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SERRE WEIGHTS FOR THREE-DIMENSIONAL ORDINARY GALOIS

REPRESENTATIONS

STEFANO MORRA AND CHOL PARK

Abstract. Let F/Q be a CM field where p splits completely and let r : Gal(Q/F ) →
GL3(Fp) be a Galois representation whose restriction to Gal(Qp/Fw) is ordinary and

strongly generic for all places w above p. In this paper we specify the set of Serre weights
in which r can be modular. To this aim, we develop a technique in integral p-adic Hodge

theory to describe extensions of rank-one Breuil modules.
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1. Introduction

Generalizations of the weight part in Serre’s modularity conjecture ([Ser87]) have received
considerable attention in recent years. Since the seminal work of Buzzard, Diamond, and
Jarvis [BDJ10], substantial progress has been made and we now have a detailed description
of such phenomena both for groups in higher semisimple rank ([Her09], [EGH13], [BLGG],
[GG12]) or defined over extensions of Q ([Gee11], [GK], [GLS14], see also [GLS]).

In order to examine the situation in more detail, let us consider a CM field F/Q, F+

being its maximal totally real subfield and we let r : GF
def
= Gal(Q/F ) → GLn(Fp) be a

continuous Galois representation. Assume that r is modular : in our context, this means
that there exists a totally definite unitary group G defined over F+ such that the system
of Hecke eigenvalues αr obtained from the semisimple conjugacy classes associated to the
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2 STEFANO MORRA AND CHOL PARK

Frobenius elements (on the unramified locus of r) appears in the 0-th cohomology of the
space of mod-p algebraic automorphic forms of some tame level:

SG
(
Kp,Fp

) def
=
{
f : G(F+)\G(A∞F+)/Kp → Fp | f is locally constant

}
for some compact open level Kp ≤ G(A∞,pF+ ) away from p.

Most of the efforts in the ongoing research are focused on the set Wmod(r) of weights in

which such r is modular, i.e., provided that G admits an integral model G over OF+,p
def
=

OF+ ⊗Z Zp, the set Wmod(r) of the irreducible smooth representations V of G(OF+,p) such
that

HomG(OF+,p)

(
V, SG

(
Kp,Fp

)
[kerαr]

)
6= 0.

In particular, the weight part in Serre’s conjectures gives a first description of the smooth
G(F+

p )-representation SG
(
Kp,Fp

)
[kerαr], an object whose nature is extremely badly un-

derstood and, according to the p-adic Langlands conjectures, shall depend only on {r|GFw }w|p.
Assume that p splits completely in F and that G(OFw) ∼= GLn(OFw) for all w|p. When

n > 2, important insight towards the weight part in Serre’s conjectures appears in [ADP02]
and [Her09]. In particular, when the local parameters r|GFw are all tame, Herzig provides a

set of weights W ?(r), depending only on {r|GFw }w|p, for which r is modular, and which is ob-
tained from level zero automorphic types naturally associated to the local datum {r|GFw }w|p.
Progress towards [Her09], Conjecture 6.9 has recently been made when r|GFw is semisimple,
cf. [EGH13], [BLGG] (see also [GG12]).

When r|GFw is not semisimple, much less is known. In [Gee11], Gee suggests a set
of modular weights for r, without requiring r|GFw to be tame but avoiding any reference

to automorphic types, the set W ?(r) being now described by means of crystalline lifts of
r|GFw . Evidence towards Gee’s approach has first appeared in [GG12], where the authors
prove that the weights defined by a non-vanishing condition on the ordinary part of the
Hecke eigenspace SG(Kp,Fp)[kerαr] are described by ordinary crystalline lifts of r|GFw .

The aim of this paper is to obtain evidence towards Serre-type conjectures for ordinary
Galois representations in semisimple rank 2, developing the techniques introduced in [HM]
where the maximally non-split case is considered. The submodule structure of r|GFw (for
w|p) plays now a crucial role (as in [BH]) and we define, for all possible configurations of
the submodule structure in r|GFw , a set of weights W ?(r) in which r shall be modular. We

remark that the setW ?(r) is compatible with Herzig and Gee’s conjectures ([Her09], [Gee11])
and with Gee-Geraghty’s results on ordinary modularity -i.e. the ordinary weights appearing
in W ?(r) coincide with the set of ordinary weights determined by Gee and Geraghty in
[GG12].

The main result of this paper is the following:

Theorem 1.1. Let r : GF → GL3(Fp) be a modular Galois representation. We assume
that p splits completely in F and that for all places w|p the Galois representation r|GFw is
ordinary, strongly generic (cf. Definition 4.1), and of Loewy length less than 3.

Then one has

Wmod(r) ⊆W ?(r).

The case that r|GFw is maximally non-split (i.e., the Loewy length of r|GFw is 3) is treated
in [HM].

Theorem 1.1 is a weight elimination result and is performed by integral p-adic Hodge
theory and classical local/global compatibility. It relies on a crucial ingredient in integral
p-adic Hodge theory, namely a splitting lemma (Lemma 3.2) which lets us determine the
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vanishing of a class [c] ∈ H1(GQp , ω
n) (ω denoting the mod p-cyclotomic character) by the

only information coming from filtration on a Breuil module with descent dataM such that
[Tst(M)] = [c].

We remark that Theorem 1.1 is consistent with the results of D. Le on the moduli space
of Fontaine-Laffaille modules [Le]. In forthcoming work, we are planning to generalize the
previous result to arbitrary dimension and obtain partial results on the modularity of weights
in W ?(r).

The upper bound on the modular weights for r in Theorem 1.1 is expected to be the best
possible result one can obtain via the classical weight elimination techniques. Understanding
which weights in W ?(ρ) are actually modular for r is on the other hand a very delicate
problem. Following [BLGG] (building on the forthcoming [EGHS]), one can define a subset
of obvious weights W ?,obv(ρ) by considering ordinary crystalline lifts of ρ. One always has
W ?,obv(ρ) ⊆W ?(ρ) and by combining Theorem 1.1 and [BLGG] Theorem 4.1.9, one obtains
the following result:

Theorem 1.2. Let F be an imaginary CM field with maximal totally real subfield F+

and suppose that F/F+ is unramified at all finite places, and that p splits completely in
F . Suppose that r : GF → GL3(F) is an irreducible representation with split ramification.
Assume that there is a RACSDC automorphic representation Π of GL3(AF ) of weight

µ ∈ (Z3
+)

Hom(F,C)
0 and level prime to p such that

◦ r ' rp,i(Π);
◦ For each place w|p of F , rp,i(Π)|GFw is potentially diagonalizable;
◦ r(GF (ζp)) is adequate.

Assume further that for all places w|p the Galois representation r|GFw are ordinary, strongly
generic, and of Loewy length less than 3.

Then one has

W ?,obv(r) ⊆Wmod(r).

The paper is organized as follows. In the remainder of the introduction we fix the notation
that will be used throughout the paper. In Section 2, we quickly review integral p-adic Hodge
theory, such as strongly divisible modules, Breuil-Kisin modules, Fontaine-Laffaille modules,
and so on. In Section 3, we establish the necessary results from p-adic Hodge theory; for
instance, we give enough conditions (Lemma 3.2) to determine if a rank-two Breuil module
is split, which is the key lemma to perform the weight elimination. In Section 4, we eliminate
the Galois types of rank-three Breuil modules that correspond to the local representations
we impose, by the results we developed in Section 3. In Section 5, we first review the
definitions of modular representations and modular weights, and then state and prove the
main results, Theorems 5.9 and 5.10.

Notation. Let Q be an algebraic closure of Q. All number field F/Q will be considered as

subfield in Q and we will write GF
def
= Gal(Q/F ) to denote the absolute Galois group of F .

For any rational prime ` ∈ Q, we fix algebraic closures Q` of Q` and embeddings Q ↪→ Q`

which are compatible with the inclusions GQ`
↪→ GQ. In a similar fashion, we fix algebraic

closures F` for the residue field F` of Q`, compatibly with the natural morphisms at the
level of the Galois groups. As above, all extensions of Q`, F` will be considered as subfields
in the fixed algebraic closure Q`, F`.

Let f ≥ 1. We let K0
def
= Qpf be the unramified extension of Qp of degree f , and write

K/K0 for the tamely totally ramified extension of K0 of degree e
def
= pf −1. We consider the
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Eisenstein polynomial E(u)
def
= ue + p, and fix a root πK = e

√
−p, which will be our choice

for an uniformizer for K/Qp. If no confusion is possible, we will simply write π instead of
πK . We finally let k = Fpf be the residue field of K.

Let E be a finite extension of Qp. We write OE for its ring of integers, F for its residue
field and $ ∈ OE to denote an uniformizer. All the representations considered in this paper
will be realized on vector spaces over E or F, which will be the fields of coefficients. We
always assume that E is large enough, i.e. that the Galois closure of K over Qp is contained

in E so that Hom(K,Qp) = Hom(K,E) and so Hom(Fpf ,Fp) = Hom(Fpf ,F).
Let σ ∈ Gal(Fpf /Fp) be the absolute Frobenius on Fpf . We have an isomorphism

ι : Fpf ⊗Fp F
∼→ ⊕σjF(1)

a⊗ b 7→ (σj(a)b)j

and, for i ∈ {0, . . . , f − 1}, we write ei ∈ Fpf ⊗Fp F to denote the standard idempotent
element defined by ι(ei) = (δi,j)j (δi,j being the Kronecker delta function).

The Breuil ring S is defined as the p-adic completion of divided power envelope, with
respect to the ideal generated by E(u), of the polynomial algebra W (Fpf )[u], W (Fpf )
being the ring of Witt vectors associated to Fpf (and identified with the ring of integers

of K0). We write SOE
def
= S ⊗Zp OE and SF

def
= SOE/ (1⊗$,E(u)p ⊗ 1). Concretely,

SF
∼= (Fpf ⊗Fp F)[u]/uep.
Recall that the ring SOE is endowed with a residual action of Gal(K/Qp). Concretely,

the choice of the uniformizer π ∈ K provides us with a map

ωπ : Gal(K/Qp) −→ W (Fpf )

g 7−→ g(π)

π

and the residual action on the Breuil ring SOE is uniquely defined (by semilinearity and

continuity) via the condition ĝ(u)
def
= (ωπ(g) ⊗ 1)u for any g ∈ Gal(K/Qp). This induces

an action on SF by base change in the natural way. For notational convenience, we write

S0
def
=
(
SF

)Gal(K/K0)=id
, which is naturally identified with S0

def
= (Fpf ⊗Fp F)[ue]/uep.

We write εp for the p-adic cyclotomic character and ω for its mod p reduction. We
convene that εp has a Hodge–Tate weight −1. The choice of an embedding Fpf ↪→ F
provides us with a Serre’s fundamental character of niveau f , ωf : Gal(K/K0) → F. Note
that ωf ≡ ωπ|Gal(K/K0) modulo p.

For a place w|p in F we normalize the local reciprocity map F×w → GabFw in such a way
that the inverse of uniformizers are sent to arithmetic Frobenius elements Frobw ∈ GFw .

Similarly, we fix an isomorphism ı : Qp
∼→ C and define the local Langlands correspondence

recFw over Qp by normalizing the classical local correspondence recFw,C over C ([HT01],
[Hen00]) via ı ◦ recFw = recFw,C ◦ ı.

Given a potentially semistable p-adic representation ρ : GQp → GLn(E), we write WD(ρ)
to denote the associated Weil-Deligne representation (cf. [Fon94] and [CDT99], Appendix
A) and we refer to WD(ρ)|IQp as to the Galois type associated to ρ.

We have a contravariant functor Tst : F-BrModrdd → RepF(GQp
), which is exact and

faithful. We write T∗st for the functor T∗,rst defined as in [EGH13], Definition 3.2.8. In

particular, from Section 4, T∗st always means T∗,2st .
We write ``(ρ) for the Loewy length of ρ : GQp → GLn(F), i.e., the length of socle

filtration of ρ. We use this notion to measure how far ρ is from being semi-simple. We
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say that an ordinary representation ρ is maximally non-split if ``(ρ) = n, and is minimally
non-split if ``(ρ) = 2. Note that ρ is semi-simple if and only if ``(ρ) = 1.

2. Integral p-adic Hodge theory, I: Preliminaries

The aim of this section is to recall certain categories of semilinear algebraic objects
(strongly divisible modules, Breuil-Kisin modules, Fontaine-Laffaille modules) and their
relations with Galois representations. None of the results in this section is new and we refer
the reader to [HM], Section 2 and [EGH13], Section 3 for more details.

We keep the notations and conventions of Section 1. In particular, we have e = pf − 1
and K/K0 is totally and tamely ramified of degree e, the residue field being k = Fpf .

Recall that a filtered (ϕ,N,K/Qp, E)-module of rank n is the datum of a free K0⊗Qp
E-

module D of rank n endowed with

◦ a semilinear automorphism ϕ (semilinear with respect to the absolute Frobenius
on K0);

◦ a nilpotent, K0 ⊗Qp E-linear endomorphism N such that Nϕ = pϕN ;

◦ a decreasing, exhaustive and separated filtration (FiliDK)i∈Z on DK
def
= K ⊗K0

D
by K ⊗Qp

E-submodules;
◦ a Gal(K/Qp) action by E-linear and K0-semilinear automorphisms which are com-

patible with the additional structures on D, DK (i.e. Frobenius, monodromy and
filtration).

We write ModE(ϕ,N,K/Qp) to denote the category of filtered (ϕ,N,K/Qp, E)-modules of
finite rank and by Modw.a.

E (ϕ,N,K/Qp) the full sub-category of weakly admissible filtered
(ϕ,N,K/Qp, E).

We recall (cf. [EGH13], Definition 3.1.1) that we have the contravariant functors V
Qp

st :

Modw.a.
E (ϕ,N,K/Qp) → RepK-st

E (GQp
) and D

Qp

st : RepK-st
E (GQp

) → Modw.a.
E (ϕ,N,K/Qp),

establishing an equivalence of categories. (These functors depend on the choice of uniformiz-
ers and we choose p as in [EGH13].)

Fix a positive integer r < p−1. The category OE-Modrdd of strongly divisible OE-modules
with descent data is defined to be the category of finitely generated free SOE -modules

M̂ with a sub SOE -module FilrM̂, additive maps ϕ,N : M̂ → M̂, and SOE -semilinear

bijections ĝ : M̂ → M̂ for each g ∈ Gal(K/Qp) such that the following conditions hold:

◦ FilrM̂ contains (FilrSOE )M̂;

◦ FilrM̂ ∩ IM̂ = IFilrM̂ for all ideals I of OE ;

◦ ϕ(sx) = ϕ(s)ϕ(x) for all s ∈ SOE and x ∈ M̂;

◦ ϕ(FilrM̂) is contained in prM̂ and generates it over SOE ;

◦ N(sx) = N(s)x+ sN(x) for all s ∈ SOE and x ∈ M̂;
◦ Nϕ = pϕN ;

◦ E(u)N(FilrM̂) ⊂ FilrM̂;

◦ for all g ∈ Gal(K/Qp), ĝ commutes with ϕ and N , and preserves FilrM̂;
◦ ĝ1 ◦ g2 = ĝ1 ◦ ĝ2 for all g1, g2 ∈ Gal(K/Qp).

The morphisms are SOE -module homomorphisms that preserve FilrM̂ and commute with
ϕr, N , and the descent data action.

We have a functor T
Qp

st : OE-Modrdd → Rep
K-st,[−r,0]
OE (GQp

) where Rep
K-st,[−r,0]
OE (GQp

)
is the category of GQp

-stable OE-lattices inside E-valued, finite dimensional p-adic Galois
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representation of GQp becoming semi-stable over K and with Hodge–Tate weights in [−r, 0]
(cf. [EGH13], Section 3.1).

The following deep theorem provides the link between lattices in potentially semi-stable
Galois representations and strongly divisible modules:

Theorem 2.1 ([Liu08], [EGH13]). The functor

T
Qp

st : OE-Modrdd → Rep
K-st,[−r,0]
OE (GQp)

establishes an equivalence of categories if r < p− 1.

Moreover, by letting ρ
def
= T

Qp

st (M̂)⊗OE E, we have an isomorphism

(2) M̂ ⊗SOE E
∼= D

Qp

st (ρ)

via the base change SOE → E defined by u 7→ 0.

Note that (2) provides the relation between the descent data on M̂ and the Galois type
on ρ.

Recall that the category F-BrModrdd of Breuil modules of weight r with descent data from
K to Qp and coefficients in F consists of quintuples (M,FilrM, ϕr, ĝ, N) where:

◦ M is a finitely generated (k⊗FpF)[u]/uep-module, free over k[u]/uep, (which implies
that M is in fact a free (k ⊗Fp F)[u]/uep-module of finite rank);
◦ FilrM is a (k ⊗Fp F)[u]/uep-submodule of M containing uerM;
◦ ϕr : FilrM → M is F-linear and ϕ-semilinear (where ϕ : k[u]/uep → k[u]/uep is

the p-th power map) with image generating M as (k ⊗Fp F)[u]/uep-module;
◦ N :M→M is k ⊗Fp F-linear and satisfies

– N(ux) = uN(x)− ux for all x ∈M,
– ueN(FilrM) ⊂ FilrM, and
– ϕr(u

eN(x)) = cN(ϕr(x)) for all x ∈ FilrM, where c ∈ (k[u]/uep)× is the
image of 1

pϕ(E(u)) under the natural map S → k[u]/uep. (Note that c = 1 in

our case, since we choose E(u) = ue + p.)
◦ ĝ : M → M is an additive bijection for each g ∈ Gal(K/Qp), preserving FilrM,

commuting with ϕr- and N -actions, and satisfying ĝ1 ◦ g2 = ĝ1 ◦ ĝ2 for g1, g2 ∈
Gal(K/Qp). Furthermore, ĝ(auim) = g(a)((g(π)π)i ⊗ 1)uiĝ(m) for a ∈ k ⊗Fp F
and m ∈M.

The morphisms are (k ⊗Fp F)[u]/uep-module homomorphisms that preserve Filr and com-
mute with ϕr, N , and the descent data action.

As for strongly divisible modules, we have a contravariant functor Tst : F-BrModrdd →
RepF(GQp), which is exact and faithful. We write T∗st for the functor T∗,rst defined as in

[EGH13], Definition 3.2.8. Recall that we have a base change morphism SOE � SF; the

compatibility between the functors T
Qp

st and Tst is described by the following

Proposition 2.2. Let M̂ be an object in OE-Modrdd. Then M̂ ⊗SOE SF is naturally an

object in F-BrModrdd.
Moreover the following compatibility is satisfied:

T
Qp

st (M̂)⊗OE F ∼= Tst(M̂ ⊗SOE SF).

Proof. This is well known. See for instance [HM], Proposition 2.2.14. �

The category F-FL of Fontaine-Laffaille modules consists of triple (M,Fil•M,ϕ•), where
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◦ M is a free k ⊗Fp F-module of finite rank;

◦ {FiljM}j∈Z is a separated, exhaustive and decreasing filtration on M by k⊗Fp F-
submodules;

◦ for each j ∈ Z, ϕj : FiljM → M is a ϕ-semilinear Frobenius morphism such that

Filj+1M ⊂ Ker(ϕj). Moreover, ⊕
i∈Z

ϕj : ⊕
j∈Z

FiljM �M is surjective.

The morphisms are defined in the obvious way.
As for the case of Breuil modules, we have a contravariant functor Tcris : F-FL →

RepF(GQp
), which is exact and fully faithful (cf. [FL82], Section 6.1). We say a represen-

tation ρ : GQp
→ GLn(F) is Fontaine-Laffaille if it arises from a Fontaine-Laffaille module

under the functor Tcris.

Before stating the main comparison theorem, we still need to recall the following cate-
gories of étale ϕ-modules, first introduced by Fontaine ([Fon90]).

Let k((p)) be the field of norms associated to (K0, p). In particular, p is identified

with a sequence (pn)n ∈
(
Qp

)N
verifying ppn = pn−1 for all n. We define the category(

ϕ,F⊗Fp k((p))
)

-Mod of étale (ϕ,F ⊗Fp k((p)))-modules as the category of free F ⊗Fp

k((p))-modules of finite rank D endowed with a semilinear map ϕ : D→ D (semilinear with
respect to the Frobenius on k((p))) and inducing an isomorphism ϕ∗D→ D (with obvious
morphisms between objects).

By work of Fontaine [Fon90], we have an anti-equivalence(
ϕ,F⊗Fp k((p))

)
-Mod

∼−→ RepF(G(K0)∞)

D 7−→ Hom
(
D, k((p))sep

)
.

Let us consider π
def
= e
√
−p ∈ K. We can fix a sequence (πn)n ∈

(
Qp

)N
such that πen = pn

for all n ∈ N and which is compatible with the norm maps K(πn+1) → K(πn) (cf. [Bre],
Appendix A).

By letting K∞
def
= ∪n∈NKn (where we let Kn

def
= K(πn)) and (K0)∞

def
= ∪n∈NK0(pn), we

have a canonical isomorphism Gal(K∞/(K0)∞)→ Gal(K/K0) and we will identify ωπ as a
character on Gal(K∞/(K0)∞).

The field of norms k((π)) associated to (K,π) is then endowed with a residual action of
Gal(K∞/(K0)∞), which is completely determined by ĝ(π) = ωπ(g)π.

We can therefore define the category (ϕ,F⊗Fp k((π)))-Moddd of étale (ϕ,F⊗Fp k((π)))-
modules with descent data: an object D is defined in the analogous, evident way as for
the category (ϕ,F ⊗Fp k((p)))-Mod, but we moreover require that D is endowed with a
semilinear action of Gal(K∞/(K0)∞) (semilinear with respect to the residual action on
F⊗Fp k((π)), where F is endowed with the trivial Gal(K∞/(K0)∞)-action) and the Frobe-
nius ϕ is Gal(K∞/(K0)∞)-equivariant.

From [HM], Appendix 5.2 (which builds on the classical result of Fontaine) we have an
anti-equivalence (

ϕ,F⊗Fp k((π))
)

-Moddd
∼−→ RepF(G(K0)∞)

D 7→ Hom (D, k((π))sep) .

The main result concerning the relations between the various categories and functors
introduced so far is summarized by the following proposition ([HM], Proposition 2.3.1)
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Proposition 2.3. There exist faithful functors

Mk((π)) : F-BrModrdd →
(
ϕ,F⊗Fp k((π))

)
-Moddd

and
F : F-FL[0,p−2] →

(
ϕ,F⊗Fp k((p))

)
-Mod

fitting in the following commutative diagram:

(3) F-BrModrdd

Tst

��

Mk((π)) //
(
ϕ,F⊗Fp k((π))

)
-Moddd

Hom(−,k((π))sep)

yy
RepF(GK0

)
Res // RepF(G(K0)∞)

F-FL[0,p−2]

Tcris

OO

F
//
(
ϕ,F⊗Fp k((p))

)
-Mod

−⊗k((p))k((π))

OO

Hom(−,k((p))sep)

ee

where the descent data is relative to K0 and the functor Res ◦ Tcris is fully faithful.

The functors Mk((π)), F are defined in [HM], Appendix A, building on the classical work
of Breuil [Bre99] and Caruso-Liu [CL09]. In certain cases, the description of the functor
Mk((π)) is particularly concrete.

Assume that the Breuil module M has rank n, with descent data associated to a Galois
type τ : IQp

→ GLn(OE). By writing τ = [ωf ]a1⊕· · ·⊕[ωf ]an we can find a basis (e1, . . . , en)
for M and a system of generators (f1, . . . , fn) for FilrM which are compatible with τ :

ĝ · ei = (ωf
ai(g)⊗ 1)ei, ĝ · fi = (ωaif (g)⊗ 1)fi

for all i = 1, . . . , n and all g ∈ Gal(K/K0) (cf. [HM], Section 2.3.2).
In this case we say that the basis e and the system of generators f are compatible with

the Galois type τ .

Lemma 2.4. Let M be a Breuil module of rank n, with descent data associated to a Galois
type τ : IQp → GLn(OE) and let e, f be a basis for M and a system of generators for
FilrM respectively, which are moreover compatible with τ .

Write V = Ve,f ∈ Mn(SF) for the matrix giving the coordinates of f in the basis e and

A
def
= Mate,f (ϕr) ∈ GLn(SF) for the matrix describing the Frobenius action on M with

respect to e, f .
Then there exists a basis e for Mk((π))(M∗), compatible with the descent data, such that

the Frobenius action is described by

Mate(φ) = V̂ t
(
Â−1

)t ∈Mn(F⊗Fp k((π)))

where V̂ , Â are lifts of V, A in Mn(F⊗Fp k((π))) via the reduction morphism F⊗Fp k((π)) �
SF.

Proof. This is [HM], Lemma 2.3.5. We just recall that M∗ denotes the dual Breuil module
as defined in [EGH13], Definition 3.2.8. �
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3. Integral p-adic Hodge theory, II: Complements

This section is the technical heart of the paper. We describe rank one Breuil modules
with tame descent data, and the extensions between them. The main result is Lemma 3.2,
often referred as the splitting lemma.

We keep the notations as in the previous sections. In particular, we fix integers f ≥ 1,

0 ≤ r < p − 1, letting K0
def
= Qpf be the unramified extension of Qp of degree f and

K
def
= K0( e

√
−p) with e = pf − 1.

Lemma 3.1. LetM be a rank-one object in F-BrModrdd with niveau f descent data relative
to Qp. Then there exists a generator m ∈M such that:

(i) M = SF ·m;
(ii) FilrM = us(p−1)M where 0 ≤ s ≤ re

p−1 ;

(iii) ϕr(u
s(p−1)) = λm for some λ ∈ (Fpf ⊗Fp F)×;

(iv) ĝ(m) = (ωf (g)k ⊗ 1)m for all g ∈ Gal(K/K0) where k is an integer such that
k + ps ≡ 0 mod e

p−1 ;

(v) N(m) = 0.

Moreover, one has

T∗st(M)|IQp = ωk+ps
f .

We denote the Breuil modules in the preceding lemma by M(k, s, λ).

Proof. Recall from § 1 the idempotent elements ei ∈ Fpf ⊗Fp F. From the Lemma 3.3.2 in
[EGH13], it is known that every rank-one Breuil moduleM with tame descent data from K

to K0 has a generator m such thatM = SF ·m, eiFilrM = urieiM, ϕr(
∑f−1
i=0 u

rieim) = λm

for some λ ∈ (Fpf ⊗Fp F)×, ĝ(m) =
∑f−1
i=0 (ωkif (g) ⊗ 1)eim for all g ∈ Gal(K/K0), and

N(m) = 0, where 0 ≤ ri ≤ re and ki ≡ p(ki−1 + ri−1) mod e for all i.
We let ϕ ∈ Gal(K/Qp) be the unique lift of the absolute Frobenius σ ∈ Gal(K0/Qp)

verifying ϕ(πK) = πK (as in the notations of § 1). Since ϕgϕ−1 = gp for all g ∈ Gal(K/K0),
we have

f−1∑
i=0

(ωpkif (g)⊗ 1)ei−1ϕ(m) = ϕ̂ ◦ ĝ(m) = ĝp ◦ ϕ̂(m) =

f−1∑
i=0

(ωpkif (g)⊗ 1)eiϕ(m)

and so k0 ≡ k1 ≡ ... ≡ kf−1 mod e. Similarly,

ϕ(eiFilrM) = uriei−1M∈ ei−1FilrM

and so ri ≥ ri−1 for all i. Hence, we conclude that r0 = r1 = ... = rf−1. It is now immediate
from ki ≡ p(ki−1 + ri−1) mod e that r0 = (p− 1)s for some integer s and k0 + ps ≡ 0 mod
e
p−1 . Finally, T∗st(M)|IQp = ωk0+ps

f by the Lemma 3.3.2 in [EGH13] again. �

We are now able to prove the main result of this section, the splitting lemma. In what
follows, for an element m ∈ Z we define [m]f ∈ {0, . . . , e− 1} via [m]f ≡ m mod e.

Lemma 3.2. Let Mx,My be rank-one objects in F-BrModrdd with tame descent data from

K to Qp. Assume that the Galois types onMx and onMy are ωkxf and ω
ky
f respectively and

that FilrMx = usx(p−1)Mx and FilrMy = usy(p−1)My where the integers kx, ky, sx, sy ∈ Z
satisfy

p(sy − sx) + [ky − kx]f > 0.



10 STEFANO MORRA AND CHOL PARK

Assume further that f < p and let

0→Mx →M→My → 0

be an extension in F-BrModrdd, with T∗st(M) being Fontaine-Laffaille.
If the exact sequence of SF-modules

(4) 0→ FilrMx → FilrM→ FilrMy → 0

splits, then the GQp
-representation T∗st(M) splits as a direct sum of two characters.

In particular, provided that pky 6≡ kx modulo e and that sy(p − 1) < re if f > 1,
the representation T∗st(M) splits as a direct sum of two characters if the element j0 ∈ Z
uniquely defined by

j0e+ [p−1ky − kx]f < sx(p− 1) ≤ (j0 + 1)e+ [p−1ky − kx]f

satisfies

(5) (r + j0)e+ [p−1ky − kx]f < (sx + sy)(p− 1).

Proof. Let us fix a basis e
def
= (ex, ey) onM which is compatible with the submodule structure

on M and with the inertial descent data. In other words, ex is a basis for Mx, ey maps to

a basis for My, and ex and ey are eigenvectors for the inertial descent data with ωkxf and

ω
ky
f as associated eigencharacters.

Assume that the exact sequence (4) splits. With respect to the basis e, the filtration and
the Frobenius map are then described as follows:

V0
def
= Mate(FilrM) =

[
usx(p−1) 0

0 usy(p−1)

]
and

A0
def
= Mate,f (ϕr) =

[
α0 u[ky−kx]f γ0

0 β0

]
where α0, β0 ∈ S

×
0 and γ0 ∈ S0 and where f

def
= (fx, fy) = (usx(p−1)ex, u

sy(p−1)ey).

Set e′
def
= e · A0. It is a basis for M, formed by eigenvectors for the inertial descent data

and compatible with the submodule structure on M. We let

V1 =

[
usx(p−1) 0

0 usy(p−1)

]
and B1 =

[
α0 u[p−1(ky−kx)]f η1
0 β0

]
where u[p−1(ky−kx)]f η1 ∈ SF. Then

(6) A0V1 = V0B1.

if and only if the condition

(7) γ0u
sy(p−1)+[ky−kx]f = η1u

sx(p−1)+[p−1(ky−kx)]f

holds. Since (sy− sx)(p−1) + [ky−kx]f > 0 (which is immediately deduced by p(sy− sx) +
[ky − kx]f > 0), the equation (6) makes sense and one easily sees that e′V1 forms a system

of SF-generators for FilrM. Hence, we have

Mate′(FilrM) = V1.

Let f ′
def
= (f ′x, f

′
y) = V1. Then

Mate′,f ′(ϕr) = ϕ(B1),
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by equation (6). By equation (7) and noticing that γ1 ∈ S0 we see that the off diagonal
entry of ϕ(B1) has the form u[ky−kx]f γ1 where

γ1
def
= u(p−1)[p(sy−sx)+[ky−kx]f ]ϕ(γ0).

As p(sy − sx) + [ky − kx]f > 0, we can iterate the previous procedure to end up with a basis
e′′ for M (formed by eigenvectors for the residual inertial action and compatible with the
submodule structure on M) such that

Mate′′(FilrM) =

[
usx(p−1) 0

0 usy(p−1)

]
and Mate′′,f ′′(ϕr) =

[
λ 0
0 µ

]
where λ, µ ∈ (Fpf ⊗Fp F)× and f ′′ is determined by the column vectors of Mate′′(FilrM).

It is now easy to verify that the φ-module (over Fpf ⊗Fp F((π))) defined by M
def
=

MF
pf

((π))(M∗) (cf. Propostion 2.3 and Lemma 2.4) is described by

Mat(φ) =

[
πsx(p−1)λ−1 0

0 πsy(p−1)µ−1

]
in an appropriate basis e = (ex, ey) formed by (ω−p

−1kx
f , ω

−p−1ky
f )-eigenvectors for the de-

scent data. By considering the change of basis e′ = (πp
f−1kxex, π

pf−1kyey) we have:

Mat(φ) =

[
π−p

f−1kx 0

0 π−p
f−1ky

] [
πsx(p−1)λ−1 0

0 πsy(p−1)µ−1

][
πp

fkx 0

0 πp
fky

]

=

[
π(p−1)(sx+pf−1kx)λ−1 0

0 π(p−1)(sy+pf−1ky)µ−1

]
.

As sx + pf−1kx = jx
e
p−1 and sy + pf−1ky = jy

e
p−1 for some jx, jy ∈ Z, we see that the

φ-module M is the base change via Fpf ⊗Fp F((p))→ Fpf ⊗Fp F((π)) of the φ-module M0

(over Fpf ⊗Fp F((p))) described by

Mat(φ) =

[
pjxλ−1 0

0 pjyµ−1

]
.

In particular, the representation Hom(M0,F((p))sep) splits as a direct sum of two charac-
ters. As T∗st(M) is Fontaine-Laffaille, we deduce T∗st(M)|G(K0)∞

∼= Hom(M0,F((p))sep),

hence T∗st(M)|GK0
splits as a direct sum of two characters via Proposition 2.3. As p > f

this implies that T∗st(M) splits, as required.

Assume now that sx, sy, kx, ky satisfy the condition in the final statement of the lemma.
In terms of coordinates associated to the basis (ex, ey) we have

FilrM =

〈[
usx(p−1)

0

]
︸ ︷︷ ︸

def
= fx

,

[
u[p−1ky−kx]f v0

usy(p−1)

]
︸ ︷︷ ︸

def
= fy

〉
+ ureM

where v0 ∈ S0. We let j
def
= ord(v0)

e .

If j > j0 then there exists P (u) ∈ SF such that fy − P (u)fx =

[
0

usy(p−1)

]
. Therefore,

the sequence (4) splits and we are in the previous case.
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Assume now that j ≤ j0 and let us write v0 = ηuje + v′0 where η ∈ (Fpf ⊗Fp F) \ {0}
and v′0 ∈ u(j+1)e S0. We claim that η ∈ (Fpf ⊗Fp F)×. Indeed, for any g ∈ Gal(K/Qp)

we have ĝ(fy) = a · g(η) · u[p−1ky−kx]f+jeex + b · usy(p−1)ey + c · ex where a, b ∈ S
×
F and

c ∈ u[p−1ky−kx]f+(j+1)e SF (a, b, c depending on g). On the other hand, since fx and fy
generate FilrM modulo ureM, we have ĝ(fy) = α · fx + β · fy + γ · ureey (again, α, β, γ
depending on g). By looking at the ey-component in α · fx + β · fy + γ · ureey and since
sy(p − 1) < re we easily see that β0 = b0 where β0, b0 denote the constant term in β, b
respectively. Similarly, by looking at the ex component in α · fx + β · fy + γ · ureey and
since [p−1ky − kx] + je < sx(p− 1) we obtain a0 · g(η) = β0η. Hence, for all g ∈ Gal(K/Qp)
there exists a unit xg ∈ (Fpf ⊗Fp F)× such that g(η) = xgη. If η 6= 0 is not invertible in
Fpf ⊗Fp F, then there exist g0 ∈ Gal(K/Qp) and an idempotent element ei ∈ Fpf ⊗Fp F
such that ei · η = 0 and ei · g0(η) 6= 0. In particular one obtains ei · g0(η) = (ei · xg0)(ei · η)
in F, which is impossible as ei · xg0 ∈ F×. Thus η ∈ (Fpf ⊗Fp F)×.

Since sx(p − 1) − [p−1ky − kx]f − ej > 0 and v0 ∈ uje S
×
0 , there exists P (u) ∈ SF such

that

fx − P (u)fy =

[
0

u(sx+sy)(p−1)−[p−1ky−kx]f−ejε1

]
where ε1 ∈ S

×
F , and so

FilrM =

〈[
0

u(sx+sy)(p−1)−[p−1ky−kx]f−ej

]
,

[
u[p−1ky−kx]f v0

usy(p−1)

]〉
+ ureM

Since (r + j)e+ [p−1ky − kx]f < (sx + sy)(p− 1),

FilrM =

〈[
0
ure

]
,

[
u[p−1ky−kx]f v0

usy(p−1)

]〉
.

This implies FilrM⊗SF
SF /(u) ∼= ω

ky
f ⊕ω

p−1ky
f , which is impossible as soon as p−1kx 6≡ ky.

Therefore, j > j0, in which case the sequence (4) splits, as we have seen before. �

The following lemma is well-known and in most cases proved in [EGH13], proof of The-
orem 3.3.13.

Lemma 3.3. Let ρ : GQp
→ GL3(E) be a potentially semi-stable representation with Hodge–

Tate weights {−2,−1, 0} and with Galois type τ .
Then

det(ρ)|IQp =


ε3
p · [ω]x+y+z if τ ∼= [ω]x ⊕ [ω]y ⊕ [ω]z

ε3
p · [ω]x+y if τ ∼= [ω]x ⊕ [ω2]y ⊕ [ω2]py

ε3
p · [ω]x if τ ∼= [ω3]x ⊕ [ω3]px ⊕ [ω3]p

2x,

where εp is the cyclotomic character.

Proof. By hypothesis det(ρ) is a potentially crystalline character with parallel Hodge–Tate
weights −3 and satisfies

WD(det(ρ))|IQp =

 [ω]x+y+z

[ω]x+y

[ω]x

according to the Galois type of ρ.
In other words, each of det(ρ)[ω]−(x+y+z), det(ρ)[ω]−(x+y), det(ρ)[ω]−x is a crystalline

character (with trivial Galois type) and with parallel Hodge–Tate weights −3, i.e., it is
isomorphic to ε3

p up to a twist by an unramified character. �
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4. Elimination of Galois types

In this section we eliminate the Galois types for certain potentially crystalline lifts of an
ordinary and strongly generic Galois representation ρ : GQp → GL3(F) whose Loewy length
is less than 3. We first classify such representations in the following subsection.

4.1. The local Galois side. Let ρ : GQp
→ GL3(F) be a continuous Galois representation.

If ρ is ordinary, then we may assume that ρ|IQp has the following form:

(8) ρ|IQp ∼=

 ωa2+1 ∗1 ∗2
0 ωa1+1 ∗3
0 0 ωa0+1

 .
We say that an ordinary representation ρ is generic if a1−a0 > 1, a2−a1 > 1, p−2 > a2−a0

in the matrix (8).
We assume that ρ is ordinary, generic, and minimally non-split (i.e. ``(ρ) = 2). Since its

Loewy length is 2, we can distinguish five isomorphism classes for ρ|IQp :

◦ Type (T2) if

ωa1+1

ρ|IQp : ωa2+1

ωa0+1

◦ Type (T1) if

ωa2+1 ωa1+1

ρ|IQp : ⊕

ωa0+1

◦ Type (T0) if

ωa2+1 ωa0+1

ρ|IQp : ⊕

ωa1+1

◦ Type (T−1) if

ωa1+1 ωa0+1

ρ|IQp : ⊕

ωa2+1

◦ Type (T−2) if

ωa1+1

ρ|IQp : ωa0+1

ωa2+1

By ωa—ωb, we mean a non-trivial extension of ωb by ωa. We also note that, for each
i ∈ {0, 1, 2}, Type (Ti) is dual to Type (T−i) up to twist.

We now introduce the following terminology:

Definition 4.1. An ordinary Galois representation ρ : GQp → GL3(F) is said to be strongly
generic if the integers (a2, a1, a0) in the matrix (8) satisfy the condition:

(9) a2 − a1 > 2, a1 − a0 > 2, p− 3 > a2 − a0.
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In this paper we only consider an ordinary and strongly generic ρ; in particular, such ρ
is always Fontaine-Laffaille (cf. [HM], Proposition 2.1.4).

Let ρ be an ordinary and strongly generic representation of GQp
, and let M be a rank-

three Breuil module with descent data to Qp of niveau f such that T∗st(M) ∼= ρ. By

Proposition 2.2.4 in [HM], M is a successive extension of rank-one Breuil modules Mi
def
=

M(ki, ri, λi) such that

(10) ωki+prif
∼= T∗st(Mi)|IQp ∼= ωai+1

for i = 0, 1, 2 (the first isomorphism coming from Lemma 3.1). In this section, we consider
only Type (Ti) for i = 0, 1, 2 and their semi-simpification ρss. Hence, ∗3 = 0 in the ma-
trix (8), and soM has two rank-two Breuil submodules (of weight 2), denoted byM2,1 and
M2,0 and which correspond respectively to the (possibly split!) extensions ωa2+1 · · ·ωa1+1

and ωa2+1 · · ·ωa0+1 appearing as subrepresentations in ρ. In particular, for i ∈ {0, 1} we
have extensions

(11) 0→M2 →M2,i →Mi → 0.

If i ∈ {0, 1} and ρ is of Type (Ti), then the exact sequence (11) is non-split for i; if ρ is of
Type (T2), then the exact sequences (11) are non-split for both i = 0 and i = 1. Finally,
note that we have two exact sequences of Breuil modules

0→M2,i →M→Mji → 0,

where ji = 1− i for i = 0, 1 (again by [HM], Proposition 2.2.4).
We keep these notations in the following subsections.

4.2. Galois types in niveau 1. In this subsection we let f = 1 and e = p−1. In particular,

all of the Breuil modules here are defined over F[u]/uep. We set K
def
= Qp( e

√
−p) and keep

the notations as in Section 4.1.

Proposition 4.2. Let ρ0 : GQp
→ GL3(E) be a p-adic Galois representation, becoming

crystalline over K with Hodge–Tate weights {0,−1,−2} and of Galois type WD(ρ0)|IQp ∼=
[ω]k2 ⊕ [ω]k1 ⊕ [ω]k0 .

If ρss0
∼= ρss, then the integers ki ∈ Z satisfy ki ≡ ai + 1− ri mod e with ri ∈ {0, 1, 2},

r0 + r1 + r2 = 3.

Moreover, if ρ0
∼= ρ, then the triple (r2, r1, r0) satisfies the following additional conditions:

r2 6= 0 and

◦ if ρ is of Type (T2), then (r2, r1) 6= (1, 2) 6= (r2, r0);
◦ if ρ is of Type (T1), then (r2, r1) 6= (1, 2);
◦ if ρ is of Type (T0), then (r2, r0) 6= (1, 2).

Proof. The first part of the proposition is [HM], Proposition 2.4.3. We recall its proof here,
as it will be needed to use the splitting lemma.

We may assume that the rank-one Breuil modules Mi is of weight 2. So 0 ≤ ri ≤ 2
for i = 0, 1, 2. By the equation (10), we have ki ≡ ai + 1 − ri mod e. By looking at the
determinant of ρ we deduce, from Lemma 3.3, the conditions

ω3+k2+k1+k0 = det T∗st(M)|IQp = det ρ|IQp = ωa2+a1+a0+3

and hence we have r2 + r1 + r0 = 3.
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The main ingredient to complete the proof is now Lemma 3.2, specialized to f = 1 and
r = 2. If r2 = 0, then it is obvious that the exact sequence 0 → Fil2M2 → Fil2M2,i →
Fil2Mi → 0 splits and so T∗st(M2,i) splits. Hence, for any type of ρ, we have r2 6= 0. By
Lemma 3.2 again, if (r2, ri) = (1, 2) then M2,i splits as a direct sum of two characters.
Hence, if ρ is of Type (T2) we have (r2, r1) 6= (1, 2) 6= (r2, r0); if ρ is of Type (T0) then
(r2, r0) 6= (1, 2); if ρ is of Type (T1) then (r2, r1) 6= (1, 2). �

4.3. Galois types in niveau 2. In this subsection we let f = 2 and e = p2 − 1. In

particular, all of the Breuil modules here are defined over Fp2 ⊗Fp F[u]/uep. We set K
def
=

Qp2( e
√
−p) and keep the notations as in Section 4.1.

The main result is the following:

Proposition 4.3. Let ρ0 : GQp → GL3(E) be a p-adic Galois representation, becoming
crystalline over K with Hodge–Tate weights {0,−1,−2} and of Galois type WD(ρ0)|IQp ∼=
[ω]x ⊕ [ω2]y ⊕ [ω2]py.

If ρss0
∼= ρss, then the quintuple (x, y, r2, r1, r0) of integers satisfies one of the following

possibilities:

(i) if k2 ≡ (p+ 1)x mod e, k1 ≡ y mod e, and k0 ≡ py mod e, then
x ≡ a2 − δ mod (p− 1) and y ≡ a1 + pa0 + δ − ε(p− 1) mod e
r2 = (δ + 1)(p+ 1)
r1 = (a1 − a0) + (2− δ)− (δ + ε− 1)(p− 1)
r0 = (1 + ε)(p− 1)− (a1 − a0) + (2− δ);

(ii) if k2 ≡ py mod e, k1 ≡ (p+ 1)x mod e, and k0 ≡ y mod e, then
x ≡ a1 + δ mod (p− 1) and y ≡ a0 + pa2 − δ + ε(p− 1) mod e
r2 = (1− ε)(p− 1)− (a0 − a2) + (2 + δ)
r1 = (1− δ)(p+ 1)
r0 = (a0 − a2) + (2 + δ) + (δ + ε+ 1)(p− 1);

(iii) if k2 ≡ y mod e, k1 ≡ py mod e, and k0 ≡ (p+ 1)x mod e, then
x ≡ a0 − δ mod (p− 1) and y ≡ a2 + pa1 + δ − ε(p− 1) mod e
r2 = (a2 − a1) + (2− δ)− (δ + ε− 1)(p− 1)
r1 = (1 + ε)(p− 1)− (a2 − a1) + (2− δ)
r0 = (δ + 1)(p+ 1).

where ε ∈ {0, 1} and δ ∈ {−1, 0, 1} satisfy 0 ≤ δ + ε ≤ 1 and y 6≡ 0 mod (p+ 1).
Moreover, if ρ0

∼= ρ, then the pair (δ, ε) satisfies the following additional conditions:

◦ if ρ is of Type (T2), then
– ε 6= 1 in case (i),
– (δ, ε) 6= (−1, 1) in case (ii),
– δ + ε 6= 1 in case (iii);

◦ if ρ is of Type (T1), then
– (δ, ε) 6= (−1, 1) in case (i),
– (δ, ε) 6= (−1, 1) in case (ii);

◦ if ρ is of Type (T0), then
– ε 6= 1 in case (i),
– δ + ε 6= 1 in case (iii).
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Proof. The first part of the statement is [HM], Proposition 2.4.6: we recall its proof as this
will be necessary to use the splitting lemma.

Let M̂ be the strongly divisible module associated to a lattice in ρ0 via Theorem 2.1 and
write M ∈ F-BrMod2

dd for the associated Breuil module. Recall that M is endowed with
a filtration by Breuil submodules (cf. the introduction to this section) whose graded pieces
Mi =Mi(ki, ri, λi) satisfy T∗st(Mi)|IQp ∼= ωai+1 for i = 0, 1, 2. In particular by Lemma 3.1

we have 0 ≤ ri ≤ 2(p + 1), ki + pri ≡ 0 mod p + 1, and the equation (10). Let us write
WD(ρ0)|IQp = [ω]x ⊕ [ω2]y ⊕ [ω2]py for the Galois type on ρ0 (hence on M). Therefore we
may have either one of the following:

(i) k2 = (p+ 1)x, k1 = y, and k0 = py;
(ii) k2 = py, k1 = (p+ 1)x, and k0 = y;

(iii) k2 = y, k1 = py, and k0 = (p+ 1)x.

Each of (i), (ii), (iii) above gives rise to the corresponding statement on (x, y) in the same
numbering of the proposition above. We consider only the case (i) (but all the other cases
are very similar).

Assume the case (i). A direct manipulation from (10) provides us with

(12) (p+ 1)x+ pr2 ≡ (a2 + 1)(p+ 1) and pr1 − r0 ≡ (a1 − a0)(p+ 1) mod e.

In particular we obtain r2 ≡ 0 and pr1−r0 ≡ 0 modulo e and we may let r2 = δ′(p+1) with
δ′ ∈ {0, 1, 2} and r1+r0 = α(p+1) for α ∈ {1, 2, 3} (due to the constraints 0 ≤ ri ≤ 2(p+1)).
Thus, from (12), we now deduce r1 ≡ a1 − a0 + α mod (p− 1).

Let us write r1 = a1− a0 +α+ ε′(p− 1) so that r0 = α(p+ 1)− (a1− a0 +α)− ε′(p− 1).
As y = a1 + pa0 + (p+ 1)− pα+ ε′(p− 1) and x ≡ a2 − 1 + δ′ mod (p− 1), we obtain, from
Lemma 3.3,

a2 + a1 + a0 ≡ x+ y = a2 + 1− δ′ + a1 + pa0 + (p+ 1)− pα+ ε′(p− 1) mod (p− 1)

hence the relation δ′+α = 3. By the constraints on the ri’s we see that if α = 1 then ε′ = 0,
if α = 2 then ε′ ∈ {0, 1} and if α = 3 then ε′ = 1. We may describe the pair (δ′, ε′) as

δ′ ∈ {0, 1, 2} and ε′ ∈ {0, 1} with 1 ≤ δ′ + ε′ ≤ 2.

and by letting δ = δ′ − 1 and ε = 2− (δ′ + ε′) we obtain finally case (i).
Note that we have shown that

(i)⇒

 r2 = (δ + 1)(p+ 1);
r1 = (a1 − a0) + (2− δ) + (δ + ε− 1)(p− 1);
r0 = (1 + ε)(p− 1)− (a1 − a0) + (2− δ).

In a completely analogous fashion cases (ii) and (iii) provide us with:

(ii)⇒

 r2 = (1− ε)(p− 1)− (a0 − a2) + (2 + δ);
r1 = (1− δ)(p+ 1);
r0 = (a0 − a2) + (2 + δ) + (δ + ε+ 1)(p− 1),

and

(iii)⇒

 r2 = (a2 − a1) + (2− δ) + (δ + ε− 1)(p− 1);
r1 = (1 + ε)(p− 1)− (a2 − a1) + (2− δ);
r0 = (δ + 1)(p+ 1).

We can now apply Lemma 3.2 to the Breuil submodules M2,0, M2,1 in M.
ForM2,0, one can readily check that r2(p−1) ≤ [p−1k0−k2]2 when (δ, ε) = (−1, 1) in the

case (i) or when δ + ε = 1 in case (iii). Similarly, for M2,1, r2(p− 1) ≤ [p−1k1 − k2]2 when

(δ, ε) = (−1, 1) in case (i) or (δ, ε) = (−1, 1) in case (ii). Hence, for these cases, Fil2M2,j
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splits and so does T∗st (M2,j) by Lemma 3.2. Moreover, when (δ, ε) = (0, 1) in case (i),
T∗st (M2,0) splits as well: indeed, in the notations of Lemma 3.2, we now have j0 = 0, and
moreover [p−1k0 − k2]2 = e − [(p + 1)x − y], (r2 + r0)(p − 1) − [p−1k0 − k2]2 > 2e; hence
T∗st (M2,0) splits again. �

4.4. Galois types in niveau 3. In this subsection we let f = 3 and e = p3 − 1. In

particular, all of the Breuil modules here are defined over Fp3 ⊗Fp F[u]/uep. We set K
def
=

Qp3( e
√
−p) and keep the notations as in Section 4.1.

The main result is the following:

Proposition 4.4. Let ρ0 : GQp → GL3(E) be a p-adic Galois representation, becoming
crystalline over K with Hodge–Tate weights {0,−1,−2} and of Galois type WD(ρ0)|IQp ∼=
[ω3]x ⊕ [ω3]px ⊕ [ω3]p

2x.
If ρss0

∼= ρss, then the quadruple (x, r2, r1, r0) of integers satisfies the following properties:

x = (δ2 + a2) + (δ1 + a1) + (δ0 + a0)

and

(i) if k2 ≡ x mod e, k1 ≡ px mod e, and k0 ≡ p2x mod e, then r2 = (p2 + p+ 1) + (p+ 1)(δ2 + a2)− p2(δ1 + a1)− p2(δ0 + a0)
r1 = (p2 + p+ 1)− (δ2 + a2) + (p2 + p)(δ1 + a1)− (δ0 + a0)
r0 = (p2 + p+ 1)− p(δ2 + a2)− p(δ1 + a1) + (p2 + 1)(δ0 + a0);

(ii) if k2 ≡ p2x mod e, k1 ≡ px mod e, and k0 ≡ x mod e, then r2 = (p2 + p+ 1) + (p2 + 1)(δ2 + a2)− p(δ1 + a1)− p(δ0 + a0)
r1 = (p2 + p+ 1)− (δ2 + a2) + (p2 + p)(δ1 + a1)− (δ0 + a0)
r0 = (p2 + p+ 1)− p2(δ2 + a2)− p2(δ1 + a1) + (p+ 1)(δ0 + a0),

for δi ∈ (p− 1)Z such that 0 ≤ ri ≤ 2(p2 + p+ 1) for all i and x 6≡ 0 mod (p2 + p+ 1).

Proof. We only give a complete proof of the case (i). The same argument works for (ii) (Or
just swap r2 and r0 from the case (i)). By equation (10), we have for each i:

(13) p2−ix+ pri ≡ (ai + 1)(p2 + p+ 1) mod e.

By Lemma 3.3, we have ωx+3 ∼= det T∗st(M) ∼= ωa2+a1+a0+3 and so

x ≡ a2 + a1 + a0 mod (p− 1).

We let x = a2 + a1 + a0 + ε(p− 1). Adding all the equations in (13) we get:

x(1 + p+ p2) + p(r2 + r1 + r0) ≡ (a2 + a1 + a0 + 3)(p2 + p+ 1) mod e.

Since x ≡ a2 + a1 + a0 mod (p− 1), we have

(14) r2 + r1 + r0 = 3(p2 + p+ 1).

From the equation (13), we may let r2 = (a2 + 1)(p2 + p+ 1)− p2 (a2 + a1 + a0 + ε(p− 1)) + δ′2(p3 − 1)
r1 = (a1 + 1)(p2 + p+ 1)− (a2 + a1 + a0 + ε(p− 1)) + δ′1(p3 − 1)
r0 = (a0 + 1)(p2 + p+ 1)− p (a2 + a1 + a0 + ε(p− 1)) + δ′0(p3 − 1).

By equation (14), we have the relation ε = δ′2 +δ′1 +δ′0. Letting δi = δ′i(p−1), this completes
the proof of the case (i). �
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5. Local/global compatibility and Serre weights

Let F be a CM field in which p splits completely. In this section we prove our main
results on modular weights for a Galois representation r : GF → GL3(F) which is ordinary
at all places w|p (Theorems 5.9 and 5.10). After some reminders on the space of algebraic
automorphic forms in Section 5.1, having [EGH13], Section 7 as a main reference, we prove
the key statement on inertial local/global compatibility in Section 5.2 (Theorem 5.5). The
latter theorem enables us to use the computations in Section 4 to obtain one of the main
results on modular weights (Theorem 5.9). We also prove that the obvious weights in the
predicted set is modular (Theorem 5.10).

In this section v and v′ (resp. w and w′) are always places of F+ (resp. of F ).

5.1. The space of automorphic forms on certain unitary groups. Let F/Q be a CM
field, F+ its maximal totally real subfield. For the rest of the paper, we assume that p splits
completely in F . (We note that the assumption that p splits completely in F is unnecessary
in this subsection and next, although we may need that every place in F+ dividing p splits
in F . However, for brevity we assume that p splits completely in F , which is the context
for our main results, Theorems 5.9 and 5.10.)

We let G/F+ be a reductive group, which is an outer form for GL3, and which splits

over F . We assume that G(F+
v ) ' U3(R) for all v|∞. We recall ([EGH13], Section 7.1)

that G admits a reductive model G defined over OF+ [N−1] for an integer N that is prime
to p together with an isomorphism

(15) ι : G/OF [N−1]
∼→ GL3 /OF [N−1].

Let W be an OE-module endowed with a smooth action of G(OF+,p) and let U ≤
G(A∞,pF+ ) × G(OF+,p) be a compact open subgroup. The space of algebraic automorphic
forms on G of level U and coefficients in W is defined as the following OE-module:

(16) S(U,W )
def
=
{
f : G(F+)\G(A∞F+)→W | f(gu) = u−1

p f(g) ∀ g ∈ G(A∞F+), u ∈ U
}

(with the obvious notation u = upup for the elements in U).
We recall that the level U is said to be sufficiently small if there exists a finite place v

in F+ such that the image of the projection U → G(F+
v ) does not contain elements of finite

order except the identity. For a finite place v of F+ we say that U is unramified at v if one
has a decomposition U = G(OF+

v
)Uv for some compact open Uv ≤ G(A∞,vF+ ). If w is a finite

place of F we say, with an abuse, that w is an unramified place for U if its restriction w|F+

is unramified for U .
Let PU denote the set consisting of finite places w of F such that v

def
= w|F+ is split in F ,

w - pN and U is unramified at w. If P ⊆ PU is a subset of finite complement we write

TP = OE [T
(i)
w , w ∈ P, i ∈ {1, 2, 3}] for the universal Hecke algebra on P, where the Hecke

operator T
(i)
w acts on the space S(U,W ) as the usual double coset operator[

GL3(OFw)

(
$wIdi 0

0 Id3−i

)
GL3(OFw)

]
via the evident isomorphism

ιw : G(OF+
v

)
∼→ G(OFw)

ι→ GL3(OFw).

We briefly recall the relation between the space A of classical automorphic forms and
the previous spaces of algebraic automorphic forms, in the particular case which is relevant
to us.
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Following [EGH13], Section 7.3 we consider the subset
⊕

w|p(Z
3
+)0 of dominant weights

λ = (λw)w verifying the condition

(17) λ1,wc + λ3,w = 0, λ2,w + λ2,wc = 0, λ3,wc + λ1,w = 0

for all triples λw = (λ1,w, λ2,w, λ3,w) and all pairs (w,wc). We write Wλw
for the OFw -

specialization of the dual Weyl module associated to λw (cf. [EGH13], Section 4.1.1); by
condition (17) one deduces an isomorphism of G(OF+

v
)-representationsWλw

◦ιw ∼= Wλwc
◦ιwc .

Therefore, by letting Wλv

def
= Wλw

◦ ιw for any place w|v, the G(OF+,p)-representation

Wλ
def
=
⊗
v|p

Wλv

is well defined.
For a weight λ ∈

⊕
w|p(Z

3
+)0 let us write Sλ(Qp) to denote the inductive limit of the

spaces S(U,Wλ⊗OE Qp) over the compact open subgroups U ≤ G(A∞,pF+ )×G(OF+,p) (note
that the latter is an inductive system in a natural way, with injective transition maps
induced from the inclusions between levels). Then Sλ(Qp) has a natural smooth left action
of G(A∞F+) induced from the right translation of functions.

Fix an isomorphism ı : Qp
∼→ C. As we have done for the OFw -specialization of the

dual Weyl modules, we can define a smooth G(F+
∞)-representation with C-coefficients σλ ∼=⊕

v|∞
σλv , where σλv depends only on λw for a place w|v (we invite the reader to refer to

[EGH13], Section 7.1.4 for the precise definition of σλ).

Lemma 5.1. The isomorphism ı : Qp
∼→ C induces an isomorphism of smooth G(A∞F+)-

representations

Sλ(Qp)⊗Qp,ı
C

∼−→ HomG(F+
∞)(σ

∨
λ ,A).

5.2. Potentially crystalline lifts and Serre weights. The aim of this subsection is to
prove the inertial local/global compatibility for Hecke eigenclasses of certain automorphic
forms attached to Galois representations r : GF → GL3(F), which is the key to obtain
the upper bound in the set of modular weights. After some preliminaries on the inertial
local Langlands correspondence we state the main result in Theorem 5.5; as this theorem
is well known to experts, we decided to mainly refer to [EGH13], avoiding a self-contained
exposition.

We start by recalling some facts about the tame inertial local Langlands correspondence
via Deligne-Lusztig representations. We refer the reader to [Her09], Section 4 for a precise
and concise reference.

Let n ∈ {1, 2, 3} and define the extension kw,n/kw by letting [kw,n : kw] = n. Let T
be a maximal torus in GL3/kw , stable under the Frobenius morphism on GL3/kw . Up to
GL3/kw -conjugacy we have an identification

(18) T (kw)
∼−→
∏
j

k×w,nj

where 3 ≥ nj > 0 and
∑
j nj = 3 (cf. [Her09], Lemma 4.7).

If θ : T (kw) → Q
×
p is a primitive character, i.e. θj : k×w,nj → Q

×
p is primitive for all j

via the identification (18), then we have a well defined Deligne-Lusztig representation RθT .
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By letting Θ(θj) be the cuspidal representation of GLnj (kw) associated to the primitive
character θj via [Her09], Lemma 4.4, we have

RθT
∼= Ind

GL3(kw)
Pn

⊗j Θ(θj)

where Pn is the standard parabolic subgroup containing the Levi
∏
j GLnj .

Let Fw,n be the unramified extension over Fw of degree n; we consider θj as a character
on O×Fw,nj by inflation and we define the inertial character rec(θ) as follows:

(i) rec(θ) =
⊕3

j=1 θj ◦Art−1
Fw

if θj : kw → Q×p are niveau one characters;

(ii) rec(θ) = θ1 ◦Art−1
Fw
⊕

⊕
σ∈Gal(kw,2/kw)

σ
(
θ2 ◦Art−1

Fw,2

)
if θ1 is a niveau one character

and θ2 is a niveau 2, primitive character on k×w,2;

(iii) rec(θ) =
⊕

σ∈Gal(kw,3/kw)

σ
(
θ1 ◦Art−1

Fw,3

)
if θ1 is a niveau three, primitive character

on kw,3.

Proposition 5.2. Let Πw be an irreducible smooth GL3(Fw)-representation. Assume that
RθT ↪→ Πw|GL3(OFw ). Then

recFw(Πw)|IFw ∼= rec(θ)

and the monodromy operator on recFw(Πw) is zero.

Proof. If either T (kw) ∼= k×w,3 or if T splits over kw the result holds by [EGH13], Proposition
2.4.1.

Assume therefore that T (kw) ∼= k×w,2 × k×w and write θ = θ2 ⊗ θ1 where θi : kw,i → E×.

In this case, we deduce from [Her09], Lemma 6.7 that RθT
∼= ind

GL3(kw)
P (kw)

(
Rθ2T2
⊗ θ1

)
where

T2 is a maximal torus of GL2(kw) such that T2(kw) ∼= k×w,2 and P/OFw denotes the standard

parabolic (with the usual Levi decomposition P = M ·N) defined by P1(A) =
 ∗ ∗ ∗

∗ ∗ ∗
0 0 ∗


for any OFw -algebra A.

Let us write σ
def
= Rθ2T2

⊗ θ1, which will be identified with a representation of M(OFw) by
inflation from M(kw), and σP for the inflation of σ to the standard parahoric P ⊆ GL3(OFw)
associated to P (kw).

By [Mor99] Lemma 3.6, we have an isomorphism

πσP
∼−→ (πN )

σ

πN is the Jacquet module and the superscripts denote the isotypical components (with
respect to the evident Hecke algebras acting on π and πN ).

As πσP 6= 0 by assumption (and by Frobenius reciprocity) we deduce an M(OFw)-
equivariant morphism σ ↪→ πN . As the pair (M(OFw), σ) is a M(Fw)-type, we deduce
an M(Fw)-equivariant morphism πN � τσ where τσ = τ2 ⊗ τ1 is supercuspidal, and

τ2 = ind
GL2(Fw)

GL2(OFw )F×w
R̃θ2T2

, τ1 = θ̃1 with R̃θ2T2
, θ̃1 being GL2(OFw)F×w , F×w representations

extending Rθ2T2
, θ1 respectively (this is [Mor99], Proposition 4.1)

Normalizing the Jacquet functor via the (unramified) modulus character δP , Frobenius

reciprocity finally provides us with a non-zero map π → ı
GL3(Fw)
P (Fw) τσ which is moreover an

isomorphism (the GL3(Fw)-representations here being irreducible).
By the classical local Langlands correspondence ([HT01], [Hen00]) we deduce the iso-

morphism recFw

(
ı
GL3(Fw)
P (Fw) τσ

)
∼= recFw(τ2) ⊕ recFw(τ1) up to an unramified twist, and the
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result follows from the inertial local Langlands correspondence for GL2(Fw)×GL1(Fw) (cf.
Henniart’s appendix to [BM02]). �

Definition 5.3. A Serre weight for G (or just Serre weight if G is clear from the context)
is an isomorphism class of a smooth, absolutely irreducible representation V of G(OF+,p).

As explained in [EGH13], Section 7.3, a Serre weight V admits an explicit description
in terms of the GL3(kw)-representations F (x, y, z). More precisely, let w be a place of F

above p and write v
def
= w|F+ . For any restricted triple aw

def
= (aw, bw, cw) ∈ Z3

+ we consider
the Serre weight Faw = F (aw, bw, cw). It is an irreducible representation of GL3(kw), hence
of G(kv) via the isomorphism ιw. Note that F (aw, bw, cw)∨ ◦ ιwc ∼= F (aw, bw, cw) ◦ ιw as
G(kv)-representations, i.e. F (awc , bwc , cwc) ◦ ιwc ∼= F (aw, bw, cw) ◦ ιw as soon as

(19) awc + cw = 0, bw + bwc = 0 and cwc + aw = 0.

In particular, if a ∈
⊕

w|p(Z
3
+)0 is restricted, the smooth G(OF+

v
)-representation Fav

def
=

Faw ◦ ιw is well defined and we set

Fa
def
=
⊗
v|p

Fav

which is a Serre weight for G(OF+,p). (One may notice that our description of Serre weights
is different from that in [EGH13], but of course it will give the same notion under the
assumption that p splits completely in F .)

From [EGH13], Lemma 7.3.4 if V is a Serre weight for G, one has V ◦ ι−1
w
∼= Fa for some

a ∈
⊕

w|p(Z
3
+)0.

Definition 5.4. Let r : GF → GL3(F) be a continuous Galois representation and let V
be a Serre weight for G. We say that r is modular of weight V (or that V is a modular
weight for r) if there exists a compact open subset U in G(A∞,pF )×G(OF+,p) and a cofinite
subset P in the set of finite places of F , lying over split places of F+ not dividing pN and
unramified for both r and U , such that

S(U, V )m 6= 0

where m is the kernel of the system of Hecke eigenvalues α : TP → F associated to r, i.e.

det (1− r∨(Frobw)X) =

3∑
j=0

(−1)j(NFw/Qp
(w))(

j
2)α(T (j)

w )Xj

for all w ∈ P.

We write
Wmod(r)

for the set of all modular weights for r.
The following theorem is the main result of this subsection, being the key to prove weight

elimination for r. As it is well known to experts we decided to mainly refer to [EGH13],
thus avoiding a self contained exposition.

Theorem 5.5. Let V = Fa be a modular weight for the Galois representation r : GF →
GL3(F). Fix a place w|p and assume that Fav ◦ ι

−1
w is a Jordan-Hölder constituent in

the mod-p reduction of a Deligne-Lusztig representation RθT of GL3(kw), where T/kw is a

Frobenius stable maximal torus in GL3(kw) and θ : T (kw) → Q
×
p is a primitive regular

character.
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Then r|GFw has a potentially crystalline lift with parallel Hodge–Tate weights {−2,−1, 0}
and Galois type rec(θ).

Before the proof, we recall the following results.

Lemma 5.6. Assume that U is sufficiently small and let M be a smooth OE [G(OF+,p)]-
module of finite type over OE. Let T be an anemic Hecke algebra acting on S(U,M),
as defined in Section 5.1 and α : T → F be a system of Hecke eigenvalues such that
S(U,M ⊗OE F)ker(α) 6= 0.

Then, up to enlarging OE, there exists a system of Hecke eigenvalues α : T → OE such
that S(U,M)ker(α) 6= 0 and α ≡ α mod$.

Theorem 5.7. Let Π ⊆ Sλ(Qp) be an irreducible G(A∞F+)-representation. Fix an isomor-

phism ι : Qp → C and let | · | 1−n2 be the unique square root of | · |(1−n) taking positive values
when composed with ι.

Then there exists a continuous semisimple representation

rΠ : GF → GL3(Qp)

such that

(i) rcΠ ⊗ εn−1 ∼= r∨Π.
(ii) For each place w above p, the representation rΠ|GFw is de Rham with Hodge–Tate

weights
HT(rΠ|GFw ) = {λw,1 + 2, λw,2 + 1, λw,3}.

(iii) If v - p is a finite place of F+ which splits as v = wwc in F , then

WD(rΠ|GFw )F−ss ∼= recw((Πv ◦ ι−1
w )⊗ | · |(1−n)/2)

(where we recall the isomorphism G(F+
v )→ GL3(Fw)).

(iv) If w|p is a place of F and v
def
= w|F+ , then

WD(rΠ|GFw )F−ss ∼= recw((Πv ◦ ι−1
w )⊗ | · |(1−n)/2).

Proof. Cf. [EGH13], proof of Theorem 7.2.1. We remark that the assertion (iv) is the main
result of [Car]. �

Proof of Theorem 5.5. The proof follows verbatim the argument of the “proof of Axiom Ã3”
in [EGH13], Proposition 7.4.4.

First of all, note that “Axiom Ã1” holds true in our situation (it does not require any

condition on r|GFw ). Let v
def
= w|F+ and λ ∈

⊕
w′|p(Z

3
+)0 be the restricted weight defined

by λw′ = aw′ if w′|F+ 6= v and λw′ = 0 if w′|F+ = v.

Let us write R
def
= RθT for the Deligne-Lusztig representation of GL3(kw), which will be

identified with a G(kv)-representation via ιw (and hence with a G(OF+
v

)-representation by

inflation). By the argument in the “proof of Axiom Ã3” in [EGH13], Proposition 7.4.4 we
obtain

HomG(OFv )

(
R∨, S(UvKv(1),Wλ ⊗Zp

Qp)m

)
6= 0

where m is the kernel of a system of Hecke eigenvalues α : T → OE lifting α as in the

statement of Lemma 5.6 and Kv(1) is the kernel of the morphism G(OF+
v

)
ιw→ GL3(OFw)→

G(kw).
Hence there exists an automorphic irreducible representation Π ⊆ Sλ(Qp) such that

ΠUvKv(1) ∩ S(UvKv(1),Qp)m 6= 0 and Πv contains R∨.
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Let rΠ : GF → GL3(Qp) be as in the statement of Theorem 5.7. By Chebotarev density

theorem, Theorem 5.7-(iii) and [CHT08], Corollary 3.1.2 we have rΠ
∼= r∨. Moreover, we

have that r∨Π|GFw is potentially crystalline, with Hodge–Tate weights {−2,−1, 0} and Galois
type rec(θ), by Theorem 5.7-(iv), (ii) and Proposition 5.2.

It is therefore the required lift. �

5.3. Modular weights and main results. In this subsection we prove our main results
on Serre weights for a modular Galois representation r : GF → GL3(F) which is ordinary
at places above p. After recalling the definition of the set of modular weights associated to
r we define, for each place w|p in F , a set of conjectural weights W ?

w(r) which depends on
the shape of the submodule structure of r|GFw . We often write W ?

w(r|GFw ) for W ?
w(r).

Let w|p be a place of F . We assume that r|GFw is ordinary and strongly generic. (Re-
member that we assume p splits completely in F .) According to the isomorphism class of
r|GFw (cf. Section 4.1), we define the following set of Serre weights:

W ?
w(r)

def
=
{
F (a2 − 1, a1, a0 + 1), F (a0 + (p− 1), a1, a2 − (p− 1))

}
∪ W

where

(i) if r|GFw is of Type (T2)

W def
=
{
F (a2 − 1, a0, (a1 + 1)− (p− 1))

}
;

(ii) if r|GFw is of Type (T1)

W def
=

{
F (a2 − 1, a0, a1 + 1− (p− 1)), F (a0 − 1 + (p− 1), a2, a1 + 1)

F (a1 + (p− 1), a2, a0), F (a2, a0, a1 − (p− 1))

}
;

(iii) if r|GFw is of Type (T0)

W def
=
{
F (a2 − 1, a0, (a1 + 1)− (p− 1)), F (a1 − 1 + (p− 1), a2, a0 + 1)

}
;

(iv) if r|GFw is of Type (T−1)

W def
=

{
F (a1 − 1 + (p− 1), a2, a0 + 1), F (a1 − 1, a0, a2 + 1− (p− 1))

F (a1 + (p− 1), a2, a0), F (a2, a0, a1 − (p− 1))

}
(v) if r|GFw is of Type (T−2)

W def
=
{
F (a1 − 1 + (p− 1), a2, a0 + 1)

}
.

Recall that if r|GFw is maximally non-split, i.e. ``
(
r|GFw

)
= 3, then one can define a

Fontaine-Laffaille parameter FL(r|GFw ) ∈ P1(F) (cf. [HM], Section 2). In this case, we set

W def
= ∅ provided that FL(r|GFw ) ∈ P1(F) \ {0,∞}.
If r|GFw ' ω

a2+1 ⊕ ωa1+1 ⊕ ωa0+1, then we define

W ?
w(r)

def
= WL ∪ WU ∪ WS

where

WL
def
=

{
F (a2 − 1, a1, a0 + 1), F (a1 − 1, a0, a2 + 1− (p− 1))

F (a0 − 1 + (p− 1), a2, a1 + 1)

}
;

WU
def
=

{
F (a0 − 1 + (p− 1), a1, a2 + 1− (p− 1)), F (a2 − 1, a0, a1 + 1− (p− 1))

F (a1 − 1 + (p− 1), a2, a0 + 1)

}
;

WS
def
=

{
F (a0 + (p− 1), a1, a2 − (p− 1), F (a2, a0, a1 − (p− 1))

F (a1 + (p− 1), a2, a0)

}
.
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Note that W ?
w(r|GFw ) ⊂W ?

w(r|ssGFw ) for each type of r|GFw . The weights in WL and in WU

are called obvious weights and those in WS shadow weights. We let

(20) W ?,obv
w (r)

def
= W ?

w(r) ∩ (WL ∪ WU )

for each isomorphism class of r|GFw .

As in [EGH13], Section 7.5, we define the set of predicted modular weighs for r in terms
of the sets W ?

w(r): if v|p is a place of F+, w|v is a place of F , and Vv is an absolutely
irreducible G(kv)-representation over F, we introduce the conditions

(21) Vv ◦ ι−1
w ∈W ?

w(r)

and

(22) Vv ◦ ι−1
w ∈W ?,obv

w (r).

Following Remark 7.5.2 in [EGH13] we see that Vv ◦ ι−1
w ∈W ?

w(r) is equivalent to Vv ◦ ι−1
wc ∈

W ?
wc(r). We can therefore define the set of predicted Serre weights W ?(r) as follows:

Definition 5.8. Assume that for all places w|p the Galois representation r|GFw is ordinary,

strongly generic (cf. Definition 4.1), and ``
(
r|GFw

)
< 3.

The set of predicted Serre weights for r is

W ?(r)
def
=

V =
⊗
v|p

Vv s.t.Vv satisfies condition (21) for all v|p

 .

We similarly define the set of predicted obvious weights for r to be

W ?,obv(r)
def
=

V =
⊗
v|p

Vv s.t.Vv satisfies condition (22) for all v|p

 .

The main result to obtain the upper bound on the modular weights for r is the following:

Theorem 5.9. Let F be an imaginary CM field, and suppose that p splits completely in F .
Let r : GF → GL3(F) be a modular Galois representation. We assume that for all places w|p
the Galois representation r|GFw are ordinary and strongly generic. If moreover ``

(
r|GFw

)
=

3, we further assume that its Fontaine-Laffaille parameter satisfies FL(r|GFw ) ∈ P1(F) \
{0,∞}.

Then one has

Wmod(r) ⊆W ?(r).

The proof of Theorem 5.9 in the case ``(r|GFw ) < 3 will be performed in the following
subsection. The case that r|GFw is maximally non-split (i.e., ``(r|GFw ) = 3) is one of the
main results in [HM].

For r : GF → GL3(F) as in Theorem 5.9, one expects the upper bound given by W ?(r)
to be the best possible. In general it is hard to decide whether a weight is actually modular
for such a r, but thanks to the results of [BLGG], the modularity of the obvious weights is
now a corollary to Theorem 5.9.

In the following theorem, concerning the modularity of the obvious weights W ?,obv
w (r)

(cf. (20)), we use the terminology of [BLGG]. We sincerely thank Daniel Le for pointing
out the reference to [BLGGT], Lemma 1.4.3, which is crucial in the proof of Theorem 5.10.
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Theorem 5.10. Let F be an imaginary CM field with maximal totally real subfield F+ and
suppose that F/F+ is unramified at all finite places and that p splits completely in F . Let
r : GF → GL3(F) be an irreducible representation with split ramification. Assume that there

is a RACSDC automorphic representation Π of GL3(AF ) of weight µ ∈ (Z3
+)

Hom(F,C)
0 and

level prime to p such that

◦ r ' rp,i(Π);
◦ For each place w|p of F , rp,i(Π)|GFw is potentially diagonalizable;
◦ r(GF (ζp)) is adequate.

Assume further that for all places w|p the Galois representations r|GFw are ordinary, strongly
generic, and of Loewy length ``(r|GFw ) < 3.

Then one has

W ?,obv(r) ⊆Wmod(r) ⊆W ?(r).

Proof. Let V =
⊗

v|p Vv be a Serre weight with Vv ◦ ι−1
w ∈ W ?,obv

w (r) for all w|p and let

a ∈
⊕

w|p(Z
3
+)0 correspond to V . By Theorem 4.1.9 and Lemma 5.1.1 in [BLGG] together

with Theorem 5.9, it is enough to show that, for each w|p, the local representation r|GFw has
a potentially diagonalizable crystalline lift with Hodge type aw. (Note that we don’t have
to consider a lift of a since p splits completely in F .) But, by Lemma 1.4.3 in [BLGGT], it
is enough to show that there exist an ordinary crystalline lift with Hodge type aw.

Let m,n be integers with m ≥ n+2 and χm (resp. χn) be a m-th (resp. n-th) Tate twist of
a unramified character. Then an extension of χn by χm is (ordinary) crystalline by [PR94],
Proposition 3.1. The generic condition on m,n mod (p − 1) (i.e., m 6≡ n or m 6≡ n + 1
mod (p − 1)) implies that the natural map Ext1

Zp[GQp ](χn, χm) → Ext1
Fp[GQp ](χn, χm) is

surjective. Hence, the cases for r|GFw of Type (T1) and (T0) and for r|GFw ' r|ssGFw hold

immediately from this.

The only non-trivial case is for ρ
def
= r|GFw of Type (T2). Let ρ|ssIQp = ωa2+1⊕ωa1+1⊕ωa0+1

with the strongly generic condition on ai. We may consider ρ as a quotient of ρ1 ⊕ ρ2 by
ρ0 where ρ1 and ρ2 are the two 2-dimensional subrepresentations of ρ and ρ0 is the 1-
dimensional subrepresentation of ρ. Let aw = (aw, bw, cw). (Then {aw + 2, bw + 1, cw} ≡
{a2 + 1, a1 + 1, a0 + 1} mod (p− 1) since V is an obvious weight.) By the argument in the
previous paragraph, ρ1 and ρ2 have ordinary crystalline lifts ρ1 with Hodge–Tate weights
(aw+2, bw+1) and ρ2 with Hodge–Tate weights (aw+2, cw) respectively, both of which has
a common subrepresentation ρ0 that is a lift of ρ0 with Hodge–Tate weight aw + 2. Let ρ be
the quotient of ρ1⊕ρ2 by ρ0 (via the diagonal embedding). Then ρ is obviously an ordinary
crystalline 3-dimensional representation with Hodge–Tate weights (aw + 2, bw + 1, cw) that
is isomorphic to a lift of ρ. �

5.4. Proof of Theorem 5.9. We consider the situation in the statement of Theorem 5.9.
Namely, we fix a place w above p, we let V =

⊗
v′|p Vv′ be a modular weight for r, and we

assume that r|GFw is ordinary and strongly generic as in Definition 4.1.

We write ρ
def
= r|GFw and note that we can assume, without loss of generality, that ρ is

either of Type (Ti) for i = 0, 1, 2. The other types are dual of those up to twist, and one
has

(23) Wmod(r
∨ ⊗ ω1−3) = Wmod(r)

∨.

In all what follows, we write F
def
= Vv ◦ ι−1

w where v
def
= w|F+ .
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Recall that we write RθT for a Deligne-Lusztig representation associated to a maximal

torus T/kw and a primitive regular character θ : T (kw) → Q
×
p . We also recall that if

F ∈ JH
(
RθT

)
, then, by Theorem 5.5, r|GFw has a potentially crystalline lift with Hodge–

Tate weights {−2,−1, 0} and with Galois type rec(θ).

5.4.1. Niveau 1 types. We keep the assumption and the notation as at the beginning of
Section 5.4

Proposition 5.11. If V =
⊗

v′|p Vv′ is a modular weight for r, then F = Vv ◦ ι−1
w is

isomorphic to one of the weights in the following list

F (a2, a0, a1 − (p− 1)), F (a1 + (p− 1), a2, a0), F (a0 + (p− 1), a1, a2 − (p− 1)),

F (a2 − 1, a0 + 1, a1 − (p− 1)), F (a1 + (p− 1), a2 − 1, a0 + 1), F (a0 + p, a1, a2 − p),

F (a2 − 1, a0, a1 − p), F (a1 + p, a2 − 1, a0), F (a0 + (p− 1), a1 + 1, a2 − p),

F (a1, a0, a2 − (p− 1)), F (a2 − 1, a1, a0 + 1), F (a0 + (p− 1), a2 − 1, a1 + 1)

with moreover the further weights:

F (a2 + (p− 1), a0 − 1, a1 + 1), F (a1 + p, a2, a0 − 1), F (a0 − 1, a2, a1 + p)

F (a0 − 1 + (p− 1), a1 + 1, a2 − (p− 1))

if ρ is of Type (T1), and the further weights:

F (p+ a0, a1 − 1, a2), F (p− 1 + a2, p+ a0, a1 − 1), F (p− 2 + a1, a2, a0 + 1),

F (p− 2 + a1, p+ a0, a2), F (p− 1 + a0, a2, a1)

if ρ is of Type (T0).

Proof. Let T (kw) be the maximal split torus of diagonal matrices, and let us write F =
F (b2, b1, b0) for a restricted weight (b2, b1, b0) ∈ X1(T ) (where X1(T ) denotes the set of
restricted weights as in [Her09], Definition 3.6).

By Frobenius reciprocity we have

F ∼= cosoc
(

Ind
GL3(Fp)

B(Fp) ωb2 ⊗ ωb1 ⊗ ωb0
)

In particular, we have F ∈ JH
(
RθT

)
where θ ∼= [ω]b2 ⊗ [ω]b1 ⊗ [ω]b0 and hence by Theo-

rem 5.5 we deduce that r|GQp
admits a potentially crystalline lift ρ : GQp

→ GL3(E) whose

associated Galois type has niveau one: WD(ρ)|IQp ∼= [ω]b2 ⊕ [ω]b1 ⊕ [ω]b0 .

By Proposition 4.2 specialized to Type (T2) we may assume that

(24) bi = ai + 1− ri
where the triple (r2, r1, r0) is as in Proposition 4.2 for Type (T2).

Since the Serre weight F (b2, b1, b0) is an obvious constituent of the Jordan–Hölder factors

of the principal series Ind
GL3(Fp )

B(Fp ) ωb2 ⊗ ωb1 ⊗ ωb0 we deduce from (24) that F (b2, b1, b0) is

one of the 6 obvious weights in the semisimplification of one of the following principal series:

Ind
GL3(Fp)

B(Fp) ωa2 ⊗ ωa1 ⊗ ωa0 , Ind
GL3(Fp)

B(Fp) ωa2−1 ⊗ ωa1 ⊗ ωa0+1,

Ind
GL3(Fp)

B(Fp) ωa2−1 ⊗ ωa1+1 ⊗ ωa0 .

Let us consider the following obvious weights in Ind
GL3(Fp)

B(Fp) ωa2 ⊗ ωa1 ⊗ ωa0 lying in the

lower alcove:

F1
def
= F (a0 + p− 1, a2, a1), F2

def
= F (a2, a1, a0).(25)
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Each of them forms the cosocle of the following dual Weyl modules

W (a1 + (p− 2), a2, a0 + 1), W (p− 2 + a0, a1, a2 − (p− 2))

and hence Fi ∈ JH
(
RθiT

)
where

θ1 = [ω]a2 ⊗ [ω]a1−1 ⊗ [ω]a0+1, θ2 = [ω]a2+1 ⊗ [ω]a1 ⊗ [ω]a0−1.

If F1 (resp. F2) were modular, by Theorem 5.5 we shall have a potentially crystalline lift
of ρ, with associated Galois type rec(θ1) (resp. rec(θ2)) contradicting Proposition 4.2 for
Type (T2).

In a completely analogous fashion we see that weights

F3
def
= F (a1, a0 + 1, a2 − 1− (p− 1)) and F4

def
= F (a0 + 1 + (p− 1), a2 − 1, a1 − (p− 1))

(obvious weights of Ind
GL3(Fp)

B(Fp) ωa2−1 ⊗ ωa1 ⊗ ωa0+1 lying in the lower alcove) satisfy Fi ∈

JH
(
RθiT

)
, where

θ3 = [ω]a2−2 ⊗ [ω]a1+1 ⊗ [ω]a0+1, θ4 = [ω]a2−1 ⊗ [ω]a1−1 ⊗ [ω]a0+2

and hence can not be modular by virtue of Theorem 5.5 Proposition 4.2 for Type (T2).
Similarly, the weights

F (a2 − 1, a1 + 1, a0), F (a1 + 1, a0, a2 − 1− (p− 1))

can not be modular as well. This completes the proof in Type (T2) of the corollary.
Types (T0) and (T1) are deduced in a completely analogous fashion (using Proposition 4.2

specialized to the Types (T0) and (T1) respectively): we leave the computational details to
the reader. �

5.4.2. Niveau 2 types. We keep the assumption and the notation as at the beginning of
Section 5.4.

Proposition 5.12. If V =
⊗

v′|p Vv′ is a modular weight for r, then F = Vv ◦ ι−1
w is

isomorphic to one of the weights in the following list

F (a0 + (p− 1), a1, a2 − (p− 1)), F (a2 − 1, a1, a0 + 1), F (a2 − 1, a0, a1 + 1− (p− 1))

with moreover, according to the isomorphism class of ρ, the additional weights:

F (a1 + (p− 1), a2, a0), F (a0 − 1 + (p− 1), a2, a1), F (a2, a0, a1 − (p− 1))

if ρ is of Type (T1), and the further weight:

F (a1 − 1 + (p− 1), a2, a0 + 1)

if ρ is of Type (T0).

For the proof of Proposition 5.12 we record the following easy lemma:

Lemma 5.13. Let F = F (x, y, z) be a restricted weight lying in the upper alcove and let
i ≥ j > k be integers such that i− k ≤ p− 1.

Let θ ∼= [ω]i ⊗ [ω2]j+pk via the isomorphism T (kw) ∼= k×w × k×2,w.
The relation

F ∈ JH

(
RθT

)
holds true if and only if

(i, j, k) ∈ {(y, x− (p− 2), z − 1), (x, p− 1 + z, y), (p− 1 + z, y, x− (p− 1))} .



28 STEFANO MORRA AND CHOL PARK

Proof. It is an elementary exercise using [EGH13], Lemma 5.2.4 and the exhaustive descrip-
tion of the Jordan-Hölder factors of the mod-p reduction of the Deligne-Lusztig representa-

tion Ind
GL3(Fp)

P2(Fp) [ω]i ⊗Θ([ω2]j+pk) performed in the proof of [Her09], Proposition 7.4. �

Proof of Proposition 5.12. We perform in detail the proof for the Type (T2): Types (T0)
and (T1) are proved in the evident similar fashion and we leave the computations as an
exercise to the scrupulous reader.

In all what follows we identify θ : T (kw) → E× with a character of the form [ω]x ⊗ [ω]y2
for some appropriate x, y ∈ Z, via the isomorphism T (kw) ∼= k×w × k×2,w.

Let us consider the following weights lying in the lower alcove:

(26) F (a0 + (p− 1), a2 − 1, a1 + 1), F (a1, a0, a2 − (p− 1)).

By the explicit description of the Jordan-Hölder factors for Niveau 2 types it is easy to check
that

F (a0 + (p− 1), a2 − 1, a1 + 1) ∈ JH
(
Rθ1T

)
; F (a1, a0, a2 − (p− 1)) ∈ JH

(
Rθ2T

)
with

θ1
∼= [ω]a2−1 ⊗ [ω]

a1+p(a0+1)
2 ; θ2

∼= [ω]a0 ⊗ [ω]
a2−1+p(a1+1)
2 .

By the first part of Proposition 4.3 and Theorem 5.5 we conclude that the weights (26) can
not be modular for r.

By Lemma 5.13 we obtain the following relations on the remaining weights in the upper
alcove:

F (a2 − 1, a0 + 1, a1 + (p− 1)) ∈ JH
(
Rθ1T

)
,(27)

F (a1 + (p− 1), a2 − 1, a0 + 1) ∈ JH
(
Rθ2T

)
,

F (a0 + p, a1, a2 − p) ∈ JH
(
Rθ3T

)
,

F (a1 + p, a2 − 1, a0) ∈ JH
(
Rθ4T

)
,

F (a0 + (p− 1), a1 + 1, a2 − p) ∈ JH
(
Rθ5T

)
.

where

θ1 = θ3 = [ω]a2−1 ⊗ [ω2]a1+p(a0+1), θ2 = [ω]a0+p ⊗ [ω2]a2−1+pa1 ,

θ4 = [ω]a2−1 ⊗ [ω2]a1+2+p(a0−1), θ5 = [ω]a0 ⊗ [ω2]a1+1+p(a2−1).

In view of the first part of Proposition 4.3 and Theorem 5.5 the weights in (27) can not be
modular for r.

To conclude, we see from Lemma 5.13 that the conditions

F (a1 + (p− 1), a1, a0) ∈ JH
(
Rθ1T

)
, F (a2, a0, a1 − (p− 1)) ∈ JH

(
Rθ2T

)
.

imply

θ1 = [ω]a2 ⊗ [ω2]a1+1+p(a0−1), θ2 = [ω]a0+(p−1) ⊗ [ω2]a2+1+p(a1−1)

and both types in the RHS are not allowed to produce modular weights for r, by virtue of
the second part of Proposition 4.3 and Theorem 5.5.

Together with Proposition 5.11, this ends the proof of Proposition 5.12 for Type (T2). �
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Remark 5.14. Note that Proposition 5.12 together with the identity (23) completes the
proof of Theorem 5.9 in the non-split case.

The same argument as in Propositions 5.11 and 5.12 works for r|GFw semi-simple, by
using only ρss-part of Propositions 4.2 and 4.3. We leave this routine computation to the
reader, and this completes the proof of Theorem 5.9.

5.4.3. Niveau 3 types. The goal of this subsection is to check if we can further eliminate
some of the weights appearing in Proposition 5.12 using niveau 3 types and the splitting
lemma. In fact, all of the weights in Proposition 5.12 survives. We consider more in detail
the shadow weight F (a2, a0, a1 − (p − 1)), appearing as a possible (local) modular weight

for r when ρ
def
= r|GFw is of Type (T1). One could check, in an evident similar fashion, that

the other weights in Proposition 5.12 survive as well.
We fix a maximal torus T/OFw,3 such that T (kw) ∼= k×w,3; this lets us identify a character

θ : T (kw) → E× with [ω3]a(θ) : k×w,3 → E× for some a(θ) ∈ N, where ω3 is a Serre
fundamental character of niveau 3.

In the following remark, we record a concrete statement we want to check in this subsec-
tion.

Remark 5.15. Assume that ρ is of Type (T1) and let θ : T (kw) → E× be a primitive
character such that

F (a2, a0, a1 − (p− 1)) ∈ JH
(
RθT
)
.

Let ρ0 : GQp → GL3(E) be a potentially crystalline p-adic Galois representation with Hodge–

Tate weights {0,−1,−2} having Galois type rec(θ) and M ∈ F-BrMod2
dd be a rank-three

Breuil module deduced from ρ0 via base change SOE � SF and Theorem 2.1.
Then the condition ρ0 = T∗st(M) ∼= ρ does not lead to a contradiction with Proposition 4.4

nor with Lemma 3.2.

In particular, the weight elimination technique as developed in this paper does not let
one eliminate the weight F (a2, a0, a1− (p−1)). The remaining of this subsection is devoted
to check Remark 5.15. To ease notations and computation we may, and do, assume that

a0 = 0 and write a
def
= a2, b

def
= a1 (the general case follows by twisting by [ω]a0).

We first determine the primitive niveau 3 character θ : T (kw,3) → E× appearing in the
statement of Remark 5.15.

Lemma 5.16. Let θ ∼= [ω3]i+pj+p
2k : T (kw,3) → E× be a primitive character. If F

def
=

F (a, 0, b− (p− 1)) ∈ JH
(
RθT

)
then RθT is determined by either one of the following:

(i) i > j ≥ k, i− k ≤ p and θ ∼= [ω3](a+1)+p(b−1);

(ii) i < j ≤ k, k − i ≤ p and θ ∼= [ω3](b−1)+p(a+1)+p2(p−1).

Proof. Let us write θ = [ω3]i+pj+p
2k with p2 + p+ 1 - i+ pj + p2k.

We start from (i). As the triple (a, b, 0) is strongly generic, we deduce from the decompo-
sition (7.8) in [Her09] that F ∈ {F (2(p− 1) + k, p− 1 + j, i), F (p− 1 + j, i− 1, k+ 1), F (i−
1, k, j + 1− (p− 1))}. By [EGH13], Lemma 5.2.4 one deduces (i).

As for (ii), we have
(
RθT
)∨ ∼= Rθ

−1

T (cf. for instance [Her09], proof of Proposition 6.23).
Since (−i) > (−j) ≥ (−k), −i+ k ≤ p we can use again the decomposition (7.8) in [Her09]
(and dualize back) to obtain F ∈ {F (i, j − (p − 1), k − 2(p − 1)), F (k − 1, i + 1, j − (p −
1)), F (j+ (p− 2), k, i+ 1)}. The conclusion follows from a straightforward computation via
[EGH13], Lemma 5.2.4. �
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For each case of Lemma 5.16, we need to check that there is a possible lift in Propo-
sition 4.4 which we can not eliminate by the splitting Lemma 3.2. More precisely, let
M∈ F-BrMod2

dd be a rank-three Breuil module with niveau three descent data and Galois
type rec(θ) with θ : T (kw,3)→ E× as either case in Lemma 5.16. Assume that T∗st(M) ∼= ρ
and let M2,1 be the Breuil submodule of M corresponding (as in Section 4.1) to the ex-
tension ωa+1—ωb+1 appearing in ρ. Recall that ρ is of Type (T1). Then we need to check
that the splitting Lemma does not apply to the extension 0→M2 →M2,1 →M1 → 0

In the case (i) of Lemma 5.16, it is relatively easy to check. Since one can not apply
the splitting Lemma 3.2 in the case k2 ≡ pk1 mod e = p3 − 1, we show that there exists
δi, defined in Proposition 4.4, such that ri are sitting between 0 and 2(p2 + p + 1) when
k2 ≡ pk1 mod e; this lets us check Remark 5.15 in the case (i) of Lemma 5.16.

Indeed, we let x = p[(a + 1) + p(b − 1)] and take δ2 = (p − 1)(b − 1), δ1 = 0, and
δ0 = (p− 1)[a+ 1 + p(b− 1)]. Then one can readily check that x = (δ2 + a) + (δ1 + b) + δ0
and the corresponding ri are sitting between 0 and 2(p2 + p+ 1).

In the case (ii) of Lemma 5.16, we need a bit more computation. In this case, one can
readily check that there are no δi such that 0 ≤ ri ≤ 2(p2 + p + 1) in Proposition 4.4
when k2 ≡ pk1 mod e. However, in the case k2 ≡ x mod e and k1 ≡ px mod e for
x = a+ 1 + p(p− 1) + p2(b− 1) (and so case (i) in Proposition 4.4), there exist δi such that
0 ≤ ri ≤ 2(p2 + p + 1). If we take δ2 = (p − 1)(pb − 1), δ1 = 0, and δ0 = (p − 1)b, then
x = (δ2 + a) + (δ1 + b) + δ0 and the corresponding ri are r2 = p(a− b+ 1) + a+ 2

r1 = p2 + p(b+ 1) + p− (a− b)
r0 = (p2 + p+ 1) + p(p− 1)− pa− b,

which are obviously between 0 and 2(p2 + p + 1). But, in this case, we can not apply the
splitting lemma 3.2 either.

Indeed, we let sx = r2, sy = r1, kx = k2, and ky = k1, and try to apply the Lemma 3.2
in this case. It is easy to check that p(sy − sx) + [ky − kx]3 > 0 and j0 = 0, which follows
immediately from [ky − kx]3 = p3 − p2(b+ 2) + p(a+ 2)− a+ b− 2 and [p−1ky − kx]3 = 0
respectively. But 2(j0 + e) + [p−1ky − kx]3 = 2e > (p− 1)[(p2 + p+ 1) + p(a+ 2) + b+ 1] =
(p− 1)(sx + sy), i.e., it violates the inequality (5) in the Lemma 3.2.

Hence, we have checked the Remark 5.15.

Remark 5.17. The techniques developed in this paper do not pertain only to the three-
dimensional case. In ongoing work, we are considering the case of an n-dimensional, or-
dinary, and strongly generic Galois representation ρ : GQp

→ GLn(F), obtaining partial
results when `` (ρ) ≤ 3.
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[Bre99] Christophe Breuil, Une application de corps des normes, Compositio Math. 117 (1999), no. 2,

189–203. MR 1695849 (2000f:11157)
[Car] A. Caraiani, Monodromy and local-global compatibility for ` = p, Algebra and Number Theory,

to appear.

[CDT99] Brian Conrad, Fred Diamond, and Richard Taylor, Modularity of certain potentially barsotti-tate
galois repre- sentations, J. Amer. Math. Soc. 12 (1999), 521–367.

[CHT08] Laurent Clozel, Michael Harris, and Richard Taylor, Automorphy for some l-adic lifts of au-

tomorphic mod l Galois representations, Publ. Math. Inst. Hautes Études Sci. (2008), no. 108,

1–181, With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by
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