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Pretreatment and gaseous 
radiocarbon dating of 40–100 mg 
archaeological bone
H. Fewlass   1, T. Tuna2, Y. Fagault   2, J.-J. Hublin1, B. Kromer1,3, E. Bard2 & S. Talamo1

Radiocarbon dating archaeological bone typically requires 300–1000 mg material using standard 
protocols. We report the results of reducing sample size at both the pretreatment and 14C measurement 
stages for eight archaeological bones spanning the radiocarbon timescale at different levels of 
preservation. We adapted our standard collagen extraction protocol specifically for <100 mg bone 
material. Collagen was extracted at least twice (from 37–100 mg material) from each bone. Collagen 
aliquots containing <100 μg carbon were measured in replicate using the gas ion source of the 
AixMICADAS. The effect of sample size reduction in the EA-GIS-AMS system was explored by measuring 
14C of collagen containing either ca. 30 μg carbon or ca. 90 μg carbon. The gas dates were compared to 
standard-sized graphite dates extracted from large amounts (500–700 mg) of bone material pretreated 
with our standard protocol. The results reported here demonstrate that we are able to reproduce 
accurate radiocarbon dates from <100 mg archaeological bone material back to 40,000 BP.

Bone is one of the most frequently radiocarbon-dated materials recovered from archaeological sites. However, 
many precious archaeological bones, such as human remains or Palaeolithic bone tools, are too small or valuable 
for extensive destructive sampling. The reduction of sample size to enable direct dating of precious bone is there-
fore a key concern for the archaeological community.

In the 1960s and 1970s, gas proportional counters required many grams of bone to produce a radiocarbon 
date1,2. The development and utilisation of Accelerator Mass Spectrometers (AMS) in the 1980s represented a 
revolutionary step in the reduction of sample size and time required for dating3. Routine measurements today 
typically require 500–1000 micrograms of carbon (μg C) to produce a high precision date. In recent years, sev-
eral AMS labs have worked on modifications to the graphitisation and AMS measurement process for smaller 
samples containing <500 μg C4–13. However, the graphitisation of small sample sizes is often time consuming 
and can be prone to large contamination effects14,15. A recent study by Cersoy, et al.16 demonstrated that graphite 
targets containing ca. 200 μg C from archaeological bones can be successfully produced and measured using the 
IonPlus Automated Graphitisation Equipment III (AGE 3)17 and MIni CArbon DAting System (MICADAS)18,19 
developed at ETH Zurich. However, the hybrid nature of the MICADAS system offers an alternative solution to 
the complex process of graphitising small samples. Organic samples containing <100 μg C can be placed into 
an elemental analyser (EA) directly coupled to the gas ion source of the MICADAS via the gas interface sys-
tem (GIS)15,18,20–24. The automated system reduces both sample preparation time and the risk of contamination 
through handling, and has been successfully utilised in environmental and climatic applications23,25–28. In our 
preliminary study29 we demonstrated that the gas ion source of the AixMICADAS30 is suitable for dating bone 
collagen CO2 samples of <100 μg C back to 35,000 BP (uncalibrated radiocarbon years before AD 1950).

However, as sample size is reduced the effect of contamination during pretreatment and measurement 
increases greatly. Sample pretreatment involves the extraction and purification of carbon endogenous to the orig-
inal bone. Any contamination remaining in the sample at the time of dating can lead to erroneous results. The 
effects become increasingly catastrophic with the increasing age of the sample due to the minute concentrations 
of residual 14C. For example, in a bone extract ca. 40,000 BP, 1% modern carbon contamination would skew the 
resulting 14C age by over 7,000 years.
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It is standard practice to extract the proteinaceous portion of bone for 14C measurement, generally referred 
to as ‘collagen’31. Although collagen forms around 22% weight of modern bone, degradation following death and 
burial makes collagen extraction increasingly challenging with advancing age32. Whilst the minimum threshold 
for reliable 14C dating is generally considered to be 1%32, it is common for the collagen portion of Palaeolithic 
bone to constitute <10% weight. The lower the level of collagen preservation, the more bone must be pretreated 
to obtain sufficient material to assess the quality of the extract (i.e. isotopic and elemental analysis) and for 14C 
dating. Therefore, 300–1000 mg material is commonly sampled for dating Palaeolithic bones.

The majority of 14C labs follow collagen extraction protocols based on Longin33. This involves demineral-
isation of either powdered bone or bone chunks using hydrochloric acid (HCl) followed by gelatinisation of 
the collagen in weakly acidic water and freeze-drying of the final extract. Different labs vary in the strength of 
reagents used, the duration of treatments and the inclusion of further decontamination steps. Many studies have 
been published comparing the collagen yields and isotopic values of the various extraction protocols published in 
the literature34–38 as variations in pretreatment conditions can lead to differences in the quantity and quality of the 
final extracts. The addition of an ultrafiltration step, first proposed by Brown, et al.39 has in particular improved 
the accuracy of 14C dating of Palaeolithic bones40; gelatinised samples are filtered to concentrate large (>30 kDa) 
molecules to produce a ‘cleaner’ collagen extract. The technique is not unanimously agreed upon due to the risk 
of contamination from the humectant-coated filter41, the effectiveness of the application37 and the loss of collagen 
during filtration34. However, stringent cleaning steps have been established42–44 and in many cases the re-dating 
of ancient bones with ultrafiltration methods has produced much older dates than previous measurements from 
non-ultrafiltered extracts40,45,46. The collagen pretreatment protocol routinely applied to Palaeolithic bone at 
the Max Planck Institute for Evolutionary Anthropology (MPI-EVA, Leipzig, Germany) is based on a modified 
Longin plus ultrafiltration protocol36 and has a strong track record of obtaining high yields of high quality colla-
gen from ca. 500 mg samples of Palaeolithic bone47.

The aim of this study was to determine a suitable method to pretreat <100 mg bone material and further 
investigate if the gas ion source of the AixMICADAS29,30 at CEREGE (Centre de Recherche et d’Enseignement de 
Geosciences de l’Environnement, Aix-en-Provence, France) is suitable for measuring small archaeological bone 
samples with sufficient accuracy and precision. We investigated the effect of sample size reduction at both the pre-
treatment and gas measurement stages. Tests were performed on a set of eight archaeological bones ranging from 
1% to >10% collagen preservation known to date from >50,000–1,400 BP. Each bone was pretreated multiple 
times from starting weights of 37–100 mg bone material. Each collagen extract was split and dated multiple times 
with the gas ion source of the AixMICADAS to test replicability. The gas dates were compared with graphite dates 
from collagen extracted from >500 mg material of the same bones. We further compared gas dates of ca. 30 μg C 
and ca. 90 μg C to explore the effect of sample size on the blank level of the EA-GIS-AMS system. The results 
demonstrate our ability to obtain accurate and moderately precise radiocarbon dates from <100 μg C extracted 
from 37–100 mg bone material back to 40,000 BP. The methods described will be used to extract and 14C date 
collagen from precious archaeological bone artefacts with minimal sample destruction.

Results
Bone pretreatment.  Prior to this study, 500 to 700 mg of each bone had been pretreated using our standard 
collagen extraction protocol36. The extracts were analysed by EA-IRMS at the MPI-EVA to assess their suitability 
for dating (C%, N%, C:N, δ13C, δ15N) and were measured at the Klaus-Tschira-AMS lab in Mannheim, Germany 
(lab code: MAMS). The same collagen extracts from R-EVA 1489, R-EVA 123 and R-EVA 124 were also dated at 
the AixMICADAS facility to cross-check the ages29. The results were used as a reference for the preparation of 
small (<100 mg) aliquots of bone.

Modifications to our standard pretreatment protocol were carried out for five bones (Fig. 1): three relatively 
‘well-preserved’ (>10% collagen preservation) archaeological bones (Fig. 1a,b,e) and two ‘poorly-preserved’ 
bones (<5% collagen preservation) (Fig. 1c,d). Once we had determined the optimum pretreatment protocol for 
<100 mg material, we applied this to three more archaeological samples: R-EVA 1489, R-EVA 1905 and R-EVA 
1860 (two extracts per bone) (pretreatment information shown in Supplementary Dataset S1).

The standard practice in our lab is to extract large bone aliquots (ca. 500 mg material) as a solid piece. 
Although this method requires a large time investment (demineralisation can take up to four weeks with the 
HCl 0.5 M changed twice per week), we observe much higher collagen yields using this technique compared to 
powdered extracts of equal starting weight. Small aliquots (<100 mg) of the test bones were initially pretreated 
as both fine powder and as solid chunks. For solid pieces of bone, in most cases the collagen yield from small 
extracts (<100 mg) equalled or exceeded the collagen yields of large extracts (500–700 mg material) and no dif-
ference was observed between aliquots of 50 mg bone compared to 70 mg or 100 mg bone material (Fig. 1). In 
contrast, the powdered aliquots of well-preserved bones generally yielded around half the amount of collagen 
compared to solid pieces, in line with our observation for large starting weights of bone. Powdered aliquots from 
the poorly preserved bones either yielded nothing or small amounts (<1 mg) of crumbly yellow material. Due to 
the poor results from the pretreatment of powdered samples, our protocol for small amounts of bone is based on 
the extraction of solid pieces as per our standard protocol for larger aliquots. The pretreatment information for 
powdered extracts is included in the supplementary information.

We initially applied our standard collagen extraction protocol to <100 mg bone material of the well-preserved 
bones. Three steps of the pretreatment protocol were then modified to see what effect this had on the collagen 
yield and quality of extracts from small bone aliquots (Fig. 1): step (1) the duration of the demineralisation 
stage; step (2) the strength of HCl during the demineralisation stage; step (3) the temperature and duration of 
the gelatinisation stage. Bone collagen yields along with elemental (C%, N% and C:N) and stable isotopic data 
(δ13C and δ15N) were used to evaluate the extracts from the different methods. In addition, Fourier Transform 
Infrared Spectroscopy (FTIR) was used to double check the preservation of the extracted collagen, and to detect 
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Figure 1.  Graphs showing the collagen yields from small aliquots of bone according to variations in 
pretreatment conditions: (a) R-EVA 123, (b) R-EVA 124 (c) R-EVA 570, (d) R-EVA 548 and (e) R-EVA 1753. 
Step 1: duration of the demineralisation stage. Step 2: strength of HCl during demineralisation. Step 3: duration 
and temperature of the gelatinisation stage (HCl pH3). In (a–d) the horizontal grey line shows the collagen 
yield from a large aliquot (>500 mg material) of the same bone. A higher number of data points are present for 
R-EVA 1753 (e) as an aliquot of this bone was extracted alongside each batch of samples. The horizontal grey 
band in e shows the range in collagen yield of repeated large extractions from the background bone. The dashed 
lines at 1% show the guideline minimum requirement for reliable 14C dating. Asterisks mark extracts which 
were dated using the gas ion source (see Fig. 3).

https://doi.org/10.1038/s41598-019-41557-8
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the presence of possible carbon contaminants31,48,49. Detailed pretreatment information for all extracts can be 
seen in Supplementary Dataset S1.

For the poorly preserved bones (Fig. 1c: R-EVA 570 and Fig. 1d: R-EVA 548) the pretreatment was softened 
in order to minimise collagen loss during the extraction. The weaker HCl (0.2 M) (step 2) and lower gelatinisa-
tion temperature (60 °C) (step 3) required a greater time investment and did not necessarily increase the yield of 
collagen compared to using stronger acid (HCl 0.5 M) during demineralisation and higher temperatures (70 °C) 
during gelatinisation. For the poorly preserved samples, demineralisation in HCl 0.5 M generally occurred after 
one day (4 °C). As Schoeninger, et al.50 observed that one disadvantage of extracting collagen from solid chunks 
was the tendency for incomplete demineralisation, several extracts were demineralised in HCl 0.5 M for two days. 
This resulted in lower collagen yields for the poorly preserved bones and in the case of R-EVA 548, the yield of 
these extracts was so low that the extracts were affected by C contamination to a large extent.

During the gelatinisation stage (step 3), the collagen yield was higher from aliquots which were removed from 
the heater block as soon as solubilisation had occurred compared to those left on the heater block for 20 h as per 
our standard protocol for >500 mg. For all bone samples >30,000 BP, solubilisation occurred in <6 h (Fig. 1), 
whereas R-EVA 1489 and R-EVA 1905 required up to 27 h for full solubilisation (Supplementary Dataset S1).

Of the extracts dated, two (R-EVA 548.13 and R-EVA 548.14) fell close to or under the minimum threshold 
(1%) for reliable 14C dating (Supplementary Dataset S1). There were small variations in elemental values between 
pretreatments of the same bone but all values (Supplementary Dataset S1) fell within the accepted ranges of 
‘well-preserved’ collagen32. The stable isotopic values were in keeping with the palaeodietary expectations for 
each animal and were consistent between extracts. Analysis with FTIR was performed for all collagen extracts; 
each extract dated had a spectra characteristic of well-preserved collagen when compared to library spectra (see 

Figure 2.  Summary of bone pretreatment protocols used at the MPI-EVA for large (left) and small (right) bone 
samples.

https://doi.org/10.1038/s41598-019-41557-8
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Figure 3.  14C gas measurements of small (25–40 μg C) and large (70–100 μg C) aliquots of collagen extracted from 
eight bones (a–h) spanning the 14C time range. Each data point shows the 14C age (BP) and 1σ error (years) of a single 
EA-GIS-AMS measurement. a) Shows the uncorrected measurements of background bone R-EVA 1753 (>50,000 
BP). An aliquot of this bone was prepared alongside every batch of samples from sampling to measurement to 
monitor contamination introduced during sample preparation. These measurements were used in the age calculation 
of the other archaeological samples (b–h), according to session, size (small or large) and type (solid bone extract). The 
arithmetic mean and associated SD of system blank (IAEA-C1/phthalic anhydrite) measurements are shown as a solid 
horizontal blue line and dashed blue lines respectively for large 80–100 μg C measurements and as a solid horizontal 
grey line and dashed grey line for small 25–40 μg C measurements. For all gas measurements in graphs b-h: the 
absolute error of the blank has been set to 0.001 and an external error of 3.5‰ has been added to all measurements 
based on the long term standard deviation of standards. Dates >15,000 BP have been rounded to the nearest 10 
years. Asymmetrical errors are shown where F14C ≤ 1σ*10. Grey shaded bands show the 1σ range of graphite dates 
measured from large extracts of the same bone. In a-h, the vertical dotted lines separate different collagen extracts 
of the same bone with the bone starting weight and collagen yield shown below. The number in the top left of each 
section is the preparation number of the bone, corresponding to Supplementary Dataset S1. Asterisks mark collagen 
extracts dated with the gas ion source reported in Fewlass, et al.29.

https://doi.org/10.1038/s41598-019-41557-8
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Supplementary Fig. S3). Considering the collagen yields and 14C measurements, the optimum pretreatment pro-
tocol for small aliquots of bone (<100 mg) is shown in Fig. 2.

14C dating.  For each of the bones, several collagen extracts (bone weight ranging from 37–100 mg, marked 
with asterisks in Fig. 1) were dated using the EA-GIS-AixMICADAS (Fig. 3). Each collagen extract was split and 
measured multiple times. Between two and four replicates were measured containing ca. 30–40 μg C, run for the 
duration of one titanium (Ti) target (ca. 12 minutes) and for each bone >20,000 BP, a single aliquot containing ca. 
80–90 μg C was measured over the duration of three targets to increase precision (see Supplementary Dataset S2). 
The gas ages obtained were compared to one or more graphite dates measured from collagen extracted from 
500–700 mg bone material (Supplementary Dataset S2). Discussed here are measurements made from collagen 
extracted from solid pieces of bone. Details of measurements made from powdered aliquots (lower collagen 
yields) are included in the supplementary information.

Figure 3 shows the ages obtained for each bone. The accuracy of the dates generated by the gas ion source is 
clearly seen in comparison with the graphite dates. Of the 74 new measurements made with the EA-GIS-AMS 
system shown in Fig. 3b–h, 69 measurements agree within the 95% confidence limit (2σ) of the corresponding 
graphite dates and 57 agree within 1σ. There are five measurements outside 2σ: four are measurements of the two 
collagen extracts (R-EVA 548.13; R-EVA 548.14) which fell at or below the minimum threshold of preservation 
suitable for 14C dating (Fig. 3g), and the last (R-EVA 1905.4.1; Aix-12023.2.1) is slightly older than the other rep-
licates of the same extract (Fig. 3c).

Chi-squared tests (χ2)51 were performed using the R_Combine feature in OxCal 4.252 using the F14C and 
associated error for gas replicates of each collagen extract individually and for all replicates per bone. The replicate 
measurements are statistically indistinguishable for R-EVA 1489, R-EVA 1905, R-EVA 1860, R-EVA 123, R-EVA 
570 and R-EVA 124 (output of all statistical tests are included in Supplementary Dataset S2), demonstrating the 
reproducibility of the measurements and consistency between different pretreatment batches across the range 
of the 14C timescale. In addition, all of the measurements of R-EVA 1489, R-EVA 123 and R-EVA 124 from this 
study agree with the EA-GIS-AMS measurements made in 2016 reported in Fewlass, et al.29 (Supplementary 
Dataset S2).

The exception is the roughly 40,000 year old bone R-EVA 548, which at ca. 1% collagen preservation repre-
sents the limits of C14 dating. The gas dates obtained from the two low yield extracts (R-EVA 548.13 and R-EVA 
548.14) were much younger than the other extracts of this bone (Fig. 3g), showing they had been affected by 
contamination from modern carbon. Due to the low yield, under normal circumstances R-EVA 548.13 would 
not have been passed for dating following pretreatment. Excluding these two extracts, the replicates from R-EVA 
548.3 and R-EVA 548.8 are consistent with the graphite date for this bone.

For background bone R-EVA 1753 (>50,000 BP), the dates from the collagen extracts (Supplementary 
Dataset S3) were on par with the blank standards (IAEA-C1/phthalic anhydride) of equal size (Supplementary 
Dataset S4). As expected, the blank level in the EA-GIS system was affected by the reduction in sample size from 
90 μg C to 30 μg C (Fig. 3a). The ages of the seven <50,000 BP samples were corrected with background collagen 
measurements of the same size (ca. 30 μg C or ca. 90 μg C) and type (solid/powder) measured during the same 
session.

Discussion
Using a slightly modified version of our standard pretreatment protocol the collagen yield from <100 mg bone 
material was of equally high quality as extracts from ‘large’ (>500 mg) bone samples. Decreasing sample size 
from ca. 100 mg to <50 mg bone material also had no detrimental effect on collagen yield. The agreement in 
age between multiple collagen extracts from different starting weights of bone (Fig. 3) indicates firstly that we 
obtain reproducible results with the pretreatment protocol and secondly, that the reduction in material during 
pretreatment did not detrimentally affect the results of 14C dating. In particular, the results indicate that the clean-
ing steps used for the ultrafilters are sufficient as any C remaining in the filters after cleaning would have a more 
pronounced effect on reduced sample sizes.

The main alteration to our standard protocol involved reduction in the duration of the gelatinisation stage, 
with samples removed from the heater block as soon as they had gelatinised (see Fig. 2). Different gelatinisation 
conditions have been well documented to affect the final extract quality and yield38,39,53,54. The higher collagen 
yields from these extracts supports observations that gelatinised collagen is degraded by prolonged exposure to 
higher temperatures and acidity39,53.

R-EVA 548 represents a very challenging prospect for collagen extraction and radiocarbon dating due to the 
exceptionally low levels of preservation (<1% weight collagen) and old age (ca. 39,400 BP), even working with 
larger sample sizes. The harshest demineralisation (HCl 0.5 M, 2 days, 4 °C) applied to small aliquots of this bone 
(R-EVA 548.13; R-EVA 548.14) resulted in very low yields of ≤1 mg collagen, likely due to the solubilisation of 
collagen during the longer demineralisation stage. The resultant underestimated dates clearly show that these ali-
quots were massively affected by modern carbon contamination. Prior to dating, the consideration of the quality 
of the extract is crucial in order to obtain reliable dates. Given the low yield of collagen (≤1%) following pretreat-
ment, under normal circumstances these extracts would not been dated or would have been treated with caution. 
This bone demonstrates the difficulty of pretreatment of poorly preserved bones at the limit of the 14C method.

At such small sample sizes, the consideration of the background correction is crucial. The gas measure-
ments of R-EVA 1489, R-EVA 1905, R-EVA 1860, R-EVA 123, R-EVA 570, R-EVA 548 and R-EVA 124 were 
all corrected with gas measurements of background bone collagen (R-EVA 1753) of equal size (ca. 30 µg C or 
ca. 90 µg C) prepared alongside every batch of samples and measured during the same measurement session to 
account for any C added during sample preparation and measurement. Figure 3a shows the ages obtained for the 
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background bone containing ca. 25–40 μg C (small) and ca. 80–100 μg C (large). The large measurements (mean 
F14C = 0.0024, SD = 0.0006, n = 9, equivalent to 48,600 BP) are on par with the system blank (either IAEA-C1 or 
phthalic anhydride) measurements of equal size (mean F14C = 0.0026, SD = 0.0006, n = 7, equivalent to 48,000 
BP) (Supplementary Datasets S3 and S4), indicating that no carbon contamination was introduced during sam-
ple preparation. An increased sensitivity to modern 14C is to be expected at lower levels of carbon and it is clear 
that the smaller background collagen measurements are generally younger. The 25–40 μg C background collagen 
samples (mean F14C = 0.0039, SD = 0.0007, n = 22, equivalent to 44,530 BP) are likewise equal to the system blank 
measurements of equal size (mean F14C = 0.0036, SD = 0.0006, n = 5, equivalent to 45,180 BP) (Supplementary 
Datasets S3 and S4). These values are lower than previously published values for blank IAEA-C1 samples meas-
ured at CEREGE reported in Bard, et al.30 (F14C = 0.02 for sample sizes around 30 µg C and F14C = 0.005 for 
samples of 80–100 µg C) and to phthalic anhydride blanks measured at ETH Zurich reported in McIntyre, et al.24 
(mean F14C = 0.0046 ± 0.0012, n = 6, size range 84–100 μg C). The results indicate the lower limit of 14C detection 
with the gas ion source to be around F14C = 0.004. As demonstrated by R-EVA 124, beyond this limit the minute 
levels of 14C can be measured but the uncertainty of the background correction dominates accuracy and precision.

The system blank of the EA-GIS-AMS is affected by the carbon content of the silver cups, cross-talk of the zeo-
lite trap and the cleanliness of the ion source at the time of the measurement24. The mass (Mc) and F14C (F14Cc) of 
the constant contamination of the EA + GIS system was deduced by least square regression of modern carbonate 
and blanks (IAEA-C1) with sample weights ranging between 3 and 100 µg C to be Mc = 0.55 ± 0.05 ug C and 
F14Cc = 0.12 ± 0.0355. The silver cups (5 × 3 mm from Elementar; cleaned at 800 °C, 2 h) had a consistent carbon 
contribution of 0.049 ± 0.02 µg C. The zeolite trap was heated (450 °C) and the system was flushed with helium 
between samples to minimize cross-contamination. However, small amounts of C may reside in the zeolite trap 
after flushing which has been demonstrated to have a large influence on samples <20 µg carbon23,55. With this 
in mind, even our ‘small’ samples were kept >20 μg carbon. To further alleviate problems of cross-talk, samples 
were run in order of increasing activity (oldest to youngest) according to the standard practice55. Background 
corrections of samples were applied according to sample size and an external error was added during the age 
calculation of all samples based on the long term standard deviation of standards and blanks (error 2 described 
in Fewlass, et al.29).

In a real life situation, if a small bone sample yielded a high amount of collagen (for example, the mammoth 
bone R-EVA 123 or the Medieval human bone R-EVA 1489 included in this study), dating with graphite targets 
would be preferentially undertaken as the precision achieved is much higher and measurements can be made 
routinely. However, the results of this study demonstrate that the gas ion source can produce an accurate radiocar-
bon date at low precision from as little as 30 µg C. The precision of the date can be improved when larger sample 
sizes (up to 100 µg C) are available for measurement over several targets (as demonstrated in Fig. 3). In order to 
assess variability in handling and blank contribution, in this study we compared multiple measurements of ca. 
30 µg C with larger aliquots containing ca. 90 µg C. When taking the weighted mean and error of the three small 
aliquots the precision achieved is higher compared to the single large measurement of a roughly equal amount of 
carbon. However, as the likelihood of contamination being introduced via handling, the EA-GIS or the silver cup 
is increased for the smaller sample sizes, the preferred method for measuring larger samples would be to measure 
several targets from a single syringe, rather than splitting a sample into smaller aliquots. Although the measure-
ment of gas samples requires more supervision than graphite targets, the direct coupling of the EA with the GIS 
significantly reduces sample preparation time by cutting out the graphitisation step which poses a large risk of 
contamination at such small sample sizes. Therefore in situations where sample size is limited the gas ion source 
offers an attractive solution for archaeological, as well as environmental, applications.

Even working with the assumption of 1% collagen preservation, in theory sufficient collagen could be 
extracted from less than 10 mg bone material to obtain a 14C date using the EA-GIS-AMS. However in order to 
assess the quality of the extract prior to dating and obtain high-resolution stable isotopic data for palaeodietary 
reconstruction, collagen should also be analysed with an EA-IRMS. At 1%, around 40 mg bone material would 
supply enough collagen for dating and isotopic analysis. For any sample >1% preservation, excess collagen would 
be available for further analyses and/or multiple aliquots could be measured with the gas ion source to achieve 
better counting statistics and thus increase precision. Bearing this in mind, when dating highly precious bone it 
would be useful to assess the preservation of the artefact prior to sampling or have an understanding of collagen 
preservation at the archaeological site (for example if other fauna has been sampled for isotopic or 14C dating 
purposes). Bones of high patrimonial value could be sampled strategically – i.e. for older samples expected to 
have less than 10% collagen preservation 40 mg bone material could be sampled, whereas for well-preserved 
Holocene bone much smaller samples could be taken. The case of R-EVA 548 demonstrates that for very old sam-
ples (>35,000 BP) with very poor levels of preservation (1–2%), yields falling below 1 mg collagen can be subject 
to severe contamination issues.

The results presented here provide further confirmation that 14C measurements using the gas ion source of the 
MICADAS are stable, reproducible and accurate, reaching a level of precision suitable for dating archaeological 
samples particularly for Palaeolithic samples back to 40,000 BP. In this respect this technique will be highly useful 
for directly dating precious archaeological bone where limited material is available.

Methods
Sample selection.  Eight bones were selected to span the 14C timescale (back to 50,000 BP) at a range of pres-
ervation typical for archaeological bones. Collagen extracts from bones R-EVA 124, R-EVA 123 and R-EVA 1489 
were previously dated using both graphite targets and the gas ion source in Fewlass, et al.29. R-EVA 124 was pre-
viously labelled as a bison bone but recent aDNA analysis has identified it as belonging to a woolly rhinoceros56. 
R-EVA 548 and R-EVA 570 are two faunal long bones from Teixoneres, Spain. R-EVA 1860 is a faunal long bone 
excavated from the site of Ranis, Germany and R-EVA 1905 is a predominantly trabecular fragment of horse bone 
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excavated from Pietraszyn, Poland. R-EVA 1753 is a well-preserved cave bear rib known to date beyond the 14C 
timescale based on repeated measurements. As standard practice, an aliquot of this bone is extracted and dated 
alongside every batch of samples to monitor contamination introduced during sample preparation and is used in 
the age correction of the unknown samples. This is the referred to in the text as the ‘background bone’.

Collagen extraction.  For each bone, large aliquots (500–700 mg material) were pretreated using our stand-
ard acid-base-acid + gelatinisation + ultrafiltration protocol (see Fig. 2) based on Talamo and Richards36 to pro-
duce collagen for dating with graphite targets.

In order to optimise our standard protocol for sample sizes <100 mg, small aliquots of each bone were pre-
treated multiple times to compare collagen yields and sample quality. Firstly, the outer surface of bone was 
removed using a sandblaster and aliquots were taken using a rotary drill. Fine diamond grit disc drill pieces 
were used to remove solid pieces of bone. Fine powder was drilled using round tungsten carbide burs (2.3 mm 
diameter). Aliquots were weighed via a microbalance into cleaned glass tubes. Solid samples were demineralised 
in HCl at 4 °C with regular visual and mechanical checks and monitoring of CO2 effervescence. For powdered 
samples, HCl was added and samples were monitored at room temperature (RT) until CO2 effervescence had 
stopped. Following demineralisation, samples were rinsed with ultra-pure Milli-Q water to a neutral pH. Samples 
were treated with NaOH (0.1 M) at RT for 10 min to remove humic acid contamination and re-acidified with HCl 
(0.5 M). If a considerable colour change was observed, NaOH was changed and left for another 10 min. Samples 
were then gelatinised in weak HCl (pH 3) on a heater block set to 60 °C, 70 °C or 75 °C. Samples were either left 
for 20 h (as per our standard pretreatment), or regularly monitored and removed from the heater block when the 
sample had fully solubilised. The resultant gelatin was filtered to remove large particles >80 µm (Ezee filters, Elkay 
labs, UK) and ultrafiltered with Sartorius VivaSpin Turbo 15 (30 kDa MWCO) ultrafilters precleaned according 
to Brock, et al.43 to separate the high molecular weight fraction (>30kD) for freeze drying (48 h). For details of 
acid strength, duration of treatment and temperature during pretreatment of samples <100 mg, see Fig. 1 and 
Supplementary Dataset S1.

Collagen quality assessment.  To assess the quality of the collagen, all extracts were analysed via EA-IRMS 
to obtain elemental (C%, N%, C:N) and stable isotopic data (δ13C and δ15N). Collagen (ca. 400 μg) was weighed 
into tin cups using a microbalance and measured on a ThermoFinnigan Flash EA coupled to a Thermo Delta 
plus XP isotope ratio mass spectrometer (IRMS). Stable carbon isotope ratios were expressed relative to VPDB 
(Vienna PeeDee Belemnite) and stable nitrogen isotope ratios were measured relative to AIR (atmospheric N2), 
using the delta notation (δ) in parts per thousand (‰). Repeated analysis of both internal and international stand-
ards indicates an analytical error of 0.2‰ (1σ) for δ13C and δ15N. Where sufficient material was available, collagen 
(ca. 300 μg) was homogenized and mixed with ∼40 mg of IR grade KBr powder in an agate mortar and pestle, 
pressed into a pellet using a manual hydraulic press (Wasserman) and analysed with an Agilent Technologies 
Cary FTIR Spectrometer with a DTGS detector. Spectra were recorded in transmission mode at 4 cm−1 resolution 
with averaging of 34 scans between 4000 and 400 cm−1 using Resolution Pro software (Agilent Technologies). The 
spectra were evaluated and compared to library spectra of well-preserved collagen and bone to look for evidence 
of incomplete demineralisation, degraded collagen or the presence of any exogenous material in the extracts.

AMS graphite measurements.  Each bone was pretreated as per our standard protocol from approxi-
mately 500 mg material. From theses extracts, approximately 3–5 mg collagen was weighed into pre-cleaned tin 
cups at the MPI-EVA and sent to the Curt-Engelhorn-Centre for Archaeometry Klaus-Tschira-AMS facility in 
Mannheim, Germany (lab code: MAMS) for graphite dating. The samples were combusted in an EA and the 
sample CO2 was converted catalytically to graphite. The samples were dated using the MICADAS-AMS57. Age 
and error calculation of unknown samples was performed using BATS software58, using background collagen 
samples and standards measured in the same batch, with an added external error of 1‰ as per their standard 
practice. Collagen samples measured at CEREGE were weighed into tin cups (ca. 2 mg), combusted in a vario 
MICRO cube EA (Elementar Analysensysteme GmbH, Germany), graphitized using the AGE 3 and dated using 
the AixMICADAS. Oxalic acid standards and background collagen samples measured in the same session were 
used to calculate the age of the samples. An external error of 1‰ was also propagated in the error calculation.

AMS gas ion source measurements.  Small aliquots (<100 mg) of the same bones were pretreated to 
purify the collagen. Three or four aliquots of each collagen extract (containing ca. 25–40 μg C and a single aliquot 
per bone containing ca. 80–100 μg C) were measured via a microbalance into pre-cleaned silver cups (800 °C, 
2 h). These were placed into the auto-sampler of a vario MICRO cube EA which was directly coupled to the gas 
ion source of the AixMICADAS via the GIS20,22. Following combustion, sample CO2 was adsorbed on a zeolite 
trap and subsequently expanded to the syringe of the GIS where it was mixed with He (5% CO2) and introduced 
to the gas ion source at a flow rate of ca. 2 µg C/min. The EA-GIS system was flushed with helium between sam-
ples. Pre-cleaned titanium (Ti) gas targets were pre-sputtered for approximately two minutes in the ion source 
to remove any remaining surface contamination before the sample CO2 injection. Around 30–40 µg C was con-
sumed by the AMS over the duration of one Ti target21,55. For the large aliquots containing ca. 80–90 μg C meas-
urements were performed over multiple targets (which can be changed during measurement). Each step was fully 
controlled via the gas-interface handling software.

The gas measurements in this study were made over two measurement sessions six months apart, both carried 
out shortly after the ion source had been cleaned. Each measurement session commenced with two oxalic acid 
II NIST standards (from a gas canister) to normalize and correct samples for fractionation. Blank (14C-free) CO2 
samples (also from a gas canister) were then measured to purge the system and reach a stable operational level 
(F14C < 0.004) (these measurements were not used in age calculation). In the first session, carbonate reference 
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material (IAEA-C1) were run prior to the collagen samples to check the background level of the instrument and 
begin the measurement of old samples under optimal conditions. In the second measurement session, phthalic 
anhydride was run for the same purpose. In order to alleviate problems of memory effect, the GIS system was 
flushed with helium between samples and samples were measured in order of increasing activity as per standard 
procedure (for further discussion, see Tuna, et al.55). Low energy ion currents for the gas analyses were in the 
range of 10–15 μA. BATS58 was used for data reduction. The uncorrected collagen background (R-EVA 1753) 
measurements of the corresponding type (piece/powder) and equal size were used to correct the archaeological 
samples measured in the same session (i.e. ‘small’ sample aliquots were corrected only with ‘small’ background 
collagen samples). For all samples, the long term standard deviation of blanks (F14C = 0.001) was used as the 
absolute blank error and an external error of 3.5‰ was added to take into account the long-term variability of 
standards (‘error 2’ described in Fewlass, et al.29).

Data Availability
All data generated or analysed during this study are included in this article and the accompanying supplementary 
information files.
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