
HAL Id: hal-02096779
https://hal.science/hal-02096779v1

Submitted on 11 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-dimensional quantum encoding via
photon-subtracted squeezed states

Francesco Arzani, Alessandro Ferraro, Valentina Parigi

To cite this version:
Francesco Arzani, Alessandro Ferraro, Valentina Parigi. High-dimensional quantum encoding via
photon-subtracted squeezed states. Physical Review A : Atomic, molecular, and optical physics [1990-
2015], 2019, 99 (2), �10.1103/PhysRevA.99.022342�. �hal-02096779�

https://hal.science/hal-02096779v1
https://hal.archives-ouvertes.fr


High-dimensional quantum encoding via photon-subtracted squeezed states

Francesco Arzani,1, 2, ∗ Alessandro Ferraro,3, † and Valentina Parigi4
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We introduce a high-dimensional quantum encoding based on coherent mode-dependent single-
photon subtraction from multimode squeezed states. This encoding can be seen as a generalization
to the case of non-zero squeezing of the standard single-photon multi-rail encoding. The advantage
is that the presence of squeezing enables the use of common tools in continuous-variable quantum
processing, which in turn allows to show that arbitrary d-level quantum states can be generated and
detected via simply tuning the classical fields that gates the photon-subtraction scheme. Therefore,
the scheme is suitable for mapping arbitrary classical data in quantum mechanical form. Regardless
the dimension of the data set alphabet, the mapping is conditioned on the subtraction of a single
photon only, making it nearly unconditional. We prove that this encoding can be used to calculate
vector distances, a pivotal primitive in various quantum machine learning algorithms.

I. INTRODUCTION

A crucial aim of the research on quantum information
technologies is to harness quantum systems so that some
information processing tasks can be achieved with bet-
ter performances than it is possible with classical com-
puters [1]. To exploit the improvement predicted by the
theory it is necessary to encode information on a physical
system whose quantum properties can be preserved and
controlled in the laboratory. With this aim, much effort
has been devoted to investigate the use of light as a car-
rier of quantum information, due to both its robustness
to noise and the availability of advanced technological
tools to control its state (classical or quantum) [2–4].

As first step in any information processing task acting
on a classical input — be it communication, data pro-
cessing, or universal computation — an encoding must
be chosen to write the input information on the given
system. To this end, a correspondence must be estab-
lished between the possible inputs and a subset of states
of the carrier system. The choice of the encoding then
determines the physical implementation that corresponds
to the logical processing of information. Light is de-
scribed in quantum mechanics by an infinite-dimensional
Hilbert space [5, 6], whereas common communcation or
computational tasks are defined in terms of finite alpha-
bets [1]. A common choice is then to encode information
in a finite-dimensional subspace of a single mode, such as
that spanned by states with a finite number of photons
(Fock states) or with a definite single-photon property
(e.g. polarization or orbital angular momentum states).
A much celebrated variation to these schemes involves
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multiple modes instead, and it is given by the so-called
dual- [7] or multi-rail [2] encoding. In the latter, infor-
mation is stored in the presence or absence of photons in
each of a set of spatial or temporal modes of the radiation.
All these encodings belong to the realm of what is com-
monly known as discrete-variable (DV) quantum infor-
mation (finite-dimensional quantum systems). However,
states with a definite number of photons can, as of now,
be produced only probabilistically, making the setup not
easily scalable. Moreover, protocols devised within this
paradigm often require photon counting, which is exper-
imentally demanding, especially when high efficiency is
required.

An alternative approach is to encode information using
the whole infinite-dimensional Hilbert space. The typi-
cal observables of interest are then the quadratures of
the field, akin to mechanical position and momentum,
which have a continuous spectrum. For this reason, this
choice corresponds to the so called continuous-variable
(CV) regime [8–10]. Among the advantages of the latter
are the facts that (i) entangled and non-classical states
can be produced deterministically using squeezed states
and (ii) states can be detected using the highly effi-
cient scheme of homodyne measurements [11, 12]. On
the other hand, the mathematics becomes considerably
more involved due to the need of dealing with infinite
dimensions, and the direct correspondence with finite-
dimensional logical qubits is lost.

A common way to recover such correspondence is
to encode a single logical qubit into a single infinite-
dimensional system by using the symmetries of cer-
tain states — for example, the translational symmetry
of GKP states (introduced by Gottesman, Kitaev and
Preskill) [13] or the parity symmetry of cat and binomial
states [14–16]. Such strategies allow to use a discrete al-
phabet that nevertheless can be manipulated using the
mathematical and experimental machinery typically ap-
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plied in the CV approach. In this work, we move from
such strategies and, rather than encoding single DV sys-
tems in single CV systems, we propose to encode the for-
mer into multiple instances of the latter. In this sense,
we introduce a CV counterpart of the standard DV dual-
and multi-rail encoding. More formally, as it will be de-
scribed below, the zero squeezing limit of our encoding
corresponds to the DV multi-rail encoding.

Here, we will focus on states that are produced by
coherently1 subtracting one photon from several modes
that are each in a squeezed state. Our interest is mainly
motivated by recent theoretical [17, 18] and experimen-
tal [19–24] advances in the production of this kind of
states, that showed how to coherently subtract single
photons from multi-mode squeezed states via the interac-
tion in a non-linear crystal with an appropriate classical
field.

We develop our analysis along two main directions.
First, we study how quantum information can be encoded
in the multi-mode code space corresponding to a single
qudit (d-dimensional quantum system) or an ensemble
of qubits. The advantage of our scheme with respect to
the usual multi-rail DV approach lies in the fact that the
presence of squeezing enables the use of common tools in
continuous-variable quantum optical processing. This,
in turn, allows us to show that arbitrary qudits can be
generated and detected via simply tuning the classical
fields that drive the photon-subtraction scheme. We also
investigate how parity measurements — which can be
related to homodyne measurements — can be used to
discriminate between basis states in the multi-mode code
space.

The resilience of the proposed scheme with respect to
the main noise mechanisms is also analyzed, finding that
high levels of squeezing make the code space less resilient
to losses.

The second direction we explore consists in considering
the mapping of classical strings of data on the photon-
subtracted state. In general, mapping classical data into
quantum states constitutes an unavoidable initial step,
which is essential to any further quantum processing of
the input, including the proper evaluation of the process-
ing performances [25, 26]. In our case, this mapping is en-
abled by the fact that, as said, arbitrary high-dimensional
states can be generated by tuning the classical gate fields
which, in turn, can directly encode the classical data.
Remarkably, the fact that only one probabilistic event
is needed to produce a logical state (regardless the size
of the input data alphabet) implies that the classical to
quantum mapping is nearly unconditional. We propose
two protocols that exploit this mapping to compute ei-

1 Here the word coherently refers to the fact that the single photon
subtraction is applied on a coherent superposition of modes. This
is not the same meaning as in “coherent states”, also common in
quantum optics. In the following, the distinction should be clear
from the context.

ther the scalar product or the distance between classi-
cal data vectors by measuring a single quadrature of the
field. The interest here lies in the wide-spread applica-
tion of these primitives for quantum-enhanced machine
learning schemes [27–29], e.g. in distance-based cluster-
ing algorithms for supervised pattern recognition [30].

The rest of the article is structured as follows. In sec-
tion II we recall the physics of mode-dependent single
photon subtraction. We then describe the encoding in
section III, where we also detail how information can be
extracted by measurements that discriminate between el-
ements of the computational basis, and how the main
sources of noise affect the encoding. Section IV is de-
voted to the encoding of classical data and the computa-
tion of scalar products and vector distances. Conclusive
remarks in section V complete the paper. Appendix A re-
ports some examples of interesting encoded states while
in Appendix B a universal set of operations is defined
that could be used to process the encoded information.

II. MODE DEPENDENT SINGLE-PHOTON
SUBTRACTION

We now introduce some notations and recall how co-
herent photon subtraction from squeezed time-frequency
modes works. Consider a multi-mode squeezed state
(MMSS) |S〉, composed of M modes and written as

|S〉=

M⊗
j=1

|sj〉ej , (1)

where each |sj〉ej = S(sj) |0〉ej is a squeezed state of mode

ej (x, ω) with squeezing parameter sj , {ej (x, ω)} being
an orthonormal set of modes of the electric field, which
are functions of the position x and frequency ω. We
denote by σj the corresponding annihilation operators.
States in Eq. (1) have been experimentally realized in var-
ious contexts [31–35], producing and detecting quantum
states across up to a million modes [36]. As a relevant
example, we bear in mind the case of MMSS generated
by parametric down-conversion of a frequency comb. In
particular, in the simple case of a comb with a Gaussian
spectrum, the spectra of the co-propagating squeezed
modes can be approximated with Hermite-Gauss func-
tions [33, 37]. A sum-frequency conversion process can
then be used to up-convert part of the light from a mode
f defined as

f (x, ω) =
∑
j

c∗jej (x, ω) (2)

with cj ∈ C,
∑
j |cj |2 = 1. This can be accomplished

by mixing the MMSS with a strong coherent pulse (gate
field) in a non-linear crystal [17]. By choosing the phase
matching conditions for a non-collinear configuration, the
up-converted light is emitted in a different direction with
respect to the transmitted MMSS and gate beams. Thus,
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the process can be modeled as an effective weak beam
splitter interaction [18]. The activation of a single-photon
detector [e.g., an avalanche photodiode (APD)] placed on
the path of the up-converted signal can then herald the
subtraction of a photon from the MMSS. If the process
is perfect, the photon comes with certainty from mode
f . As it was theoretically shown in [17] and recently
experimentally demonstrated [22], with the appropriate
phase-matching conditions and disergarding the spatial
dependence, the spectrum of the mode f essentially co-
incides with the spectrum of the gate field. The corre-
sponding annihilation operator is thus defined by

b =
∑
j

cjσj , (3)

and the state of the transmitted MMSS after the de-
tection of a photon is a multimode photon-subtracted
(MMPS) state:

|MMPS〉=
∑
j

γj
∣∣spj〉ej ⊗

i6=j

|si〉ei . (4)

Here
∣∣spj〉ej = Njσj |sj〉ej denotes a photon-subtracted

state with Nj a normalization factor. Due to the factors
Nj , the complex coefficients γj do not coincide with the
cj ones, however they are fully determined by the lat-
ter. When the normalization factors Nj are taken into
account, it is then possible to find the appropriate gate
that will produce a photon-subtracted state as in Eq. (4)
with arbitrarily chosen coefficients γj .

III. ENCODING

The photon-subtracted states in Eq. (4) can be re-
written as

|MMPS〉 ≡
M∑
j=1

γj |j〉 , (5)

where |j〉 represents a MMSS in which a single photon
has been subtracted from mode ej :

|j〉=
∣∣spj〉ej ⊗

i6=j

|si〉ei . (6)

The relevant observation here is that the states |j〉 are
orthogonal since they belong to subspaces with definite
parity, in terms of photon population. In particular, one
has that

〈i|j〉 ∝ 〈si|ei |s
p
i 〉ei

〈
spj
∣∣
ej
|sj〉ej = 0 , (7)

since squeezed states only contain even photon compo-
nents and photon-subtracted squeezed states only con-
tain odd photon components. We will refer to states |j〉
as the computational basis, each value j corresponds to

a symbol of a finite alphabet, and Eq. (5) introduces an
abstract notation for an encoded qudit. If the number
of modes in M is 2n, the span {|j〉} is isomorphic to C2n

and the qudit can be thought to represent n qubits.
Experimental tomography of the photon-subtraction

process demonstrated a purity of more than 90% for the
superposition of 16 modes at different frequencies [22].
Hence, it is in principle possible to realize a highly accu-
rate single-mode subtraction with a large experimental
tunability of the coefficients γj in Eq. (5) which, in par-
ticular, is nearly independent of the number of modes
in the system. This means that any, ideally arbitrary,
state of a qudit with dimension M can be generated.
Equivalently, any superposition of n qubits can be re-
alized with a single photon subtraction from M = 2n

modes. Some examples can be found in Appendix A.
Clearly, the number of modes scales exponentially with
the number of qubits, but the number of single-photon
operations needed is constant, namely equal to one.

As mentioned, the present encoding can be regarded
as a generalization of the usual DV multi-rail encoding.
There, a single photon is prepared in an arbitrary su-
perposition of M spatially separated modes via a pas-
sive interferometer. The relation to the encoding here
introduced stems from the fact that a photon-subtracted
squeezed state is equivalent to a squeezed single photon
states, namely:∣∣spj〉ej = NjσjS(sj) |0〉ej ≡ N

′
jS(sj) |1〉ej . (8)

As a consequence, the encoded state |MMPS〉 in Eq. (4)
represents an arbitrary single-photon superposition over
M modes (that could in principle be spatially separated)
to which a multiple squeezing operator ⊗Mj=1S(sj) has
been applied. In the zero-squeezing limit, |MMPS〉
states thus correspond in fact to the usual multi-rail en-
coding2.

We recall that, in standard multi-rail encoding, the
interferometer parameters need to be set accordingly to
the state to be generated, a procedure that is typically
hard to implement especially in bulk optics or whenever
a high degree of tunability is required, and it can be
implemented only via advanced integrated devices [38–
40]. The scheme presented here overcomes these issues
entirely, since the superposition determining the MMPS
states can be set simply by tuning the gate field parame-
ters —namely, modifying the spectral components of the
strong coherent gate that drives the non-linear crystal
[17]. In other words, due to the experimental possibility
to select the subtracted mode, many resource states could
be generated without modifying the physical setup. The
limitation in the code dimension is the number of modes
which can be simultaneously squeezed and addressed by

2 Notice that in practice the scheme here introduced cannot be
used to generate multi-rail encoding tough, since the probability
of subtracting a photon vanishes for zero squeezing.
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photon subtraction [22, 23, 33, 41]. The code rate is
given by the succes rate of the single-photon subtrac-
tion: it is mainly driven by the gate power which has
been limited to ∼ 2 KHz [22] in order to avoid spurious
or multi-photon events.

Another interesting feature of this scheme is that sin-
gle photon detectors are not necessarily needed, given
that all modes are populated. In fact, as we will show
below, highly-efficient homodyne detection can be used
at the measurement stage. In addition, the detected
modes can be tuned by appropriately selecting the local-
oscillator fields for homodyning, as shown experimentally
in Ref.[33, 41]. This in turn implies that a variety of dif-
ferent unitary transformations (in particular, any mode
mixing operation [41, 42]) can be implemented on the
generated states by embedding them in the measurement.

A. Distinguishing elements of the computational
basis

We saw that the parity features of the computational
basis elements imply that the latter form an orthonormal
set of states. In principle, it is thus possible to perfectly
discriminate them. However, experimental imperfections
will lead to a partial overlap and consequently a non-
zero probability of failing to distinguish these states. The
two most relevant kinds of imperfections in this context
are non-ideal photon-subtractions and losses before the
detection. The former is due to the incomplete mode-
selectivity of the subtraction process, and it has been
already considered for the characterization of the exper-
imental platform in Ref. [22]. This is also the easiest to
describe, because it only shuffles modes within the finite-
dimensional code-space spanned by the basis elements.
Losses, on the other hand, need to be described in the
infinite-dimensional Hilbert space of the EM field. We
shall analyze the two types of errors separately in the
following.

Many figures of merit can be used to assess the perfor-
mance of state discrimination. We will focus on the state
fidelity under a specific kind of measurement based on the
parity operator (defined below). The latter is a sensible
choice due to the parity properties of the computational-
basis state. In particular, we define

J =
∑
j

(
jΠ̃j

)
, (9)

with

Π̃j =
∑
k

|2k + 1〉〈2k + 1|j ⊗ Ij̄ (10)

a modified parity operator on mode j, that acts as the

identity on all other modes. Note that Π̃j = Π̃†j =
(

Π̃j

)2

,

so Π̃j is a projector. Therefore, we have

J |j〉= j |j〉 . (11)

Even if it is experimentally challenging to measure the
parity of many modes, the mean value of the parity op-
erator

Πj =
∑
n

(−1)n|n〉〈n|j ⊗ Ij̄ = 1− 2Π̃j (12)

is related to the value of the Wigner function at the origin
of the phase space and can be measured through homo-
dyne detection. In fact, given a generic single-mode state
ρ, the Wigner function evaluated at point α of the phase
space is given by [43, 44] (since we are dealing with a
single mode, we drop the subscript j for clarity)

W (α) =
2

π
〈D(α)ΠD(α)†〉

= Tr[ρ
2

π

∑
n

(−1)nD(α)|n〉〈n|D(α)†]

=
2

π

∑
n

(−1)npn(α) ,

(13)

where pn(α) is the occupation probability of the n-photon
state after the state ρ has undergone a phase-space dis-
placement operation D(−α) by an amount −α 3. The
extension to the multi-mode case is trivial. The average
value of the parity operator, which is sufficient to dis-
criminate the basis elements |j〉, coincides with no dis-
placement as

W (0) =
2

π
〈Π〉 . (14)

Direct evaluation of the Wigner function at any point
in the phase space can be made by photon-counting af-
ter a displacement operation [43, 45], but it can also be
recovered more conveniently by cascaded optical homo-
dyne, as proposed in [46]. In the particular case of the
parity operator, where only the Wigner function at the
origin of the phase-space is needed, the probability pn(0)
can be simply obtained from phase-randomized homo-
dyne measurements [47]. This is straightforward to re-
alize experimentally and crucially the complexity of this
measurement set-up (including the total number of mea-
surements) increases only linearly with the number of
modes M .

1. Errors from imperfect photon subtraction

A perfect single-mode photon subtraction from one of
the squeezed modes can be represented as a map

Pj : |S〉 7→ Njσj |S〉 〈S| σ†j = |j〉 〈j| . (15)

3 Recall that 〈D(α)ΠD(α)†〉 = Tr[ρD(α)ΠD(α)†] =
Tr[D(α)† ρ D(α)Π] = Tr[D(−α) ρ D(−α)†Π]
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An imperfect subtraction from the mode j, that we de-
note by Ij , can be modeled as a multimode process char-

acterized by a subtraction matrix χ(j) such that [22]

Ij : |S〉 7→
∑
kl

χ
(j)
kl

√
NkNlσk |S〉 〈S| σ†l =

∑
kl

χ
(j)
kl |k〉 〈l| .

(16)
The matrix χ(j) has the same properties of a density ma-
trix. In fact, it can be identified with the density matrix
in the qudit basis of the state ρ̃j , corresponding to a dis-
torted element of the computational basis. The matrices
χ(j) can be obtained experimentally via a tomography
of the subtraction process. It is then easy to compute
the fidelity between the ideal state |j〉 and its realistic
realization ρ̃j as

F̃j (j) = 〈j| ρ̃j |j〉= χ
(j)
jj , (17)

or between ρ̃j and any basis state |k〉 6= |j〉

F̃k (j) = 〈k| ρ̃j |k〉= χ
(j)
kk . (18)

This has the operational meaning of probability that ρ̃j
will pass a test to check whether ρ̃j = |k〉 〈k|, minimized
over all possible measurement strategies [48]. Note that
〈k| ρ̃j |k〉 is also the probability of getting the outcome k
when measuring J on the state ρ̃j , so J optimally dis-
criminates between computational-basis states, which a
posteriori justifies its definition.

We can also easily compute the probability to get a
wrong outcome m 6= j when performing a measurement
in the computational basis, as defined by J in Eq. (9),
on a an imperfect basis state ρ̃j :∑

m 6=j

Pr (J = m|ρ̃j) = 1− Tr
(

Π̃j ρ̃j

)
= 1− χ(j)

jj . (19)

Note that the fidelity and the error probability do not
depend on the squeezing level since, as mentioned above,
the imperfection of photon subtraction considered here
only shuffles states in the qudit-space, whose definition
is independent of the amount of the squeezing in each
mode.

We can then assess the robustness of computational-
basis states in Eq. (6) to imperfect subtraction from the

matrix χ
(l)
jk , which can be in turn determined experimen-

tally via tomography of the subtraction process [22, 49].
As an example, in the follwing we have considered data
from Ref. [49] (partially published in [22]). The values

of χ
(j)
kk measured from the tomography of the photon-

subtraction from M = 4 squeezed modes are reported in
the following table:

k

j

1 2 3 4
1 .972 .023 .001 .001
2 .031 .932 .032 .002
3 .007 .045 .893 .046
4 .004 .005 .07 .857

This shows that the error probability is below 15% in the
worst case.

The subsequent table shows instead the fidelity be-
tween two non-ideal basis states

F̃ (j, k) = Tr

[√√
ρ̃j ρ̃k

√
ρ̃j

]2

= Tr

[√√
χ(j)χ(k)

√
χ(j)

]2

(20)
which can also be taken as a measure of distinguishability,
although the interpretation as error probability no longer
holds for two generally mixed states. One obtaines:

k

j

2 3 4
1 0.1 0.01 0.01
2 0.14 0.01
3 0.19

where again values closer to zero correspond to better
distinguishability.

2. Errors from losses before the detection

Losses before the detection stage can occur due to ac-
tual optical losses, imperfect mode-matching or to finite
quantum efficiency of the detectors. A simple model that
is commonly used for these situations consists in assum-
ing that each mode of the signal field is coupled through
a beam splitter of transmittivity τj to an ancillary mode
in the vacuum state, which is then traced out. For the
sake of clarity, we make the simplifying assumption that
losses affect each mode in the same way τj = τ . The loss
super-operator Lτ acting on the multi-mode density ma-
trix is then factorized as Lτ = L⊗n1,τ with each = L1,τ a
single-mode loss operator with parameter τ . We denote
by

ρ̄j = Lτ [|j〉〈j|] (21)

the j-th state of the computational basis after losses have
occurred. Since computational-basis states are factorized
in the basis of squeezed modes

|j〉〈j| = |s1〉e1〈s1| ⊗ . . .⊗Nj
∣∣spj 〉ej 〈spj ∣∣⊗ . . . , (22)

the fidelity

F̄j = 〈j| ρ̄j |j〉 (23)

between |j〉 and ρ̄j also factorizes as the product of fideli-
ties of single-mode states:

F̄j =N 2
j 〈j| a

†
jL1,τ

(
aj |sj〉〈sj | a†j

)
aj |j〉×∏

k 6=j

〈sk| L1,τ (|sk〉〈sk|) |sk〉 .
(24)

Each term in this product is an overlap between a
pure and a mixed state and is thus easily computed as
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an overlap integral between the respective Wigner func-
tions [5]. The results are shown in Fig. 1 as a func-
tion of the squeezing parameter, assumed to be the same
across all modes for simplicity. Since losses degrade the
squeezing, the fidelity decreases when the squeezing is
increased. The effect is more severe when more modes
are used to define the code space. This is also corrob-
orated by the fidelity F̄ (j, k) between two states after
losses, which shows that a smaller amount of losses is suf-
ficient to make two states less distinghishable if the initial
squeezing is higher (see Fig. 2). In this case, since both
states are mixed, we need to use the Uhlmann formula for
the fidelity [48] and we used a truncated representation
on the Fock basis for a numerical computation.

We also compare the degradation under losses of our
photon-subtracted encoded states with the so called even
cat state [5], which is a superposition of two coherent
states

|cat, α〉 ∝ |α〉+ |−α〉 , (25)

since its use has also been proposed for encoding a
qubit in a single mode of radiation in several quantum-
information protocols in hybrid CV-DV schemes. The
results are shown in Fig. 3 and they have to be compared
with the first plot in Fig. 1, where a single qubit is en-
coded in two modes via photon subtraction. Note that
since Lτ,1 is invariant under rotations of phase-space, we
only need to study the impact of losses as a function of
|α|. Although the horizontal axes of the two pictures are
not directly comparable, it is clear that the degradation
of cat states when their amplitude increases is larger than
the degradation of photon-subtracted states when the ini-
tial squeezing is increased. Moreover, while a relatively
large amplitude (|α| >∼ 2) of the cat states is required
for |α〉 and |−α〉 to be orthogonal — therefore for the
encoding to work — large squeezing is not required for
multidimentional encoding in photon-subtracted states.
Only non-zero squeezing is in fact required, in order to
have non-vanishing probability of subtracting a photon
from the superposition of modes.

IV. ENCODING CLASSICAL DATA AND
MEASURING VECTOR DISTANCES

The encoding of classical information in a quantum
state is the starting point of any quantum protocol that
aims at showing any kind of advantage when compared
with a classical counterpart. A key feature of the de-
scribed protocol is that the encoded states can be gener-
ated simply via tuning the field gate. In particular, the
encoding of a stream of classical data in a quantum state
is here conditioned on one single non-deterministic pho-
ton detection, while the dimension of the involved Hilbert
space is determined by the number of modes that can be
deterministically squeezed in the initial MMSS.

In the following we investigate the possible advantage

of computing vector overlaps (as scalar product) and vec-
tor distances via the proposed encoding.

A. Encoding two data vectors and measuring their
scalar product

Given two complex vectors ~y = {y1, .., yN} and ~z =
{z1, .., zN} their components can be can be encoded in
the coefficients γj in Eq. (5) via two photon-subtraction
experiments that produce the two states:

|PS〉1 =
∑
j

yj
∣∣spj〉mj

⊗
i6=j

|si〉mi
≡
∑
j

yj |j〉 , (26)

|PS〉2 =
∑
j

zj
∣∣spj〉mj

⊗
i 6=j

|si〉mi
≡
∑
j

zj |j〉 . (27)

If we identify with Πk the parity operator for the mode
k and with |Γ〉= |PS〉1 ⊗ |PS〉2 the total state involving
the two photon subtraction experiments, the probability
of getting simultanoeusly the value −1 when the parity
is measured in the same mode in the two experiments is
given by

| 〈Nk|1 〈Nk|2 |Γ〉 |
2=| ykzk |2 , (28)

where Πk |Nk〉 = − |Nk〉. Thus the measurement of
occurrence of negative-parity coincidence in couple of
modes with same index in the two experiments estimates
all the terms | ykzk |2 appearing in the scalar product
between the two vectors ~y and ~z. It has to be noted that
the method scales linearly with the number of modes as
it requires 2N parity measurements, while the full to-
mography of the total state |Γ〉 would require 2N2 mea-
surements.

B. Encoding the distance of two data vectors

A second even more convenient scenario is when the
difference between the two vectors is already given as a
string of classical data. We will now show that, in this
case, the distance

d2 (~y, ~z) =
∑
i

|yi − zi|2 (29)

can be obtained as the variance of the quadrature oper-
ator of solely one mode, which in turn can be measured
efficiently via homodyne detection.

Before addressing the calculation of the distance be-
tween two arbitrary vectors, let us first consider M inde-
pendently squeezed modes and suppose we can encode a

generic M -component vector ~h in the photon subtracted
state:

|ψ〉=

M∑
j=1

hj
∣∣spj〉ej ⊗

i 6=j

|si〉ei . (30)
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FIG. 1. (Color online) Contour plots of the fidelity F̄j [see Eq. (23)] for photon-subtracted states with 2q modes, namely,
encoding q qubits, as a function of the initial squeezing and of the transmittivity of the beam splitter used to model losses.
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FIG. 2. (Color online) Contour plots of the fidelity F̄ (j, k)
between two photon-subtracted states ρ̄j and ρ̄k after losses
as a function of the initial squeezing and of the transmittivity
of the beam splitter used to model losses.

It is easy to compute that

〈ψ| qr |ψ〉= 0 (31)

for any r. Let us turn to the variance of the quadra-
tures. It is clear that the computation is the same for
any mode, and the choice of position or momentum is
irrelevant since we did not specify the sign of the squeez-
ing parameter. So we can consider q1 without loss of
generality. We define for simplicity A ≡ 〈ψ| q2

1 |ψ〉. We
have

A =

M∑
j,r=1

hjh
∗
r

(〈
spj
∣∣
ej
⊗ 〈s|j̄

)
q2
1

(
|spr〉er ⊗ |s〉̄r

)
(32)

where

|s〉̄j =
⊗
t6=j

|st〉et . (33)
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FIG. 3. (Color online) Contour plots of the fidelity between
an ideal cat state with the degraded version after losses have
occurred, as a function of |α| and of the transmittivity of the
beam splitter used to model losses.

The terms with j 6= r are zero, since each is proportional
to a product of the form

〈spr |er |sr〉er = 0. (34)

For j = r there are two possibilities:

j = r = 1 =⇒ 〈sp1|e1 q
2
1 |s

p
1〉e1 = 3e2s1/2 (35)

j = r 6= 1 =⇒ 〈s1|e1 q
2
1 |s1〉e1 = e2s1/2. (36)

It follows that

〈ψ| q2
1 |ψ〉=

3

2
e2s1 |h1|2 +

e2s1

2

M∑
j=2

|hj |2 . (37)

The normalization of |ψ〉 and the orthogonality of the
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states |j〉 imply

M∑
j=1

|hj |2 = 1. (38)

To compute the norm of a vector of arbitrary complex
numbers ~x, one could choose a gate field corresponding
to

~h = Nx
(
β
~x

)
(39)

where β is a complex number chosen by the experimenter
and

Nx =
1√

|β|2 + |~x|2
. (40)

The input vector ~x does not need to be normalized and β
can be chosen arbitrarily (as long as it is not zero, because
otherwise the measured quantity no longer depends on
~x, see Eq. (41)). The normalization constant need not
be computed. In a sense, it is precisely the fact that
the physicality of the state enforces normalization that
allows to avoid computing the vector distance explicitly,
replacing its computation by a measurement. Plugging
Eqs. (39) and (40) into Eq. (37) we find

A =
3

2
e2s1

|β|2

|β|2 + |~x|2
+
e2s1

2

|~x|2

|β|2 + |~x|2

= e2s1

(
|β|2

|β|2 + |~x|2
+

1

2

)
.

(41)

For |~x|2 → 0, the probability of subtracting from the first
mode goes to 1, so the variance of q1 tends to that of a
photon-subtracted squeezed mode. For |~x|2 → ∞, the
probability of subtracting a photon from the first mode
goes to zero, and the variance of q1 tends to that of the
squeezed vacuum. We find

|~x|2 =
3− 2e−2s1A

2e−2s1A− 1
|β|2 (42)

Note that only one quadrature has to be measured re-
gardless of the length of the vector ~x. This means that
the norm of the vector ~x could be computed with a con-
stant number of operations, namely this algorithm has
O (1) complexity, compared to the standard O (n), linear
in the length of the vector. It is interesting to note that
the sensitivity of the measured quantity A with respect
to |~x|2 increases with the squeezing. In fact

dA

d |~x|2
∝ e2s1 . (43)

Notice that this does not depend on the squeezing of
the remaining modes. Of course, said squeezing does

have an impact on the overall process, as it affects the
subtraction probability. This is also roughly proportional
to the square of the power of the gate field, which is in
turn related to |β|2 + |~x|2 4. The expected waiting time
to have enough subtraction events to collect a reasonable
statistics for an estimate of A will then be longer for
small values of |~x|2 but it is anyway bounded because of
the finite value of β.

To evaluate the distance between two vectors ~y and ~z,
one could use the full N = m+1 modes system to encode

~h =

(
β

~y − ~z

)
(44)

(where m is the length of ~y and ~z) and then measure the
variance of q1. Note that N = m+ 1 squeezed modes are
needed, but this has to be compared with the linear scal-
ing one would have in the dimension of the classical reg-
isters needed to store the vectors in classical algorithms
and is a space complexity problem rather than time.

As for the encoding procedure, if the vectors ~y and ~z
are given in the form of frequency-shaped strong coher-
ent pulses, the gate pulse for the subtraction needed to
encode the coefficients yi − zi on the photon-subtracted
MMSS can be obtained as follows. First apply to each a
frequency-dependent attenuation accounting for the sub-
traction probability from each of the squeezed modes.
This is known beforehand from the characterization of
the MMSS and the photon subtractor and can be done
with a fixed device (for example a pulse shaper). Then
mix the two beams on a balanced beam splitter. The out-
put mode of the beam splitter containing the difference of
the amplitudes of the input beams is then used as a gate.
The complexity of this procedure is again independent of
number of modes.

V. CONCLUSIONS

The generation of photon-subtracted optical states has
been the subject of intensive experimental efforts for
more than a decade [50–58]. This is motivated by both
applicative and fundamental considerations, given that
the access to these type of states could improve the
performances of a variety of quantum information tasks
[59] — including estimation [60] and teleportation proto-
cols [61–63] — and allow for homodyne-based loop-hole
free non-locality tests [64–68]. More in general, photon-
subtracted states can be used as resources for tasks that
require quantum non-Gaussianity or Wigner negativity
[69, 70], and in fact they have been proposed as building

4 Encoding vectors of larger norm would require more power, so
the maximum available power will ultimately limit the class of
vectors that can be encoded in this scheme. Also, if the power of
the gate is too large, the probability of more than one subtraction
becomes non-negligible.



9

blocks to implement universal non-Gaussian operations
[71] and hard-to-sample non-universal dynamics [72]. In
addition, arbitrary single-mode quantum states can be
engineered when multiple feed-back controlled photon-
subtraction operations are applied sequentially [73]. Here
we have shown how, in a multi-mode setting, they could
be used for general quantum encoding purposes. Specif-
ically, we introduced a multidimensional quantum en-
coding which is based on multimode CV states of light.
The code dimension is determined by the number of light
modes which can be simultaneously occupied by squeezed
vacua, and the information is encoded on the coefficients
of the superposition of photon-subtraction events, which
are in turn coherently applied to the squeezed modes and
triggered by a single photon event.

The encoding is a generalization of the multirail en-
coding and it coincides with the latter in the limit of
zero squeezing. A noteworthy difference of our scheme
with respect to the standard multirail approach is that it
requires only one single photon detector (at the encod-
ing stage), as we propose the use of homodyne detection.
Moreover, the adjustment of the encoding coefficients re-
quires only the control on the spectral components of a
gate beam in a coherent state (ultimately controlled via a
spatial light modulator) and not the arrangement of sev-
eral interferometric parameters via optical components
(beam splitters, phase shifters). Notice that the encoding
does not require a large amount of squeezing per mode:
any non-zero squeezing is sufficient to ensure a measur-
able rate of subtraction events — which is in any case
mainly driven by the amplitude of the gate field. Our
results suggest that large values of squeezing are in fact
detrimental for the encoding, making the computational
basis states less robust to losses. This implies a trade-off
between resilience to losses and the rate of generation,
as the number of subtraction events in a given time is
proportional to the mean photon number in the subtrac-
tion mode, the power of the gate field and the square of
the nonlinear susceptibility [17]. Low squeezing values
imply low photon numbers and thus lower rates. This
can to some extent be compensated, for fixed nonlinear-
ity, increasing the power in the pump beam. However,
at high gating power spurious effects may appear, such
as dark counts on the heralding detectors due to second-
harmonic generation of the gate field, that degrade the
quality of the subtraction process.

We stress that our investigations are mostly motivated
by the experimental readiness of much of the technology
required. The coherent single photon subtraction has
been demonstrated on a space of 16 modes [22], and ap-
plied on multimode squeezed and entangled states [24].
The production of multimode quantum states involving
a large number modes, up to 60 for frequency modes and
up to 106 for temporal modes has already been demon-
strated in different experimental setups [33, 34, 36]. The
tailoring of nonlinear processes based on spectral and
temporal modes represents an active area of research on
its own, as reviewed in [4], and we can reasonably ex-

pect the extension of coherent single-photon subtraction
to a larger number of squeezed modes. Besides the num-
ber of non-vacuum modes, the dimension of the code-
space is only limited by the specifics of each setup (e.g.
the number of up-conversion modes that can be phase-
matched simulataneously and the resolution of the pulse-
shaping device used to produce the gate pulse). It is
thus interesting to explore new ways to exploit the re-
sulting states for quantum information processing. The
results we report suggest that besides producing interest-
ing high-dimensional quantum states (qudits), of which
we also give some explicit examples in Appendix A, the
tunability of the subtraction mode can be exploited to
map arbitrary classical data to quantum states, as well
as process them. We showed this by providing in Sec. IV
two schemes to compute the distances of two encoded
vectors, which may have a wide range of applications,
for example in clustering algorithms for machine learn-
ing. The coefficients can be transferred to the multimode
state of the field that shapes the subtraction mode, and
the norm or the distance are shown to be proportional to
the mean values of simple observables: either the parity
or the square of a quadrature operator.

In summary, these findings represent a first step in the
use of multimode photon-subtracted squeezed states for
quantum information processing, with the potential to
lead to more advanced tasks, such as universal quantum
computation. We only briefly consider this last applica-
tion in Appendix B. Although we can formally construct
a universal set of gates, their experimental realization
lies outside the reach of current experimental capabili-
ties. The possibility to construct more experimentally
accessible sets of transformations remains an open ques-
tion that we leave to further investigations.
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Appendix A: Examples of encoded states

We can easily see that interesting classes of states
can be obtained by simply tuning the coefficients γj in
Eq. (4), which are controlled by the classical gating field.
To fix the ideas, consider 2n independently squeezed
modes and the corresponding states |j〉 in which a photon
has be subtracted from mode ej (see Eq. 6). These could
represent an n-qubit system in which |j〉 corresponds to
the binary representation of j. For example for n = 2,
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neglecting normalization after photon subtraction

|j = 0〉=σ0 |s0〉m0
|s1〉m1

|s2〉m2
|s3〉m3

↔ |00〉 ,
|j = 1〉= |s0〉m0

σ1 |s1〉m1
|s2〉m2

|s3〉m3
↔ |01〉 ,

|j = 2〉= |s0〉m0
|s1〉m1

σ2 |s2〉m2
|s3〉m3

↔ |10〉 ,
|j = 3〉= |s0〉m0

|s1〉m1
|s2〉m2

σ3 |s3〉m3
↔ |11〉 .

(A1)

A two-qubit encoded cluster state [74], for example,
would then correspond to

|G2〉=
1

2
(|00〉+ |01〉+ |10〉− |11〉)

=
1

2

∑
j

(−1)
δj3
∣∣∣s(p)
j

〉
ej

⊗
i 6=j

|si〉ei
(A2)

where δjk denotes the Kronecker delta. Cluster states
have plenty of applications in quantum information,
for example they are known to be universal resources
for measurement-based quantum computing if combined
with an appropriate set of measurements. These usually
include so-called Pauli measurements and at least one
non-Clifford gate [75]. The latter requires measurements
that are usually considered harder to implement. This
difficulty can be circumvented using magic state injec-
tion [76], which roughly involves coupling an eigenstate
of the desired non-Clifford operator to the cluster state.
It is easy to imagine that the resulting extended resource
state can again be written as a MMPS state by tuning
the coefficients in Eq. (4). The catch is of course that it
is difficult to write, let alone realize, even Pauli measure-
ments on the encoded states. Nevertheless, the present
manuscript may motivate the search for an experimen-
tal scheme to perform such measurements and, if such a
scheme was found, a plethora of protocols could readily
be implemented as the resource states are already avail-
able. We conclude by giving two more examples of in-
teresting states that could be produced with the present
setup. Hypergraph states are a generalization of cluster
states containing edges between more than two qubits
that were introduced to study the entanglement proper-
ties of some quantum algorithms [77]. An edge between
three qubits may be understood as the result of applying
a Z on the third if the state of both the other two is
|1〉. The smallest non-trivial hypergraph involves three
qubits and the encoded version can be written

|Hyp3〉 =
1√
8

7∑
j=0

(−1)
δj7
∣∣∣s(p)
j

〉
ej

⊗
i6=j

|si〉ei . (A3)

Finally, fingerprinting designs a class of communication
protocols where two parties, Alice and Bob, have two
strings of n bits a and b and a third party, Charles, has
to decide whether a = b. Charles can communicate with
Alice and Bob, but Alice and Bob cannot communicate.
Their goal is to send the minimum amount of information

to Charles still allowing him to decide whether a = b with
small error probability. Quantum mechanics allows an
exponential reduction [78] of the amount of information
that Alice and Bob have to send by using an error cor-

recting code E : {0, 1}n → {0, 1}M such that E (a) = x,
E (b) = y and then encoding x and y in the states

|hx〉=
1√
M

M∑
j=0

(−1)
xj |j〉 (A4)

|hy〉=
1√
M

M∑
j=0

(−1)
yj |j〉 (A5)

where xj (yj) is the value of the jth bit of x (y). This
also nicely matches our representation of a MMPS states.

Appendix B: Universal set of gates

We have seen that a single photon-subtraction acting
coherently on M modes can initialize an M -level sys-
tem to an arbitrary state. Let us now briefly address
the question of the operations required to perform arbi-
trary quantum processing of the information stored on M
modes via the encoding here introduced. For the sake of
this Appendix, we will only focus on the case of M = 2d

(namely, on a high dimensional system that emulates a
multi-qubit one).

At the logical level, a universal set of qubit gates con-
sist of all possible single-qubit unitaries plus an entan-
gling two-qubit gate. A possible finite universal set of
gates is given by {H,T,CZ}: it is composed of the
Hadamard gate, the T gate (a rotation of angle π

4 around
the Pauli Z axis), and the control-phase CZ respectively
[1]. We will only introduce here the definitions of such
gates in terms of the encoding, leaving the analysis of
their possible implementation to future studies.

Considering the definition of the parity operator given
in Eq. (10), the T gate acting on a logical qubit composed
of two modes is expressed as

T = Π̃
π/4
2 . (B1)

The Hadamard gate, again acting on a qubit encoded on
two modes, corresponds to the following transformation:

|sp1, s2〉 →
1√
2

(
|sp1, s2〉+ |s1, s

p
2〉
)
, (B2)

|s1, s
p
2〉 →

1√
2

(
|sp1, s2〉− |s1, s

p
2〉
)
. (B3)

Finally, the CZ between two logical qubits encoded on
four modes can be written as:

CZ =

1∑
j=0

|j〉〈j| ⊗
( 1⊗
k=0

Πkj
k

)
. (B4)
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N. J. Russell, J. W. Silverstone, P. J. Shadbolt,
N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall,
M. G. Thompson, J. C. F. Matthews, T. Hashimoto,
J. L. O’Brien, and A. Laing, Science 349, 711 (2015),
http://science.sciencemag.org/content/349/6249/711.full.pdf.

[39] X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke,
S. OGara, L. Kling, G. D. Marshall, R. Santagati, T. C.
Ralph, J. B. Wang, J. L. OBrien, M. G. Thompson, and
J. C. F. Matthews, Nature Photonics 12, 534 (2018).

[40] N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini,
J. Mower, D. Bunandar, C. Chen, F. N. C. Wong,
T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund,
Nature Photonics 11, 447 (2017).

[41] Y. Cai, J. Roslund, G. Ferrini, F. Arzani, X. Xu,
C. Fabre, and N. Treps, Nat. Commun. 8, 15645 (2017).

[42] G. Ferrini, J. Roslund, F. Arzani, C. Fabre, and
N. Treps, Phys. Rev. A 94, 062332 (2016).

[43] K. Banaszek, C. Radzewicz, K. Wódkiewicz, and J. S.
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[67] A. Aćın, N. J. Cerf, A. Ferraro, and J. Niset, Physical
Review A 79, 012112 (2009).

[68] J. Etesse, R. Blandino, B. Kanseri, and R. Tualle-Brouri,
New J. Phys. 16, 53001 (2014).

[69] R. Takagi and Q. Zhuang, Physical Review A 97, 062337
(2018).

[70] F. Albarelli, M. G. Genoni, M. G. A. Paris, and A. Fer-
raro, arXiv:1804.05763 (2018).

[71] F. Arzani, N. Treps, and G. Ferrini, Physical Review A
95, 052352 (2017).

[72] J. P. Olson, K. P. Seshadreesan, K. R. Motes, P. P. Ro-
hde, and J. P. Dowling, Physical Review A 91, 022317
(2015).
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