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GENERALIZATIONS OF CAPPARELLI’S IDENTITY

JEHANNE DOUSSE AND JEREMY LOVEJOY

ABSTRACT. Using jagged overpartitions, we give three generalizations of a weighted word version of
Capparelli’s identity due to Andrews, Alladi, and Gordon and present several corollaries.

1. INTRODUCTION

Recall that a partition A of an integer n is a non-increasing sequence (Mg, ...,As) of positive
integers whose sum is n. Among the most celebrated results in the theory of partitions are the
following, which are known as the Rogers-Ramanujan identities.

Theorem 1.1 (The Rogers-Ramanujan identities). For r =0 or 1, let A.(n) denote the number of
partitions of n such that parts differ by at least 2 and the part 1 appears at most 1 — r times, and
let B.(n) denote the number of partitions of n into parts congruent to £(1+r) modulo 5. Then for
every positive integer n, Ay(n) = By(n).

In [10], Lepowsky and Wilson discovered a connection between these identities and certain rep-
resentations of the affine Lie algebra slo(C)™. Inspired by their work, Capparelli [5], Meurman-
Primc [14], Primc [15], Siladié¢ [17] and others considered related representations and obtained many
interesting partition identities previously unknown to the combinatorics community. The most
widely studied of these has probably been Capparelli’s identity, which he conjectured in [5].

Theorem 1.2 (The Capparelli identity). Let C(n) denote the number of partitions of n into parts
> 1 such that parts differ by at least 2, and at least 4 unless consecutive parts add up to a multiple
of 3. Let D(n) denote the number of partitions of n into distinct parts not congruent to £1 modulo
6. Then for every positive integer n, C(n) = D(n).

Several proofs of Theorem 1.2 have been given. It was first proved by Andrews in [2] using
g-trinomial coefficients, then it was refined and generalized by Alladi, Andrews and Gordon in [1]
using the method of “weighted words”, and then proved by Capparelli in [6] and by Tamba-Xie
in [19] using Lie algebraic techniques. For other combinatorial studies related to the Capparelli
identity, see [3, 4, 8, 18].

Our starting point here is the work of Alladi, Andrews, and Gordon [1]. They considered partitions
into natural numbers in three colors, a, b, and u (they wrote ¢ instead of u), with no part 1, or 1,,
satisfying the difference conditions in the matrix

(1.1)

o O o
— w2

a
a (2
C=15b|2
u\1
Here the entry (z,y) in the matrix C' gives the minimal difference between successive parts of colors

x and y. Letting C'(n;i,7) denote the number of such partitions of n with ¢ parts colored a and j
parts colored b, they found the following infinite product generating function.

The first author is supported by the Forschungskredit of the University of Zurich, grant no. FK-16-098. The
authors thank the University of Zurich and the French-Swiss collaboration project no. 2015-09 for funding research
visits during which this research was conducted.
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2 JEHANNE DOUSSE AND JEREMY LOVEJOY
Theorem 1.3 (Alladi-Andrews-Gordon [1]). We have

Y Cnii, )V q" = (@)oo (0% 6)oo(—0%; ¢ oo (1.2)
n,4,7>0

Here we have used the usual ¢g-hypergeometric notation for n € NU {+oc},
n—1
(@)n = (a;9)n = [ (1 — ag®).
k=0

2

Under the dilation ¢ — ¢® and the translations a — ag~2 and b — bg~*, the difference conditions

n (1.1) become

a b u
a6 2 4
bl4 6 5
u\b 4 3

which are equivalent to those defining the partitions counted by C(n) in Theorem 1.2. The product
in (1.2) becomes the generating function for the partitions counted by D(n), and with the two extra
parameters a and b, one obtains a refinement of Capparelli’s identity.

, (1.3)

Corollary 1.4 (Alladi-Andrews-Gordon [1]). Let C(n;i,j) and D(n;i,j) denote the number of par-
titions counted by C(n) and D(n), respectively, in Theorem 1.2, with i parts congruent to 1 modulo
3 and j parts congruent to 2 modulo 3. Then C(n;i,j) = D(n;i,j).

In this paper we generalize the work of Alladi-Andrews-Gordon in three different ways. The
combinatorial setting is that of jagged overpartitions.! We consider sequences of non-negative in-
tegers (A1, ..., As) whose sum is n, where: (i) parts occur in the three colors a, b, and u, (i7) the
final occurrence of a positive part may be overlined, (7i7) the smallest part As does not belong to
{04, 0p, 14,15}, and (iv) the miminal difference between successive parts A\; and \; 41 is given by the
matrix

a b uwa b wu
af2 0 2 2 0 2
bl2 2 3 2 2 3
—~ @1 0 11 0 1
¢= all -1 1 1 -1 1 (14)
b{1 1 2 1 1 2
u\0 -1 0 0 -1 0
For example, the jagged overpartition (44, 55, 2u, 2u, 2u, Lu, 26, 1o) satisfies conditions (i) — (iv) above

with n = 19. Let C(n;k;i,j) denote the number of such jagged overpartitions of n with k non-
overlined parts, ¢ parts colored a and j parts colored b. Note that when all parts are overlined
(corresponding to k = 0), the jagged overpartitions may be identified with the partitions counted
by C(n;i,j). Our three generalizations of Theorem 1.3 are as follows.

Theorem 1.5. Let C1(n;k;i,7) denote the number of jagged overpartitions counted by C(n;k;i, j)
with the added condition that if the smallest u-colored part x, is equal to the number of overlined
parts which come after x,, (with x, included), then the final part must be overlined. Then we have

r2pr+s24+s— ("5 pis s
<_q>oo q +r+s5°+s ( 5 )a bsdrt (_Q/d)r—i—s
(% 6%)r (0% ¢%)s

Y Cilmik;i,j)a'tdq" =

n,k,i,5>0

(1.5)

r,s>0

IThe term “jagged” was coined in [7] to refer to partitions where successive parts may have negative differences.
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Theorem 1.6. Let Cy(n; k;i,j) denote the number of jagged overpartitions of n counted by C(n; k; 1, j)
with the added condition that the final £ parts must be overlined, where £ is the number of parts of

color b or u. Then
+1

> Calnsk;i, j)a’Vd*q" = (—q)ee(—ba*; ¢°) Zq Q/d)- (1.6)

n,k,i,j>0 >0

Theorem 1.7. Let C3(n; k;i,j) denote the number of jagged overpartitions of n counted by C(n; k; i, j)
with the added condition that the final t parts must be overlined, where t is the number of parts of
color u. Then

o o 7‘2+7’+52+s <T+S+1) rbsdr+s d
S ok, )W g = (~ghoe 3 2 Ca/fdes 1)

nk,i,j>0 rss0 (a%4*)r(q%4?)s

To see that Theorems 1.5 — 1.7 are generalizations of Theorem 1.3, first note that if d = 0 in
equations (1.5) — (1.7) then the only terms contributing to the sums on the left-hand sides are those
with k£ = 0, and it is easy to see that each of the C;(n;0;1, j) is equal to the C(n;i,j) in Theorem
1.3. On the other hand, when d = 0 on the right-hand sides the sums can be evaluated using the
g-binomial identity [9],

n+1
Z an( 2 )

>0 (Q)n

and we recover the product on the right-hand side of (1.2).
It turns out that these sums also simplify when d = 1, giving the following three infinite product
generating functions for restricted jagged overpartitions.

= (—2¢)c0; (1.8)

Theorem 1.8. We have
_ (_Q)oo(_GQ)oo(_bQ)oo

M%;O Ci(n;k;i, j)a'tq (@) (bt ) (1.9)
Theorem 1.9. We have
Y Co(niksi, ))a'tq" = (=¢)oo (=)o (—ba"; ¢)oo- (1.10)
.k, >0
Theorem 1.10. We have
S Tylns ks, aibiq” = (—@)oo(—0q) 0o (—bq) (1.11)

- q2
k0,720 (abg: )

Theorems 1.5 — 1.10 contain a number of interesting corollaries. For example, if we let ¢ —
¢>,a — aqg~? and b — bg~* in Theorem 1.6 we obtain the following generalization of Capparelli’s
identity, where we use the notation

o) = 1 if \; is overlined,
] 0 otherwise.
Corollary 1.11. Let C(n;k;i,j) denote the number of jagged overpartitions (\1,...,\s) of n into

positive parts, k of which are non-overlined, i (resp. j) of which are congruent to 1 (resp. 2) modulo
3, with \s # 1, such that the difference between \; and \;iy1 satisfies

—14+3x(\) if i + Aip1 =0 (mod 3),
Ai = Aig1 =
1+ 3x(N\;) otherwise,
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and the final t parts are overlined, where t is the number of parts congruent to 0 or 2 modulo 3. Let
D(n;k;i,7) denote the number of partitions of n into distinct parts not congruent to 5 modulo 6, i

(resp. j) of which are congruent to 1 (resp. 2) modulo 3, with k the number of times )\51) — )\Sr)l =3
mod 6, where ()\(11),...,/\9)) is the subpartition of parts congruent to 1 modulo 3 (and we take
AV = —2). Then C(n; k;i, j) = D(n; ks, j).

2

Similarly, letting ¢ — ¢*,a — aq,b — bg~2 in Theorem 1.8, we obtain the following identity.

Corollary 1.12. Let C'(n;i,j) denote the number of jagged overpartitions (M1,...,\s) of n into
positive parts not congruent to 3 modulo 4, where i (resp. j) is the number of parts congruent to 1
(resp. 2) modulo 4, such that s # 1,1,2,5 and the difference between \; and \;+1 satisfies

N Ay > {—2 + 4&)\1) if Ai E 0 mod4 or A+ XNt1 =3 (mod 4), (1.12)

44 4x(\i) otherwise,

with the added condition that if the smallest part x congruent to 0 modulo 4 is equal to 4 times
the number of overlined parts which come after x (with x included), then the final part must be
overlined. Let D'(n;i,j) denote the number of overpartitions of n with overlined parts not congruent
to 3 modulo 4, no part 1, and non-overlined parts congruent to 0,3,4 modulo 8, where i is the
number of parts congruent to 1 modulo 4 or 3 modulo 8 and j is the number of parts congruent to
2 modulo 4 or 3 modulo 8. Then C'(n;i,j) = D'(n;i,j).

Finally, by doing the same dilation in Theorem 1.10, we obtain the following.

Corollary 1.13. Let C"(n;i,j) denote the number of jagged overpartitions (Mi,...,\s) of n into
positive parts not congruent to 3 modulo 4, where i (resp. j) is the number of parts congruent to
1 (resp. 2) modulo 4, such that s # 1,1,2,5, the difference between \; and \;iy1 satisfies (1.12),
and the final t parts must be overlined, where t is the number of parts congruent to 0 modulo 4.
Let D"(n;i,j) denote the number of overpartitions of n with overlined parts not congruent to 3
modulo 4, no part 1, and non-overlined parts congruent to 3 modulo 8, where i is the number of
parts congruent to 1 modulo 4 or 3 modulo 8 and j is the number of parts congruent to 2 modulo 4
or 3 modulo 8. Then C"(n;i,5) = D"(n;i,j).

This paper is organized as follows. In the next section we give a detailed proof of Theorem
1.3 which is different from the proofs of Alladi, Andrews and Gordon in [1]. Ours uses some
combinatorial reasoning with a staircase partition and g¢-series identities, while theirs also relied on
properties of the g-binomial coefficients and/or ¢-difference equations. Variations of our proof lead
to Theorems 1.5 — 1.7 and Theorems 1.8 — 1.10. These arguments are presented in Sections 3 and
4. In Section 5 we discuss the combinatorial meaning of the g-series in Theorems 1.5 — 1.7 and
illustrate Corollaries 1.11 — 1.13 with examples. Section 6 contains some closing remarks.

2. PROOF OF THEOREM 1.3

We begin with a proof of Theorem 1.3 via a constant term identity. This was alluded to at the
end of [11], though no details were provided there. We will show that

0 (—azq)oo(—b2q) s 2, 2 2, 2
[27](=q/2) 00 (—2) 00 (@) o (D (@022 P (=0)oo(—aG75¢7) oo (=" 47 ) o (2.1)
and then argue that the left-hand side is the generating function for C'(n;i,j). To prove (2.1), we
require the identities [9]

(Q)nfk: (Q)n (_1)kq(2)—nk’ (22)
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(@elg™)ed" _ (¢/a)na”
kzo @Or~ ©n (23)

(—=2)n (—22)

) R S 24

3
V
=]

and -
Zz—nq(nf) = (—4/2)00(—2) 0 (@) 0- (2.5)
ne”Z

Now, expanding the products (—azq)s and (—bzq) using (1.8), the products 1/(2)e and 1/(abz2q; ¢*) o
using (2.4), and the product (—¢/2)oo(—2)00(¢)co using (2.5), we proceed as follows:
az

)oo
2%(—q/= —Z e L
[Z)(=a/2)o0(=2)oc (@)oo 30 5

r+s+t+2v T+1)+(S+1)+’U r4+uv bs+v

(
BERTE S () a
D R D R ORI

neL r,8,t,0>0
(7'+s+t2+2v+1)+(7‘;1)+(‘5+1)+U g oSt

B q
= 2 (@)r(0)s(0)e(a% ¢?)o

r,8,t,0>0

min(r,s) q(r+s;t+1)+(77;+1)+(s u+1)+v arbs

(2.6)

rs)=\r—v,s —v
r,s,t>0 v=0 (Q)rfy(Q)sfv(q)t(q 3 q )v ( ) ( )
TR (TR e () (g

=22 @ @@ ). (by (2:2))

r,s,t>0 v=
7‘+9+1‘+1)+(r+1

Ly T

r,5,t>0 q ;qz)T(QQ;QQ)s(Q)t

:Zq

r,5,t6>0 q 3 q )T(q 14 )S(Q)

TR (by (23))

t+1) +(r+s)t+r2+rt+s+s rbs( )r+s

2 2
_ (_q)oo Z (q;-f—;-i-s +28.a7“§5
50 (@) (% ¢%)s
= (~0)oc(—aq*; *)oo(~ba*; ¢*)oc (by (1.8) with ¢ = ¢°).
Having confirmed (2.1) we now turn to the combinatorial interpretation of
sl S 5 LT g
(2)oo (abz?q oo A0 (@)r(2)s(a)e(a% a%)o

(by (1.8))

(2.7)

r+1
On the right-hand side, the term arq( 2 /(q)r contributes a partition \, into r distinct positive parts

labelled a, the term bsq(szl) /(q)s contributes a partition A, into s distinct positive parts labelled
b, the term (ab)Vq"/(q%; ¢*), contributes a partition Ay into v positive odd parts labelled ab, and
the term 1/(q); contributes a partition A, into non-negative unlabelled parts, to which we shall
assign the subscript u. We organize these into one colored jagged partition A containing “levels”
indexed by the natural numbers k as follows: First, odd parts (2k — 1), from A, are split into pairs
(k — 1),k and placed on the right. Next, any extra kp from ), is placed immediately to the left of
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these pairs. Continuing to the left, we then put all parts of the form (k — 1), and finally k, if it
appears. Thus for k£ > 1 the general level k resembles

ka(k — 1)y -+ (k= Duky(k — Daky - (k — 1)aks. (2.8)

The levels are then put together in order with the smallest on the right. For example, if A, = (4,2, 1),
Mo =(4,3,1), A\p = (7,7,7,5,1,1,1), and A\, = (1,1,0,0,0), we obtain

A = (4(17 4b7 3@7 4b7 3(17 4b7 3&7 4b7 3b7 2&7 3b7 2(17 1U7 ]-’LL7 1a7 O’LL7 OU7 O’LH 1b7 0(17 1b7 an ]-b7 Oaa ]-b)
—_——— ——

level 4 level 3 level 2 level 1

At this point we observe that the jagged partitions thus constructed are precisely those defined
by C(n;k;i,j) where all parts are non-overlined, i = r 4+ v is the number of a-parts, and j = s + v
is the number of b-parts. Indeed, one may check that the minimum difference between consecutive

parts is as in the matrix C in (1.4), while the condition \s ¢ {04, 0y} evidently holds. The only term
r4+s+t+2v+1
we have not accounted for in (2.7) is q( e ), but this simply corresponds to adding a staircase

to the jagged partition: 1 to the smallest part, 2 to the next smallest part, and so on. The result is
a colored partition counted by C(n;i,j), giving

(AT gt

q
2 ()r(@)s(@)e(q? a*)w

r,s,t,u>0

thus establishing Theorem 1.3. U

Before continuing we briefly discuss the possibility of modifying the order (2.8) of the parts
within a level before adding on the staircase. The ordering we’ve chosen is the one required to
obtain Capparelli’s identity, but we could have used others. These would give slightly different
combinatorial interpretations of (2.7). For example, suppose we put the parts (k — 1), all the way
to the left of the level k instead of between k, and k;. Then after adding the staircase onto the
jagged overpartition the matrix of difference conditions in (1.1) is replaced by

= > C(n;i,§)a'Vq",

n,i,520

(2.9)

We have also introduced an extra condition due to the placement of (k — 1), ahead of k,. Namely,
we cannot have a triple of parts with colors (u, a, b) satisfying the the minimal differences (0, 0).
Now, using the usual dilations ¢ = ¢3, a = ag~2 and b = bg—*, the matrix (2.9) becomes

a b u
a6 2 7
bl4 6 5|, (2.10)
u\2 4 3

and we have the following companion to Capparelli’s identity.

Theorem 2.1. Recall D(n;i,j) from Corollary 1.4. Let C*(n) denote the number of partitions of n
into parts greater than 1 such that parts differ by at least 2, and at least 5 if neither the larger part
nor the sum of the two parts is divisible by 3, where no three successive parts may differ by 2. Let
C*(n;i,j) denote the number of partitions counted by C*(n) having i parts congruent to 1 modulo 3
and j parts congruent to 2 modulo 3. Then C*(n;i,j) = D(n;i,J).

Such companions were hinted at by Alladi, Andrews, and Gordon [1], but apprently never given
in detail. We leave it to the interested reader to explore other modifications of the order (2.8).
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3. A GENERALIZED STAIRCASE AND THE PROOFS OF THEOREMS 1.5 AND 1.8

In this section we prove Theorems 1.5 and 1.8 by modifying the arguments of the previous section,
replacing the staircase by a generalized staircase. By a generalized staircase we mean a partition
w into distinct parts of size at most n. Such partitions are generated by (—¢q/d),d", where the
exponent of d counts the number of integers between 1 and n which do not occur as parts. When
d = 0 we recover the ordinary staircase n,...,2, 1.

The generalized staircase is applied to a partition A with n parts as follows: for each part of size
k of u, we add 1 to each of the k largest parts of A and then overline the kth largest part. The
exponent of d then counts the number of non-overlined parts in the resulting overpartition. When
d = 0 this amounts to just adding the usual staircase to A; 1 to the smallest part, 2 to the next

smallest part, and so on.
r+s+t+2v+1
Ideally we would like to remove the staircase corresponding to q( 2 ) in (2.7) and replace

it by a generalized staircase (—¢q/d);ysitr20,d" 7TV, Unfortunately the resulting jagged overpar-
titions do not seem to have an interesting generating function. Indeed, since 0, may occur with
repetition, an extra (and non-obvious) condition is necessary.

Proofs of Theorems 1.5 and 1.8. We make the replacement

r+s+t+2v+1

q( o ) N qtdr+s+t+2v<_Q/d)r+s+t+2v(1 + qr+s+2v+1) (3.1)
on the right-hand side of (2.7) to obtain

Z qtdr+s+t+2v(—Q/d)r+s+t+20(1 4 qr‘+s+2v+1)q(T;1)+(5J2rl)+var+vbs+v (3 2)
P (@ (@)s( e ), | |
As noted in the previous section, the term
"3+ ) +vgrtopsto
1 a (3.3)

()r(9)s(@)e(q? a*)w

contributes a jagged overpartition A into 7 + s+t + 2v parts counted by C(n; k; i, j) where all parts
are non-overlined, ¢ = r 4+ v is the number of a-parts and j = s 4+ v is the number of b-parts. To
account for the remaining term in (3.2), we write

qtdr+s+t+2v(_q/d)r+s+t+2v(1 + qr+s+2v+1) _ qtdr+s+t+2v(—Q/d)r+s+t+2v

+ qr+s+t+2v+1dr+s+t+2v(_q/d) (3'4)

r4+s+t4+2v

and consider two disjoint cases. In the first case, the term ¢ means that we add one to each
part colored w in A and rearrange the wu-colored parts according to (2.8). Thus we have no 0,
and the term d"T5*2Y(—q/d),, 54112, corresponds to adding a generalized staircase. For the term
qrrstiR2otlgrastit2v(_q/d), o440, We insert a part 0, in A and then we apply the generalized
staircase to the resulting partition almost as usual, except that the term ¢"tst'+2v+1 corresponds
to the smallest part necessarily being overlined. Note that the presence of a part 0, before adding
on the generalized staircase can be detected after the adding of the generalized staircase by the
condition that the smallest uncolored part x, is equal to the number of overlined parts coming after
%y, (with z,, included). This is because each time the part which was originally 0, is augmented by
1, either it or a part after it becomes overlined. Thus, taking the two cases together, we have

Z él(n;k;i,j)aibjqu”
n,kyi,§ >0
(3.5)

r+1

_ Z qtdr+s+t+2v(_q/d)r+8+t+2v(1 + qr+s+2v+1>q( 5 )+(542rl)+var+vbs+'u
(@)r(@)s(0)e(*: %)

r,8,t,0>0
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To obtain the g-series on the right-hand side of (1.5), we begin with the right-hand side above
and follow the same steps as in the previous section after (2.6):

qtdr+s+t+2v(—Q/d)r+s+t+2u(1 + qr+s+2v+1)q(r+l)+(s+l)+v r—i—vbs—I—v

r,8,t,v>0 (Q)T(Q)S(Q)t(q 5 q )v

min(r,s) P L () by par .
_ Yy oy gttt (—q/d)r g s(1+ g )g (2 )+ ) 0rbe (g7, (g9,
r,s,t>0 v=0 (Q)T(Q)S(Q)t(q ;qz)v

r+1 s+1
qtdr+s+t(_Q/d)r+s(—qr+s+1/d)t(—q)r+s+1q( 2 () s grps
- 2. 2 (02 2

7,5,6>0 (q 14 )T(q g )S(Q)t

oo q Fhrs® s (T+S+1) rbSdT+s Q/d)r+s

: : (by (2.4)).
Doo =, (@%a*)r(q%4%)s

To obtain the product in (1.9) we set d = 1 in (3.5), carry out the sum over ¢ directly and then
the sums over r, s, and v:

(1+qr+s+2v+1)q(r+l)+(g+1)+v r+vbs+v

qt(_q)r+5+t+2v
2 (@)r(@)s(@)e(a%5 4%

r,s,t,u>0

(_qr+s+2v+1)t(1+qr+s+2y+1)q(r+1)+(s+1)+v r+opstu

qt(_Q)r—l—s—‘er
2 (@)r(@)s(@)e(a? ¢*)w

T,S,thZO
(e = g2 g
(Q)oo r 5,020 (Q)T(Q)s(q2§ qQ)U
)

(—q)oo(—aq) oo (—bq
(@)oo (abq; %) o

[e.9]

4. PARTIAL STAIRCASES AND THE PROOFS OF THEOREMS 1.6 — 1.7 AND 1.9 — 1.10

In this section we modify the proof in Section 2 in a slightly different way from the previous section,
by using partial staircases in place of a staircase or generalized staircase. By a partial staircase we
mean a generalized staircase which is a classical staircase at the top for a predetermined number of
parts. We consider two types of partial staircases, leading to Theorems 1.6 and 1.7.

Proof of Theorems 1.6 and 1.9. First, we make the replacement
r+s+t+2v+1 r+s+t+2v+1 r4+v+1

) o AR ) ar (g /), (4.1)
on the right-hand side of (2.7). This means we have a partial staircase which is a staircase for
the first s + ¢ + v parts and then a generalized staircase for the final r + v parts. Note that
s+t + v is the number of b-parts plus the number of u-parts. Combinatorially, we will obtain
jagged overpartitions corresponding to C'(n; k; 1, j) with the condition that the smallest ¢ parts are
overlined, where ¢ = s+t+wv. In other words, we have jagged overpartitions counted by Ca(n; k; 1, ).
Using the usual g-series arguments we then obtain

> Calnskii, j)a't/d g

n,k,i,5>0
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(r+s+t2+2v+l) (7+v+ )dT‘+U( q/d)r+vq(r+l)+(sgl)+var+vb5+v

3 q
=2 (@)r(0)s(q)e(a% a%)o

r,s,t,v>0

W) grstrist+ () (BT ) e ar (— g /d),

-y

rs,t>0 v=0 (q)T_U(Q)S—U(q)t(q2;q2)v

>

min(r,s) st pstts2 st (P! "Npv rrs gr —r —s
gretrett et O CS ) varbsdr (—g/d)r (g~ )ulg ™)

r,s,t>0 v=0 (q)T(Q)S(Q)t(q2; qz)v
_ gt st (DS arbsdr (=g /d)p (— @)pys
- 2. 12 (2 2
78,40 (4% ¢%)r(a% ¢%)s(@)t
= (—q) Z bsqSQJrs ardr(—q/d)rq(ﬂgl)
T @) s (@)

and evaluating the sum over s then completes the proof of Theorem 1.6. Theorem 1.9 then follows
immediately by evaluating the sum over r when d = 1. O

Proof of Theorems 1.7 and 1.10. One could also make the replacement

N q(r+8+t2+2v+1)_(T+s+22v+1)dr+s+2v(_q/d)r+s+2v (42)

on the right-hand side of (2.7). This corresponds to a partial staircase which is a staircase for the
first ¢ parts and then a generalized staircase for the final r+ s+ 2v parts. Note that ¢ is the number of
u-parts and so we will obtain jagged overpartitions corresponding to C(n; k; i, j) with the condition
that the smallest ¢ parts are overlined. In other words, we have jagged overpartitions counted by
C3(n;k;i,7). Using the usual g-series arguments we then obtain

> Cs(nskii, j)a'vd*q

n,k,i,j >0

q(r+.9+t2+2u+l)

TR ) s (g ) gnyg 3O e

_ 4q 2
-2 (@)r(@)s(@)e(a? a*)w

r,8,t,0>0

3 gtttk (ST (L) rogrropstogrst20 g /q)
r,s,t,v>0 (@)r(@)s(@)e(q? 42w
o T e g
r,s,t>0 =0 (@)r—o(@)s—v(q)t (q q )

r+s+2v

r4+s

mint) st (51T Mot (/) gala Tl
B q q/a)r4+s\q v q " )v
2 2 (@)r(@)s(@)e(a* 62

qrt+st+(t-gl)+(r;1)+(sgl)_rsarl)sdr+s(—Q/d)rJrS(_Q)TJFS

r,s,t>0 v=0

r,5,t>0 (q2; QZ)T(Q2; q2)s(Q)t
2 2 r+s+1
B (_q) qr +r4+s°+s— ( ) rbsdr+s( Q/d)r-i—s
o )
r,s>0 (q 1 q )T(q ) )s

which is Theorem 1.7.
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For Theorem 1.10 we set d = 1 in the third line of the above string of equations, evaluate the
sum over t and then the sums over v, a, and b as follows:

rt+st+2tv+(t;1)+(rgl)+(5;1)+var+vbs+v (—q)
(@)r(0)s(0)(a% ¢*)o
(M HCS ) Hvgrtvopsto

o q
=(0= 2 o,

q r+s+2v

r,s,t,v>0

_ (59)oo(=09) o0 (=0g) o0
(abg; 4%)o '

5. SOME COMBINATORICS AND EXAMPLES

We begin this section by noting the combinatorial interpretation of the two sums in Theorems 1.5 —
1.7. First, the sum in (1.6) is quite straightforward. The term a”/(q?; ¢*), generates a partition into
r non-negative even a-parts, and then adding the staircase from q(rgl) gives that a”q(r-gl) /(@ 4%,
generates a partition A into r distinct a-parts which alternate in parity. Here (and throughout
this discussion) we assume that there is a “phantom” 0 at the end of the partition to account for
the parity of the smallest part. Adding the generalized staircase d"(—q/d), in the usual way then
gives an overpartition into distinct parts such that two consecutive parts have different parities if
and only if the larger is non-overlined. The presence of a non-overlined part being equivalent to a
parity change, the overlining is in fact unnecessary here. Let A(n;k,i) denote the number of such
partitions of n with ¢ parts and k changes in parity. Then we have shown that

| ) ) (—a/d),
Z A(n;k,i)d'dbq" = Z g ((q;)qQ( a/d) . (5.1)

n,k,i>0 r>0 )r

Note that when d = 0 there are no changes in parity (or equivalently, only overlined parts), the
generating function is (—aq?;¢*)s, and Theorem 1.6 becomes Theorem 1.3. On the other hand,
when d = 1 there are no restrictions on parity changes (or equivalently, the presence of non-overlined
parts), so the generating function is (—aq)~ and we have Theorem 1.9.

The double sum in equations (1.5) and (1.7) is a little more subtle, but again we will see that the
exponent of d counts the number of parity changes. To begin, the term a”b* q”2+’"+32JrS /(@ ¢*)r (4% ¢%)s
generates a partition A into r distinct even a-parts and s distinct even b-parts, ordered with the
convention that k, > kp. The term q_(r+;+l) then means that we remove a staircase of size r + s
from A. The resulting partition can be grouped into the same levels as in (2.8), with the extra
conditions that there are no u-parts and that parts must alternate in parity. For example, if we
begin with

A = (18y, 16, 144, 144,124, 104, 8y, 44, 4b, 24, 2p),
then after removing the staircase we have
(767 6b, Sa;, 66, Oas 4a7 3b, 0a;, 1, O, 1b)'

Now, adding back on the generalized staircase d"(—q/d),+s gives a jagged overpartition counted
by C(n;k;i,j), where there are  no u-parts and consecutive parts alternate in parity if and only if
the larger is non-overlined. Let C4(n; k;i,7) denote the number of such jagged overpartitions. Then
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we have shown that

r +r+s2+sf(r+s+1) RS Jrts
S Cilmksi e =y & 2 Jabid(—g/d)

r+s
. (5.2)
n,k,t,7>0 r,s>0 (q2;q2)r(q2;q2)s

Obviously when d = 0 we have the generating function (—aq?;¢*)eo(—b¢%; ¢*)oo, accounting for
Theorem 1.3. On the other hand, when d = 1, the number of changes of parity (or equivalently, the
number of non-overlined parts) is not restricted anymore. In this case the pairs x,(x — 1), become
odd parts (22 — 1), while any remaining unpaired y, or y, are used to build two partitions into
distinct parts, giving the generating function

(_GQ)OO(_bQ)oo

(abg; ¢%) oo
We turn now to an illustration of Corollaries 1.11 — 1.13, beginning with Corollary 1.11. Note
that the interpretation of k in the definition of the D(n;k;i,j) comes from the combinatorial in-

terpretation of (5.1) above. First, the thirteen jagged overpartitions of 13 counted by C(13;k;1, j)
are

(5.3)

(13), (13), (11, 2), (10,3), (10,3), (10, 1, 2), (10, 1, 2),
(9,4),(9,4),(7,6),(7,4,2),(7,4,2), (4,5,4),

while the thirteen partitions into distinct parts not congruent to 5 modulo 6 counted by D(13; k; i, j)

e (13),(12,1),(10,3),(10,2,1),(9,4),(9,3,1),(8,4,1),

(8,3,2),(7,6),(7,4,2),(7,3,2,1), (6,4, 3), (6,4,2,1).

One may then easily verify that for any choice of k, i, j,

C(13;k;i,7) = D(13; k; i, j).
For example, for k =1, 7 =1 and 7 = 0, we have

C(13;1;1,0) = D(13;1;1,0) = 4,
the overpartitions counted by C(13;1;1,0) being
(13),(10,3), (9,4), (7,6)

and the partitions counted by D(13;1;1,0) being

(13),(12,1),(9,3,1),(7,6).

Let us now give an example for Corollary 1.12. First, the twelve jagged overpartitions of 11
counted by @/(11; i,7) are
(9,2),(9,2),(8,1,2),(8,1,2),(6,5), (6,2,1,2), (5,6), (5,6),
(5,1,2,1,2),(4,5,2),(4,4,1,2),(2,1,2,1,2,1,2),

while the twelve overpartitions counted by f/(ll; i,7) are

(11),(9,2),(8,3),(8,3),(6,5), (6,
(5,3,3), (5,4,2), (5,4,2), (4,4,3), (4,4,

For any choice of 4, j, we obtain

3 g)?
3),(3,3,3,2).

C'(11;4,5) = D' (1134, ).
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We conclude with an example for Corollary 1.13. First, the eight jagged overpartitions of 11
counted by C"(11;4,j) are

(9,2),(9,2),(6,5),(6,2,1,2),
(5,6),(5,6),(5,1,2,1,2),(2,1,2,1,2,1,2),
while the eight overpartitions counted by D 7”(11 i,7)
(11),(9,2), (8,3), (6,5), (6, 3,2),
(5,3,3),(5,4,2),(3,3,3,2).
Again, for any choice of i, j, it is not hard to verify that

c'(11;4,5) = D" (11;4, 7).

are

6. CONCLUDING REMARKS

Our use of generalized and partial staircases to generalize the Capparelli identity is motivated by
the second author’s generalizations of a partition theorem of Schur [12, 13]. In the case of Schur’s
theorem one obtains “perfect” generalizations in the sense that the generating functions for the
relevant overpartitions are infinite products without specializing the extra variable d. This is in
contrast with our Theorems 1.5 — 1.7, where we have an infinite product for d = 0 and d = 1, but
not for all d.

We end by noting that the identities involving partial staircases in Theorems 1.6 and 1.7 can be
proved more easily if we assume at the outset that Theorem 1.3 is true. Indeed, using (1.8) with
(1.2) implies that for a fixed ¢ and j,

N Cnsi )g" = (~@)oe o

(@%¢?)i(d% %),

i24itj2+j

Then, using the partial staircase which is an actual staircase for the first ¢ parts (where ¢ is the
number of uncolored parts) in place of the classical staircase simply corresponds to multiplying the

above by
(2+J+1)

q A (—q/d)iy;.
Multiplying by @'’ and summing over 4,j gives Theorem 1.7. Theorem 1.6 may be obtained
similarly. Our proofs of these theorems in Section 4 do not assume the truth of Theorem 1.3.
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