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Abstract: We consider a sequence of systems of Hawkes processes having mean �eld interac-

tions in a di�usive regime. The stochastic intensity of each process is a solution of a stochastic

di�erential equation driven by N independent Poisson random measures. We show that, as the

number of interacting components N tends to in�nity, this intensity converges in distribution

in Skorohod space to a CIR-type di�usion. Moreover, we prove the convergence in distribu-

tion of the Hawkes processes to the limit point process having the limit di�usion as intensity.

To prove the convergence results, we use analytical technics based on the convergence of the

associated in�nitesimal generators and Markovian semigroups.
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Introduction

Hawkes processes were originally introduced by [18] to model the appearance of earthquakes in
Japan. Since then these processes have been successfully used in many �elds to model various phys-
ical, biological or economical phenomena exhibiting self-excitation or -inhibition and interactions,
such as seismology ([20], [37], [31], [2]), �nancial contagion ([1]), high frequency �nancial order
books arrivals ([28], [3], [21]), genome analysis ([36]) and interactions in social networks ([38]). In
particular, multivariate Hawkes processes are extensively used in neurosciences to model temporal
arrival of spikes in neural networks ([17], [32], [33], [35]) since they provide good models to describe
the typical temporal decorrelations present in spike trains of the neurons as well as the functional
connectivity in neural nets.

In this paper, we consider a sequence of multivariate Hawkes processes (ZN )N∈N∗ of the form

ZN = (ZN,1t , . . . ZN,Nt )t≥0. Each ZN is designed to describe the behaviour of some interacting
system with N components, as for example a neural network of N neurons. More precisely, ZN is
a multivariate counting process where each ZN,i records the number of events related to the i−th
component, as for example the number of spikes of the i−th neuron. These counting processes are
interacting, that is, any event of type i is able to trigger or to inhibit future events of all other
types j. The process (ZN,1, . . . , ZN,N ) is informally de�ned via its stochastic intensity process
λN = (λN,1(t), . . . , λN,N (t))t≥0 through the relation

P(ZN,i has a jump in ]t, t+ dt]|Ft) = λN,i(t)dt, 1 ≤ i ≤ N,
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where Ft = σ
(
ZNs : 0 ≤ s ≤ t

)
. The stochastic intensity of a Hawkes process is given by

λN,i(t) = fNi

 N∑
j=1

∫ t

−∞
hNij (t− s)dZN,j(s)

 . (1)

Here, hNij models the action or the in�uence of events of type j on those of type i, and how this

in�uence decreases as time goes by. The function fNi is called the jump rate function of ZN,i.
Since the founding works of [18] and [19], many probabilistic properties of Hawkes processes have

been well-understood, such as ergodicity, stationarity and long time behaviour (see [5], [9], [8], [34]
and [16]). A number of authors studied the statistical inference for Hawkes processes ([30] and [36]).
Another �eld of study, very active nowadays, concerns the behaviour of the Hawkes process when
the number of components N goes to in�nity. During the last decade, large population limits of
systems of interacting Hawkes processes have been studied in [15], [12] and [13].

[12] consider a general class of Hawkes processes whose interactions are given by a graph. In
the case where the interactions are of mean �eld type and scaled in N−1, namely hNij = N−1h

and fNi = f in (1), they show that the Hawkes processes can be approximated by an i.i.d. family
of inhomogeneous Poisson processes. They observe that for each �xed integer k, the joint law of
k components converges to a product law as N tends to in�nity, which is commonly referred to
as the propagation of chaos. [13] generalize this result to a multi-population frame and show how
oscillations emerge in the large population limit. Note again that the interactions in both papers
are scaled in N−1, which leads to limit point processes with deterministic intensity.

The purpose of this paper is to study the large population limit (when N goes to in�nity) of
the multivariate Hawkes processes (ZN,1, . . . , ZN,N ) with mean �eld interactions scaled in N−1/2.
Contrarily to the situation considered in [12] and [13], this scaling leads to a non-chaotic limiting
process with stochastic intensity. As we consider interactions scaled in N−1/2, we have to center the
terms of the sum in (1) to make the intensity process converge according to some kind of central
limit theorem. To this end, we consider intensities with stochastic jump heights. Namely, in this
model, the multivariate Hawkes processes (ZN,i)1≤i≤N (N ∈ N∗) are of the form

ZN,it =

∫
]0,t]×R+×R

1{z≤λN
s }dπi(s, z, u), 1 ≤ i ≤ N, (2)

where (πi)i∈N∗ are i.i.d. Poisson random measures on R+ × R+ × R of intensity ds dz dµ(u) and µ
is a centered probability measure on R having a �nite second moment σ2. The stochastic intensity
of ZN,i is given by

λN,it = λNt = f
(
XN
t−
)
,

where

XN
t =

1√
N

N∑
j=1

∫
[0,t]×R+×R

h(t− s)u1{z≤f(XN
s−)}dπj(s, z, u).

Moreover we consider a function h of the form h(t) = e−αt so that the process (XN
t )t is a

piecewise deterministic Markov process. In the framework of neurosciences, XN
t represents the

membrane potential of the neurons at time t. The random jump heights u, chosen according to
the measure µ, model random synaptic weights and the jumps of ZN,j represent the spike times of



X. Erny et al./Hawkes with random jumps 3

neuron j. If neuron j spikes at time t, an additional random potential height u/
√
N is given to all

other neurons in the system. As a consequence, the process XN has the following dynamic

dXN
t = −αXN

t dt+ 1√
N

N∑
j=1

∫
R+×R

u1{z≤f(XN
t−)}dπj(t, z, u).

Its in�nitesimal generator is given by

ANg(x) = −αx g′(x) +Nf(x)

∫
R

[
g

(
x+

u√
N

)
− g(x)

]
µ(du),

for su�ciently smooth functions g. As N goes to in�nity, the above expression converges to

Āg(x) = −αx g′(x) +
σ2

2
f(x)g′′(x),

which is the generator of a CIR-type di�usion solution of the SDE

dX̄t = −αX̄tdt+ σ
√
f(X̄t)dBt. (3)

It is classical to show in this framework that the convergence of generators implies the convergence
of XN to X̄ in distribution in Skorohod space. In this article we establish explicit bounds for the
weak error for this convergence by means of a Trotter-Kato like formula. Moreover we establish for
each i, the convergence in distribution in Skorohod space of the associated counting process ZN,i to
the limit counting process Z̄i which has intensity (f(X̄t))t. Conditionally on X̄, the Z̄i, i ≥ 1, are
independent. This property can be viewed as a conditional propagation of chaos-property, which
has to be compared to [12] and [13] where the intensity of the limit process is deterministic and its
components are truly independent, and to [6], [11] and [27] where all interacting components are
subject to common noise. In our case, the common noise, that is, the Brownian motion B of (3),
emerges in the limit as a consequence of the central limit theorem.

To obtain a precise control of the speed of convergence of XN to X̄ we use analytical meth-
ods showing �rst the convergence of the generators from which we deduce the convergence of the
semigroups via the formula

P̄tg(x)− PNt g(x) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x)ds. (4)

Here P̄tg(x) = Ex
[
g(X̄t)

]
and PNt g(x) = ENx

[
g(XN

t )
]
denote the Markovian semigroups of X̄ and

XN . This formula is well-known in the classical semigroup theory setting where the generators
are strong derivatives of semigroups in the Banach space of continuous bounded functions (see
Lemma 1.6.2 of [14]). In our case, we have to consider extended generators (see [10] or [29]),
i.e. ANg(x) is the point-wise derivative of t 7→ PNt g(x). The version of formula (4) for extended
generators is stated and proved in Appendix (Proposition 5.4).

It is well-known that under suitable assumptions on f, the solution of (3) admits a unique
invariant measure π whose density is explicitly known. Thus, a natural question is to consider the
limit of the law L(XN

t ) of XN
t when t and N go simultaneously to in�nity. We prove that the

limit of L(XN
t ) is π, for (N, t) → (∞,∞), under suitable conditions on the joint convergence of

(N, t). We also prove that there exists a parameter α∗ such that for all α > α∗, this converges holds
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whenever (N, t) → (∞,∞) jointly, without any further condition, and we provide a control of the
error (Theorem 1.6).

The paper is organized as follows: in Section 1, we state the assumptions and formulate the
main results. Section 2 is devoted to the proof of the convergence of the semigroup of XN to that
of X̄ (Theorem 1.4.(i)), and Section 3 to the study of the limit of the law of XN

t as N, t → ∞
(Theorem 1.6). In Section 4, we prove the convergence of the systems of point processes (ZN,i)1≤i≤N
to (Z̄i)i≥1 (Theorem 1.7). Finally in Appendix, we prove some results on the extended generators,
and some other technical results that we use throughout the paper.

1. Notation, assumptions and main results

1.1. Notation

The following notation are used throughout the paper:

• If X is a random variable, we note L(X) its distribution.
• If g is a real-valued function which is n times di�erentiable, we note ||g||n,∞ =

∑n
k=0 ||g(k)||∞.

• If g : R→ R is a real-valued measurable function and π a measure on (R,B(R) such that g is
integrable with respect to π, we write πg for

∫
R gdπ.

• We write Cnb (R) for the set of the functions g which are n times continuously di�erentiable such
that ||g||n,∞ < +∞, and we write for short Cb(R) instead of C0

b (R). Finally, Cn(R) denotes
the set of n times continuously di�erentiable functions that are not necessarily bounded nor
have bounded derivates.

• If g is a real-valued function and I is an interval, we note ||g||∞,I = supx∈I |g(x)|.
• We write Cnc (R) for the set of functions that are n times continuously di�erentiable and that
have a compact support.

• We write D(R+,R) for the Skorohod space of càdlàg functions from R+ to R, endowed with
Skorohod metric (see Chapter 3 Section 16 of [4]), and D(R+,R+) for this space restricted to
non-negative functions.

• M# denotes the space of locally �nite measures on R+ × R+ endowed with the topology of
the weak convergence, and N# the subspace that contains only the simple point measures.

• α is a positive constant, L, σ and mk (1 ≤ k ≤ 4) are �xed parameters de�ned in Assump-
tions 1, 2 and 3 below. Finally, we note C any arbitrary constant, so the value of C can change
from line to line in an equation. Moreover, if C depends on some non-�xed parameter θ, we
write Cθ.

1.2. Assumptions

Let XN satisfy  dXN
t = −αXN

t dt+ 1√
N

N∑
j=1

∫
R+×R

u1{z≤f(XN
t−)}dπj(t, z, u),

XN
0 ∼ νN0 ,

(5)

where νN0 is a probability measure on R. Under natural assumptions on f, the SDE (5) admits a
unique non-exploding strong solution (see Proposition 5.6).
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The aim of this paper is to provide explicit bounds for the convergence of XN in Skorokhod
space to the limit process (X̄t)t∈R+ which is solution to the SDE{

dX̄t = −αX̄tdt+ σ
√
f
(
X̄t

)
dBt,

X̄0 ∼ ν̄0,
(6)

where σ2 is the variance of µ, (Bt)t∈R+ is a one-dimensional standard Brownian motion, and ν̄0 a
suitable probability measure on R.

To prove our results, we need to introduce the following assumptions.

Assumption 1.
√
f is a positive and Lipschitz continuous function, having Lipschitz constant L.

Under Assumption 1, it is classical that the SDE (6) admits a unique non-exploding strong
solution (see remark IV.2.1, Theorems IV.2.3, IV.2.4 and IV.3.1 of [22]).

Assumption 2.

•
∫
R x

4dν̄0(x) <∞ and for every N ∈ N∗,
∫
R x

4dνN0 (x) <∞.
• µ is a centered probability measure having a fourth moment, we note σ2 its variance.

Assumption 2 allows us to control the moments up to order four of the processes (XN
t )t and

(X̄t)t (see Lemma 2.1) and to prove the convergence of the generators of the processes (XN
t )t (see

Proposition 2.3).

Assumption 3. We assume that f is C4 and for each 1 ≤ k ≤ 4, (
√
f)(k) is bounded by some

constant mk.

Remark 1.1. By de�nition m1 = L, since m1 := ||(√f)′||∞ and L is the Lipschitz constant of√
f.

Assumption 3 guarantees that the stochastic �ow associated to (6) has regularity properties
with respect to the initial condition X̄0 = x. This will be the main tool to obtain uniform in time
estimates of the limit semigroup, see Proposition 2.4.

Example 1.2. The functions f(x) = 1 + x2, f(x) =
√

1 + x2 and f(x) = (π/2 + arctanx)2 satisfy
Assumptions 1 and 3.

Assumption 4. XN
0 converges in distribution to X̄0.

Obviously, Assumption 4 is a necessary condition for the convergence in distribution of XN to X̄.

1.3. Main results

Our �rst main result is the convergence of the process XN to X̄ in distribution in Skorohod space,
with an explicit rate of convergence for their semigroups. This rate of convergence will be expressed
in terms of the following parameters

β := max

(
1

2
σ2L2 − α, 2σ2L2 − 2α,

7

2
σ2L2 − 3α

)
(7)

and, for any T > 0 and any �xed ε > 0,

KT := (1 + 1/ε)

∫ T

0

(1 + s2)eβs
(

1 + e(σ2L2−2α+ε)(T−s)
)
ds. (8)
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Remark 1.3. If α > 7/6σ2L2, then β < 0, and one can choose ε > 0 such that σ2L2− 2α+ ε < 0,
implying that supT>0KT <∞.
Theorem 1.4. If Assumptions 1 and 2 hold, then the following assertions are true.

(i) Under Assumption 3, for all T ≥ 0, for each g ∈ C3
b (R) and x ∈ R,

sup
0≤t≤T

∣∣PNt g(x)− P̄tg(x)
∣∣ ≤ C(1 + x2)KT ||g||3,∞

1√
N
.

In particular, if α > 7
6σ

2L2, then

sup
t≥0

∣∣PNt g(x)− P̄tg(x)
∣∣ ≤ C(1 + x2)||g||3,∞

1√
N
.

(ii) If in addition Assumption 4 holds, then (XN )N converges in distribution to X̄ in D(R+,R).

We refer to Proposition 2.4 for the form of β given in (7). Theorem 1.4 is proved in the end of
Subsection 2.2. (ii) is a consequence of Theorem IX.4.21 of [23], using that XN is a semimartingale.
Alternatively, it can be proved as a consequence of (i), using that XN is a Markov process.

Below we give some simulations of the trajectories of the process (XN
t )t≥0 in Figure 1.

0 2 4 6 8 10

0

10

20

0 2 4 6 8 10

−5

0

5

10

Figure 1. Simulation of trajectories of (XN
t )0≤t≤10 with XN

0 = 0, α = 1, µ = N (0, 1), f(x) = 1+ x2, N = 10 (left
picture) and N = 50 (right picture).

Remark 1.5. Theorem 1.4.(ii) states the convergence of XN to X̄ in Skorohod topology. Since X̄
is almost surely continuous, this implies the, a priori stronger, convergence in distribution in the
topology of the uniform convergence on compact sets. Indeed, according to Skorhod's representation
theorem (see Theorem 6.7 of [4]), we can assume that XN converges almost surely to X̄ in Skorohod
space, and this classicaly entails the uniform convergence on every compact set (see the discussion
at the bottom of page 124 in Section 12 of [4]).
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Under our assumptions, P̄ admits an invariant probability measure π, and we can even control
the speed of convergence of PNt g(x) to π(g), as (N, t) goes to in�nity, for suitable conditions on the
joint convergence of N and t.

Theorem 1.6. Under Assumptions 1 and 2, X̄ is recurrent in the sense of Harris, having invariant
probability measure π(dx) = p(x)dx with density

p(x) = C
1

f(x)
exp

(
−2α

σ2

∫ x

0

y

f(y)
dy

)
.

Besides, if Assumption 3 holds, then for all g ∈ C3
b (R) and x ∈ R,∣∣PNt g(x)− πg

∣∣ ≤ C||g||3,∞(1 + x2)

(
Kt√
N

+ e−γt
)
,

where C and γ are positive constants independent of N and t, and where Kt is de�ned in (8). In
particular, PNt (x, ·) converges weakly to π as (N, t)→ (∞,∞), provided Kt = o(

√
N).

If we assume, in addition, that α > 7
6σ

2L2, then PNt (x, ·) converges weakly to π as (N, t) →
(∞,∞) without any condition on the joint convergence of (t,N), and we have, for any g ∈ C3

b (R)
and x ∈ R, ∣∣PNt g(x)− πg

∣∣ ≤ C||g||3,∞(1 + x2)

(
1√
N

+ e−γt
)
.

Theorem 1.6 is proved in the end of Section 3.
Finally, using Theorem 1.4.(ii), we show the convergence of the point processes ZN,i de�ned in (2)

to limit point processes Z̄i having stochastic intensity f(X̄t) at time t. To de�ne the processes Z̄i

(i ∈ N∗), we �x a Brownian motion (Bt)t≥0 on some probability space di�erent from the one where
the processes XN (N ∈ N∗) and the Poisson random measures πi (i ∈ N∗) are de�ned. Then we �x
a family of i.i.d. Poisson random measures π̄i (i ∈ N∗) on the same space as (Bt)t≥0, independent
of (Bt)t≥0. The limit point processes Z̄i are then de�ned by

Z̄it =

∫
]0,t]×R+×R

1{z≤f(X̄s)}dπ̄i(s, z, u). (9)

Theorem 1.7. Under Assumptions 1, 2 and 4, the sequence (ZN,1, ZN,2, . . . , ZN,k, . . .)N converges
to (Z̄1, Z̄2, . . . , Z̄k, . . .) in distribution in D(R+,R)N

∗
for the product topology.

Let us give a brief interpretation of the above result. Conditionally on X̄, for any k > 1,
Z̄1, . . . , Z̄k are independent. Therefore, the above result can be interpreted as a conditional propaga-
tion of chaos property (compare to [6] dealing with the situation where all interacting components
are subject to common noise). In our case, the common noise, that is, the Brownian motion B
driving the dynamic of X̄, emerges in the limit as a consequence of the central limit theorem.
Theorem 1.7 is proved in the end of Section 4.

Remark 1.8. In Theorem 1.7, we implicitly de�ne ZN,i := 0 for each i ≥ N + 1.

2. Proof of Theorem 1.4

The goal of this section is to prove Theorem 1.4. To prove the convergence of the semigroups of
(XN )N , we show in a �rst time the convergence of their generators. We start with useful a priori
bounds on the moments of XN and X̄.
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Lemma 2.1. Under Assumptions 1 and 2, the following holds.

(i) For all ε > 0, t > 0 and x ∈ R, Ex
[
(XN

t )2
]
≤ C(1 + 1/ε)(1 + x2)(1 + e(σ2L2−2α+ε)t), for

some C > 0 independent of N, t, x and ε.
(ii) For all ε > 0, t > 0 and x ∈ R, Ex

[
(X̄t)

2
]
≤ C(1 + 1/ε)(1 +x2)(1 + e(σ2L2−2α+ε)t), for some

C > 0 independent of t, x and ε.
(iii) For all N ∈ N∗, T > 0, E

[
(sup0≤t≤T |XN

t |)2
]
< +∞ and E

[
(sup0≤t≤T |X̄t|)2

]
< +∞.

(iv) For all T > 0, N ∈ N∗, sup
0≤t≤T

Ex
[
(XN

t )4
]
≤ CT (1 + x4) and sup

0≤t≤T
Ex
[
(X̄t)

4
]
≤ CT (1 + x4).

We postpone the proof of Lemma 2.1 to Appendix.

2.1. Convergence of the generators

Throughout this paper, we consider extended generators similar to those used in [29] and in [10],
because the classical notion of generator does not suit to our framework (see the beginning of
Section 5.1). As this de�nition slightly di�ers from one reference to another, we de�ne explicitly the
extended generator in De�nition 5.1 below and we prove the results on extended generators that
we need in this paper. We note AN the extended generator of XN and Ā the one of X̄, and D′(AN )
and D′(Ā) their extended domains. The goal of this section is to prove the convergence of ANg(x)
to Āg(x) and to establish the rate of convergence for test functions g ∈ C3

b (R). Before proving this
convergence, we state a lemma which characterizes the generators for some test functions. This
lemma is a straightforward consequence of Ito's formula and Lemma 2.1.(i).

Lemma 2.2. C2
b (R) ⊆ D′(Ā), and for all g ∈ C2

b (R) and x ∈ R, we have

Āg(x) = −αxg′(x) +
1

2
σ2f(x)g′′(x).

Moreover, C1
b (R) ⊆ D′(AN ), and for all g ∈ C1

b (R) and x ∈ R, we have

ANg(x) = −αxg′(x) +Nf(x)

∫
R

[
g

(
x+

u√
N

)
− g(x)

]
dµ(u).

Now we can prove the main result of this subsection.

Proposition 2.3. If Assumptions 1 and 2 hold, then for all g ∈ C3
b (R),∣∣Āg(x)−ANg(x)

∣∣ ≤ f(x) ‖g′′′‖∞
1

6
√
N

∫
R
|u|3dµ(u).

Proof. For g ∈ C3
b (R), if we note U a random variable having distribution µ, we have, since E [U ] =

0, ∣∣ANg(x)− Āg(x)
∣∣ ≤f(x)

∣∣∣∣NE
[
g

(
x+

U√
N

)
− g(x)

]
− 1

2
σ2g′′(x)

∣∣∣∣
=f(x)N

∣∣∣∣E [g(x+
U√
N

)
− g(x)− U√

N
g′(x)− U2

2N
g′′(x)

]∣∣∣∣
≤f(x)NE

[∣∣∣∣g(x+
U√
N

)
− g(x)− U√

N
g′(x)− U2

2N
g′′(x)

∣∣∣∣] .
Using Taylor-Lagrange's inequality, we obtain the result.
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2.2. Convergence of the semigroups

Once the convergence ANg(x) → Āg(x) is established, together with a control of the speed of
convergence, our strategy is to rely on the following representation

(
P̄t − PNt

)
g(x) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x)ds, (10)

which is valid under suitable assumptions onXN and X̄ and for suitable test functions g. The precise
assumptions needed for this formula to hold and the proof of it are postponed to Proposition 5.4
below.

Obviously, to be able to apply the above formula, we need to ensure the regularity of x 7→ P̄sg(x),
together with a control of the associated norm ||(P̄sg)′′′||∞. This is done in the next proposition.

Proposition 2.4. If Assumptions 1, 2 and 3 hold, then for all t ≥ 0 and for all g ∈ C3
b (R), the

function x 7→ P̄tg(x) belongs to C3
b (R) and satis�es∣∣∣∣∣∣(P̄tg)′′′∣∣∣∣∣∣

∞
≤ C||g||3,∞(1 + t2)eβt,

with β = max( 1
2σ

2L2 − α, 2σ2L2 − 2α, 7
2σ

2L2 − 3α).

The proof of Proposition 2.4 requires some detailed calculus to obtain the explicit expression
for β, so we postpone it to Appendix.

Proof of Theorem 1.4. Step 1. The main part of the proof of the point (i) will be to check that the
conditions stated in Proposition 5.4 below allowing to obtain formula (10) are satis�ed. This will
be done in Step 2 below. Indeed, once this is shown, the rest of the proof will be a straightforward
consequence of Proposition 2.3, since, applying formula (10),

∣∣P̄tg(x)− PNt g(x)
∣∣ =

∣∣∣∣∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x)ds

∣∣∣∣
≤
∫ t

0

ENx
[∣∣Ā (P̄sg) (XN

t−s
)
−AN

(
P̄sg
) (
XN
t−s
)∣∣] ds

≤C 1√
N

∫ t

0

∣∣∣∣∣∣(P̄sg)′′′∣∣∣∣∣∣
∞

Ex
[
f
(
XN
t−s
)]
ds

≤C 1√
N
||g||3,∞

∫ t

0

(
(1 + s2)eβs

(
1 + Ex

[(
XN
t−s
)2]))

ds

≤C
(

1 +
1

ε

)
1√
N
||g||3,∞(1 + x2)

∫ t

0

(1 + s2)eβs
(

1 + e(σ2L2−2α+ε)(t−s)
)
ds,

where we have used respectively Proposition 2.4 and Lemma 2.1.(i) to obtain the two last inequalities
above, and ε is any positive constant.
Step 2. Now we show that XN and X̄ satisfy the hypotheses of Proposition 5.4. To begin with

we know that X̄ and XN satisfy the hypotheses (i), (ii) and (iii), using Lemma 2.1. Then the
hypothesis (iv) can be proved for the processes XN and X̄ solving the SDEs (5) and (6) with
straightforward calculations using Lemma 2.1. We know that P̄ satis�es hypothesis (v) thanks to
Proposition 2.4.
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Besides one can note that P̄ satis�es hypothesis (vi) using the calculations of the proof of
Proposition 2.4. Then using Lemma 2.2, we see directly that Ā and AN satisfy the hypotheses (vii)
and (ix). In addition (viii) is straightforward for Ā, and it is a consequence of Lemma 2.5 below
for AN . The only remaining hypothesis (x) is a straightforward consequence of Lemma 2.6 below.
Step 3. We �nally give the proof of the point (ii) of the theorem. With the notation of Theo-

rem IX.4.21 of [23], we have KN (x, dy) := Nf(x)µ(
√
Ndy), b′N (x) = −αx+

∫
KN (x, dy)y = −αx,

and c′N (x) =
∫
KN (x, dy)y2 = σ2f(x). Then, an immediate adaptation of Theorem IX.4.21 of [23]

to our frame implies the result.

Lemma 2.5. For all g ∈ C2
c (R) such that Supp g ⊆ [−M,M ], we have∣∣∣∣∣∣(ANg)′∣∣∣∣∣∣

∞
≤ C‖g‖1,∞

(
1 +M2

)
,

for some constant C > 0.

Proof. We have(
ANg

)′
(x) =− αg(x)− αxg′(x)−Nf ′(x)g(x)−Nf(x)g′(x)

+Nf ′(x)E
[
g

(
x+

U√
N

)]
+Nf(x)E

[
g′
(
x+

U√
N

)]
.

Then it is clear that for all x ∈ R, we have∣∣∣(ANg)′ (x)
∣∣∣ ≤ C||g||1,∞ (1 +M2

)
+

∣∣∣∣Nf ′(x)E
[
g

(
x+

U√
N

)]∣∣∣∣+

∣∣∣∣Nf(x)E
[
g′
(
x+

U√
N

)]∣∣∣∣ .
(11)

We bound the jump terms using the subquadraticty of f and f ′ (indeed with Assumptions 1 and 3,
we know that f ′ is sublinear, and consequently subquadratic). We can write:

E
[∣∣∣∣g′(x+

U√
N

)∣∣∣∣] ≤||g′||∞E
[
1{|x+U/

√
N|≤M}

]
=||g′||∞P

({
x+

U√
N
≥ −M

}
∩
{
x+

U√
N
≤M

})
≤||g′||∞P

({
x+

|U |√
N
≥ −M

}
∩
{
x− |U |√

N
≤M

})
=||g′||∞P

({
|U | ≥ −

√
N(M + x)

}
∩
{
|U | ≥

√
N(x−M)

})
.

Then for x > M + 1, using that f(x) ≤ C(1 + x2), and for a constant C that may change from
line to line,∣∣∣∣f(x)E

[
g′
(
x+

U√
N

)]∣∣∣∣ ≤ C||g′||∞ (1 + x2
)
P
(
|U | ≥

√
N(x−M)

)
≤ C 1

N
E
[
U2
]
||g′||∞

1 + x2

(x−M)2
≤ C||g′||∞

(
1 +M2

)
.
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The last inequality comes from the fact that the function x ∈ [M + 1,+∞[ 7→ 1+x2

(x−M)2 is bounded

by 1 + (M + 1)2. With the same reasoning, we know that for all x < −M − 1, we have∣∣∣∣f(x)E
[
g′
(
x+

U√
N

)]∣∣∣∣ ≤ C||g′||∞ (1 +M2
)
.

This concludes the proof.

Lemma 2.6. Let (gk)k be a sequence of C1
b (R) satisfying supk||g′k||∞ < ∞, and for all x ∈

R, gk(x)→ 0 as k →∞.
Then for all bounded sequences of real numbers (xk)k, gk(xk)→ 0 as k →∞.

Proof. Let (xk)k be a bounded sequence. In a �rst time, we suppose that (xk)k converges to some
x ∈ R. Then we have |gk(xk)| ≤ ||g′k||∞|x−xk|+|gk(x)| which converges to zero as k goes to in�nity.
In the general case, we show that for all subsequence of (gk(xk))k, there exists a subsequence of the
�rst one that converges to 0 (the second subsequence has to be chosen such that xk converges).

3. Proof of Theorem 1.6

In this section, we prove Theorem 1.6. We begin by proving some properties of the invariant measure
of P̄t. In what follows we use the total variation distance between two probability measures ν1 and
ν2 de�ned by

‖ν1 − ν2‖TV =
1

2
sup

g:‖g‖∞≤1

|ν1(g)− ν2(g)|.

Proposition 3.1. If Assumptions 1 and 2 hold, then the invariant measure π of (P̄t)t exists and
is unique. Its density is given, up to multiplication with a constant, by

p(x) = C
1

f(x)
exp

(
−2α

σ2

∫ x

0

y

f(y)
dy

)
.

In addition, if Assumption 3 holds, then for every 0 < q < 1/2, there exists some γ > 0 such that,
for all t ≥ 0,

||P̄t(x, ·)− π||TV ≤ C
(
1 + x2

)q
e−γt.

Proof. In a �rst time, let us prove the positive Harris recurrence of X̄ implying the existence and
uniqueness of π. According to Example 3.10 of [24] it is su�cient to show that S(x) :=

∫ x
0
s(y)dy

goes to +∞ (resp. −∞) as x goes to +∞ (resp. −∞), where

s(x) := exp

(
2α

σ2

∫ y

0

v

f(v)
dv

)
.

For x > 0, and using that f is subquadratic,

s(x) ≥ exp

(
C

∫ y

0

2v

1 + v2
dv

)
= exp

(
C ln(1 + y2)

)
= (1 + y2)C ≥ 1,

implying that S(x) goes to +∞ as x goes to +∞. With the same reasoning, we obtain that S(x)
goes to −∞ as x goes to −∞. Finally, the associated invariant density is given, up to a constant,
by

p(x) =
C

f(x)s(x)
.
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For the second part of the proof, take V (x) = (1 + x2)q, for some q < 1/2, then

V ′(x) = 2qx(1 + x2)q−1, V ′′(x) = 2q(1 + x2)q−2[2x2(q − 1) + (1 + x2)].

As q < 1
2 , V

′′(x) < 0 for x2 su�ciently large, say, for |x| ≥ K. In this case, for |x| ≥ K,

ĀV (x) ≤ −2αqx2(1 + x2)q−1 ≤ −2αq
x2

1 + x2
V (x) ≤ −2qα

K2

1 +K2
V (x) = −cV (x).

So we obtain all in all for suitable constants c and d that, for any x ∈ R,

ĀV (x) ≤ −cV (x) + d. (12)

Obviously, for any �xed T > 0, the sampled chain (X̄kT )k≥0 is Feller and π−irreducible. The
support of π being R, Theorem 3.4 of [29] implies that every compact set is petite for the sampled
chain. Then, as (12) implies the condition (CD3) of Theorem 6.1 of [29], we have the following
bound: introducing for any probability measure µ the weighted norm

‖µ‖V := sup
g:|g|≤1+V

|µ(g)|,

there exist C, γ > 0 such that

‖P̄t(x, ·)− π‖V ≤ C(1 + V (x))e−γt.

This implies the result, since || · ||TV ≤ || · ||V .
Now the proof of Theorem 1.6 is straightforward.

Proof of Theorem 1.6. The �rst part of the theorem has been proved in Proposition 3.1. For the
second part, for any g ∈ C3

b (R),∣∣PNt g(x)− πg
∣∣ ≤ ∣∣PNt g(x)− P̄tg(x)

∣∣+
∣∣P̄tg(x)− πg

∣∣
≤ Kt√

N
(1 + x2)||g||3,∞ + ||g||∞||P̄t(x, ·)− π||TV

≤||g||3,∞C
(
Kt√
N

(1 + x2) + e−γt(1 + x2)q
)
,

where we have used Theorem 1.4 and Proposition 3.1. Since (1 + x2)q ≤ 1 + x2, q being smaller
than 1/2, this implies the result.

4. Proof of Theorem 1.7

To prove the convergence in distribution of (ZN,i)i≥1 to (Z̄i)i≥1 as N goes to in�nity, it is su�cient
to prove that, for any k ∈ N∗, (ZN,i)1≤i≤k converges to (Z̄i)1≤i≤k in D(R+,R)k. This last condition
is weaker than the convergence in D(R+,Rk), that we prove using Theorem IX.4.15 of [23].

Let k ∈ N∗, let us note Y N := (XN , ZN,1, . . . , ZN,k) and Ȳ := (X̄, Z̄1, . . . , Z̄k). Using the
notation of Theorem IX.4.15 of [23] with the semimartingales Y N (N ∈ N∗) and Ȳ and denoting
ej (0 ≤ j ≤ k) the j−th unit vector, we have:
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• b′N,0(x) = b′0(x) = −αx and b′N,i(x) = b′i(x) = 0 for 1 ≤ i ≤ k,
• c̃′N,0,0(x) = c′0,0(x) = σ2f(x0) and c′N,i,j(x) = c′i,j(x) = 0 for (i, j) 6= (0, 0),

• g ∗KN (x) = f(x0)
∑k
j=1

∫
R g( u√

N
e0 + ej)dµ(u) + (N − k)

∫
R g( u√

N
e0)dµ(u),

• g ∗K(x) = f(x0)
∑k
j=1 g(ej).

The only condition of Theorem IX.4.15 that is not straightforward is the convergence of g ∗KN

to g ∗ K for g ∈ C1(Rk+1). The complete de�nition of C1(Rk+1) is given in VII.2.7 of [23], but
here, we just use the fact that C1(Rk+1) is a subspace of Cb(Rk+1) containing functions which are
zero around zero. This convergence follows from the fact that any g ∈ C1(Rk+1) can be written
as g(x) = h(x)1{|x|>ε} where h ∈ Cb(Rk+1) and ε > 0. This allows to show that, for this kind of
function g,∣∣∣∣(N − k)f(x0)

∫
R
g

(
u√
N
e0

)
dµ(u)

∣∣∣∣ ≤ (N − k)f(x0)||h||∞
∫
R
1{|u|>ε√N}dµ(u)

≤ f(x0)C
N −K
N2

≤ Cf(x0)N−1,

where the second inequality follows from the fact that we assume that µ is a probability measure
having a fourth moment.

5. Appendix

5.1. Extended generators

In this subsection, we de�ne precisely the notion of generators we use and we prove the results
needed to prove formula (4). In the general theory of semigroups, one de�nes the generators on
some Banach space. In the frame of semigroups related to Markov processes, one generally considers
(Cb(R), ||·||∞). In this context, the generator A of a semigroup (Pt)t is de�ned on the set of functions
D(A) = {g ∈ Cb(R) : ∃h ∈ Cb(R), || 1t (Ptg−g)−h||∞−→ 0 as t→ 0}. Then one denotes the previous
function h as Ag. In general, we can only guarantee that D(A) contains the functions that have a
compact support, but to prove Proposition 5.4, we need to apply the generators of the processes
(XN

t )t and (X̄t)t to functions of the type P̄sg, and we cannot guarantee that P̄sg has compact
support even if we assume g to be in C∞c (R).

This is why we consider extended generators (see for instance [29] or [10]). These extended
generators are de�ned by the point-wise convergence on R instead of the uniform convergence.
Moreover, they verify the fundamental martingale property, which allows us to de�ne the generator
on Cnb (R) for suitable n ∈ N∗ and to prove that some properties of the classical theory of semigroups
still hold for this larger class of functions.

De�nition 5.1. Let (Xt)t be a Markov process on R. We de�ne Ptg(x) = Ex [g(Xt)] for all mea-
surable functions g such that Ex [|g(Xt)|] is �nite for every x ∈ R. Then we de�ne D′(A) to be the
set of measurable functions g such that for each x ∈ R, 1

t (Ptg(x) − g(x)) converges as t goes to 0
to some limit that we note Ag(x) and such that:

• for all t ≥ 0, for all x,
∫ t

0
|Ag(Xs)|ds is Px−almost surely de�ned and Px−almost surely �nite,

• g(Xt)− g(X0)−
∫ t

0
Ag(Xs)ds is a Px−martingale for all x.
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Remark 5.2. One can note that if we assume the function t 7→ PtAg(x) to be continuous and that∫ t
0
Ex [|Ag(Xs)|] ds is �nite for any x ∈ R, then the martingale property of De�nition 5.1 implies

that Ag(x) is the derivative of t 7→ Ptg(x) at t = 0.
In our De�nition 5.1, contrarily e.g. to [29], we impose this additional condition of di�erentia-

bility. We do this because this is the main property we need in our applications. In practice, this
di�erentiability condition is satis�ed for C2 functions g and for "common" Markov processes X
with �nite g(k)−moments (0 ≤ k ≤ 2).

We note D′(A) the domain of the extended generator to avoid confusions with D(A) which is
reserved for the domain of A for the uniform convergence.

Now we generalize a classical result for generators de�ned with respect to the uniform convergence
to extended generators. The di�erence is that here we have to replace the uniform convergence by
point-wise convergence, hence we need boundedness assumptions on the Markov process.

Lemma 5.3. Let (Xt)t be a Markov process with semigroup (Pt)t and extended generator A.

(1) Let g ∈ D′(A) and x ∈ R such that for all t ≥ 0, Ex
[
sup0≤s≤t|PsAg(Xt)|

]
is �nite. Then the

function t 7→ Ptg(x) is right di�erentiable at every t ≥ 0, and we have

d+

dt
(Ptg(x)) = PtAg(x).

In addition, if Ptg ∈ D′(A), then APtg(x) = PtAg(x).
(2) Let g ∈ D′(A) and x ∈ R such that there exists some non-negative function M : R→ R+ such

that for all t ≥ 0, sup0≤s≤tEx [M(Xs)] is �nite and such that for all 0 ≤ t ≤ 1 and y ∈ R,
we have |PtAg(y)−Ag(y)| ≤ CM(y)ε(t) for some constant C that is allowed to depend on g,
where ε(t) vanishes when t goes to 0. Then the function t 7→ Ptg(x) is left di�erentiable at
every t > 0, and we have

d−

dt
(Ptg(x)) = PtAg(x).

Proof. For the point (1), we know that for all h > 0, we have:∣∣∣∣ 1h (Pt+hg(x)− Ptg(x))− PtAg(x)

∣∣∣∣ ≤ Ex
[∣∣∣∣ 1h (Phg(Xt)− g(Xt))−Ag(Xt)

∣∣∣∣] .
As the expression appearing within the expectation above vanishes almost surely when h goes to 0
(since g ∈ D′(A)), and as we can bound it by sup0≤s≤t|PsAg(Xt)|+ |Ag(Xt)| (using the fact that

Phg(y)− g(y) =
∫ h

0
PsAg(y)ds which is a consequence of the last point of De�nition 5.1), we know

that this expectation vanishes as h goes to 0 by dominated convergence. This means exactly that
d+

dt (Ptg(x)) exists and is PtAg(x).
If we suppose in addition that Ptg ∈ D′(A), then APtg(x) is the limit of h−1(Pt+hg(x)−Ptg(x)),

which is d+

dt Ptg(x) = PtAg(x).
Now we prove the point (2) of the lemma. Let h be some positive number. We know that∣∣∣∣ 1

−h (Pt−hg(x)− Ptg(x))− PtAg(x)

∣∣∣∣
is upper bounded by

Ex
[∣∣∣∣ 1h (Phg(Xt−h)− g(Xt−h))−Ag(Xt−h)

∣∣∣∣]+ Ex [|Ag(Xt−h)− PhAg(Xt−h)|]
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≤ Ex
[

sup
0≤s≤h

|Ag(Xt−h)− PsAg(Xt−h)|
]

+ Ex [|Ag(Xt−h)− PhAg(Xt−h)|] .

Then we just have to show that Ex
[

sup
0≤s≤h

|Ag(Xt−h)− PsAg(Xt−h)|
]
vanishes when h goes to 0.

But this follows from the fact that it is upper bounded by C(sup0≤s≤hε(s))(sup0≤r≤tEx [M(Xr)]).

The goal of the next proposition is to obtain a control of the di�erence between the semigroups
of two Markov processes, provided we dispose already of a control of the distance between the two
generators. This proposition is an adaptation of Lemma 1.6.2 from [14] to the notion of extended
generators de�ned by the point-wise convergence.

Proposition 5.4. Let (Y Nt )t∈R+
and (Ȳt)t∈R+

be Markov processes whose semigroups and (ex-
tended) generators are respectively PN , AN and P̄ , Ā. We suppose that:

(i) for all x ∈ R and T > 0, sup0≤t≤TEx
[
(Ȳt)

4
]
≤ CT (1 + x4) and sup0≤t≤TENx

[
(Y Nt )4

]
≤

CT (1 + x4) for some constant CT > 0 not depending on N.
(ii) for all T > 0, E

[
(sup0≤t≤T |Y Nt |)2

]
< +∞.

(iii) for all 0 ≤ s, t ≤ T and x ∈ R,

Ex
[(
Ȳt − Ȳs

)2] ≤ CT,xε(|t− s|) and ENx
[(
Y Nt − Y Ns

)2] ≤ CT,xε(|t− s|),
where ε(h) vanishes when h goes to 0, and where CT,x is some constant that depends only on
T and x.

(iv) for all g ∈ C3
b (R), P̄tg ∈ C3

b (R), and for all T > 0, sup0≤t≤T ||P̄tg||3,∞ ≤ QT ||g||3,∞ for some
QT > 0.

(v) for all g ∈ C3
b (R), i ∈ {0, 1, 2} and x ∈ R, s 7→ (P̄sg)(i)(x) = ∂i

∂xi (P̄sg(x)) is continuous.
(vi) C3

b (R) ⊆ D′(AN ) ∩ D′(Ā). For all g ∈ C3
b (R) and x ∈ R, |Āg(x)| ≤ C||g||2,∞(1 + x2) and

|ANg(x)| ≤ C||g||2,∞(1 + x2).
(vii) for all g ∈ C3

c (R) such that Supp g ⊆ [−M,M ], ||(Āg)′||∞ ≤ C||g||3,∞(1 + M2) and
||(ANg)′||∞ ≤ C||g||3,∞(1 +M2).

(viii) there exists some C > 0 such that for all x, y ∈ R, for all g ∈ C3
b (R), |Āg(x) − Āg(y)| ≤

C(1 + x2 + y2)|x− y| and |ANg(x)−ANg(y)| ≤ C(1 + x2 + y2)|x− y|.
(ix) we assume that lim

k→∞
Āgk(xk) = lim

k→∞
ANgk(xk) = 0, for any bounded sequence of real numbers

(xk)k, and for any sequence (gk)k of C3
b (R) satisfying

(1) ∀i ∈ {0, 1, 2}, ∀x ∈ R, g(i)
k (x) −→

k→∞
0,

(2) ∀i ∈ {0, 1, 2, 3}, supk||g(i)
k ||∞ <∞.

Then we have for each g ∈ C3
b (R), x ∈ R and t ∈ R+:(

P̄t − PNt
)
g(x) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x)ds. (13)

Remark 5.5. Notice that the conditions of Proposition 5.4 are not all symmetric with respect
to the processes Ȳ and Y N . Indeed, the regularity hypothesis of the semigroup with respect to the
initial condition only concerns P̄ (see hypothesis (iv) and (v)). Moreover, hypothesis (ii) provides
a stronger control on Y N than what is needed for Ȳ .
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Proof. To begin with, let us emphasize the fact that hypothesis (i) implies

sup
0≤t≤T

Ex
[
(Ȳt)

2
]
≤ CT (1 + x2) and sup

0≤t≤T
ENx

[
(Y Nt )2

]
≤ CT (1 + x2), (14)

since
Ex
[
(Ȳt)

2
]
≤ Ex

[
(Ȳt)

4
]1/2 ≤ CT√1 + x4 ≤ CT

(
1 + x2

)
.

We �x t ≥ 0, N ∈ N∗, g ∈ C3
b (R), x ∈ R in the rest of the proof. We note u(s) = PNt−sP̄sg(x).

Firstly we show that s 7→ P̄sg(x) and s 7→ PNs h(x) are di�erentiable for all h ∈ C3
b (R), by showing

that P̄ and PN satisfy the hypothesis of Lemma 5.3. The condition of the point (1) of the lemma is
a straightforward consequence of (14) and hypothesis (vi), and the conditions of the point (2) are
satis�ed for M(x) =

√
1 + x4 using (14) and hypothesis (i), (iii) and (viii). As a consequence, and

thanks to hypothesis (iv), u is di�erentiable and

u′(s) =− d

du

(
PNu P̄sg(x)

)∣∣
u=t−s +

d

du

(
PNt−sP̄ug(x)

)∣∣
u=s

=− PNt−sAN P̄sg(x) + PNt−sP̄sĀg(x)

=PNt−s
(
Ā−AN

)
P̄sg(x).

The second equality comes from the fact that P̄ satisfy the additional assumption of the point (1)
of Lemma 5.3 (see hypothesis (iv) and (vi)).

Now we show that u′ is continuous. Indeed if it is the case, then we will have

u(t)− u(0) =

∫ t

0

u′(s)ds,

which is exactly the assertion. In order to prove the continuity of u′, we consider a sequence (sk)k
that converges to some s ∈ [0, t], and we write∣∣PNt−s (Ā−AN) P̄sg(x)− PNt−sk

(
Ā−AN

)
P̄skg(x)

∣∣ ≤ ∣∣(PNt−s − PNt−sk) (Ā−AN) gs(x)
∣∣ (15)

+
∣∣PNt−sk (Ā−AN) (P̄s − P̄sk) g(x)

∣∣ , (16)

where gs = P̄sg ∈ C3
b (R).

To show that the term (15) vanishes when k goes to in�nity, we introduce, for all M > 0 the
function ϕM (gs)(y) = gs(y) · ξM (y) where ξM : R → [0, 1] is C∞, and ∀|y| ≤ M, ξM (y) = 1 and
∀|y| ≥M + 1, ξM (y) = 0. We note that the term (15) is bounded by∣∣(PNt−s − PNt−sk) (Ā−AN)ϕM (gs)(x)

∣∣+
∣∣(PNt−s − PNt−sk) (Ā−AN) (gs − ϕM (gs)) (x)

∣∣ =: A1 +A2.

If we consider the function hM,s = (Ā−AN )ϕM (gs), using hypothesis (iii), (iv) and (vii), we have

A1 ≤ENx
[∣∣hM,s

(
Y Nt−s

)
− hM,s

(
Y Nt−sk

)∣∣]
≤||h′M,s||∞ENx

[∣∣Y Nt−s − Y Nt−sk ∣∣] ≤ C (1 +M2
)
||g||3,∞ε(|s− sk|)1/2.

Choosing M = Mk = ε(|s− sk|)−1/5, it follows that lim
k→∞

A1 = 0. To see that the term A2 vanishes,

it is su�cient to notice that A2 is bounded by

ENx
[∣∣(Ā−AN) (gs − ϕMk

(gs))
(
Y Nt−s

)∣∣]+ ENx
[∣∣(Ā−AN) (gs − ϕMk

(gs))
(
Y Nt−sk

)∣∣] .
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We know that the expressions in the expectations vanish almost surely (using hypothesis (ix)), and
then we can apply dominated convergence (using hypothesis (ii) and (vi)).

We just proved that the term (15) vanishes. To �nish the proof, we need to show that the
term (16) vanishes. We note that the term (16) is bounded by:

ENx
[∣∣Āgk (Y Nt−sk)∣∣]+ ENx

[∣∣ANgk (Y Nt−sk)∣∣] ,
where gk =

(
P̄s − P̄sk

)
g ∈ C3

b (R).
We have to show that the terms in the sum above vanish as k goes to in�nity. Firstly we

know that Āgk(Y Nt−sk) and ANgk(Y Nt−s) vanish almost surely when k goes to in�nity (see hypothe-
sis (ii), (iv), (v) and (ix)). Dominated convergence, using (14) and hypothesis (ii), (iv) and (vi),
then implies the result.

5.2. Existence and uniqueness of the process
(
XN

t

)
t

Proposition 5.6. If Assumptions 1 and 2 hold, the equation (5) admits a unique non-exploding
strong solution.

Proof. It is well known that if f is bounded, there is a unique strong solution of (5) (see The-
orem IV.9.1 of [22]). In the general case we reason in a similar way as in the proof of Propo-

sition 2 in [15]. Consider the solution (XN,K
t )t∈R+

of the equation (5) where f is replaced by
fK : x ∈ R 7→ f(x) ∧ sup

|y|≤K
f(y) for some K ∈ N∗. Introduce moreover the stopping time

τNK = inf
{
t ≥ 0 :

∣∣∣XN,K
t

∣∣∣ ≥ K} .
Since for all t ∈

[
0, τNK ∧ τNK+1

]
, XN,K

t = XN,K+1
t , we know that τNK (ω) ≤ τNK+1(ω) for all ω. Then

we can de�ne τN as the non-decreasing limit of τNK . With a classical reasoning relying on Ito's
formula and Grönwall's lemma, we can prove that

E
[(
XN,K

t∧τN
K

)2
]
≤ Ct

(
1 + x2

)
, (17)

where Ct > 0 does not depend on K. As a consequence, we know that almost surely, τN = +∞. So
we can simply de�ne XN

t as the limit of XN,K
t , as K goes to in�nity. Now we show that XN satis�es

equation (5). Consider some ω ∈ Ω and t > 0, and choose K such that τNK (ω) > t. Then we know

that for all s ∈ [0, t], XN
s (ω) = XN,K

s (ω) and f(XN
s−(ω)) = fK(XN,K

s− (ω)). Moreover, as XN,K(ω)
satis�es the equation (5) with f replaced by fK , we know that XN (ω) veri�es the equation (5) on
[0, t]. This holds for all t > 0. As a consequence, we know that XN satis�es the equation (5). This
proves the existence of strong solution. The uniqueness is a consequence of the uniqueness of strong
solutions of (5), if we replace f by fK in (5), and of the fact that any strong solution (Y Nt )t equals

necessarily (XN,K
t )t on [0, τNK ].

5.3. Proof of Lemma 2.1

We begin with the proof of (i). Let Φ(x) = x2 and AN be the extended generator of (XN
t )t≥0. One

can note that, applying Fatou's lemma to the inequality (17), one obtains for all t ≥ 0,E
[
(XN

t )2
]
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is �nite. As a consequence Φ ∈ D′(AN ) (in the sense of De�nition 5.1), and for all x ∈ R,

ANΦ(x) =− 2αΦ(x) + σ2f(x) ≤ −2αΦ(x) + σ2
(
L|x|+

√
f(0)

)2

≤(σ2L2 − 2α)Φ(x) + 2σ2L|x|
√
f(0) + σ2f(0).

Let ε > 0 be �xed, and ηε = 2σ2L
√
f(0)/ε. Using that, for every x ∈ R, |x| ≤ x2/ηε + ηε, we have

ANΦ(x) ≤ cεΦ(x) + dε, (18)

with cε = σ2L2 − 2α+ ε and dε = O(1/ε). Let us assume that cε 6= 0, possibly by reducing ε > 0.
Considering Y Nt := e−cεtΦ(XN

t ), by Ito's formula,

dY Nt =− cεe−cεtΦ(XN
t )dt+ e−cεtdΦ(XN

t )

=− cεe−cεtΦ(XN
t )dt+ e−cεtANΦ(XN

t )dt+ e−cεtdMt,

where (Mt)t≥0 is a Px−martingale. Using (18), we obtain

dY Nt ≤ dεe−cεtdt+ e−cεtdMt,

implying

Ex
[
Y Nt
]
≤ Ex

[
Y N0
]

+
dε
cε
e
(−cεt + 1

)
.

One deduces

Ex
[(
XN
t

)2] ≤ x2e(σ2L2−2α+ε)t +
C

ε

(
e(σ2L2−2α+ε)t + 1

)
, (19)

for some constant C > 0 independent of t, ε,N.
The proof of (ii) is analogous and therefore omitted.
Now we prove (iii). From

XN
t = XN

0 − α
∫ t

0

XN
s ds+

1√
N

N∑
j=1

∫
]0,t]×R+×R

u1{z≤f(XN
s−)}dπj(s, z, u),

we deduce(
sup

0≤s≤t

∣∣XN
t

∣∣)2

≤ 3
(
XN

0

)2
+ 3α2t

∫ t

0

(XN
s )2ds

+ 3

N∑
j=1

(
sup

0≤s≤t

∣∣∣∣∣
∫

]0,s]×R+×R
u1{z≤f(XN

r−)}dπj(r, z, u)

∣∣∣∣∣
)2

. (20)

Applying Burkholder-Davis-Gundy inequality to the last term above in (20), we can bound its
expectation by

3NE

[∫
]0,t]×R+×R

u21{z≤f(XN
s−)}dπj(s, z, u)

]
≤ 3Nσ2

∫ t

0

E
[
f(XN

s−)
]
ds

≤ 3Nσ2C

∫ t

0

(
1 + E

[
(XN

s )2
])
ds. (21)

Now, bounding (20) by (21), and using point (i) of the lemma we conclude the proof of (iii).
Finally, (iv) can be proved in classical way, applying Ito's formula and Grönwall's lemma.
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5.4. Proof of Proposition 2.4

To begin with, we use Theorem 1.4.1 of [25] to prove that the �ow associated to the SDE (6) admits
a modi�cation which is C3 with respect to the initial condition x (see also Theorem 4.6.5 of [26]).
Indeed the local characteristics of the �ow are given by

b(x, t) = −αx and a(x, y, t) = σ2
√
f(x)f(y),

and, under Assumptions 1 and 3, they satisfy the conditions of Theorem 1.4.1 of [25]:

• ∃C, ∀x, y, t, |b(x, t)| ≤ C(1 + |x|) and |a(x, y, t)| ≤ C(1 + |x|)(1 + |y|).
• ∃C, ∀x, y, t, |b(x, t)− b(y, t)| ≤ C|x− y| and |a(x, x, t) + a(y, y, t)− 2a(x, y, t)| ≤ C|x− y|2.
• ∀1 ≤ k ≤ 4, 1 ≤ l ≤ 4− k, ∂k

∂xk b(x, t) and
∂k+l

∂xk∂yl
a(x, y, t) are bounded.

In the following, we consider the process (X̄
(x)
t )t, solution of the SDE (6) and satisfying X̄

(x)
0 = x.

Then we can consider a modi�cation of the �ow X̄
(x)
t which is C3 with the respect to the initial

condition x = X̄
(x)
0 . It is then su�cient to control the moment of the derivatives of X̄

(x)
t with

respect to x, since with those controls we will have

P̄tg(x) =E
[
g
(
X̄

(x)
t

)]
,
(
P̄tg
)′

(x) = E

[
∂X̄

(x)
t

∂x
g′
(
X̄

(x)
t

)]
,

(
P̄tg
)′′

(x) =E

∂2X̄
(x)
t

∂x2
g′
(
X̄

(x)
t

)
+

(
∂X̄

(x)
t

∂x

)2

g′′
(
X̄

(x)
t

) ,
(
P̄tg
)′′′

(x) =E

∂3X̄
(x)
t

∂x3
g′
(
X̄

(x)
t

)
+ 3

∂2X̄
(x)
t

∂x2
· ∂X̄

(x)
t

∂x
g′′
(
X̄

(x)
t

)
+

(
∂X̄

(x)
t

∂x

)3

g′′′
(
X̄

(x)
t

) . (22)

We start with the representation

X̄
(x)
t = xe−αt + σ

∫ t

0

e−α(t−s)
√
f
(
X̄

(x)
s

)
dBs.

This implies

∂X̄
(x)
t

∂x
= e−αt + σ

∫ t

0

e−α(t−s) ∂X̄
(x)
s

∂x

(√
f
)′ (

X̄(x)
s

)
dBs. (23)

Writing Ut = eαt
∂X̄

(x)
t

∂x and

Mt =

∫ t

0

σ
(√

f
)′ (

X̄(x)
s

)
dBs, (24)

we obtain Ut = 1 +
∫ t

0
UsdMs, whence

Ut = exp

(
Mt −

1

2
< M >t

)
.



X. Erny et al./Hawkes with random jumps 20

Notice that this implies Ut > 0 almost surely, whence
∂X̄

(x)
t

∂x > 0 almost surely. Hence

Upt = epMt− p
2<M>t = exp

(
pMt −

1

2
p2 < M >t

)
e

1
2p(p−1)<M>t = E(M)te

1
2p(p−1)<M>t .

Since
(√
f
)′

is bounded, Mt is a martingale, thus E(M) is an exponential martingale with expec-
tation 1, implying that

EUpt ≤ e
1
2p(p−1)σ2m2

1t, (25)

where m1 is the bound of (
√
f)′ introduced in Assumption 3. In particular we have

E

(∂X̄(x)
t

∂x

)2
 ≤ e(σ2m2

1−2α)t and E

∣∣∣∣∣∂X̄(x)
t

∂x

∣∣∣∣∣
3
 ≤ e(3σ2m2

1−3α)t. (26)

Di�erentiating (23) with respect to x, we obtain

∂2X̄
(x)
t

∂x2
= σ

∫ t

0

e−α(t−s)

∂2X̄
(x)
s

∂x2

(√
f
)′ (

X̄(x)
s

)
+

(
∂X̄

(x)
s

∂x

)2 (√
f
)(2) (

X̄(x)
s

) dBs. (27)

We introduce Vt =
∂2X̄

(x)
t

∂x2 eαt and deduce from this that

Vt =σ

∫ t

0

[
Vs

(√
f
)′ (

X̄(x)
s

)
+ e−αsU2

s

(√
f
)(2) (

X̄(x)
s

)]
dBs,

which can be rewritten as

dVt = VtdMt + YtdBt, V0 = 0, Yt = σe−αtU2
t

(√
f
)(2) (

X̄
(x)
t

)
,

with Mt as in (24). Applying Ito's formula to Zt := Vt/Ut (recall that Ut > 0), we obtain

dZt =
Yt
Ut
dBt −

Yt
Ut
d < M,B >t,

such that, by the precise form of Yt and since Z0 = 0,

Zt = σ

∫ t

0

e−αsUs

(√
f
)(2) (

X̄(x)
s

)
dBs − σ2

∫ t

0

e−αsUs

(√
f
)(2) (

X̄(x)
s

)(√
f
)′ (

X̄(x)
s

)
ds.

Using Jensen's inequality, (25) and Burkholder-Davis-Gundy inequality, for all t ≥ 0,

E
[
Z4
t

]
≤ C

(
E

[(∫ t

0

e−αsUs

(√
f
)(2) (

X̄(x)
s

)
dBs

)4
]

+E

[(∫ t

0

e−αsUs

(√
f
)′ (

X̄(x)
s

)(√
f
)(2) (

X̄(x)
s

)
ds

)4
])
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≤ C
(
t+ t3

) ∫ t

0

e(6σ2m2
1−4α)sds

≤ C
(
t+ t3

) (
1 + t+ e(6σ2m2

1−4α)t
)
. (28)

We deduce that
E
[
V 2
t

]
≤ E

[
Z4
t

]1/2 E [U4
t

]1/2 ≤ C(t1/2 + t2)e3σ2m2
1t,

whence

E

(∂2X̄
(x)
t

∂x2

)2
 ≤ C(t1/2 + t2)e(3σ2m2

1−2α)t. (29)

Finally, di�erentiating (27), we get

∂3X̄
(x)
t

∂x3
= σ

∫ t

0

e−α(t−s)

[
∂3X̄

(x)
s

∂x3

(√
f
)′ (

X̄(x)
s

)
+ 3

∂2X̄
(x)
s

∂x2

∂X̄
(x)
s

∂x

(√
f
)(2) (

X̄(x)
s

)

+

(
∂X̄

(x)
s

∂x

)3 (√
f
)(3) (

X̄(x)
s

) dBs.
Introducing Wt = eαt

∂3X̄
(x)
t

∂x3 , we obtain

Wt = σ

∫ t

0

[
Ws

(√
f
)′ (

X̄(x)
s

)
+ 3e−αsUsVs

(√
f
)(2) (

X̄(x)
s

)
+ e−2αsU3

s

(√
f
)(3) (

X̄(x)
s

)]
dBs.

Once again we can rewrite this as

dWt = WtdMt + Y ′t dBt,W0 = 0,

where

Y ′t = σ

(
3e−αtUtVt

(√
f
)(2) (

X̄
(x)
t

)
+ e−2αtU3

t

(√
f
)(3) (

X̄
(x)
t

))
,

whence, introducing Z ′t = Wt

Ut
,

Z ′t =

∫ t

0

Y ′s
Us
dBs −

∫ t

0

Y ′s
Us
d < M,B >s .

As previously, we obtain,

E
[
(Z ′t)

2
]
≤C(1 + t)

∫ t

0

E

[(
Y ′s
Us

)2
]
ds

≤C(1 + t)

∫ t

0

(
e−2αsE

[
V 2
s

]
+ e−4αsE

[
U4
s

])
ds

≤C(1 + t)

∫ t

0

(
(s1/2 + s2)e(3σ2m2

1−2α)s + e(6σ2m2
1−4α)s

)
ds
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≤C(1 + t3)

∫ t

0

(
e(3σ2m2

1−2α)s + e(6σ2m2
1−4α)s

)
ds

≤C(1 + t3)

∫ t

0

(
1 + e(6σ2m2

1−4α)s
)
ds ≤ C(1 + t4)

(
1 + e(6σ2m2

1−4α)t
)
. (30)

As a consequence,

E [|Wt|] ≤E
[
(Z ′t)

2
]1/2 E [U2

t

]1/2 ≤ C(1 + t2)
(

1 + e(3σ2m2
1−2α)t

)
e

1
2σ

2m2
1t

≤C(1 + t2)
(
e

1
2σ

2m2
1t + e( 7

2σ
2m2

1−2α)t
)
,

implying

E

[∣∣∣∣∣∂3X̄
(x)
t

∂3x

∣∣∣∣∣
]
≤ C(1 + t2)

(
e( 1

2σ
2m2

1−α)t + e( 7
2σ

2m2
1−3α)t

)
. (31)

Finally, using Cauchy-Schwarz inequality, and inserting (26), (29) and (31) in (22),∣∣∣∣∣∣(P̄tg)′′′∣∣∣∣∣∣
∞
≤ C||g||3,∞(1 + t2)

(
e( 1

2σ
2m2

1−α)t + e2(σ2m2
1−α)t + e( 7

2σ
2m2

1−3α)t
)
,

which proves the proposition.
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