associated

to a Fpr -primitive character ψ : F×pr → E× as in [Her09, Lemma 4.4]. See also [Her,

Theorem 5.1].
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Table 4. Shapes of Kisin modules over F

w̃j A
(j)
w̃j

w̃j A
(j)
w̃j

αβαγ


v2c∗11 0 0

v2c21 vc∗22 0

c31v + c′31v
2 vc32 c∗33

 βγαγ


vc∗11 vc12 0

0 v2c∗22 0

vc31 c32v + c′32v
2 c∗33



βαγ


0 vc∗12 0

v2c∗21 0 0

vc31 + v2c′31 vc32 c∗33

 αβγ


v2c∗11 0 0

vc21 + v2c′21 0 c∗23

v2c31 vc∗32 0



αβα


0 0 vc∗13

0 vc∗22 vc23

vc∗31 vc32 vc33



αβ


0 0 vc∗13

vc∗21 0 vc23

0 vc∗32 vc33

 βα


0 vc∗12 0

0 0 vc∗23

vc∗31 vc32 vc33



α


0 vc∗12 0

vc∗21 vc22 0

0 0 vc∗33

 id


vc∗11 0 0

0 vc∗22 0

0 0 vc∗33



In the above, we have cik, c
′
ik ∈ F and c∗ik ∈ F×.
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Table 5. Deforming M by shape (without monodromy)

w̃j A
(j)
w̃j

deg(Ã
(j)
w̃j

) Ã
(j)
w̃j

with height/det conditions

αβαγ


v2c∗11 0 0

v2c21 vc∗22 0

vc31 + v2c′31 vc32 c∗33




2∗ ≤ 0 −∞
v(≤ 1) 1∗ −∞
v(≤ 1) v(≤ 0) 0∗




(v + p)2c∗11 0 0

v(v + p)c21 (v + p)c∗22 0

v(c31 + (v + p)c′31) vc32 c∗33



βγαγ


vc∗11 vc12 0

0 v2c∗22 0

vc31 vc32 + v2c′32 c∗33




1∗ ≤ 1 −∞
v(≤ 0) 2∗ −∞
v(≤ 0) v(≤ 1) 0∗




(v + p)c∗11 (v + p)c12 0

0 (v + p)2c∗22 0

vc31 v(c32 + (v + p)c′32) c∗33



βαγ


0 vc∗12 0

v2c∗21 0 0

vc31 + v2c′31 vc32 c∗33



≤ 1 1∗ −∞
v(1∗) ≤ 1 −∞
v(≤ 1) v(≤ 0) 0∗




(v + p)c11 (v + p)c∗12 0

v(v + p)c∗21 (v + p)c22 0

v(c31 + (v + p)c′31) vc32 c∗33


c11c22 = −pc∗12c

∗
21

αβγ


v2c∗11 0 0

vc21 + v2c′21 0 c∗23

v2c′31 vc∗32 0




2∗ ≤ 0 −∞
v(≤ 1) ≤ 0 0∗

v(≤ 1) v(0∗) ≤ 0




(v + p)2c∗11 0 0

v(c21 + (v + p)c′21) c22 c∗23

v(c21c33(c∗23)−1 + (v + p)c′31) vc∗32 c33


c22c33 = −pc∗32c

∗
23

αβα


0 0 vc∗13

0 vc∗22 vc23

vc∗31 vc32 vc′33



≤ 0 ≤ 0 1∗

−∞ 1∗ ≤ 1

v(0∗) v(≤ 0) ≤ 1



c11 c11c32(c∗31)−1 c13 + (v + p)c∗13

0 (v + p)c∗22 (v + p)c23

vc∗31 vc32 c33 + (v + p)c′33


c11c33 = −pc13c

∗
31

c11c
′
33 − c13c

∗
31 + pc∗13c

∗
31 = 0
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αβ


0 0 vc∗13

vc∗21 0 vc′23

0 vc∗32 vc′33



≤ 0 ≤ 0 1∗

v(0∗) ≤ 0 ≤ 1

v(≤ 0) v(0∗) ≤ 1




c31c12(c∗32)−1 c12 c13 + (v + p)c∗13

vc∗21 c22 c23 + (v + p)c′23

vc31 vc∗32

(
c31c23(c∗21)−1 + (v + p)c′33

)


c22c31 = −pc∗21c
∗
32

c12c23 = c22c13

c∗21c
∗
32c13 − pc∗21c

∗
32c
∗
13 − c′33c

∗
21c12 = 0

βα


0 vc∗12 0

0 0 vc∗23

vc∗31 vc32 vc′33



≤ 0 1∗ ≤ 0

−∞ ≤ 1 1∗

v(0∗) v(≤ 0) ≤ 1



c11

(
(c∗31)−1c11c32 + (v + p)c∗12

)
c13

0 (v + p)c′22 (v + p)c∗23

c∗31v c32v c33 + (v + p)c′33


c11c33 = −pc∗31c13

c′22(c11c
′
33 − c13c

∗
31) = pc∗23c

∗
12c
∗
31

α


0 vc∗12 0

vc∗21 vc′22 0

0 0 vc∗33



≤ 0 1∗ ≤ 0

v(0∗) ≤ 1 ≤ 0

v(≤ 0) v(≤ 0) 1∗



c11 c12 + (v + p)c∗12 c13

c∗21v c22 + (v + p)c′22 c23

c31v c32v (c33 + (v + p)c∗33)


all 2× 2 minors of Ã

(j)
α |v=−pvanish,

c11c
′
22c
∗
33 + c13c

∗
21c32 − c13c

′
22c31 − c12c

∗
21c
∗
33 + pc∗21c

∗
12c
∗
33 = 0

id


vc∗11 0 0

0 vc∗22 0

0 0 vc∗33




1∗ ≤ 0 ≤ 0

v(≤ 0) 1∗ ≤ 0

v(≤ 0) v(≤ 0) 1∗



c11 + c∗11(v + p) c12 c13

vc21 c22 + c∗22(v + p) c23

vc31 vc32 c33 + c∗33(v + p)


all 2× 2 minors of Ã

(j)
id |v=−pvanish,

c11c
∗
22c
∗
33 + c22c

∗
33c
∗
11 + c33c

∗
11c
∗
22 − c∗11c23c32 − c∗22c13c31 − c∗33c12c21 + c21c13c32 = 0

Explanation of the table: deg(Ã
(j)
w̃j

) is the degree of the polynomial in each

entry. We write k∗ to indicate an entry polynomial of degree k whose leading

coefficient is a unit. We use c∗ to indicate an entry which is a unit in R. Each

entry is also subject to the condition that the reduction modulo mR gives

A
(j)
w̃j

. The third column is further explained in Remark 4.9. In the fourth

column, we describe Matβ(φ
(j)
M,sj+1(3)) with finite height and determinant

conditions imposed, and performing some obvious p-saturation. However,

we do not claim that we have performed all the p-saturation in the case of

the last 5 rows.



POTENTIALLY CRYSTALLINE DEFORMATION RINGS & SERRE WEIGHT CONJECTURES 97

Table 6. Monodromy equations

w̃j Rexpl
w̃j

Leading term

αβαγ O[[x∗11, x
∗
22, x

∗
33, x21, x31, x

′
31, x32]]

pc∗33

(
(e− (a− c))c∗22c31 + p(e− (b− c))c21c32c

∗
33 − pec∗22c

′
31

)
+O(pn−1)

(using the (3, 1) entry of the leading term)

βγαγ O[[x∗11, x
∗
22, x

∗
33, x12, x31, x32, x

′
32]]

pc∗33

(
(e− (b− c))c32c

∗
11 − (e− (a− c))c12c31 + pec11c

′
32

)
+O(pn−1)

(using the (3, 2) entry of the leading term)

βαγ
O[[x11, x

∗
12, x

∗
21, x

∗
33, x22, x31, x

′
31, x32]]

c11c22 = −pc∗12c
∗
21

pc∗33

(
(e− (a− c))c∗12c31 − pec∗12c

′
31 − (e− (b− c))c32c11

)
+O(pn−1)

(using the (3, 2) entry of the leading term)

αβγ
O[[x∗11, x21, x

′
21, x22, x

∗
23, x

′
31, x

∗
32, x33]]

c22c33 = −pc∗32c
∗
23

pc∗23

(
(e− (a− c))c∗32c21 + (b− c)c22c

′
31 − p(e− (b− c))c∗32c

′
21

)
+O(pn−1)

(using the (2, 1) entry of the leading term)

αβα

O[[x11, x32, x23, x13, x33, x
′
33, x

∗
31, x

∗
22, x

∗
13]]

c11c33 = −pc13c
∗
31

c11c
′
33 − c13c

∗
31 + pc∗13c

∗
31 = 0

−pc∗31

(
(e− (a− c))c33c

∗
22 − p(a− b)c23c32 + pec∗22c

′
33)
)

+O(pn−1)

(using the (3, 1) entry of the leading term)

αβ

O[[x31, x22, x12, x13, x23, x
′
23, x

′
33, x

∗
21, x

∗
13, x

∗
32]]

c22c31 = −pc∗21c
∗
32

c12c23 = c22c13

c∗32c13 − pc∗32c
∗
13 − c′33c12 = 0

pc∗32

(
(e− (a− c))c31c23 + p(e− (a− b))c∗21c

′
33 + p(a− b)c31c

′
23

)
+O(pn−1)

(using the (3, 1) entry of the leading term)

βα

O[[x11, x
′
22, x32, x13, x33, x

′
33, x

∗
31, x

∗
12, x

∗
23]]

c11c33 = −pc∗31c13

c′22(c11c
′
33 − c13c

∗
31) = pc∗23c

∗
12c
∗
31

pc∗31

(
− (e− (a− c))c33c

′
22 + p(a− b)c32c

∗
23 − pec′22c

′
33

)
+O(pn−1)

(using the (3, 1) entry of the leading term)

α See §8.
p
(
(e− a+ c)(c23c32c

∗
21 − c′22c23c31)− (e− a+ b)c22c

∗
33c
∗
21 − epc′22c

∗
33c
∗
21

)
+O(pn−1)

(using the (2, 1) entry of the leading term)

id See §8. See §8.

We list the generator of I
(j+1)
mon [1/p] according to the procedure of Proposition

5.8. We take a
def
= a

(j+1)
sj+1(1), b

def
= a

(j+1)
sj+1(2), c

def
= a

(j+1)
sj+1(3). We define the variables

x•ij
def
= c•ij − [c•ij ] where • = ∗, ′ or • ∈ ∅ and [·] is the Teichmüller lift.
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Table 7. Deformation rings with monodromy

w̃j Condition on M Rexpl,∇
M,w̃j

αβαγ c31 = 0 O[[x∗11, x
∗
22, x

∗
33, x21, x

′
31, x32]]

βγαγ (e− b+ c)c32c
∗
11 = (e− a+ c)c12c31 O[[x∗11, x

∗
22, x

∗
33, x12, x31, x

′
32]]

βαγ c31 = 0 O[[y11, y22, x
∗
12, x

∗
21, x

∗
33, x

′
31, x32]]/(y11y22 − p)

αβγ c21 = 0 O[[y22, y33, x
∗
11, x

′
21, x

∗
23, x

′
31, x

∗
32]]/(y22y33 − p)

αβα (a− b)c23c32 − (a− c)c∗22c
′
33 6= 0 O[[x32, x23, x

′
33, x

∗
31, x

∗
22, x

∗
13]]

αβα (a− b)c23c32 − (a− c)c∗22c
′
33 = 0 O[[x11, x32, x23, y

′
33, x

∗
31, x

∗
22, x

∗
13]]/(x11y

′
33 − p)

αβ c′33 6= 0 O[[y31, x22, x
′
23, x

′
33, x

∗
21, x

∗
13, x

∗
32]]/(y31x22 − p)

αβ c′33 = 0 O[[y31, x22, x12, x
′
23, y

′
33, x

∗
21, x

∗
13, x

∗
32]]/(y31x22 − p, x12y

′
33 − p)

βα c32 6= 0 O[[x′22, y13, x32, x
′
33, x

∗
31, x

∗
12, x

∗
23]]/(x′22y13 − p)

βα c32 = 0 O[[x11, x
′
22, y32, y13, x

′
33, x

∗
31, x

∗
12, x

∗
23]]/(x′22y13 − p, x11y32 − p)

The condition imposed by monodromy on the coefficients of

Matβ
(
φ

(j)

M,sj+1(3)

)
, according to the shape of M (cf. Table 4). We

take a
def
= a

(j+1)
sj+1(1), b

def
= a

(j+1)
sj+1(2), c

def
= a

(j+1)
sj+1(3). Note that the table above

covers all the shapes of length ≥ 2; the shapes of length ≤ 1 are more

delicate and treated in detail in §8.
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Table 8. Types with Weyl intersection in the proof of Proposition

7.16(2)

ρ σ(τ) JH(σ(τ)) ∩W ?(ρ) Shape w(ρ, τ)

(
ωa ⊕ ωb ⊕ ωc

)
⊗ ω

Ind
GL3(Fp)
P2(Fp) (ω̃b ⊗Θ(ω̃c+pa2 ))

F (a− 1, b, c+ 1),

F (c+ p− 1, b, a− p+ 1)
αβα

Ind
GL3(Fp)
P2(Fp) (ω̃c ⊗Θ(ω̃

(a+1)+p(b−1)
2 ))

F (b− 1, c, a− p+ 2),

F (a, c, b− p+ 1)
βγβ

Ind
GL3(Fp)
P2(Fp) (ω̃a ⊗Θ(ω̃

(b+1)+p(c−1)
2 ))

F (c+ p− 2, a, b+ 1),

F (b+ p− 1, a, c)
γαγ

(
ωa ⊕ Ind

GQp
GQ

p2
ωb+pc2

)
⊗ ω

Θ(ω̃a+pb+p2c
3 )

F (a− 1, b, c+ 1),

F (c+ p− 1, b, a− p+ 1)
αβα

Θ(ω̃
(c−1)+pb+p2(a+1)
3 )

F (b− 1, c, a− p+ 2),

F (a, c, b− p+ 1)
βγβ

Ind
GL3(Fp)
B(Fp)

(
ωa ⊗ ωb−1 ⊗ ωc+1

) F (c+ p− 1, a, b),

F (b+ p− 2, a, c+ 1)
γαγ

(
Ind

GQp
GQ

p3
ωa+pb+p2c

3

)
⊗ ω

Ind
GL3(Fp)
P2(Fp)

(
ωa ⊗Θ(ω̃b+pc2 )

) F (a− 1, b, c+ 1),

F (c+ p− 1, b, a− p+ 1)
αβα

Ind
GL3(Fp)
P2(Fp)

(
ωc+1 ⊗Θ(ω̃

(a−1)+pb
2 )

) F (c+ p− 1, a− 1, b+ 1),

F (b+ p− 1, a− 1, c+ 1)
γαγ

Ind
GL3(Fp)
P2(Fp)

(
ωb+1 ⊗Θ(ω̃

(c−1)+pa
2 )

) F (b, c, a− p+ 1),

F (a− 1, c, b− p+ 2)
βγβ
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(
ωb ⊕ Ind

GQp
GQ

p2
ωa+pc

2

)
⊗ ω

Ind
GL3(Fp)
B(Fp)

(
ωa ⊗ ωb ⊗ ωc

) F (a− 1, b, c+ 1),

F (c+ p− 1, b, a− p+ 1)
αβα

Θ
(
ω̃
c+p(b+1)+p2(a−1)
3

) F (c+ p− 1, a− 1, b+ 1),

F (b+ p− 1, a− 1, c+ 1)
γαγ

Θ
(
ω̃
a+p(b−1)+p2(c+1)
3

) F (b− 1, c+ 1, a− p+ 1),

F (a− 1, c+ 1, b− p+ 1)
βγβ
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Table 9. Serre weights for semisimple ρ

ρ Wobv(ρ) W ?(ρ) \Wobv(ρ)

(
ωa ⊕ ωb ⊕ ωc

)
⊗ ω

F (a− 1, b, c+ 1),

F (b− 1, c, a− p+ 2),

F (c+ p− 2, a, b+ 1),

F (a− 1, c, b− p+ 2),

F (b+ p− 2, a, c+ 1),

F (c+ p− 2, b, a− p+ 2)

F (c+ p− 1, b, a− p+ 1),

F (b+ p− 1, a, c),

F (a, c, b− p+ 1)

(
ωa ⊕ Ind

GQp
GQ

p2
ωb+pc2

)
⊗ ω

F (a− 1, b, c+ 1),

F (b− 1, c, a− p+ 2),

F (c+ p− 1, a, b),

F (a− 1, c+ 1, b− p+ 1),

F (c+ p− 1, b− 1, a− p+ 2),

F (b+ p− 1, a, c)

F (c+ p− 1, b, a− p+ 1),

F (a, c, b− p+ 1),

F (b+ p− 2, a, c+ 1)

(
Ind

GQp
GQ

p3
ωa+pb+p2c

3

)
⊗ ω

F (a− 1, b, c+ 1),

F (c+ p− 1, a− 1, b+ 1),

F (b, c, a− p+ 1),

F (a− 1, c+ 1, b− p+ 1),

F (c+ p− 1, b+ 1, a− p),
F (b+ p− 1, a, c)

F (c+ p− 1, b, a− p+ 1),

F (b+ p− 1, a− 1, c+ 1),

F (a− 1, c, b− p+ 2)

(
ωb ⊕ Ind

GQp
GQ

p2
ωa+pc

2

)
⊗ ω

F (a− 1, b, c+ 1),

F (b− 1, c+ 1, a− p+ 1),

F (c+ p− 1, a− 1, b+ 1),

F (a− 1, c, b− p+ 2),

F (c+ p, b, a− p),
F (b+ p− 2, a, c+ 1)

F (c+ p− 1, b, a− p+ 1),

F (b+ p− 1, a− 1, c+ 1),

F (a− 1, c+ 1, b− p+ 1)

The triple (a, b, c) ∈ Z3 verifies 1 < a−b, b−c < p−2 and a−c < p−2. The

table is deduced from [Her09], Lemma 7.6 and Proposition 6.28; alternatively

the obvious weights can be deduced from [BLGG], Lemma 5.1.2.
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