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Abstract—In this paper we propose a novel accurate method
for dead-reckoning of wheeled vehicles based only on an Inertial
Measurement Unit (IMU). In the context of intelligent vehicles,
robust and accurate dead-reckoning based on the IMU may prove
useful to correlate feeds from imaging sensors, to safely navigate
through obstructions, or for safe emergency stops in the extreme
case of exteroceptive sensors failure. The key components of
the method are the Kalman filter and the use of deep neural
networks to dynamically adapt the noise parameters of the filter.
The method is tested on the KITTI odometry dataset, and our
dead-reckoning inertial method based only on the IMU accurately
estimates 3D position, velocity, orientation of the vehicle and
self-calibrates the IMU biases. We achieve on average a 1.10%
translational error and the algorithm competes with top-ranked
methods which, by contrast, use LiDAR or stereo vision. We
make our implementation open-source at:

https://github.com/mbrossar/ai-imu-dr

Index Terms—localization, deep learning, invariant extended
Kalman filter, KITTI dataset, inertial navigation, inertial mea-
surement unit

I. INTRODUCTION

INTELLIGENT vehicles need to know where they are
located in the environment, and how they are moving

through it. An accurate estimate of vehicle dynamics allows
validating information from imaging sensors such as lasers, ul-
trasonic systems, and video cameras, correlating the feeds, and
also ensuring safe motion throughout whatever may be seen
along the road [1]. Moreover, in the extreme case where an
emergency stop must be performed owing to severe occlusions,
lack of texture, or more generally imaging system failure, the
vehicle must be able to assess accurately its dynamical motion.
For all those reasons, the Inertial Measurement Unit (IMU)
appears as a key component of intelligent vehicles [2]. Note
that Global Navigation Satellite System (GNSS) allows for
global position estimation but it suffers from phase tracking
loss in densely built-up areas or through tunnels, is sensitive to
jamming, and may not be used to provide continuous accurate
and robust localization information, as exemplified by a GPS
outage in the well known KITTI dataset [3], see Figure 1.

Kalman filters are routinely used to integrate the outputs
of IMUs. When the IMU is mounted on a car, it is common
practice to make the Kalman filter incorporate side information
about the specificity of wheeled vehicle dynamics, such as
approximately null lateral and upward velocity assumption in
the form of pseudo-measurements. However, the degree of
confidence the filter should have in this side information is
encoded in a covariance noise parameter which is difficult
to set manually, and moreover which should dynamically
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Fig. 1. Trajectory results on seq. 08 (drive #28, 2011/09/30) [3] of the KITTI
dataset. The proposed method (green) accurately follows the benchmark
trajectory for the entire sequence (4.2 km, 9min), whereas the pure IMU
integration (cyan) quickly diverges. Both methods use only IMU signals and
are initialized with the benchmark pose and velocity. We see during the GPS
outage that occurs in this sequence, our solution keeps estimating accurately
the trajectory.

adapt to the motion, e.g., lateral slip is larger in bends than
in straight lines. Using the recent tools from the field of
Artificial Intelligence (AI), namely deep neural networks, we
propose a method to automatically learn those parameters and
their dynamic adaptation for IMU only dead-reckoning. Our
contributions, and the paper’s organization, are as follows:

• we introduce a state-space model for wheeled vehicles as
well as simple assumptions about the motion of the car
in Section II;

• we implement a state-of-the-art Kalman filter [4,5] that
exploits the kinematic assumptions and combines them
with the IMU outputs in a statistical way in Section III-C.
It yields accurate estimates of position, orientation and
velocity of the car, as well as IMU biases, along with
associated uncertainty (covariance);

• we exploit deep learning for dynamic adaptation of co-
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variance noise parameters of the Kalman filter in Section
IV-A. This module greatly improves filter’s robustness
and accuracy, see Section V-D;

• we demonstrate the performances of the approach on the
KITTI dataset [3] in Section V. Our approach solely
based on the IMU produces accurate estimates and com-
petes with top-ranked LiDAR and stereo camera methods
[6,7]; and we do not know of IMU based dead-reckoning
methods capable to compete with such results;

• the approach is not restricted to inertial only dead-
reckoning of wheeled vehicles. Thanks to the versatility
of the Kalman filter, it can easily be applied for railway
vehicles [8], coupled with GNSS, the backbone for IMU
self-calibration, or for using IMU as a speedometer in
path-reconstruction and map-matching methods [9]–[12].

A. Relation to Previous Literature

Autonomous vehicle must robustly self-localize with their
embarked sensor suite which generally consists of odometers,
IMUs, radars or LiDARs, and cameras [1,2,12]. Simultaneous
Localization And Mapping based on inertial sensors, cameras,
and/or LiDARs have enabled robust real-time localization sys-
tems, see e.g., [6,7]. Although these highly accurate solutions
based on those sensors have recently emerged, they may drift
when the imaging system encounters troubles.

As concerns wheeled vehicles, taking into account vehicle
constraints and odometer measurements are known to increase
the robustness of localization systems [13]–[16]. Although
quite successful, such systems continuously process a large
amount of data which is computationally demanding and
energy consuming. Moreover, an autonomous vehicle should
run in parallel its own robust IMU-based localization algorithm
to perform maneuvers such as emergency stops in case of other
sensors failures, or as an aid for correlation and interpretation
of image feeds [2].

High precision aerial or military inertial navigation systems
achieve very small localization errors but are too costly for
consumer vehicles. By contrast, low and medium-cost IMUs
suffer from errors such as scale factor, axis misalignment and
random walk noise, resulting in rapid localization drift [17].
This makes the IMU-based positioning unsuitable, even during
short periods.

Inertial navigation systems have long leveraged virtual and
pseudo-measurements from IMU signals, e.g. the widespread
Zero velocity UPdaTe (ZUPT) [18]–[20], as covariance adap-
tation [21]. In parallel, deep learning and more generally ma-
chine learning are gaining much interest for inertial navigation
[22,23]. In [22] velocity is estimated using support vector
regression whereas [23] use recurrent neural networks for end-
to-end inertial navigation. Those methods are promising but
restricted to pedestrian dead-reckoning since they generally
consider slow horizontal planar motion, and must infer ve-
locity directly from a small sequence of IMU measurements,
whereas we can afford to use larger sequences. A more
general end-to-end learning approach is [24], which trains
deep networks end-to-end in a Kalman filter. Albeit promising,
the method obtains large translational error > 30% in their

stereo odometry experiment. Finally, [25] uses deep learning
for estimating covariance of a local odometry algorithm that
is fed into a global optimization procedure, and in [26] we
used Gaussian processes to learn a wheel encoders error. Our
conference paper [20] contains preliminary ideas, albeit not
concerned at all with covariance adaptation: a neural network
essentially tries to detect when to perform ZUPT.

Dynamic adaptation of noise parameters in the Kalman filter
is standard in the tracking literature [27], however adaptation
rules are application dependent and are generally the result
of manual “tweaking” by engineers. Finally, in [28] the
authors propose to use classical machine learning techniques
to to learn static noise parameters (without adaptation) of the
Kalman filter, and apply it to the problem of IMU-GNSS
fusion.

II. IMU AND PROBLEM MODELLING

An inertial navigation system uses accelerometers and gyros
provided by the IMU to track the orientation Rn, velocity
vn ∈ R3 and position pn ∈ R3 of a moving platform relative
to a starting configuration (R0,v0,p0). The orientation is
encoded in a rotation matrix Rn ∈ SO(3) whose columns
are the axes of a frame attached to the vehicle.

A. IMU Modelling

The IMU provides noisy and biased measurements of the
instantaneous angular velocity vector ωn and specific acceler-
ation an as follows [17]

ωIMU
n = ωn + bωn +wωn , (1)

aIMU
n = an + ba

n +wa
n, (2)

where bωn , ba
n are quasi-constant biases and wωn , wa

n are zero-
mean Gaussian noises. The biases follow a random walk

bωn+1 = bωn +wbω
n , (3)

ba
n+1 = ba

n +wba
n , (4)

where wbω
n , wba

n are zero-mean Gaussian noises.
The kinematic model is governed by the following equations

RIMU
n+1 = RIMU

n exp ((ωndt)×) , (5)
vIMU
n+1 = vIMU

n + (RIMU
n an + g) dt, (6)

pIMU
n+1 = pIMU

n + vIMU
n dt, (7)

between two discrete time instants sampling at dt, where we
let the IMU velocity be vIMU

n ∈ R3 and its position pIMU
n ∈ R3

in the world frame. RIMU
n ∈ SO(3) is the 3×3 rotation matrix

that represents the IMU orientation, i.e. that maps the IMU
frame to the world frame, see Figure 2. Finally (y)× denotes
the skew symmetric matrix associated with cross product with
y ∈ R3. The true angular velocity ωn ∈ R3 and the true
specific acceleration an ∈ R3 are the inputs of the system (5)-
(7). In our application scenarios, the effects of earth rotation
and Coriolis acceleration are ignored, Earth is considered flat,
and the gravity vector g ∈ R3 is a known constant.

All sources of error displayed in (1) and (2) are harmful
since a simple implementation of (5)-(7) leads to a triple
integration of raw data, which is much more harmful that the
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Fig. 2. The coordinate systems that are used in the paper. The IMU pose
(RIMU

n ,pIMU
n ) maps vectors expressed in the IMU frame i (red) to the world

frame w (black). The IMU frame is attached to the vehicle and misaligned with
the car frame c (blue). The pose between the car and inertial frames (Rc

n,p
c
n)

is unknown. IMU velocity vIMU
n and car velocity vc

n are respectively expressed
in the world frame and in the car frame.

unique integration of differential wheel speeds [12]. Indeed, a
bias of order ε has an impact of order εt2/2 on the position
after t seconds, leading to potentially huge drift.

B. Problem Modelling
We distinguish between three different frames, see Figure 2:

i) the static world frame, w; ii) the IMU frame, i, where (1)-
(2) are measured; and iii) the car frame, c. The car frame is an
ideal frame attached to the car, that will be estimated online
and plays a key role in our approach. Its orientation w.r.t. i is
denoted Rc

n ∈ SO(3) and its origin denoted pc
n ∈ R3 is the

car to IMU level arm. In the rest of the paper, we tackle the
following problem:

IMU Dead-Reckoning Problem. Given an initial known
configuration (RIMU

0 ,vIMU
0 ,pIMU

0 ), perform in real-time IMU
dead-reckoning, i.e. estimate the IMU and car variables

xn := (RIMU
n , vIMU

n , pIMU
n , bωn , ba

n, Rc
n, pc

n) (8)

using only the inertial measurements ωIMU
n and aIMU

n .

III. KALMAN FILTERING WITH PSEUDO-MEASUREMENTS

The Extended Kalman Filter (EKF) was first implemented
in the Apollo program to localize the space capsule, and is
now pervasively used in the localization industry, the radar
industry, and robotics. It starts from a dynamical discrete-time
non-linear law of the form

xn+1 = f(xn, un) +wn (9)

where xn denotes the state to be estimated, un is an input, and
wn is the process noise which is assumed Gaussian with zero
mean and covariance matrix Qn. Assume side information
is in the form of loose equality constraints h(xn) ≈ 0
is available. It is then customary to generate a fictitious
observation from the constraint function:

yn = h(xn) + nn, (10)

and to feed the filter with the information that yn = 0 (pseudo-
measurement) as first advocated by [29], see also [13,30] for

application to visual inertial localization and general consid-
erations. The noise is assumed to be a centered Gaussian
nn ∼ N (0,Nn) where the covariance matrix Nn is set by
the user and reflects the degree of validity of the information:
the larger Nn the less confidence is put in the information.

Starting from an initial Gaussian belief about the state,
x0 ∼ N (x̂0,P0) where x̂0 represents the initial estimate and
the covariance matrix P0 the uncertainty associated to it, the
EKF alternates between two steps. At the propagation step, the
estimate x̂n is propagated through model (9) with noise turned
off, wn = 0, and the covariance matrix is updated through

Pn+1 = FnPnF
T
n +GnQnG

T
n , (11)

where Fn, Gn are Jacobian matrices of f(·) with respect to xn
and un. At the update step, pseudo-measurement is taken into
account, and Kalman equations allow to update the estimate
x̂n+1 and its covariance matrix Pn+1 accordingly.

To implement an EKF, the designer needs to determine the
functions f(·) and h(·), and the associated noise matrices Qn

and Nn. In this paper, noise parameters Qn and Nn will be
wholly learned by a neural network.

A. Defining the Dynamical Model f(·)
We now need to assess the evolution of state variables (8).

The evolution of RIMU
n , pIMU

n , vIMU
n , bωn and ba

n is already given
by the standard equations (3)-(7). The additional variables
Rc
n and pc

n represent the car frame with respect to the IMU.
This car frame is rigidly attached to the car and encodes an
unknown fictitious point where the pseudo-measurements of
Section III-B are most advantageously made. As IMU is also
rigidly attached to the car, and Rc

n, pc
n represent misalignment

between IMU and car frame, they are approximately constant

Rc
n+1 = Rc

n exp((w
Rc

n )×), (12)

pc
n+1 = pc

n +wpc

n . (13)

where we let wRc

n , wpc

n be centered Gaussian noises with small
covariance matrices σRc

I, σpc

I that will be learned during
training. Noises wRc

n and wpc

n encode possible small variations
through time of level arm due to the lack of rigidity stemming
from dampers and shock absorbers.

B. Defining the Pseudo-Measurements h(·)
Consider the different frames depicted on Figure 2. The

velocity of the origin point of the car frame, expressed in the
car frame, writes

vc
n =

vfornvlatn
vupn

 = RcT
n RIMUT

n vIMU
n + (ωn)×p

c
n, (14)

from basic screw theory, where pc
n ∈ R3 is the car to IMU

level arm. In the car frame, we consider that the car lateral
and vertical velocities are roughly null, that is, we generate
two scalar pseudo observations of the form (10) that is,

yn =

[
ylatn
yupn

]
=

[
hlat(xn) + nlatn
hup(xn) + nupn

]
=

[
vlatn
vupn

]
+ nn, (15)
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where the noises n=

[
nlatn ,nupn

]T
are assumed centered and

Gaussian with covariance matrix Nn ∈ R2×2. The filter is
then fed with the pseudo-measurement that ylatn = yupn = 0.

Assumptions that vlatn and vupn are roughly null are common
for cars moving forward on human made roads or wheeled
robots moving indoor. Treating them as loose constraints, i.e.,
allowing the uncertainty encoded in Nn to be non strictly null,
leads to much better estimates than treating them as strictly
null [13].

It should be duly noted the vertical velocity vupn is expressed
in the car frame, and thus the assumption it is roughly null
generally holds for a car moving on a road even if the motion
is 3D. It is quite different from assuming null vertical velocity
in the world frame, which then boils down to planar horizontal
motion.

The main point of the present work is that the validity of
the null lateral and vertical velocity assumptions widely vary
depending on what maneuver is being performed: for instance,
vlatn is much larger in turns than in straight lines. The role
of the noise parameter adapter of Section IV-A, based on AI
techniques, will be to dynamically assess the parameter Nn

that reflects confidence in the assumptions, as a function of
past and present IMU measurements.

C. The Invariant Extended Kalman Filter (IEKF)

PropagationωIMU
n

aIMU
n

Nn+1

Update x̂n+1,
Pn+1

Invariant Extended Kalman Filter

Fig. 3. Structure of the IEKF. The filter uses the noise parameter Nn+1 of
pseudo-measurements (15) to yield a real time estimate of the state x̂n+1

along with covariance Pn+1.

For inertial navigation, we advocate the use of a recent
EKF variant, namely the Invariant Extended Kalman Filter
(IEKF), see [4,5], that has recently given raise to a commercial
aeronautics product [31] and to various successes in the field of
visual inertial odometry [32]–[34]. We thus opt for an IEKF
to perform the fusion between the IMU measurements (1)-
(2) and (15) treated as pseudo-measurements. Its architecture,
which is identical to the conventional EKF’s, is recapped in
Figure 3.

However, understanding in detail the IEKF [4] requires
some background in Lie group geometry. The interested reader
is referred to the Appendix where the exact equations are
provided.

IV. PROPOSED AI-IMU DEAD-RECKONING

This section describes our system for recovering all the
variables of interest from IMU signals only. Figure 4 illustrates

Invariant Extended
Kalman Filter

ωIMU
n

aIMU
n

x̂n+1,
Pn+1

AI-based Noise
Parameter Adapter

proposed IMU dead-reckoning system

Nn+1

Fig. 4. Structure of the proposed system for inertial dead-reckoning. The
measurement noise adapter feeds the filter with measurement covariance from
raw IMU signals only.

the approach which consists of two main blocks summarized
as follows:
• the filter integrates the inertial measurements (1)-(2) with

dynamical model f(·) given by (3)-(7) and (12)-(13),
and exploits (15) as measurements h(·) with covariance
matrix Nn to refine its estimates;

• the noise parameter adapter determines in real-time the
most suitable covariance noise matrix Nn. This deep
learning based adapter converts directly raw IMU signals
(1)-(2) into covariance matrices Nn without requiring
knowledge of any state estimate nor any other quantity.

The amplitude of process noise parameters Qn are considered
fixed by the algorithm, and are learned during training.

Note that the adapter computes covariances meant to im-
prove localization accuracy, and thus the computed values
may broadly differ from the actual statistical covariance of
yn (15), see Section V-D for more details. In this respect, our
approach is related to [24] but the considered problem is more
challenging: our state-space is of dimension 21 whereas [24]
has a state-space of dimension only 3. Moreover, we compare
our results in the sequel to state-of-the-art methods based on
stereo cameras and LiDARs, and we show we may achieve
similar results based on the moderately precise IMU only.

A. AI-based Measurement Noise Parameter Adapter

The measurement noise parameter adapter computes at each
instant n the covariance Nn+1 used in the filter update, see
Figure 3. The base core of the adapter is a Convolutional
Neural Network (CNN) [35]. The networks takes as input a
window of N inertial measurements and computes

Nn+1 = CNN
(
{ωIMU

i , aIMU
i }

n
i=n−N

)
. (16)

Our motivations for the above simple CNN-like architecture
are threefold:
i) avoiding over-fitting by using a relatively small number of

parameters in the network and also by making its outputs
independent of state estimates;

ii) obtaining an interpretable adapter from which one can
infer general and safe rules using reverse engineering,
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e.g. to which extent must one inflate the covariance during
turns, for e.g., generalization to all sorts of wheeled and
commercial vehicles, see Section V-D;

iii) letting the network be trainable. Indeed, as reported in
[24], training is quite difficult and slow. Setting the
adapter with a recurrent architecture [35] would make
the training even much harder.

The complete architecture of the adapter consists of a bunch
of CNN layers followed by a full layer outputting a vector
zn =

[
zlatn , zupn

]T ∈ R2. The covariance Nn+1 ∈ R2×2 is
then computed as

Nn+1 = diag
(
σ2
lat10

β tanh(zlatn ), σ2
up10

β tanh(zup
n )
)
, (17)

with β ∈ R>0, and where σlat and σup correspond to our
initial guess for the noise parameters. The network thus may
inflate covariance up to a factor 10β and squeeze it up to a
factor 10−β with respect to its original values. Additionally,
as long as the network is disabled or barely reactive (e.g.
when starting training), we get zn ≈ 0 and recover the initial
covariance diag (σlat, σup)

2.
Regarding process noise parameter Qn, we choose to fix it

to a value Q and leave its dynamic adaptation for future work.
However its entries are optimized during training, see Section
IV-C.

B. Implementation Details

We provide in this section the setting and the implementa-
tion details of our method. We implement the full approach
in Python with the PyTorch1 library for the noise parameter
adapter part. We set as initial values before training

P0 = diag
(
σR
0 I2, 0, σ

v
0 I2,04, σ

bω

0 I, σba

0 I, σRc

0 I, σpc

0 I
)2
,

(18)

Q = diag (σωI, σaI, σbωI, σbaI, σRcI, σpcI)
2
, (19)

Nn = diag (σlat, σup)
2
, (20)

where I = I3, σR
0 = 10−3 rad, σv

0 = 0.3m/s, σbω

0 =
10−4 rad/s, σba

0 = 3.10−2 m/s2, σRc

0 = 3.10−3 rad,
σpc

0 = 10−1 m in the initial error covariance P0, σω =
1.4.10−2 rad/s, σa = 3.10−2 m/s2, σbω = 10−4 rad/s,
σba = 10−3 m/s2, σRc = 10−4 rad, σpc = 10−4 m for the
noise propagation covariance matrix Q, σlat = 1m/s, and
σup = 3m/s for the measurement covariance matrix. The zero
values in the diagonal of P0 in (18) corresponds to a perfect
prior of the initial yaw, position and zero vertical speed.

The adapter is a 1D temporal convolutional neural network
with 2 layers. The first layer has kernel size 5, output dimen-
sion 32, and dilatation parameter 1. The second has kernel size
5, output dimension 32 and dilatation parameter 3, thus it set
the window size equal to N = 15. The CNN is followed by
a fully connected layer that output the scalars zlat and zup.
Each activation function between two layers is a ReLU unit
[35]. We define β = 3 in the right part of (17) which allows
for each covariance element to be 103 higher or smaller than
its original values.

1https://pytorch.org/

C. Training

We seek to optimize the relative translation error trel
computed from the filter estimates x̂n, which is the averaged
increment error for all possible sub-sequences of length 100m
to 800m.

Toward this aim, we first define the learnable parameters. It
consists of the 6210 parameters of the adapter, along with the
parameter elements of P0 and Q in (18)-(19), which add 12
parameters to learn. We then choose an Adam optimizer [36]
with learning rate 10−4 that updates the trainable parameters.
Training consists of repeating for a chosen number of epochs
the following iterations:
i) sample a part of the dataset;
ii) get the filter estimates for then computing loss and

gradient w.r.t. the learnable parameters;
ii) update the learnable parameters with gradient and opti-

mizer.
Following continual training [37], we suppose the number of
epochs is huge, potentially infinite (in our application we set
this number to 400). This makes sense for online training
in a context where the vehicle gathers accurate ground-truth
poses from e.g. its LiDAR system or precise GNSS. It requires
careful procedures for avoiding over-fitting, such that we use
dropout and data augmentation [35]. Dropout refers to ignoring
units of the adapter during training, and we set the probability
p = 0.5 of any CNN element to be ignored (set to zero) during
a sequence iteration.

Regarding i), we sample a batch of nine 1min sequences,
where each sequence starts at a random arbitrary time. We
add to data a small Gaussian noise with standard deviation
10−4, a.k.a. data augmentation technique. We compute ii)
with standard backpropagation, and we finally clip the gradient
norm to a maximal value of 1 to avoid gradient explosion at
step iii).

We stress the loss function consists of the relative translation
error trel, i.e. we optimize parameters for improving the filter
accuracy, disregarding the values actually taken by Nn, in the
spirit of [24].

V. EXPERIMENTAL RESULTS

We evaluate the proposed method on the KITTI dataset
[3], which contains data recorded from LiDAR, cameras and
IMU, along with centimeter accurate ground-truth pose from
different environments (e.g., urban, highways, and streets).
The dataset contains 22 sequences for benchmarking odometry
algorithms, 11 of them contain publicly available ground-truth
trajectory, raw and synchronized IMU data. We download the
raw data with IMU signals sampled at 100Hz (dt = 10−2 s)
rather than the synchronized data sampled at 10Hz, and
discard seq. 03 since we did not find raw data for this
sequence. The RT30032 IMU has announced gyro and ac-
celerometer bias stability of respectively 36 deg /h and 1mg.
The KITTI dataset has an online benchmarking system that
ranks algorithms. However we could not submit our algorithm
for online ranking since sequences used for ranking do not

2https://www.oxts.com/

https://pytorch.org/
https://www.oxts.com/
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test
seq. environment

IMLS [6] ORB-SLAM2 [7] IMU proposed
length duration trel rrel trel rrel trel rrel trel rrel
(km) (s) (%) (deg/m) (%) (deg/m) (%) (deg/m) (%) (deg/m)

01 2.6 110 highway 0.48 0.08 1.38 0.20 5.35 0.12 1.11 0.12
03 - 80 country - - - - - - - -
04 0.4 27 country 0.25 0.08 0.41 0.21 0.97 0.10 0.35 0.08
06 1.2 110 urban 0.78 0.07 0.89 0.22 5.78 0.19 0.97 0.20
07 0.7 110 urban 0.32 0.12 1.16 0.49 12.6 0.30 0.84 0.32
08 3.2 407 urban, country 1.84 0.17 1.52 0.30 549 0.56 1.48 0.32
09 1.7 159 urban, country 0.97 0.11 1.01 0.25 23.4 0.32 0.80 0.22
10 0.9 120 urban, country 0.50 0.14 0.31 0.34 4.58 0.25 0.98 0.23

average scores 0.98 0.12 1.17 0.27 171 0.31 1.10 0.23

Table 1. Results on [3]. IMU integration tends to drift or diverge, whereas the proposed method may be used as an alternative to LiDAR based (IMLS) and
stereo vision based (ORB-SLAM2) methods, using only IMU information. Indeed, on average, our dead-reckoning solution performs better than ORB-SLAM2
and achieves a translational error being close to that of the LiDAR based method IMLS, which is ranked 3rd on the KITTI online benchmarking system. Data
from seq. 03 was unavailable for testing algorithms, and sequences 00, 02 and 05 are discussed separately in Section V-C. It should be duly noted IMLS,
ORB-SLAM2, and the proposed AI-IMU algorithm, all use different sensors. The interest of ranking algorithms based on different information is debatable.
Our goal here is rather to evidence that using data from a moderately precise IMU only, one can achieve similar results as state of the art systems based on
imaging sensors, which is a rather surprising feature.

contain IMU data, which is reserved for training only. Our
implementation is made open-source at:

https://github.com/mbrossar/ai-imu-dr.

A. Evaluation Metrics and Compared Methods

To assess performances we consider the two error metrics
proposed in [3]:

1) Relative Translation Error (trel): which is the aver-
aged relative translation increment error for all possible sub-
sequences of length 100m, . . . , 800m, in percent of the
traveled distance;

2) Relative Rotational Error (trel): that is the relative
rotational increment error for all possible sub-sequences of
length 100m, . . . , 800m, in degree per meter.

We compare four methods which alternatively use LiDAR,
stereo vision, and IMU-based estimations:
• IMLS [6]: a recent state-of-the-art LiDAR-based ap-

proach ranked 3rd in the KITTI benchmark. The author
provided us with the code after disabling the loop-closure
module;

• ORB-SLAM2 [7]: a popular and versatile library for
monocular, stereo and RGB-D cameras that computes
a sparse reconstruction of the map. We took the open-
source code, disable loop-closure capability and evaluate
the stereo algorithm without modifying any parameter;

• IMU: the direct integration of the IMU measurements
based on (4)-(5), that is, pure inertial navigation;

• proposed: the proposed approach, that uses only the IMU
signals and involves no other sensor.

B. Trajectory Results

We follow the same protocol for evaluating each sequence:
i) we initialize the filter with parameters described in Section
IV-B; ii) we train then the noise parameter adapter following
Section IV-C for 400 epochs without the evaluated sequence

−100 −50 0 50 100 150 200

0

50

100

150

200

endstart

5 s car
stop

x (m)

y
(m

)
ground-truth IMLS ORB-SLAM2

IMU proposed

Fig. 5. Results on seq. 07 (drive #27, 2011/09/30) [3]. The proposed
method competes with LiDAR and visual odometry methods, whereas the
IMU integration broadly drifts after the car stops.

(e.g. for testing seq. 10, we train on seq. 00-09) so that
the noise parameter has never been confronted with the
evaluated sequence; iii) we run the IMU-based methods on
the full raw sequence with ground-truth initial configuration
(RIMU

0 ,vIMU
0 ,pIMU

0 ), whereas we initialize remaining variables
at zero (bω0 = ba

0 = pc
0 = 0, Rc

0 = I); and iv) we get
the estimates only on time corresponding to the odometry
benchmark sequence. LiDAR and visual methods are directly
evaluated on the odometry sequences.

Results are averaged in Table 1 and illustrated in Figures
1, 5 and 6, where we exclude sequences 00, 02 and 05

https://github.com/mbrossar/ai-imu-dr
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Fig. 6. Results on seq. 09 (drive #33, 2011/09/30) [3]. The proposed
method competes with LiDAR and visual odometry methods, whereas the
IMU integration drifts quickly after the first turn.

which contain problems with the data, and will be discussed
separately in Section V-C. From these results, we see that:

• LiDAR and visual methods perform generally well in
all sequences, and the LiDAR method achieves slightly
better results than its visual counterpart;

• our method competes on average with the latter image
based methods, see Table 1;

• directly integrating the IMU signals leads to rapid drift
of the estimates, especially for the longest sequences but
even for short periods;

• Our method looks unaffected by stops of the car, as in
seq. 07, see Figure 5.

The results are remarkable as we use none of the vision
sensors, nor wheel odometry. We only use the IMU, which
moreover has moderate precision.

We also sought to compare our method to visual inertial
odometry algorithms. However, we could not find open-source
of such method that performs well on the full KITTI dataset.
We tested [38] but the code in still under development (results
sometimes diverge), and the authors in [39] evaluate their not
open-source method for short sequences (≤ 30 s). The paper
[33,40] evaluate their visual inertial odometry methods on
seq. 08, both get a final error around 20m, which is four
times what our method gets, with final distance to ground-
truth of only 5m. This clearly evidences that methods taylored
for ground vehicles [13,15] may achieve higher accuracy and
robustness that general methods designed for smartphones,
drones and aerial vehicles.

950 1,000 1,050 1,100 1,150 1,200 1,250

−1,800

−1,700

−1,600

−1,500

x (m)

y
(m

)

ground-truth prop. w/o alignment
proposed prop. w/o cov. adapter

Fig. 7. End trajectory results on the highway seq. 01 (drive #42, 2011/10/30)
[3]. Dynamically adapting the measurement covariance and considering mis-
alignment between car and inertial frames enhance the performances of the
proposed method from a translational error of 1.94% to one of 1.11%.

C. Results on Sequences 00, 02 and 05

Following the procedure described in Section V-B, the
proposed method seems to have degraded performances on
seq. 00, 02 and 05, see e.g. Figure 9. However, the behavior
is wholly explainable: data are missing for a couple of seconds
due to logging problems which appear both for IMU and
ground-truth. This is illustrated in Figure 10 for seq. 02 where
we plot available data over time. We observe jump in the
IMU and ground-truth signals, that illustrate data are missing
between t = 1 and t = 3. The problem was corrected manually
when using those sequences in the training phase described in
Section V.

Although those sequences could have been discarded due to
logging problems, we used them for testing without correcting
their problems. This naturally results in degraded performance,
but also evidences our method is remarkably robust to such
problems in spite of their inherent harmfulness. For instance,
the 2 s time jump of seq. 02 results in estimate shift, but no
divergence occurs for all that, see Figure 9.

D. Discussion

The performances are owed to three components: i) the use
of a recent IEKF that has been proved to be well suited for
IMU based localization; ii) incorporation of side information
in the form of pseudo-measurements with dynamic noise
parameter adaptation learned by a neural network; and iii)
accounting for a “loose” misalignment between the IMU frame
and the car frame.

As concerns i), it should be stressed the method is perfectly
suited to the use of a conventional EKF and is easily adapted
if need be. However we advocate the use of an IEKF owing
to its accuracy and convergence properties. To illustrate the
benefits of points ii) and iii), we consider two sub-versions
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Fig. 8. Covariance values computed by the adapter on the highway seq.
01 (drive #42, 2011/10/30) [3]. We clearly observe a large increase in the
covariance values when the car is turning between t = 90 s and t = 110 s.

of the proposed algorithm. One without alignment, i.e. where
Rc
n and pc

n are not included in the state and fixed at their
initial values Rc

n = I, pc
n = 0, and a second one that uses the

static filter parameters (18)-(20).

End trajectory results for the highway seq. 01 are plotted
in Figure 7, where we see that the two sub-version methods
have trouble when the car is turning. Therefore their respective
translational errors trel are higher than the full version of
the proposed method: the proposed method achieves 1.11%,
the method without alignment level arm achieves 1.65%, and
the absence of covariance adaptation yields 1.94% error. All
methods have the same rotational error rrel = 0.12 deg /m.
This could be anticipated for the considered sequence since
the full method has the same rotational error than standard
IMU integration method.

As systems with equipped AI-based approaches may be
hard to certify for commercial or industrial use [41], we note
adaptation rules may be inferred from the AI-based adapter,
and encoded in an EKF using pseudo-measurements. To this
aim, we plot the covariances computed by the adapter for seq.
01 in Figure 8. The adapter clearly increases the covariances
during the bend, i.e. when the gyro yaw rate is important.
This is especially the case for the zero velocity measurement
(15): its associated covariance is inflated by a factor of 102

between t = 90 s and t = 110 s. This illustrates the kind
of information the adapter has learned. Interestingly, we see
large discrepancies may occur between the actual statistical
uncertainty (which should clearly be below 100m2/s2) and
the inflated covariances whose values are computed for the
sole purpose of filter’s performance enhancement. Indeed,
such a large noise parameter inflation indicates the AI-based
part of the algorithm has learned and recognizes that pseudo-
measurements have no value for localization at those precise
moments, so the filter should barely consider them.

VI. CONCLUSION

This paper proposes a novel approach for inertial dead-
reckoning for wheeled vehicles. Our approach exploits deep
neural networks to dynamically adapt the covariance of simple
assumptions about the vehicle motions which are leveraged in
an invariant extended Kalman filter that performs localization,
velocity and sensor bias estimation. The entire algorithm is
fed with IMU signals only, and requires no other sensor. The
method leads to surprisingly accurate results, and opens new
perspectives. In future work, we would like to address the
learning of the Kalman covariance matrices for images, and
also the issue of generalization from one vehicle to another.
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test
seq. environment

IMLS [6] ORB-SLAM2 [7] IMU proposed
length duration trel rrel trel rrel trel rrel trel rrel
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Table 2. Results on [3] on seq. 00, 02 and 05. The degraded results of the proposed method are wholly explained by a problem of missing data, see Section
V-C and Figure 10.
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competes with LiDAR and visual odometry methods until a problem in data
occurs (2 seconds are missing). It is remarkable that the proposed method be
robust to such trouble causing a shift estimates but no divergence.
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APPENDIX A

The Invariant Extended Kalman Filter (IEKF) [4,5] is an
EKF based on an alternative state error. One must define a
linearized error, an underlying group to derive the exponential
map, and then methodology is akin to the EKF’s.

1) Linearized Error: the filter state xn is given by (8).
The state evolution is given by the dynamics (5)-(7) and (12)-
(13), see Section II. Along the lines of [4], variables χIMU

n :=
(RIMU

n ,vIMU
n ,pIMU

n ) are embedded in the Lie group SE2(3) (see
Appendix B for the definition of SE2(3) and its exponential
map). Then biases vector bn =

[
bωTn ,baT

n

]T ∈ R6 is merely
treated as a vector, that is, as an element of R6 viewed as a
Lie group endowed with standard addition, Rc

n is treated as
element of Lie group SO(3), and pc

n ∈ R3 as a vector. Once
the state is broken into several Lie groups, the linearized error
writes as the concatenation of corresponding linearized errors,
that is,

en =
[
ξIMUT
n ebTn ξR

cT
n ep

cT
n

]T ∼ N (0,Pn) , (21)

where state uncertainty en ∈ R21 is a zero-mean Gaussian
variable with covariance Pn ∈ R21×21. As (15) are measure-
ments expressed in the robot’s frame, they lend themselves
to the Right IEKF methodology. This means each linearized
error is mapped to the state using the corresponding Lie group
exponential map, and multiplying it on the right by elements
of the state space. This yields:

χIMU
n = expSE2(3) (ξ

IMU
n ) χ̂

IMU
n , (22)

bn = b̂n + ebn, (23)

Rc
n = expSO(3)

(
ξR

c

n

)
R̂c
n, (24)

pc
n = p̂c

n + ep
c

n , (25)

where (̂·) denotes estimated state variables.
2) Propagation Step: we apply (5)-(7) and (12)-(13) to

propagate the state and obtain x̂n+1 and associated covariance
through the Riccati equation (11) where the Jacobians Fn, Gn

are related to the evolution of error (21) and write:

Fn = I21×21+
0 0 0 −Rn 0 03×6

(g)× 0 0 −(vIMU
n )×Rn −Rn 03×6

0 I3 0 −(pIMU
n )×Rn 0 03×6

012×21

 dt, (26)

Gn =


Rn 0 03×12

(vIMU
n )×Rn Rn 03×12

(pIMU
n )×Rn 0 03×12
012×3 012×3 I12×12

 dt, (27)

with Rn = RIMU
n , 0 = 03×3, and Qn denotes the classical

covariance matrix of the process noise as in Section IV-B.

3) Update Step: the measurement vector yn+1 is computed
by stacking the motion information

yn+1 =

[
vlatn+1

vupn+1

]
= 0, (28)

with assessed uncertainty a zero-mean Gaussian variable with
covariance Nn+1 = cov (yn+1). We then compute an updated
state x̂+

n+1 and updated covariance P+
n+1 following the IEKF

methodology, i.e. we compute

S =
(
Hn+1Pn+1H

T
n+1 +Nn+1

)
, (29)

K = Pn+1H
T
n+1/S, (30)

e+ = K (yn+1 − ŷn+1) , (31)

χ̂IMU+
n+1 = expSE2(3)

(
ξIMU+

)
χ̂IMU
n+1, (32)

b+
n+1 = bn+1 + eb+ (33)

R̂c+
n+1 = expSO(3)

(
ξR

c+
)
R̂c
n+1, (34)

p̂c+
n+1 = p̂c

n+1 + ep
c+, (35)

P+
n+1 = (I21 −KHn+1)Pn+1, (36)

summarized as Kalman gain (30), state innovation (31), state
update (32)-(35) and covariance update (36), where Hn+1 is
the measurement Jacobian matrix with respect to linearized
error (21) and thus given as:

Hn = A
[
0 RIMUT

n 0 − (pc
n)× 0 B C

]
, (37)

where A = [I2 02] selects the two first row of the right part
of (37), B = RcT

n RIMUT
n (vIMU

n )× and C = −(ωIMU
n − bωn )×.

APPENDIX B

The Lie group SE2(3) is an extension of the Lie group
SE(3) and is described as follows, see [4] where it was first
introduced. A 5× 5 matrix χn ∈ SE2(3) is defined as

χn =

[
Rn vn pn
02×3 I2

]
∈ SE2(3). (38)

The uncertainties ξn ∈ R9 are mapped to the Lie algebra
se2(3) through the transformation ξn 7→ ξ∧n defined as

ξn =
[
ξRTn , ξvTn , ξpTn

]T
, (39)

ξ∧n =

[ (
ξRn
)
× ξvn ξpn
02×5

]
∈ se2(3), (40)

where ξRn ∈ R3, ξvn ∈ R3 and ξpn ∈ R3. The closed-form
expression for the exponential map is given as

expSE2(3) (ξn) = I+ ξ∧n + a(ξ∧n )
2 + b(ξ∧n )

3, (41)

where a =
1−cos(‖ξRn ‖)
‖ξRn ‖

and b =
‖ξRn ‖−sin(‖ξ

R
n ‖)

‖ξRn ‖3
, and which

inherently uses the exponential of SO(3), defined as

expSO(3)

(
ξRn
)
= exp

((
ξRn
)
×

)
(42)

= I+
(
ξRn
)
× + a

(
ξRn
)2
× . (43)
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