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Abstract—Future electricity distribution grids will host a
considerable share of the renewable energy sources needed
for enforcing the energy transition. Demand side management
mechanisms play a key role in the integration of such renewable
energy resources by exploiting the flexibility of elastic loads,
generation or electricity storage technologies. In particular, local
energy markets enable households to exchange energy with each
other while increasing the amount of renewable energy that is
consumed locally. Nevertheless, as most ex-ante mechanisms, local
market schedules rely on hour-ahead forecasts whose accuracy
may be low. In this paper we cope with forecast errors by
proposing a game theory approach to model the interactions
among prosumers and distribution system operators for the
control of electricity flows in real-time. The presented game

has an aggregative equilibrium which can be attained in a
semi-distributed manner, driving prosumers towards a final
exchange of energy with the grid that benefits both households
and operators, favoring the enforcement of prosumers’ local
market commitments while respecting the constraints defined
by the operator. The proposed mechanism requires only one-
to-all broadcast of price signals, which do not depend either
on the amount of players or their local objective function and
constraints, making the approach highly scalable. Its impact
on distribution grid quality of supply was evaluated through
load flow analysis and realistic load profiles, demonstrating the
capacity of the mechanism ensure that voltage deviation and
thermal limit constraints are respected.

I. INTRODUCTION

We consider future distribution grids in a context of massive

deployment of Renewable Energy Sources (RES) and storage

technologies. Maintaining quality of supply in such a context

will require infrastructure reinforcements as usual, but also an

active participation of Distribution System Operators (DSO)

into the energy management of flexible Distributed Energy

Resources1 (DER). This can be achieved through Demand

Side Management, in particular, by gaining access to flexi-

bility from residential prosumers. A myriad of demand side

management mechanisms have been proposed and applied

for the scheduling of such flexible resources, from which

the most relevant ones are those that provide incentives to

1Flexible loads, controllable generation and storage resources.

prosumers for their active participation in distribution grid

energy management as selfish agents [1]–[5]. In particular,

we will consider local renewable energy markets that enable

households to agree with each other one hour-ahead of time

on the exchange of renewable energy. Such markets, as well

as all energy management mechanisms that rely on ex-ante

agreements (day-ahead, hour-ahead, etc.), imply agents sub-

scribing commitments on future energy flows, as a result of

market transactions. Nevertheless, such flows cannot be fore-

casted with high precision due to their dependency on human

behavior and on exogenous variables controlled by nature

(temperature, sunshine and wind). Thus, in order to cope with

the uncertainty of demand and local renewable production, a

real-time control of energy resources must provide the means

to drive households towards a final exchange with the grid that

benefits both prosumers and DSOs.

In this work we address the control of electricity flows

on a residential low voltage distribution grid in real-time.

We propose a game theory model that enables households to

decide which electricity flows to exchange with the distribution

grid in order to minimize their costs. Such costs depend on

the average strategy of all households and also on a penalty

signal associated to a coupling constraint. This aggregative

game enables households to optimize their own costs while

reducing voltage rises/drops and current flows on the lines.

The main contributions of this work are the following:

• We rely on game theory to model the interactions between

a DSO and prosumers for the control of their electricity

flows in real-time.

• The proposed game has a competitive aggregative equi-

librium that can be attained through dynamics that only

require one-to-all broadcast of price signals that do not

depend on the amount of players.

• To the best of our knowledge our work is the first to pro-

pose a real-time mechanism for the control of residential

electricity flows in a context of massive deployment of

renewable energy sources and storage, capable of enforc-

ing both voltage deviations and thermal limit constraints.



The article is structured as follows. We start by presenting

related work in Section II. Then we introduce the system under

study in Section III. The model and the aggregative game are

described in Sections IV and V respectively. In Section VI we

present the simulations and results. Finally, in Section VII we

conclude the article and provide some perspectives.

II. RELATED WORK

We focus on the literature related to real-time control of

electricity flows on distribution grids. Several centralized ap-

proaches have been proposed for real-time energy management

in distribution grid systems [6]–[8]. The difficulty in such

approaches is that flexible DER are owned and controlled by

households, which hold the local information needed for a

centralized control and will release part of this information

only if adequate incentives are provided. In [9] and [10]

authors propose decentralized mechanisms with the objective

to flatten the aggregated demand of a large set of households.

In [4] they consider the goal of the electricity supplier is to

maximize social welfare, which is achieved in a distributed

fashion by households optimizing their own benefits.

Game theory has been applied mainly to day-ahead energy

scheduling rather than to real-time control, and particularly

to modeling the interactions between the electricity supplier

and its clients, with the goal of minimizing energy costs

rather than enforcing DSO constraints [3], [4], [11]–[13].

In [3] they propose a Stackelberg game model that allows

electricity suppliers to define prices leading to an equilibrium

that minimizes Peak to Average Ratio. In [12] they follow

the same approach from [3], but with a strictly convex cost

function. In [13], an online version of a scheduling mechanism

for flexible appliances is proposed, which copes with price

prediction errors. The literature related to real-time control

of electricity flows on distribution grids does not consider

RES and storage resources or does not take particular care

of voltage deviations or thermal constraints.

III. SYSTEM DESCRIPTION

The low voltage distribution grid under study has one or

more three-phase four-conductors feeders to which households

(with different distributions of resources: PV, batteries and

flexible loads) are connected, all equipped with smart meters

and with the possibility of controlling the flows they exchange

with the electricity grid thanks to smart inverters [14]. House-

holds agree on the exchange of energy with each other through

a local energy market described in Section III-A. Then, a Real-

Time Control mechanism (RTC) described in Section III-B

copes with forecast errors by driving households towards a

final exchange with the grid that benefits the prosumer and

respects the DSO’s quality of supply requirements. The RTC

mechanism is combined with Dynamic Phase Switching (DPS)

as described in Section III-C for balancing load across phases.

A. Local renewable energy market

We consider the scheduling mechanism proposed in [5],

where houses agree one hour-ahead of time, through a lo-

cal market implemented over a blockchain-based transactive

platform, on the amount of energy they exchange with each

other on a 10 minutes basis. In addition to the exchange with

neighbors, any remaining energy flow is contracted with the

supplier. One hour ahead of every time slot, each house fixes

the schedule of battery usage until the end of the day (moving

window), imposing cycling and depth of discharge constraints

aimed to extend the battery lifespan. The DSO provides agents

with rewards for locally trading renewable energy when is best

for the grid, which are attributed ex post to incentive agents

to enforce their contracted quantities in real-time by absorbing

all or part of their forecast errors with their flexibility budget2.

B. Real-time control mechanism

Just before each time slot begins, prosumers update their

forecast for the next 10 minutes and decide up to which

point the error will be absorbed by their flexibility budget

or by the electricity supplier. Deviating from the optimal

flexibility schedule has an associated cost due to battery (or

comfort) degradation, while deviating from the hour-ahead

market committed quantities implies loosing part of the reward

as well as the beneficial price. The costs of relying on extra

flexibility, the final electricity price and the allocation of hour-

ahead market rewards are described in Sections IV-C, IV-D and

IV-E respectively. In addition, during the time slots of high

excess of production or demand, households will be charged

a penalty fixed by the DSO through the transactive platform,

associated to a constraint on the average flow that neighbors

exchange with the grid. Such a price signal allows the DSO to

influence the decision of households towards a final exchange

with the grid that reduces voltage rises/drops and current flows.

C. Dynamic phase allocation

We need to ensure the flows across phases are as evenly

distributed as possible in order to improve RTC mechanism

performance, which is not aimed at balancing load across

phases. We assume the operator is capable of deploying solid

state switches in a subset of households and of controlling

dynamically their allocation to phases as described in [15].

This functionality is complementary to the RTC mechanism.

IV. MODEL

We consider a set of competitive agents H = {1, 2, . . . , H}
representing prosumers and a set N = {1, 2, . . . , N} of

logical nodes on the feeder where the connections of several

households are aggregated3, referred to as points of common

coupling (PCC). A household is connected to only one PCC.

Households control the amount of energy exchanged with the

grid by adapting the demand from batteries or flexible loads4.

The goal of the operator is to influence households’ decisions

in order to reduce voltage deviations and current flows.

2Flexibility from batteries/loads reserved for absorbing forecast errors.
3e.g.: start of a branch or where points of measurement are deployed.
4We model the flexibility of loads as a small battery. A comprehensive

model of demand elasticity is out of the scope of this work.



A. State of agents

The state of agents is composed by demand and production

forecasts, by the quantities committed on the hour-ahead local

market, and by the state of the battery at the beginning of the

current time slot, determined by the State of Charge (SoC)

and by the accumulated charge/discharge quantities. For each

agent i ∈ H, the ex-ante mechanism scheduled the usage of the

battery for the current time slot to be ŝi, in order to exchange

x̂i = x̂i
m+x̂i

u with the grid, where x̂i
m and x̂i

u are the amounts

traded with neighbors and with the supplier, at prices Pm

and Pu (Pf in the case of an injection) respectively, under

a forecasted gap r̂i between production ĝi and consumption

l̂i according to the following balance equation

x̂i
m + x̂i

u + ŝi = l̂i − ĝi = r̂i. (1)

A closer to real-time forecast or a Very Short Term Load

Forecast [16] enables each house to update its gap between

consumption and production as ri = r̂i+r̃i, where r̃i = l̃i−g̃i

is the error on hour-ahead production and load forecasts.

B. Agents’ strategies

The real-time control of each household aims to decide

at which extent the error r̃i will be absorbed by the grid

or by demand flexibility. Thus, each agent i decides on a

strategy (xi, si), where si ∈ R
N represents the amount of

energy charged (negative) or discharged (positive) to/from the

batteries and xi ∈ R
N is the total amount of energy to be

exchanged with the grid on the current time slot5 (includes

the energy exchanged with neighbors and with the electricity

supplier). The relationship between the battery flow si and the

grid flow xi is xi + si = li − gi = ri, the same as in (1).

C. Batteries

The amount of energy stored in the battery of household i

at the end of current time slot is represented by ei ∈ R
N . Its

evolution in time is given by ei = ei0−si, where ei0 represents

the energy on the battery at the beginning of current time slot.

Flexibility operations must respect the following constraint:

max[ei0 − E
i
, si, ei] ≤ si ≤ min[ei0 − Ei, si, ei] (2)

bounding battery usage to the intersection of three segments:

a) Energy capacity: the battery cannot be discharged or

charged beyond its minimum or maximum energy levels, Ei

and E
i
, which usually correspond to a SoC around 10-20%

and 80-90% respectively, in order to preserve its lifetime. The

scheduling mechanism limits the energy capacity available for

hour-ahead trading to a range of SoC between 25% and 75%,

reserving a share of the capacity for the RTC mechanism,

which can use a depth of discharge between 10% and 90%.

b) Power capacity: maximum energy that can be dis-

charged/charged on a single time slot, si and si respectively.

5All but one of the vector components are equal to zero. In future work
this will not be the case, due to electric vehicles that can connect to any PCC.

c) Cycling capacity: ei and ei are the charging and

discharging cycling constraints. For instance, the hour-ahead

scheduling mechanism limits battery usage to one daily cycle,

while up to an extra cycle per day can be exploited by the RTC

mechanism. This extra capacity is allocated to individual time

slots in proportion to the corresponding day-ahead forecasted

production, in order to adapt the flexibility available during

sun hours when forecast error variability is higher.

For batteries being operated myopically in real-time under

such constraints, the degradation costs can be expressed as

Ci
e(s

i) = ai(si − ŝi)T (si − ŝi) + bi
T
(si − ŝi) (3)

where si and Ci
e represent the use of demand flexibility and

its corresponding costs, regardless of the source of flexibility

being the battery or the elasticity of demand. In the case of

batteries, ai = ais and bi = bis are parameters that must be

chosen adequately to ensure that the costs for an extra use

of the battery are compensated by the economic incentives,

depending on battery characteristics [17] and on the flexibility

budget reserved for the RTC mechanism. For the case of

flexible loads, ai = ail and bi = 0 represent a purely quadratic

disutility function as was already proposed in [18], [19].

D. Final electricity prices

With respect to prices, we need to take into account the two

components of the hour-ahead commitment x̂i, which are the

quantity x̂i
m traded with neighbors at price P i

m and the quantity

x̂i
u contracted with the supplier at price Pu (or at Feed-In Tariff

(FIT) Pf if the prosumer is selling). The price to pay for the

effectively exchanged flow xi will be the following:

Ci
p(x

i) = (xi − x̂i
m)p+ x̂i

mP i
m (4)

where

p =

{

Pu,

Pf ,

if xi >= x̂i
m,

else.

Such a price allocation models the fact that a household i

that consumes or injects more than what was agreed on the

market is considered to have enforced the market transaction;

the excess of consumption or injection will be charged or

payed at the price Pu or Pf respectively. Otherwise, a house

that consumes6 less than agreed on the market will pay xi
mP i

m,

as if she had consumed the committed quantity, but will receive

(xi
m − xi)Pf , which corresponds to automatically selling the

difference to the supplier at a lower price (Pf < Pm < Pu).

E. Reward allocation

The reward attribution depends on the deviation from the

hour-ahead committed quantities as follows:

Ci
r(x

i) = air(x
i − x̂i)T (xi − x̂i)−R (5)

6The logic is similar if an agent agrees to inject energy for their neighbors.



where the value R is defined one hour-ahead by the DSO,

for instance as a percentage of the transacted quantity. The

reward gets reduced quadratically as the agent i deviates from

its hour-ahead committed quantity x̂i. Note that if the deviation

is too big the reward becomes a penalty.

F. Aggregative Constraint

The strategies of households are coupled by an aggregative

constraint that enables DSO to indirectly enforce voltage

deviations and thermal constraints. The constraint over the

average strategy is as follows:

c ≤ 1
H

∑H

i=1 x
i ≤ c (6)

where c and c ∈ R
N are the maximum permitted aggregated

flows on each PCC in order to conservatively enforce voltage

deviations and thermal constraints. We denote as C ⊂ R
N , the

set of 1
H

∑H

i=1 x
i such that (6) is satisfied.

The constraints are obtained by the DSO through load flow

sensibility analysis [8]. For instance, for a period of high

injection we progressively increase the aggregate injection and

we allocate the increase to individual household in proportion

to their injection on the previous time slot. When a constraint is

detected, the injections on the previous iteration are considered

as the maximum power transit supported by the grid for

the time slot. This procedure requires specific knowledge

about the grid infrastructure (nodes, lines, impedances, etc.),

which is not necessarily available for distribution grids. Such

information can be estimated by using different measurements

of power injection, voltage and/or current variations [20]–

[24]. This would require short measurement campaigns after

which a model of the grid can be obtained. Machine learning

techniques can be applied to detect when a new measurement

campaign for a model update is necessary.

G. Problem definition

Each agent i’s goal is to find a strategy (xi, si) such that

xi ∈ argmin
y

J i(y, u) (7)

s.t.

(1), (2),

y ∈ [−xi, xi] (8)

where, J i(y, u) is the local cost function that depends on the

individual flow y and on u( 1
H

∑H

j=1 x
j , λ), a control (price7)

signal broadcasted (on the transactive platform) by the DSO,

which depends on the average strategy flow of houses and on

λ, a penalty associated to the coupling constraint in (6). The

parameter xi in constraint (8) corresponds to the maximum

power capacity contracted with the supplier by household i.

We denote with X i the set of feasible values of xi.

The cost function J i : RN × R
N → R ∪∞ is defined as:

J i(xi, u) = f i(xi) + uTxi (9)

7negative in case of peak of production and positive in a peak of demand.

where the function f i(xi) = Ci
e(x

i) + Ci
r(x

i) + Ci
p(x

i)
reflects the costs that depend only on the individual strategy

flow, which are the sum of battery/comfort degradation costs,

reward allocation and final electricity pricing8.

V. COMPETITIVE AGGREGATIVE GAME

The problem described above forms a competitive aggrega-

tive game, as the optimal response of an agent depends on

the aggregate response of the rest of players and they all

share a common penalty associated to a coupling constraint.

Grammatico proved in [25] that such a game has an ag-

gregative equilibrium under assumptions on functions {f i}
H

i=1

being l-strongly convex and on compactness, convexity and

Slater’s qualification [26] of the sets {X i}
H

i=1 and C. Note

that we need C ⊆ 1
H

∑H

i=1 X
i to avoid the operator fixing

constraints that are not attainable with the feasible responses

of households. For this we assume that the DSO can estimate

the set 1
H

∑H

i=1 X
i or that, for instance, households could be

asked to communicate their flexibility budget for every time

slot in which the real-time control mechanism is activated.

Aggregative equilibrium is defined as follows.

Definition 1:: Aggregative equilibrium. A tuple

((xi∗)Hi=1, λ
∗) is an Aggregative equilibrium, for the game

described in (7) with the coupling constraint in (6) if
1
H

∑H

i=1 x
i∗ ∈ C, and for all i ∈ H,

xi∗ ∈ argmin
y∈X i

f i(y) +
(

D 1
H

(

y +
∑H

j 6=i x
j∗
)

+ λ∗
)T

y.

(10)

A. Iterative Process

Such an equilibrium can be attained by following the semi-

distributed approach proposed by Grammatico [25, Section

III]. The mechanism relies on households responding opti-

mally to the incentive signal u. The iterative process to attain

an aggregative equilibrium starts at the beginning of the 10

minutes time slot with a period of around 10 seconds9, which

should enable households to adapt to penalty changes, while

providing enough iterations for the semi-distributed algorithm

to converge to the equilibrium. At the beginning of k-th

iteration, the operator will estimate the aggregated optimal

response A(u(k−1)) on the previous iteration by measuring

the flows on each PCC of the corresponding feeder. Then it

will update the signal u(k) = κ(t, u(k−1)), using the dynamic

control law κ proposed in [25, Section III]. The signal will

then reach the prosumers through the next published block on

the transactive platform. At the detection of a change in signal

u, each agent will proceed to update its optimal response xi∗
(k),

by updating its battery optimal flow si∗(k) from (1).

In each iteration, prosumers decide on the energy flow to

exchange with the grid on the whole 10 minutes, while relying

on forecast done at the beginning of the time slot and on

8Note that Ci
p(x

i) are convex piecewise linear functions, while functions

f i are strictly convex and l-strongly convex for any l ∈
[

0, 2(ai + air)
)

.
9While the time between blocks on the blockchain-based transactive plat-

form described in [5] is of around 5 seconds.



measurements of energy flows and battery usage up to the

current iteration. The relationships on the optimal flows for

the entire time slot and the flows up to iteration k are as

follows

xi∗
(k) = xi

0k + xi
kT (11a)

si∗(k) = si0k + sikT (11b)

where xi
0k corresponds to the flow exchanged with the grid

up to the k-th iteration and xi
kT to the future energy flow

up to the end of the time slot. The notation is the same for

battery flows. Note that we assume households have access to

the cumulated energy exchanged with the grid xi
0k , through

the smart meter, and to the corresponding battery usage si0k,

through the smart inverter/battery controller.

The model we apply is deterministic, as it does not consider

that the state of agents can change during the negotiation

process towards the equilibrium. It relies then on the forecast

done by households at the beginning of each time slot to

be perfect. An analysis of the sensibility to very short term

forecast errors and the possibility of applying stochastic game

theory are subjects of future research.

Under such a deterministic scenario, each household will

define the battery setting for the rest of the time slot as follows

sikT = ri − xi∗
(k) − si0k (12)

where (1) and (11b) were used. Here we assume that

households set their batteries to the value sikT so that if the

flows are maintained up to the end of the time slot the total

flow exchanged with the grid during the time slot would be

xi∗
(k).

The iteration procedure towards an aggregative equilibrium

is summarized as follows

Algorithm 1 Dynamic control of competitive optimal re-

sponses [25]

Initialization: t← 0;

• The DSO chooses u(0);

Iterate until convergence:

• DSO broadcasts u(0) to all agents

◦ Each agent i ∈ H computes xi∗(u(t)),
◦ and define battery setting for the rest of the time slot

sitT .

• DSO measures average best response A(u(t)),
• obtains u(t+1) = κ(t, u(t))

t← t+ 1

VI. SIMULATIONS AND RESULTS

A. Procedure and system scenario

The simulation of the real-time control mechanism relies on

local energy market results and on an allocation of households

to phases updated by a DPS mechanism. Those two additional

mechanisms are simulated following the procedures described

in [5] and [15] respectively.

We consider the forecast used by households for the hour-

ahead market to be a day-ahead persistence forecast, and the

updated forecast just before the time slot to be perfect, which

allows us to apply a deterministic model.

With respect to the monitoring period, the RTC mechanism

is only launched if during the previous time slot we detected

a voltage deviation of 9% or a current flow above 70% of the

thermal limit. To simulate such monitoring we realize load

flow studies for every time slot in high sun hours (from 10

am to 2 pm), and when a risk of constraint is detected the

RTC mechanism is launched.

We consider a distribution grid composed of one feeder with

50 households, 60% of which are equipped with a battery and

80% with a PV panel. All households participate on the market

and are eligible for dynamic phase switching. With respect to

the level of aggregation of households on each logical PCC, we

consider one PCC per phase of the feeder. This means that all

the houses on the same phase are considered to share the same

logical PCC. This keeps the model simple and independent

of the physical structure of the feeder and the distribution

of households. Furthermore, the measurements needed by

the DSO to implement the real-time control mechanism are

currently available at this level of aggregation without the need

of deploying further measurement devices.

B. Simulation tools and parameters

To implement the mechanism described in Algorithm 1, we

use MATLAB [27] together with the Gurobi [28] optimization

suite. For the power flow analysis, we rely on the Distribution

Network Simulation Platform (DisNetSimPl) developed by

EDF R&D. We rely on an electricity network model con-

formed by a 20 kV/410 V transformer of 160 kVA rated power

and a feeders with 70 mm2 aluminum power lines.

The parameters used for the simulations were the following:

Load profiles -: We use realistic synthetic consumption

data obtained from the Multi-agent Simulator of Human

Behavior SMACH [29] as input for the household optimization

problem. The load curves correspond to 7 winter days of

consumption on a 1-minute basis from 50 households of mixed

profiles.

Production profiles -: We consider the same synthetic

production curve for all the PV panels (all located on the same

area), but the profile varies on a daily basis.

Batteries -: We consider ideal batteries of 9 kWh total

capacity. Up to 6 kWh (10% to 77%) are allowed to be used

for local market exchanges in order to preserve the battery

lifespan while reserving a share (1.2 kWh) of the capacity to

the RTC mechanism, which can use up to 7.2 kWh (10% to

90%) of the capacity and perform an additional cycle10 for

10This would be similar to allowing batteries to cycle up to two times in a
day. Nevertheless, we preallocate the flexibility budget to individual time slots
proportionally to the forecasted energy production, without the possibility of
accumulating the budget that is not used.



absorbing forecast errors. For the case of flexible appliances,

whose elasticity is entirely reserved for the RTC mechanism,

we consider up to 1 kWh of energy is available for coping

with forecast errors11.

Electricity prices -: We consider a common supplier

offering a Time Of Use pricing with two levels: 15 c/kWh

from 12 am to 4 pm and 20 c/kWh from 5 pm to 11 pm.

While the FIT is considered to be 10 c/kWh.

C. Results and discussion

We analyze the performance of the RTC mechanism during

the time slots with high renewable energy production (between

10 am and 2 pm). In particular, we are interested in cases

where we observe that thermal or voltage limits are breached,

or close to the limits, for the scenario without RTC. From the

7 days analyzed on the simulations we focus only on the most

critical one. First, we analyze voltage deviations with respect

to the nominal value Un and then the reduction of current

intensity over the lines. We compare three cases, one without

any control from the DSO in real-time, one with DPS only and

one applying the RTC mechanism coupled with DPS. For the

first two cases households optimize their electricity bill with

the signal u being 0 for all time slots.

1) Reduction of Voltage deviations: We start by analyzing

the impact of the RTC mechanism in voltage deviations along

the feeder. In Figure 1, we see four surfaces, the red (planar)

surface shows the voltage limit during the period in which

RTC was active (from time slot 64 up to 74), the dark blue

one shows the voltage deviations observed without any DSO

control, the light blue one with only DPS being applied and

the green one applying the RTC mechanism coupled with

DPS. While for the cases without RTC we can observe the

voltage limits being violated (when the corresponding surfaces

go above the limit), the application of RTC combined with

DPS achieves consistent reductions of (maximum) voltage

deviations. This can be observed as the green surface (RTC

+ DPS) goes below the others starting from time slot 64 and

up to time slot 74. These results demonstrate the capacity of

RTC combined with DPS for avoiding voltage limit breaches.
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Fig. 1. Maximum voltage deviations along the feeder.

11A higher amount could be considered taking into account that only a
water heater can consume more than 5 kWh a day

2) Reduction of current flows through the lines: With

respect to the current flows through the lines, in Figure 2

we show the current intensity along the Feeder during the

monitoring period. The red (planar) surface shows the thermal

limit during the period in which RTC was active. During this

period we can clearly appreciate considerable reductions of

current intensity all along the feeder avoiding the violation of

thermal constraints that are observed for the two cases without

RTC12. Such reductions are enough to avoid or postpone the

replacement of entire line segments, which directly translates

into a considerable reduction of infrastructure investment.
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Fig. 2. Current intensity level along the feeder.

3) Dynamic control mechanism performance: With respect

to the performance of the dynamic control mechanism to attain

the aggregate equilibrium, we observed an improvement of

the convergence when combining RTC with DPS. Without the

DPS mechanism the mean amount of iterations was over 60

(10 minutes), which would not be applicable to our setting

without further tuning. The DPS mechanism brought the

mean convergence time to 5 minutes, with a maximum of 39

iterations, which is adequate for our setting. This is probably

due to the fact that our level of logical PCC aggregation

is the phase, and if the loads and their DER are better

distributed among phases the mechanism converges faster. For

instance, if one of the phases has little or no flexibility budget,

then the convergence will be slower. After convergence, each

household just needs to put the battery to track the optimal

flow to exchange with the grid during the rest of the time slot.

VII. CONCLUSIONS AND PERSPECTIVES

Local energy markets enable households to exchange energy

with each other while increasing the amount of renewable

energy that is consumed locally. Such markets increase the

capacity of distribution grids for hosting renewable energies,

but, as all ex-ante mechanisms, local market schedules rely

on hour-ahead forecasts whose accuracy may be low. We

propose a game-based real-time control mechanism to cope

with forecast errors by driving households to a final exchange

with the grid that benefits both the prosumer and the DSO.

The proposed game has an aggregative equilibrium which can

12The rebound effect after the end of the RTC period, as in most demand
response applications, happens when current and voltage levels are safer.



be attained in a semi-distributed manner with a number of

iterations independent of the amount of households.

The performance of the mechanism is evaluated through

load flow analysis and realistic load curves for a scenario

with 50 households, where 80% of them are equipped with

PV panels and 60% with storage. The simulations show that

without the control mechanism the grid would not be capable

of hosting such level of penetration of renewable energies.

However, when the real-time control mechanism is applied

in combination with dynamic phase allocation, maximum

voltage deviations and current intensities are considerably

reduced, avoiding the violations of voltage deviation and

thermal constraints. We show that the proposed real-time

mechanism is capable of adjusting the flows issued from local

market commitments towards an equilibrium that optimizes

the prosumers’ electricity bill while increasing the capability

of the distribution grid to support the energy transition.

The performance of the proposed real-time market mecha-

nism can be further improved by better selecting the param-

eters of the dynamic control scheme and of the local cost

functions. The economic performance for the DSO and the

performance of the equilibrium with respect to social welfare

require further analysis. With respect to the combination

with the dynamic phase switching approach, the selection of

households and the switching mechanism could be specifi-

cally adapted to further reduce voltage deviations. We are

currently working on a sensibility analysis to very short term

load/production forecast errors that could provide valuable

insights for the development of stochastic game models.
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