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Abstract: We consider a sequence of systems of Hawkes processes having mean field interac-
tions in a diffusive regime. The stochastic intensity of each process is a solution of a stochastic
differential equation driven by N independent Poisson random measures. We show that, as the
number of interacting components N tends to infinity, this intensity converges in distribution
in Skorohod space to a CIR-type diffusion. Moreover, we prove the convergence in distribu-
tion of the Hawkes processes to the limit point process having the limit diffusion as intensity.
To prove the convergence results, we use analytical technics based on the convergence of the
associated infinitesimal generators and Markovian semigroups.
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Keywords and phrases: Multivariate nonlinear Hawkes processes, Mean field interaction,
Piecewise deterministic Markov processes.

Introduction

Hawkes processes were originally introduced by Hawkes (1971) to model the appearance of earth-
quakes in Japan. Since then these processes have been successfully used in many fields to model
various physical, biological or economical phenomena exhibiting self-excitation or -inhibition and
interaction, such as seismology (Helmstetter and Sornette (2002), Y. Kagan (2009), Ogata (1999),
Bacry and Muzy (2016)), financial contagion (Aït-Sahalia, Cacho-Diaz and Laeven (2015)), high
frequency financial order books arrivals (Lu and Abergel (2018), Bauwens and Hautsch (2009),
Hewlett (2006)), genome analysis (Reynaud-Bouret and Schbath (2010)) and interactions in social
networks (Zhou, Zha and Song (2013)). In particular, multivariate Hawkes processes are extensively
used in neurosciences to model temporal arrival of spikes in neural network (Grün, Diedsmann and
Aertsen (2010), Okatan, AWilson and N Brown (2005), Pillow, Wilson and Brown (2008), Reynaud-
Bouret et al. (2014)) since they provide good models to describe the typical temporal decorrelations
present in spike trains of the neurons as well as the functional connectivity in neural nets.

In this paper, we consider a sequence of multivariate Hawkes processes
(
ZN
)
N∈N∗ of the form

ZN = (ZN,1t , . . . ZN,Nt )t≥0. Each ZN is designed to describe the behaviour of some interacting
system with N components, as for example a neural network of N neurons. This is a multivari-
ate counting process where each ZN,i records the number of events related to the i−th compo-
nent, as for example the number of spikes of the i−th neuron. These counting processes are in-
teracting, that is, any event of type i is able to trigger or to inhibit future events of all other
types j. The process

(
ZN,1, . . . , ZN,N

)
is informally defined via its stochastic intensity process

λN =
(
λN,1(t), . . . , λN,N (t)

)
t≥0

through the relation

P(ZN,i has a jump in ]t, t+ dt]|Ft) = λN,i(t)dt, 1 ≤ i ≤ N,

1
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where Ft = σ
(
ZNs : 0 ≤ s ≤ t

)
. The stochastic intensity of a Hawkes process is given by

λN,i(t) = fNi

 N∑
j=1

∫ t

−∞
hNij (t− s)dZN,j(s)

 . (1)

Here, hNij models the action or the influence of events of type j on those of type i, and how this
influence decreases as time goes by. The function fNi is called the jump rate function of ZN,i.

Since the founding works of Hawkes (1971) and Hawkes and Oakes (1974), many probabilistic
properties of Hawkes processes have been well-understood, such as ergodicity, stationarity and long
time behaviour (see Brémaud and Massoulié (1996), Daley and Vere-Jones (2003) and Costa et al.
(2018)). A number of authors studied the statistical inference for Hawkes processes (Ogata (1978)
and Reynaud-Bouret and Schbath (2010)). Another field of study, really active nowadays, concerns
the behaviour of the Hawkes process when the number of components N goes to infinity. During the
last decade, large population limits of systems of interacting Hawkes processes have been studied
both in discrete and continuous time (Fournier and Löcherbach (2016), Delattre, Fournier and
Hoffmann (2016), Ditlevsen and Löcherbach (2017)).

Delattre, Fournier and Hoffmann (2016) consider a general class of Hawkes processes whose
interactions are given by a graph. In the case where the interactions are of mean field type and
scaled in N−1, namely hNij = N−1h and fNi = f in (1), they show that the Hawkes processes
can be approximated by an i.i.d. family of inhomogeneous Poisson processes. They observe that
for each fixed integer k, the joint law of k components converges to a product law as N tends
to infinity, which is commonly referred to as the propagation of chaos. Ditlevsen and Löcherbach
(2017) generalize this result to a multi-population frame and show how oscillations emerge in the
large population limit. Note again that the interactions in both papers are scaled in N−1, which
leads to limit point processes with deterministic intensity.

The purpose of this paper is to study the large population limit (when N goes to infinity) of
the multivariate Hawkes processes

(
ZN,1, . . . , ZN,N

)
with mean field interactions scaled in N−1/2.

Contrarily to the situation considered in Delattre, Fournier and Hoffmann (2016) and Ditlevsen and
Löcherbach (2017), this scaling leads to a non-chaotic limiting process with stochastic intensity. As
we consider interactions scaled in N−1/2, we have to center the terms of the sum in (1) to make the
intensity process converge according to some kind of central limit theorem. To this end, we consider
intensities with stochastic jump heights of the form

λN,i(t) = λN (t) = f

 1√
N

N∑
j=1

∫ t

−∞
h(t− s)Uj(s)dZN,js

 ,

where the variables Uj(s) are i.i.d. and centered.
Moreover we consider functions h of the form h(t) = e−αt so that the process

(
XN
t

)
t
defined by

XN
t :=

1√
N

N∑
j=1

∫ t

−∞
e−α(t−s)Uj(s)dZ

N,j(s)

is a piecewise deterministic Markov process. In the framework of neurosciences, XN
t represents the

membrane potential of the neurons at time t, the variables Uj(s) model random synaptic weights
and the jumps of ZN,j represent the spike times of neuron j. If neuron j spikes at time t, an
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additional random potential height Uj(t)/
√
N is given to all other neurons in the system. As a

consequence, the process XN has the following dynamics

dXN
t = −αXN

t dt+
1√
N

N∑
i=1

Ui(t)dZ
N,i(t),

and the infinitesimal generator of XN is given by

ANg(x) = −αx g′(x) +Nf(x)

∫ [
g

(
x+

u√
N

)
− g(x)

]
µ(du),

for sufficiently smooth functions g, where µ is the common distribution of the variables Uj(s).
As N goes to infinity, the above expression converges to

Āg(x) = −αx g′(x) +
1

2
f(x)g′′(x),

which is the generator of a CIR-type diffusion solution of the SDE

dX̄t = −αX̄tdt+
√
f(X̄t)dBt. (2)

We show that the convergence of the generators implies the convergence of XN to X̄ in dis-
tribution in Skorohod space, together with a control on the speed of convergence. Moreover we
establish for each i, the convergence in distribution in Skorohod space of the associated counting
process ZN,i to the limit counting process Z̄i which has intensity (f(X̄t))t. Conditionally on X̄,
the Z̄i, i ≥ 1, are independent. This property can be viewed as a conditional propagation of chaos-
property, which has to be compared to Delattre, Fournier and Hoffmann (2016) and Ditlevsen and
Löcherbach (2017) where the intensity of the limit process is deterministic and its components are
truly independent, and to Carmona, Delarue and Lacker (2016) where all interacting components
are subject to common noise. In our case, the common noise, that is, the Brownian motion B of
(2), emerges in the limit as a consequence of the central limit theorem.

To the best of our knowledge, this is the first result of diffusion limit type for multivariate Hawkes
processes.

The convergence in distribution of XN to X̄ (Theorem 2.1) is obtained by showing first the
tightness of the sequence

(
XN

)
N

on Skorohod space, and then the convergence in finite-dimensional
distribution. To prove the finite-dimensional convergence we use analytical methods showing first
the convergence of the generators from which we deduce the convergence of the semigroups via the
formula

P̄tg(x)− PNt g(x) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x)ds. (3)

Here P̄tg(x) = Ex
[
g
(
X̄t

)]
and PNt g(x) = ENx

[
g
(
XN
t

)]
denote the Markovian semigroups of X̄

and XN . This formula is well-known in the classical semigroup theory setting where the generators
are strong derivatives of semigroups in the Banach space of continuous bounded functions (see
Lemma 1.6.2 of Ethier and Kurtz (2005)). In our case, we have to consider extended generators
(see Davis (1993) or Meyn and Tweedie (1993)), i.e. ANg(x) is the point-wise derivative of t 7→
PNt g(x). The version of formula (3) for extended generators is stated and proved in Appendix
(Proposition 6.3).
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It is well-known that under suitable assumptions on f, the solution of (2) admits a unique
invariant measure π whose density is explicitly known. Thus, a natural question is to consider the
limit of the law of XN

t when t and N go simultaneously to infinity. We prove that under appropriate
conditions on the way N and t tend jointly to infinity, this limit is π, and we provide a control of
the error (Theorem 2.3). This result can be viewed as an approximation result of the finite size and
finite time particle system by the invariant measure π, that is, a simulation algorithm to simulate
the law of XN

t from the invariant law π.
The paper is organized as follow: in Section 1, we introduce the model rigorously and state the

assumptions. In Section 2, we formulate the main results. Section 3 is devoted to the proof of the
convergence of XN to X̄ (Theorem 2.1), and Section 4 to the study of the simultaneous t and N
limit of the law of XN

t (Theorem 2.3). In Section 5, we prove the convergence of the point processes
ZN,i to Z̄i (Theorem 2.5). Finally in Appendix, we prove some results on the extended generators,
and some other technical results that we use throughout the paper.

1. Notation, model and assumptions

1.1. Notation

The following notation are used throughout the paper:

• If X is a random variable, we note D(X) its distribution.
• If g is a real-valued function which is n times differentiable, we note ||g||n,∞ =

∑n
k=0

∣∣∣∣g(k)
∣∣∣∣
∞ .

• We write Cnb (R) for the set of the functions g which are n times continuously differentiable
such that ||g||n,∞ < +∞, and we write Cb(R) for C0

b (R).
• If g is a real-valued function and I is an interval, we note ||g||∞,I = sup

x∈I
|g(x)|.

• We write Cnc (R) for the set of functions that are n times continuously differentiable and that
have a compact support.

• We write D(R+,R) for the Skorohod space of càdlàg functions from R+ to R, endowed with
Skorohod metric (see Chapter 3 Section 16 of Billingsley (1999)). Moreover, D

(
R+,Rk

)
de-

notes the space of Rk−valued càdlàg functions endowed with the topology that generalizes
naturally the topology of D(R+,R) (see e.g. Section 3.5 of Ethier and Kurtz (2005)).

• If E is a Polish space, M#(E) denotes the space of locally finite measures on E endowed
with the topology of the weak convergence. With this topology, M#(E) is a Polish space
(see Theorem A2.6.III of Daley and Vere-Jones (2003)). In this paper, we consider either
E = R+ × R+ × R or E = R+ × R+, and we write M# for M#(E). It will always be clear
which space E we consider.

• Wp denotes the Wasserstein metric of order p, that is,Wp(ν1, ν2) = inf
X∼ν1,Y∼ν2

E [|X − Y |p]1/p .
• α is a positive constant, L,A,B, σ are fixed parameters defined in Assumptions 1 and 2 below,
mk (1 ≤ k ≤ 4) are fixed parameters introduced in Assumption 3 below, Ct, Dt,Kt, Q

(k)
t are

constants that depend on t and the previous parameters, which are defined in Lemma 3.1,
Theorem 2.2 and Proposition 3.6. Finally, we note Γ any arbitrary constant, so the value
of Γ can change from line to line in an equation. Moreover, if Γ depends on some non-fixed
parameter θ, we write Γθ.
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1.2. The model

We consider a sequence of multivariate Hawkes processes
(
ZN,i

)
1≤i≤N,N∈N∗ of the form

ZN,it =

∫
]0,t]×R+×R

1{z≤f(XNs−)}dπi(s, z, u), 1 ≤ i ≤ N, (4)

where (πi)i∈N∗ are i.i.d. Poisson random measures on R+ × R+ × R of intensity dt dz dµ(u), µ is a
centered probability measure on R, and

(
XN
t

)
t∈R+

is given by{
XN
t = XN

0 e
−αt + 1√

N

∑N
j=1

∫
]0,t]×R+×R ue

−α(t−s)1{z≤f(XNs−)}dπj(s, z, u),

XN
0 ∼ νN0 ,

(5)

where νN0 is a probability measure on R. Notice that XN is solution of the following SDE

dXN
t = −αXN

t dt+
1√
N

N∑
j=1

∫
(z,u)∈R+×R

u1{z≤f(XNt−)}dπj(t, z, u). (6)

Under natural assumptions on f, this SDE (6) admits a unique non-exploding strong solution.
This will be proved in Proposition 6.6. In particular, XN is a piecewise deterministic Markov
process.

The aim of this paper is to show that XN converges in Skorokhod space to the limit process(
X̄t

)
t∈R+

which is solution to the SDE{
dX̄t = −αX̄tdt+ σ

√
f
(
X̄t

)
dBt,

X̄0 ∼ ν̄0,
(7)

where σ2 is the variance of µ, (Bt)t∈R+ is a one-dimensional standard Brownian motion, and ν̄0 a
suitable probability measure on R.

In the sequel, we will prove the convergence of XN to X̄, and we will derive some consequences
of this convergence.

To prove our results, we need to introduce the following assumptions.

Assumption 1.
√
f is a positive and Lipschitz continuous function, having Lipschitz constant L.

In particular there exist some constants A and B such that for all x ∈ R, f(x) ≤ Ax2 +B.

Remark 1.1. Obviously, we have A ≤ 2L2 and B ≤ 2f(0)2, so we could fix A = 2L2 and B =
2f(0)2. However, these choices for A and B are not optimal in general, and using generic constants
A and B makes the proofs more readable.

Under Assumption 1, it is classical that the SDE (7) admits a unique non-exploding strong
solution (see remark IV.2.1, Theorems IV.2.3, IV.2.4 and IV.3.1 of Ikeda and Watanabe (1989)).

Assumption 2.

•
∫
R x

4dν̄0(x) <∞ and sup
N∈N∗

∫
R x

4dνN0 (x) <∞.
• µ is a centered probability measure having a fourth moment, we note σ2 its variance.
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Assumption 2 allows us to control the moments up to order four of the processes
(
XN
t

)
t
and(

X̄t

)
t
(see Lemma 3.1) and to prove the convergence of the generators of the processes

(
XN
t

)
t
(see

Proposition 3.5).

Assumption 3. We assume that f is C4 and for each 1 ≤ k ≤ 4,
(√
f
)(k) is bounded by some

constant mk.

Assumption 3 guarantees that the stochastic flow associated to (7) has regularity properties
with respect to the initial condition X̄0 = x. This will be the main tool to obtain uniform in time
estimates of the limit semigroup, see Proposition 3.6.

Example 1.2. The functions f(x) = 1 + x2 and f(x) =
√

1 + x2 satisfy Assumptions 1 and 3.

Assumption 4. W2

(
ν̄0, ν

N
0

)
vanishes when N goes to infinity.

The convergence of XN
0 to X̄0 in distribution is a necessary condition for the convergence of the

process XN to X̄. In Proposition 3.9 below establishing the finite dimensional convergence of XN

to X̄, we rely on Assumption 4 which is a bit stronger. Actually if we assume that the first part
of Assumption 2 holds, then Assumption 4 is equivalent to the convergence in distribution of XN

0

to X̄0.

2. Main results

Our first main result is the convergence of the process XN to X̄ in distribution in Skorohod space.

Theorem 2.1. If Assumptions 1, 2, 3 and 4 hold, then the sequence
(
XN

)
N

converges in distri-
bution to X̄ in D (R+,R).

Theorem 2.1 is proved in the end of Subsection 3.4. Below we give some simulations of the
trajectories of the process

(
XN
t

)
t≥0

in Figure 1.
Actually, we have more details than just the convergence of XN to X̄ in Skorohod space. Indeed,

we are able to establish the rate of convergence of PNt g(x) to P̄tg(x), uniformly in time for t ∈ [0, T ],
for sufficiently smooth test-functions g.

Theorem 2.2. If Assumptions 1, 2 and 3 hold, then for all T ≥ 0, there exists a positive constant
KT such that for each g ∈ C3

b (R),

sup
0≤t≤T

∣∣PNt g(x)− P̄tg(x)
∣∣ ≤ (1 + x2)KT ||g||3,∞

1√
N
.

The constant KT can be chosen of the form KT = O
(
T 2
(

1 + eT(σ2A−2α)
)(

1 + eTβ
(3)
))

with

β(3) = 12σ2m2
1 + 3σ2m2

2 − α.
We refer to Proposition 3.6 for the form of β(3). Theorem 2.2 is proved in the end of Subsection 3.3.
If the limit process X̄ is sufficiently ergodic (that is, if α is sufficiently large), having invariant

probability measure π, then we can even control the speed of convergence of PNtt g(x) to π(g), as t
goes to infinity, for suitable choices of Nt →∞.

Theorem 2.3. Under Assumptions 1, 2 and 3, let N : t ∈ R+ 7→ Nt ∈ N∗ be some function such
that one of the conditions below holds:
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Figure 1. Simulation of trajectories of
(
XN

t

)
0≤t≤10

with XN
0 = 0, α = 1, µ = N (0, 1), N = 10 (left picture) and

N = 50 (right picture).

(a) α > σ2 max
(
L2/2, A/2, 12m2

1 + 3m2
2

)
and t6 = o(Nt).

(b) α > σ2

2 max
(
L2, A

)
and t6e2β(3)t = o(Nt).

(1) Then X̄ is uniquely ergodic, having invariant probability measure π.
(2) PNtt (x, ·) converges weakly to π when t goes to infinity. Besides, for each condition, the speed of
convergence for test functions g ∈ C3

b (R) is given by:

(a)
∣∣∣PNtt (x, ·)g − πg

∣∣∣ ≤ Γ||g||3,∞
(

t2√
Nt

(
1 + x2 + t

)
+ e(

1
2σ

2L2−α)t√1 + x2 + t
)

(b)
∣∣∣PNtt (x, ·)g − πg

∣∣∣ ≤ Γ||g||3,∞
(
t2eβ

(3)t
√
Nt

(
1 + x2 + t

)
+ e(

1
2σ

2L2−α)t√1 + x2 + t

)
where Γ is a positive constant.

Theorem 2.3 is proved in the end of Section 4.

Remark 2.4. Formulae (a) and (b) can be seen as a simulation algorithm of the state of the finite
particle system of size Nt at time t by the invariant state of the limit process.

Finally, using Theorem 2.1, we show the convergence of the point processes ZN,i defined in (4)
to limit point processes Z̄i having stochastic intensity f(X̄t) at time t. To define the processes Z̄i
(i ∈ N∗), we fix a Brownian motion (Bt)t≥0 on some probability space different from the one where
the processes XN (N ∈ N∗) and the Poisson random measures πi (i ∈ N∗) are defined. Then we fix
a family of i.i.d. Poisson random measures π̄i (i ∈ N∗) on the same space as (Bt)t≥0, independent
of (Bt)t≥0. This independence property is natural (see Proposition 5.2), and it allows us to consider
the joint distributions (X̄, π̄1, . . . , π̄k) for each fixed k ≥ 1, where X̄ is defined as the solution of (7)
driven by (Bt)t≥0.

As the Poisson random measures π̄i play the same role as πi, we shall write πi instead of π̄i in
the rest of the paper. Since πi and π̄i are not defined on the same space, there will not be any
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ambiguity. The limit point processes Z̄i are then defined by

Z̄it =

∫
]0,t]×R+×R

1{z≤f(X̄s)}dπi(s, z, u). (8)

Theorem 2.5. Under Assumptions 1, 2, 3 and 4, for all k ≥ 1, the sequence
(
ZN,1, ZN,2, . . . , ZN,k

)
N

converges to
(
Z̄1, Z̄2, . . . , Z̄k

)
in distribution in D

(
R+,Rk

)
.

Let us give a brief interpretation of the above result. Conditionally on X̄, Z̄1, . . . , Z̄k are in-
dependent. Therefore, the above result can be interpreted as a conditional propagation of chaos
property (compare to Carmona, Delarue and Lacker (2016) dealing with the situation where all
interacting components are subject to common noise). In our case, the common noise, that is, the
Brownian motion B driving the dynamic of X̄, emerges in the limit as a consequence of the central
limit theorem. Theorem 2.5 is proved in the end of Section 5.

3. Convergence of
(
XN

t

)
N

in distribution in D(R+,R)

The goal of this section is to prove Theorem 2.1 and Theorem 2.2. To prove the convergence of
the sequence

(
XN

)
N
, we show in a first time that it is tight, and then the convergence in finite-

dimensional distribution. For that purpose we establish the convergence of the generators and then
the one of the semigroups.

We start with useful a priori bounds on the moments of XN and X̄.

Lemma 3.1. Under Assumptions 1 and 2, for each T > 0 there exist some constants CT =

O
(
eT max(σ2A−2α,0)

)
and DT = O

(
TeT max(σ2A−2α,0)

)
such that the following holds.

(i) for all N ∈ N∗ and t ∈ [0, T ],E
[(
XN
t

)2] ≤ CTE [(XN
0

)2]
+DT ,

(ii) for all t ∈ [0, T ],E
[(
X̄t

)2] ≤ CTE [(X̄0

)2]
+DT ,

(iii) sup
N∈N∗

E

[(
sup

0≤t≤T

∣∣XN
t

∣∣)2
]
< +∞,

(iv) E

[(
sup

0≤t≤T

∣∣X̄t

∣∣)2
]
< +∞,

(v) for all t ∈ [0, T ] and n ∈ N∗, sup
0≤t≤T

E
[(
XN
t

)4] ≤ ΓT

(
1 + E

[(
XN

0

)4]),
(vi) for all t ∈ [0, T ], sup

0≤t≤T
E
[(
X̄t

)4] ≤ ΓT

(
1 + E

[(
X̄0

)4]).
We postpone the proof of Lemma 3.1 to Appendix.

3.1. Tightness of
(
XN

t

)
N

in D(R+,R)

We recall Aldous criterion (see for instance Theorem 16.9 of Billingsley (1999)) for tightness in
Skorohod space.

Lemma 3.2. Let
(
Y N
)
N

be a sequence of processes in D(R+,R). We suppose that the two following
conditions hold:
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(a) ∀T > 0,∀ε > 0, lim
δ↘0

lim
N→∞

sup
(S,S′)∈Aδ,T

P
(∣∣Y NS′ − Y NS ∣∣ > ε

)
= 0,

where Aδ,T is the set of all pairs of stopping times (S, S′) such that 0 ≤ S ≤ S′ ≤ S + δ ≤ T ,
(b) ∀T > 0, lim

K↗∞
sup
N

P
(

sup
0≤t≤T

∣∣Y Nt ∣∣ ≥ K) = 0.

Then the sequence
(
Y N
)
N

is tight on D(R+,R).

Now we prove the tightness of the sequence of processes
(
XN

)
N

using Aldous criterion and Ito’s
isometry.

Proposition 3.3. If Assumptions 1 and 2 hold, then
{(
XN
t

)
t

: N ∈ N∗
}
is tight on D (R+,R).

Proof. Thanks to Lemma 3.1, the verification of the condition (b) of Aldous criterion is straightfor-
ward since,

P
(

sup
0≤t≤T

∣∣XN
t

∣∣ ≥ K) ≤ 1

K
E
[

sup
0≤t≤T

∣∣XN
t

∣∣] ,
which goes to 0, uniformly in N as K goes to infinity.
Now, we check the condition (a). Let S, S′ be stopping times such that 0 ≤ S ≤ S′ ≤ S + δ ≤ T.

Then

XN
S′ −XN

S = −α
∫ S′

S

XN
r dr +

1√
N

N∑
j=1

∫
]S,S′]×R+×R

u1{z≤f(XNr−)}dπj(r, z, u).

We have

(
XN
S′ −XN

S

)2 ≤ 2α2

(∫ S′

S

XN
r dr

)2

+
2

N

 N∑
j=1

∫
]S,S′]×R+×R

u1{z≤f(XNr−)}dπj(r, z, u)

2

,

which equals

2α2

(∫ S′

S

XN
r dr

)2

(9)

+
2

N

N∑
j=1

(∫
]S,S′]×R+×R

u1{z≤f(XNr−)}dπj(r, z, u)

)2

(10)

+
4

N

∑
1≤i<j≤N

(∫
]S,S′]×R+×R

u1{z≤f(XNr−)}dπi(r, z, u)

)(∫
]S,S′]×R+×R

u1{z≤f(XNr−)}dπj(r, z, u)

)
.

(11)

In the sequel we will show that the expectation of the expressions in (9), (10) and (11) go to 0
when δ → 0, uniformly in N . We check each of these three expressions.

For (9), we have

2α2E

(∫ S′

S

XN
r dr

)2
 ≤ 2α2E

[(
sup

0≤t≤T
|XN

t |(S′ − S)

)2
]
≤ 2α2δ2E

[(
sup

0≤t≤T
|XN

t |
)2
]
.
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For (10), taking expectation, we obtain

2E

(∫
]0,T ]×R+×R

1{S<r≤S′}u1{z≤f(XNr−)}dπ1(r, z, u)

)2
 .

Using Ito’s isometry and the fact that r 7→ 1{S<r≤S′}1{z≤f(XNr−)} is predictable, we obtain

E

(∫
]0,T ]×R+×R

1{S<r≤S′}u1{z≤f(XNr−)}dπ1(r, z, u)

)2


= E

[∫
]0,T ]×R+×R

1{S<r≤S′}u
21{z≤f(XNr−)}dπ1(r, z, u)

]

= σ2E

[∫ T

0

∫ ∞
0

1{S<r≤S′}1{z≤f(XNr−)}dzdr

]
= σ2E

[∫ S′

S

f
(
XN
r−
)
dr

]

≤ σ2E

[(
A

(
sup

0≤r≤T
|XN

r |
)2

+B

)
(S′ − S)

]

≤ σ2δ

(
AE

[(
sup

0≤r≤T
|XN

r |
)2
]

+B

)
.

Finally, to see that the expectation of (11) is zero, it is sufficient to notice that each term of
the sum is zero, using Ito’s isometry and the fact that the πj are independent Poisson random
measures.

3.2. Convergence of the generators

Throughout this paper, we consider extended generators similar to those used in Meyn and Tweedie
(1993) and in Davis (1993), because the classical notion of generator does not suit to our framework
(see the beginning of Section 6.1). As this definition slightly differs from one reference to another,
we define explicitly the extended generator in Definition 6.1 and we prove the results on extended
generators that we need in this paper. We note AN the extended generator of XN and Ā that of X̄.
The goal of this section is to prove the convergence of ANg(x) to Āg(x) and to establish the rate of
convergence for test functions g ∈ C3

b (R). Before proving this convergence, we state a lemma which
characterizes the generators for some test functions. This lemma is a straightforward consequence
of Ito’s formula and Lemma 3.1.

Lemma 3.4. C2
b (R) ⊆ D′

(
Ā
)
, and for all g ∈ C2

b (R) and x ∈ R, we have

Āg(x) = −αxg′(x) +
1

2
σ2f(x)g′′(x).

Moreover, C1
b (R) ⊆ D′

(
AN
)
, and for all g ∈ C1

b (R) and x ∈ R, we have

ANg(x) = −αxg′(x) +Nf(x)

∫
R

[
g

(
x+

u√
N

)
− g(x)

]
dµ(u).
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Now we can prove the main result of this subsection.

Proposition 3.5. If Assumptions 1 and 2 hold, then for all g ∈ C3
b (R),

∣∣Āg(x)−ANg(x)
∣∣ ≤ |f(x)|.‖g′′′‖∞

1

6
√
N

∫
R
|u|3dµ(u).

Proof. For g ∈ C3
b (R), if we note U a random variable having distribution µ, we have

∣∣ANg(x)− Āg(x)
∣∣ ≤|f(x)|

∣∣∣∣NE
[
g

(
x+

U√
N

)
− g(x)

]
− 1

2
σ2g′′(x)

∣∣∣∣
=|f(x)|N

∣∣∣∣E [g(x+
U√
N

)
− g(x)− U√

N
g′(x)− U2

2N
g′′(x)

]∣∣∣∣
≤|f(x)|NE

[∣∣∣∣g(x+
U√
N

)
− g(x)− U√

N
g′(x)− U2

2N
g′′(x)

∣∣∣∣] .
Using Taylor-Lagrange’s inequality, we obtain the result.

3.3. Convergence of the semigroups

Once the convergence ANg(x) → Āg(x) is established, together with a control of the speed of
convergence, our strategy is to rely on formula (16) of Proposition 6.3, stating that

(
P̄t − PNt

)
g(x) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x)ds,

under suitable assumptions on XN and X̄.
Obviously, to be able to apply the above formula, we need to ensure the regularity of x 7→ P̄sg(x),

together with a control of the associated norms
∣∣∣∣P̄sg∣∣∣∣k,∞, for suitable k. This is done in the next

proposition.

Proposition 3.6. If Assumptions 1, 2 and 3 hold, then for all t ≥ 0 and for all g ∈ C3
b (R), the

function x 7→ P̄tg is C3. Moreover for each 1 ≤ k ≤ 3, for all T ≥ 0 there exists a constant Q(k)
T

such that for all g ∈ Ckb (R) we have

sup
0≤t≤T

∣∣∣∣∣∣(P̄tg)(k)
∣∣∣∣∣∣
∞
≤ Q(k)

T ||g||k,∞.

Moreover, Q(k)
T = O

(
1 + eβ

(k)T
)
, where β(k) depends on f, σ and α in the following way.

β(1) =
7

2
σ2m2

1 − α, β(2) = 7σ2m2
1 +

3

2
σ2m2

2 − α, β(3) = 12σ2m2
1 + 3σ2m2

2 − α.

The proof of Proposition 3.6 requires some detailed calculus to obtain the explicit expression
for β(3), so we postpone it to Appendix.

We shall also need the following bound in the sequel.
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Lemma 3.7. For all g ∈ C2
c (R) such that Supp g ⊆ [−M,M ], we have∣∣∣∣∣∣(ANg)′∣∣∣∣∣∣

∞
≤ Γ‖g‖2,∞

(
1 +M2

)
,

for some constant Γ > 0.

Proof. We have(
ANg

)′
(x) =− αg(x)− αxg′(x)−Nf ′(x)g(x)−Nf(x)g′(x)

+Nf ′(x)E
[
g

(
x+

U√
N

)]
+Nf(x)E

[
g′
(
x+

U√
N

)]
.

Then it is clear that for all x ∈ R, we have∣∣∣(ANg)′ (x)
∣∣∣ ≤ Γ||g||1,∞

(
1 +M2

)
+

∣∣∣∣Nf ′(x)E
[
g

(
x+

U√
N

)]∣∣∣∣+∣∣∣∣Nf(x)E
[
g′
(
x+

U√
N

)]∣∣∣∣ . (12)
We bound the jump terms using the subquadraticty of f and f ′ (indeed with Assumptions 1 and 3,
we know that f ′ is sublinear, and consequently subquadratic). We can write:

E
[∣∣∣∣g′(x+

U√
N

)∣∣∣∣] ≤||g′||∞E
[
1{|x+U/

√
N|≤M}

]
=||g′||∞P

({
x+

U√
N
≥ −M

}
∩
{
x+

U√
N
≤M

})
≤||g′||∞P

({
x+

|U |√
N
≥ −M

}
∩
{
x− |U |√

N
≤M

})
=||g′||∞P

({
|U | ≥ −

√
N(M + x)

}
∩
{
|U | ≥

√
N(x−M)

})
.

Then for x > M + 1, using that f(x) ≤ Γ(1 + x2), and for a constant Γ that may change from
line to line, ∣∣∣∣f(x)E

[
g′
(
x+

U√
N

)]∣∣∣∣ ≤Γ||g′||∞
(
1 + x2

)
P
(
|U | ≥

√
N(x−M)

)
≤Γ

1

N
E
[
U2
]
||g′||∞

1 + x2

(x−M)2

≤Γ||g′||∞
(
1 +M2

)
.

The last inequality comes from the fact that the function x ∈ [M + 1,+∞[ 7→ 1+x2

(x−M)2 is bounded
by 1 + (M + 1)2. With the same reasoning, we know that for all x < −M − 1, we have∣∣∣∣f(x)E

[
g′
(
x+

U√
N

)]∣∣∣∣ ≤ Γ||g′||∞
(
1 +M2

)
.

This concludes the proof.
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Proof of Theorem 2.2. Step 1. The main part of the proof will be to show that Proposition 6.3
can be applied to Y N = XN and Ȳ = X̄. This will be done in Step 2 below. Indeed, once this is
shown, the rest of the proof will be a straightforward consequence of Proposition 3.5, since

∣∣P̄tg(x)− PNt g(x)
∣∣ =

∣∣∣∣∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x)ds

∣∣∣∣
≤
∫ t

0

ENx
[∣∣Ā (P̄sg) (XN

t−s
)
−AN

(
P̄sg
) (
XN
t−s
)∣∣] ds

≤
(∫

R
|u|3dµ(u)

)
1

6
√
N

(
sup

0≤s≤t

∣∣∣∣∣∣(P̄sg)′′′∣∣∣∣∣∣
∞

)∫ t

0

ENx
[
f
(
XN
t−s
)]
ds

≤
(∫

R
|u|3dµ(u)

)
1

6
√
N
Q

(3)
T ||g||3,∞

∫ t

0

[
AENx

[(
XN
t−s
)2]

+B
]
ds

≤ 1√
N
KT ||g||3,∞

(
1 + x2

)
,

where we have used Propositions 3.6 and 3.1 to obtain the two last inequalities above.
Step 2. Now we show that XN and X̄ satisfy the hypothesis of Proposition 6.3. To begin with

we know that X̄ and XN satisfy the hypothesis (i), (ii) and (iii), using Lemma 3.1. Then the
hypothesis (iv) can be proved using Ito’s formula for the processes XN and X̄ solving the SDEs (6)
and (7), and using Lemma 3.1. We know that P̄ satisfy hypothesis (v) thanks to Proposition 3.6.

Besides one can note that P̄ satisfy hypothesis (vi) using the calculations of the proof of Proposi-
tion 3.6. Then using Lemma 3.4, we see directly that Ā and AN satisfy the hypothesis (vii) and (ix).
In addition (viii) is straightforward for Ā, and it is a consequence of Lemma 3.7 for AN . The only
remaining hypothesis (x) is a straightforward consequence of the following Lemma 3.8.

Lemma 3.8. Let (gk)k be a sequence of C1
b (R) satisfying sup

k
||g′k||∞ < ∞, and for all x ∈

R, gk(x)→ 0 as k →∞.
Then for all bounded sequences of real numbers (xk)k, gk(xk)→ 0 as k →∞.

Proof. Let (xk)k be a bounded sequence. In a first time, we suppose that (xk)k converges to some
x ∈ R. Then we have |gk(xk)| ≤ ||g′k||∞|x−xk|+|gk(x)| which converges to zero as k goes to infinity.
In the general case, we show that for all subsequence of (gk(xk))k, there exists a subsequence of the
first one that converges to 0 (the second subsequence has to be chosen such that xk converges).

3.4. Convergence in finite-dimensional distribution

Theorem 2.2 and Proposition 4.1 imply the convergence of one dimensional time marginals for
functions in C3

b (R). Using an induction argument we can prove the convergence in finite-dimensional
distribution for functions in C3

b (R), and then, using a classical argument of density of C3
b (R) in

Cb(R), we obtain the following proposition.

Proposition 3.9. If Assumptions 1, 2, 3 and 4 hold, then for all n ∈ N∗, g1, . . . , gn ∈ Cb(R), 0 ≤
t1 ≤ t2 ≤ . . . ≤ tn, x ∈ R, we have:

E
[
g1

(
XN
t1

)
. . . gn

(
XN
tn

)]
−→
N→∞

E
[
g1

(
X̄t1

)
. . . gn

(
X̄tn

)]
.
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The proof of Proposition 3.9 is given in Appendix.
Now we can prove our main result, Theorem 2.1, which states the convergence in distribution of

XN to X̄ in D(R+,R).

Proof of Theorem 2.1. Using the tightness of the sequence
(
XN

)
N

on D(R+,R) (see Proposi-
tion 3.3) and the convergence ofXN to X̄ in finite-dimensional distribution (see Proposition 3.9), we
know thatXN converges to X̄ in distribution inD(R+,R) (see Theorems 13.1 and 16.7 of Billingsley
(1999)).

4. Convergence of the transition semigroups to the invariant measure, as N → ∞

In this section, we prove Theorem 2.3. In a first time, we prove a stability result for the semigroup
P̄t of the limit process

(
X̄t

)
t
with respect to the initial condition of the process.

Proposition 4.1. If Assumptions 1 and 2 hold, then for all probability measures having a second
moment ν1, ν2,

W2

(
ν1P̄t, ν2P̄t

)2 ≤ e(σ2L2−2α)tW2(ν1, ν2)2,

where L is a Lipschitz constant for the function
√
f .

Proof. We consider ν1, ν2 probability measures having a second moment. For ε > 0 fixed, letX0 ∼ ν1

and Y0 ∼ ν2 such that E
[
(X0 − Y0)

2
]
≤W2(ν1, ν2)2 + ε.

Let (Xt)t , (Yt)t be two solutions of the SDE (7) starting from the initial conditions X0, Y0

respectively, driven by the same Brownian motion B. We introduce ζt = Xt − Yt, so we have

ζt = ζ0 − α
∫ t

0

ζsds+ σ

∫ t

0

(√
f (Xs)−

√
f (Ys)

)
dBs.

Introducing Zt = eαtζt,
dZt = σeαt

(√
f (Xt)−

√
f (Yt)

)
dBt.

By Ito’s formula,

E
[
(Zt)

2
]

=E
[
(Z0)

2
]

+ σ2E
[∫ t

0

e2αs
(√

f (Xs)−
√
f (Ys)

)2

ds

]
≤E

[
(Z0)

2
]

+ σ2L2E
[∫ t

0

(Zs)
2
ds

]
.

By Grönwall’s lemma,
E
[
(Zt)

2
]
≤ E

[
(Z0)

2
]
eσ

2L2t,

which implies
E
[
(Xt − Yt)2

]
≤ E

[
(X0 − Y0)

2
]
e(σ

2L2−2α)t.

As a consequence,

W2(ν1P̄t, ν2P̄t)
2 ≤W2(ν1, ν2)2e(σ

2L2−2α)t + εe(σ
2L2−2α)t.

Since the inequality above holds for all ε > 0, the proposition is proved.
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Now using Proposition 4.1, classical arguments (see e.g. the proof of Theorem 1 of Duarte,
Löcherbach and Ost (2018)) imply that X̄ possesses an invariant measure π which is unique. In
addition, Theorem 4.2 of Meyn and Tweedie (1993) ensures that π admits a second order moment.
Therefore the following result holds true.

Proposition 4.2. If Assumptions 1 and 2 hold, and if we assume α > σ2L2/2, then the invariant
measure π of

(
P̄t
)
t
exists, is unique and admits a second order moment.

Now we prove Theorem 2.3. We use the Kantorovich-Rubinstein duality for W1, that is, for all
ν1, ν2 probability measures on R having a first moment,W1 (ν1, ν2) = sup

ψ

(∫
ψdν1 −

∫
ψdν2

)
, where

ψ ranges over all Lipschitz continuous functions whose Lipschitz constant is smaller or equal than
one (see Remark 6.5 of (Villani 2008, p. 107)).

Proof of Theorem 2.3. We fix 0 < γ < 1 and g ∈ C3
b (R). Then∣∣PNt g(x)− πg

∣∣ ≤ ∣∣PNt g(x)− PNγt P̄t−γtg(x)
∣∣+
∣∣PNγt P̄t−γtg(x)− πg

∣∣ . (13)

Moreover, ∣∣PNt g(x)− PNγt P̄t−γtg(x)
∣∣ =
∣∣PNγt (PNt−γt − P̄t−γt) g(x)

∣∣
≤ENx

[∣∣(PNt−γt − P̄t−γt) g (XN
γt

)∣∣]
≤ 1√

N
Kt||g||3,∞

(
1 + Ctx

2 +Dt

)
, (14)

where Kt comes from Theorem 2.2, and Ct and Dt from Lemma 3.1.
Furthermore,∣∣PNγt P̄t−γtg(x)− πg

∣∣ =
∣∣PNγt (x, ·) P̄t−γtg − πg

∣∣
≤||g′||∞W1

(
PNγt (x, ·)P̄t−γt, π

)
=||g′||∞W1

(
PNγt (x, ·)P̄t−γt, πP̄t−γt

)
≤||g′||∞W2

(
PNγt (x, ·)P̄t−γt, πP̄t−γt

)
≤||g′||∞e(

1
2σ

2L2−α)(1−γ)tW2

(
PNγt (x, ·), π

)
≤||g′||∞e(

1
2σ

2L2−α)(1−γ)t

√
2

(
Ctx2 +Dt +

∫
R
y2dπ(y)

)
. (15)

Then, replacing (14) and (15) in (13), we obtain that
∣∣PNt g(x)− πg

∣∣ is upper bounded by

1√
N
Kt||g||3,∞

(
1 + Ctx

2 +Dt

)
+ ||g′||∞e(

1
2σ

2L2−α)(1−γ)t

√
2

(
Ctx2 +Dt +

∫
R
y2dπ(y)

)
,

where Ct and Dt are defined in Lemma 3.1.
If we assume that α ≥ 1

2σ
2A, we know that Ct = O(1) and Dt = O(t). Moreover, if α ≥

12m2
1σ

2+3m2
2σ

2, thenKt = O
(
t2
)
(see Proposition 3.6). Thus, if α verifies the previous inequalities,

then for Nt such that
lim
t→∞

t3/
√
Nt = 0,

we know that PNtt (x, ·) converges to π for test functions in C3
b (R) when t goes to infinity. Using the

density of C3
b (R) in Cb(R), we know that this convergence holds for test functions in Cb(R).
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5. Convergence of
(
ZN,i

t

)
N

in distribution in D(R+,R)

In this section we prove Theorem 2.5, that is the convergence in distribution, for each fixed k,
of
(
ZN,1, . . . , ZN,k

)
to
(
Z̄1, . . . , Z̄k

)
in D

(
R+,Rk

)
. For each fixed T > 0, we consider the usual

notion of convergence on D([0, T ],R), generalized to D([0, T ],Rk). Namely, a sequence (gN )N of
D([0, T ],Rk) is said to converge to g in D([0, T ],Rk), if there exists a sequence of increasing con-
tinuous functions λN : [0, T ]→ R such that λN (0) = 0, λN (T ) = T, lim

N→∞
||Id−λN ||∞,[0,T ] = 0 and

lim
N→∞

||gN − g ◦ λN ||∞,[0,T ] = 0.

Then, using Theorem 16.2 of Billingsley (1999), we know that a sequence (gN )N converges to g
in D

(
R+,Rk

)
if and only if (gN )N converges to g in D([0, T ],Rk) for all T > 0 that are continuity

points of g. In the following, we only use this convergence criteria when it comes to convergence in
D(R+,Rk).

To prove the convergence of ZN,i to Z̄i (i ∈ N∗), we start by proving the convergence of their
stochastic intensities. This is a straightforward consequence of Theorem 2.1 and the following lemma.

Lemma 5.1. Let f : R → R be a continuous function. Then the function Ψ : x ∈ D(R+,R) →
f ◦ x ∈ D(R+,R) is continuous.

Proof. Let us consider a sequence (xn)n of D(R+,R) that converges to some x. We fix a T > 0 such
that (xn)n converges to x in D([0, T ],R). Then we can consider increasing functions λN defined
on [0, T ] such that λN (0) = 0, λN (T ) = T , ||Id − λN ||∞,[0,T ] vanishes and ||xN − x ◦ λN ||∞,[0,T ]

vanishes as N →∞.
For N big enough, we know that ||xN ||∞,[0,T ] ≤ ||x||∞,[0,T ] + 1. Introducing the modulus of

continuity w of f restricted to
[
0, ||x||∞,[0,T ] + 1

]
, w :

[
0, ||x||∞,[0,T ] + 1

]
→ R+, we have

||f ◦ xN − f ◦ x ◦ λN ||∞,[0,T ] ≤ w
(
||xN − x ◦ λN ||∞,[0,T ]

)
→ 0

as N →∞.
To prove the convergence of ZN,i to Z̄i, the convergence of their respective intensities (that

is, the convergence of f
(
XN
t

)
t≥0

to f
(
X̄t

)
t≥0

) is not sufficient, since we also manipulate the
Poisson random measure πi. So we need to prove the convergence of the pair

(
XN , πi

)
to
(
X̄, πi

)
in distribution. According to our definition of Z̄i in (8), it is obvious that X̄ is independent of any
finite subset of (πj)j∈N∗ . The goal of Proposition 5.2 is to justify the way we introduced Z̄i.

Proposition 5.2. Under Assumptions 1, 2, 3 and 4, for each k ≥ 1, the sequence D
(
XN , π1, . . . , πk

)
converges weakly to D

(
X̄
)
⊗D (π1)⊗ . . .⊗D (πk).

The proof of the previous proposition consists in applying Theorem II.6.3 of Ikeda and Watanabe
(1989), which states that Brownian motion and Poisson random measures defined with respect to
the same filtration are necessarily independent. As the proof is technically involved, we postpone it
to Appendix.

We now turn to the proof of the convergence of ZN,i to Z̄i. A first attempt in this direction
could be to write

ZN,i = Φ
(
XN , πi

)
and Z̄i = Φ

(
f(X̄), π

)
with

Φ : (x, π) ∈ D(R+,R)×M# 7→
∫

]0,·]×R+×R
1{z≤x(s−)}dπ(s, z, u),
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and to use the weak convergence of f(XN
t )t≥0 to f(X̄t)t≥0. The problem is that Φ is not continuous

for interesting topologies (see Example 5.3).

Example 5.3. Let us consider the point measure π = δ(1,1) on R+×R+ (we omit the third parameter
u of the point measure since it is not used here), and the constant function x : t ∈ R+ 7→ 1. In
addition, we consider the functions xN defined as in Figure 2 below. Obviously, ||x−xN ||∞ = 1/N ,
but Φ(x, π)(t) = 1{t≥1} and Φ(xN , π) = 0. In other words, xN converges strongly to x, but Φ(xN , π)
does not converge to Φ(x, π) for non-trivial topologies.

1/2 3/21

1− 1/N

1

Figure 2. Graph of xN

The reason why the convergence of ZN,i to Z̄i still holds is the independence between X̄ and πi.
This independence entails that the point measure πi does not charge any point on {(t, f(X̄t−)) : t ≥
0} (almost surely). To use this property, we use Skorohod’s embedding theorem to have an almost
sure convergence of a copy of

(
XN , πi

)
to a copy of

(
X̄, πi

)
.

Proof of Theorem 2.5. In this proof, we note π′i the Poisson random measure on R2
+ defined as

π′i(A×B) = πi(A×B×R). As XN converges in distribution to X̄ in Skorohod topology, we know
that f

(
XN
t

)
t
converges also to f

(
X̄t

)
t
in distribution (see Lemma 5.1). In particular, the sequence(

f
(
XN
t

)
t

)
N

is tight on D(R+,R). Furthermore, asM# is a Polish space (see Theorem A2.6.III.(i)

of Daley and Vere-Jones (2003)), we know that each π′i is tight on this space. Therefore, the sequence(
f
(
XN
t

)
t
, π′1, . . . , π

′
k

)
N

is tight on D(R+,R)×
(
M#

)k.
Let us consider a limit distribution P for the sequence of tuples

(
f
(
XN

)
, π′1, . . . , π

′
k

)
N
. The

marginals of P are respectively the distribution of f
(
X̄
)
and those of π′i (1 ≤ i ≤ k). Since

the random variables X̄, π′1, . . . , π′k are independent (see Proposition 5.2), the limit distribu-
tion is uniquely determined. As a consequence,

(
f
(
XN

)
, π′1, . . . , π

′
k

)
converges in distribution to(

f
(
X̄
)
, π′1, . . . , π

′
k

)
.

Now Skorohod’s embedding theorem (see Theorem 6.7 of Billingsley (1999)) implies that there
exist random variables Ỹ , Ỹ N (N ∈ N∗), π̃i (1 ≤ i ≤ k), π̃Ni (1 ≤ i ≤ k,N ∈ N∗) defined on some
probability space Ω′ such that:

•
(
Ỹ , π̃1, . . . , π̃k

)
has the same distribution as

(
f
(
X̄
)
, π′1, . . . , π

′
k

)
.

•
(
Ỹ N , π̃N1 , . . . , π̃

N
k

)
has the same distribution as

(
f
(
XN

)
, π′1, . . . , π

′
k

)
.

• Ỹ N converges almost surely to Ỹ in Skorohod topology.
• π̃Ni converges almost surely to π̃i inM#.

Let
Z̃N,it =

∫
]0,t]×R+

1{z≤Y Ns−}dπ̃
N
i (s, z).
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Theorem A2.6.III.(ii) of Daley and Vere-Jones (2003) implies that Z̃N =
(
Z̃N,i

)
1≤i≤k

has the

same distribution as ZN =
(
ZN,i

)
1≤i≤k, and Z̃ has the same distribution as Z̄. So to prove the

convergence in distribution of ZN to Z̄, it is sufficient to prove the almost sure convergence of Z̃N
to Z̃.

From now on, we fix a ω in Ω′ (i.e. the probability space given by Skorohod’s embedding theorem)
satisfying the following conditions:

• Ỹ ω is continuous.
• for each 1 ≤ i ≤ k, π̃ωi

({
(t, Ỹ ωt ) : t ∈ R+

})
= 0.

• for each 1 ≤ i ≤ k, ∀t ≥ 0, π̃ωi ({t} × R+) ≤ 1.

• Ỹ N,ω converges to Ỹ ω in Skorohod topology.
• π̃N,ωi converges to π̃ωi inM#.
• for all 1 ≤ i, j ≤ k, if i 6= j then for all t ∈ R+, π̃ωi ({t} × R+) 6= 0⇒ π̃ωj ({t} × R+) = 0.

We emphasize the fact that these properties are satisfied for almost all ω ∈ Ω′. Until the last
paragraph of the proof, this ω ∈ Ω′ is fixed. To lighten the notations, we omit this ω, and we just
write Ỹ or π̃i, instead of Ỹ ω or π̃ωi .

We fix t ≥ 0 such that for each 1 ≤ i ≤ k, π̃i({t}×R+) = 0 and for all N ∈ N∗, π̃Ni ({t}×R+) = 0.
In particular t is a point of continuity of Z̃ and of each Z̃N . We consider T ∈ N∗ such that

T > max

(
t,
∣∣∣∣∣∣Ỹ ∣∣∣∣∣∣

∞,[0,t]
, sup
N

∣∣∣∣∣∣Ỹ N ∣∣∣∣∣∣
∞,[0,t]

)
and such that π̃i ({T} × [0, T ] ∪ [0, T ]× {T}) = 0 for

each 1 ≤ i ≤ k. Let us consider ni = π̃i
(
[0, T ]2

)
and nNi = π̃Ni

(
[0, T ]2

)
. In the rest of the

proof, we identify the point measure π̃i with the related set of points. We write π̃i ∩ [0, T ]2 =
{(τi,j , ζi,j) : 1 ≤ j ≤ ni} and π̃Ni ∩ [0, T ]2 =

{(
τNi,j , ζ

N
i,j

)
: 1 ≤ j ≤ nNi

}
, where the pairs are lexi-

cographically ordered.
Firstly as π̃Ni converges to π̃i in M# and π̃i ({T} × [0, T ] ∪ [0, T ]× {T}) = 0, we can apply

Proposition A2.6.II.(iv) of Daley and Vere-Jones (2003) to show that nNi converges to ni, so we
know that nNi = ni for N big enough.

Now we show that for all 1 ≤ i ≤ k, for all 1 ≤ j ≤ ni, τ
N
i,j and ζNi,j converge respectively to

τi,j and ζi,j . The idea of the proof consists in defining disjoint sets Uεi,j of radius ε that contain
each (τi,j , ζi,j) and to use Proposition A2.6.II.(iv) of Daley and Vere-Jones (2003) again to show
that (τNi,j , ζ

N
i,j) is necessarily in Uεi,j for all ε. We fix 1 ≤ i ≤ k, some ε > 0 and we consider

γi = min
1≤j≤ni

τi,j+1−τi,j > 0. We can choose 0 < η < ε∧ γi3 such that for all 1 ≤ j1, j2 ≤ ni, if j1 6= j2

then B((τi,j1 , ζi,j1), η) ∩ B((τi,j2 , ζi,j2), η) = ∅ (where we endow R2
+ with || • ||∞). Then we know

that for all 1 ≤ j ≤ ni,
∣∣π̃Ni ∩B((τi,j , ζi,j), η)

∣∣ converges to |π̃i ∩B((τi,j , ζi,j), η)| = 1. This means

that for all 1 ≤ j ≤ ni, there exists a unique lNj ∈ J1, niK such that
(
τN
i,lNj

, ζN
i,lNj

)
∈ B((τi,j , ζi,j), η).

We note that for all 1 ≤ j ≤ ni − 1, τN
i,lNj

< τi,j + γi
3 < τi,j+1 − γi

3 < τN
i,lNj+1

, so this implies that

τN
i,lN1

< τN
i,lN2

< . . . < τNi,lNni
, since we have ordered the pairs lexicographically, this implies lNj = j.

So we just proved that for all j, for all N (big enough),
(
τNi,j , ζ

N
i,j

)
∈ B((τi,j , ζi,j), η),

i.e.
∣∣τi,j − τNi,j∣∣ ∨ ∣∣ζi,j − ζNi,j∣∣ < η < ε.

Thus, τNi,j and ζNi,j converge respectively to τi,j and ζi,j .
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Notice that

Z̃N,it =

ni∑
j=1

1{
ζNi,j≤Ỹ NτN

i,j
−

}1{τNi,j≤t}.
Now we argue that 1{

ζNi,j≤Ỹ NτN
i,j
−

} converges to 1{ζi,j≤Ỹτi,j}. Indeed: there are two cases, either

ζi,j < Ỹτi,j , or ζi,j > Ỹτi,j , in the first case we consider ε > 0 such that ζi,j + ε < Ỹτi,j . Then
using Lemma 6.7, for N big enough, we have ζNi,j < ζi,j + ε

3 < Ỹτi,j − ε
3 < Ỹ N

τNi,j−
, implying the

convergence of 1{
ζNi,j≤Ỹ NτN

i,j
−

}. The second case is handled in the same way. For the same reason,

1{τNi,j≤t} converges to 1{τi,j≤t} (since we chose t such that π̃i({t} × R+) = 0).
To resume, we have just showed that for all t ≥ 0 satisfying that for each 1 ≤ i ≤ k, π̃i({t}×R+) =

0 and for all N ∈ N∗, π̃Ni ({t}×R+) = 0, Z̃Nt converges to Z̃t in Rk. Observing that these points are
dense in R+, we can apply Lemma 6.8 to obtain that Z̃N converges to Z̃ inD

(
[0, t],Rk

)
for all t with

the above properties. We observe that such t are points of continuity of Z̃, and that we can choose
an increasing sequence (tn)n of such points that tends to infinity. As a consequence, Proposition 16.2
of Billingsley (1999) can still be used to show that Z̃N converges to Z̃ in D

(
R+,Rk

)
.

In the previous paragraph, we have worked with a fixed ω ∈ Ω′ satisfying a finite number of almost
sure properties. So we just showed the almost sure convergence of Z̃N to Z̃ in D

(
R+,Rk

)
which

implies that ZN =
(
ZN,1, . . . , ZN,k

)
converges in distribution to Z̄ =

(
Z̄1, . . . , Z̄k

)
in D

(
R+,Rk

)
.

Corollary 5.4. If Assumptions 1, 2, 3 and 4 hold, then the sequence
(
ZN,1, ZN,2, . . . , ZN,k

)
N

converges to
(
Z̄1, Z̄2, . . . , Z̄k

)
in distribution in D (R+,R)

k, for all fixed k ≥ 1.

Proof. We consider a function g that is bounded and continuous in D(R+,R)k. It is sufficient to
show that g is continuous in D

(
R+,Rk

)
. We consider a sequence

(
xN,1, . . . , xN,k

)
N

that converges
to some limit

(
x̄1, . . . , x̄k

)
in D

(
R+,Rk

)
. Then using Theorem 16.2 of Billingsley (1999), we know

that
(
xN,1, . . . , xN,k

)
N

converges to
(
x̄1, . . . , x̄k

)
in D(R+,R)k. So we know that g

(
xN,1, . . . , xN,k

)
converges to g

(
x̄1, . . . , x̄k

)
.

6. Appendix

6.1. Extended generators

In this subsection, we define clearly the notion of generators we use and we prove the results
that we use to prove formula (3). In the general theory of semigroups, one defines the generators
on some Banach space. In the frame of semigroups related to Markov processes, one generally
considers (Cb(R), || • ||∞). In this context, the generator A of a semigroup (Pt)t is defined on the
set of functions D(A) =

{
g ∈ Cb(R) : ∃h ∈ Cb(R),

∣∣∣∣ 1
t (Ptg − g)− h

∣∣∣∣
∞ −→t→0

0
}
. Then one denotes

the previous function h as Ag. If A is the generator of a diffusion, we can only guarantee that
D(A) contains the functions that have a compact support, but to prove Proposition 6.3, we need to
apply the generators of the processes

(
XN
t

)
t
and

(
X̄t

)
t
to functions of the type P̄sg, and we cannot

guarantee that P̄sg has compact support even if we assume g to be in C∞c (R).
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That is why we consider extended generators (see for instance Meyn and Tweedie (1993) or Davis
(1993)) defined by the point-wise convergence on R instead of the uniform convergence that allows
us to define the generator on Cnb (R) for suitable n ∈ N∗ and to prove that some properties of the
classical theory of semigroups still hold for this larger class of functions.

Definition 6.1. Let (Xt)t be a Markov process on R. We define Ptg(x) = Ex [g (Xt)] for all
functions g such that the previous expression is well-defined and finite for x ∈ R. Then we define
D′(A) to be the set of functions g ∈ Cb(R) such that for each x ∈ R, 1

t (Ptg(x)− g(x)) converge to
some limit that we note Ag(x) and such that:

• for all t ≥ 0,
∫ t

0
|Ag(Xs)|ds is almost surely finite,

• g(Xt)− g(X0)−
∫ t

0
Ag(Xs)ds is a Px−martingale for all x.

We note D′(A) the domain of the extended generator to avoid confusions with D(A) which is
reserved for the domain of A for the uniform convergence.

Now we generalize a classical result for generators defined with respect to the uniform convergence
to extended generators.

Lemma 6.2. Let (Xt)t be a Markov process with semigroup (Pt)t and extended generator A.

(1) Let g ∈ D′(A) and x ∈ R such that for all t ≥ 0, Ex
[

sup
0≤s≤t

|PsAg (Xt)|
]
is finite. Then the

function t 7→ Ptg(x) is right differentiable at every t ≥ 0, and we have

d+

dt
(Ptg(x)) = PtAg(x).

In addition, if Ptg ∈ D′(A), then APtg(x) = PtAg(x).
(2) Let g ∈ D′(A) and x ∈ R such that there exists some non-negative function M : R → R+

such that for all t ≥ 0, sup
0≤s≤t

Ex [M(Xs)] is finite and such that for all 0 ≤ t ≤ 1 and y ∈ R,

we have |PtAg(y) − Ag(y)| ≤ ΓM(y)ε(t) for some constant Γ that is allowed t depend on g,
where ε(t) vanishes when t goes to 0. Then the function t 7→ Ptg(x) is left differentiable at
every t > 0, and we have

d−

dt
(Ptg(x)) = PtAg(x).

Proof. For the point (1), we know that for all h > 0, we have:∣∣∣∣ 1h (Pt+hg(x)− Ptg(x))− PtAg(x)

∣∣∣∣ ≤ Ex
[∣∣∣∣ 1h (Phg(Xt)− g(Xt))−Ag(Xt)

∣∣∣∣] .
As the expression appearing within the expectation above vanishes almost surely when h goes to 0
(since g ∈ D′(A)), and as we can bound it by sup

0≤s≤t
|PsAg(Xt)| + |Ag(Xt)| (using the fact that

Phg(y)− g(y) =
∫ h

0
PsAg(y)ds since we take g ∈ D′(A)), we know that this expectation vanishes as

h goes to 0 by dominated convergence. This means exactly that d+

dt (Ptg(x)) exists and is PtAg(x).
If we suppose in addition that Ptg ∈ D′(A), then APtg(x) is the limit of h−1 (Pt+hg(x)− Ptg(x)),

which is d+

dt Ptg(x) = PtAg(x).
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Now we prove the point (2) of the lemma. Let h be some positive number. We know that∣∣∣∣ 1

−h (Pt−hg(x)− Ptg(x))− PtAg(x)

∣∣∣∣
is upper bounded by

Ex
[∣∣∣∣ 1h (Phg(Xt−h)− g(Xt−h))−Ag(Xt−h)

∣∣∣∣]+ Ex [|Ag(Xt−h)− PhAg(Xt−h)|]

≤ Ex
[

sup
0≤s≤h

|Ag(Xt−h)− PsAg(Xt−h)|
]

+ Ex [|Ag(Xt−h)− PhAg(Xt−h)|] .

Then we just have to show that Ex
[

sup
0≤s≤h

|Ag(Xt−h)− PsAg(Xt−h)|
]
vanishes when h goes to 0.

But this follows from the fact that it is upper bounded by Γ

(
sup

0≤s≤h
ε(s)

)(
sup

0≤r≤t
Ex [M(Xr)]

)
.

The goal of the next proposition is to obtain a control of the difference between the semigroups
of two Markov processes, provided we dispose already of a control of the distance between the two
generators. This proposition is an adaptation of Lemma 1.6.2 from Ethier and Kurtz (2005) to the
notion of extended generators defined by the point-wise convergence.

Proposition 6.3. Let
(
Y Nt
)
t∈R+

and
(
Ȳt
)
t∈R+

be Markov processes whose semigroups and (ex-
tended) generators are respectively PN , AN and P̄ , Ā. We suppose that:

(i) for all x ∈ R and T > 0, sup
0≤t≤T

Ex
[(
Ȳt
)2] ≤ ΓT

(
1 + x2

)
and sup

0≤t≤T
ENx

[(
Y Nt
)2] ≤ ΓT

(
1 + x2

)
for some ΓT > 0 independent of x.

(ii) for all x ∈ R and T > 0, sup
0≤t≤T

Ex
[(
Ȳt
)4] ≤ ΓT

(
1 + x4

)
and sup

0≤t≤T
ENx

[(
Y Nt
)4] ≤ ΓT

(
1 + x4

)
.

(iii) for all T > 0, E

[(
sup

0≤t≤T

∣∣Y Nt ∣∣)2
]
< +∞.

(iv) for all 0 ≤ s, t ≤ T and x ∈ R,

Ex
[(
Ȳt − Ȳs

)2] ≤ ΓT,xε(|t− s|) and ENx
[(
Y Nt − Y Ns

)2] ≤ ΓT,xε(|t− s|),

where ε(h) vanishes when h goes to 0, and where ΓT,x is some constant that depends only on
T and x.

(v) for all g ∈ C3
b (R), P̄tg ∈ C3

b (R), and for all T > 0, sup
0≤t≤T

∣∣∣∣P̄tg∣∣∣∣3,∞ ≤ QT ||g||3,∞ for some

QT > 0.
(vi) for all g ∈ C3

b (R), i ∈ {0, 1, 2} and x ∈ R, s 7→
(
P̄sg
)(i)

(x) = ∂i

∂xi

(
P̄sg(x)

)
is continuous.

(vii) C3
b (R) ⊆ D′

(
AN
)
∩ D′

(
Ā
)
. For all g ∈ C3

b (R) and x ∈ R,
∣∣Āg(x)

∣∣ ≤ Γ||g||2,∞
(
1 + x2

)
and∣∣ANg(x)

∣∣ ≤ Γ||g||2,∞
(
1 + x2

)
.

(viii) for all g ∈ C3
c (R) such that Supp g ⊆ [−M,M ],

∣∣∣∣∣∣(Āg)′∣∣∣∣∣∣
∞
≤ Γ||g||3,∞

(
1 +M2

)
and∣∣∣∣∣∣(ANg)′∣∣∣∣∣∣

∞
≤ Γ||g||3,∞

(
1 +M2

)
.
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(ix) there exists some Γ > 0 such that for all x, y ∈ R, for all g ∈ C3
b (R), |Āg(x) − Āg(y)| ≤

Γ
(
1 + x2 + y2

)
|x− y| and |ANg(x)−ANg(y)| ≤ Γ

(
1 + x2 + y2

)
|x− y|.

(x) we assume that lim
k→∞

Āgk(xk) = lim
k→∞

ANgk(xk) = 0, for any bounded sequence of real numbers

(xk)k, and for any sequence (gk)k of C3
b (R) satisfying

(1) ∀i ∈ {0, 1, 2}, ∀x ∈ R, g(i)
k (x) −→

k→∞
0,

(2) ∀i ∈ {0, 1, 2, 3}, sup
k

∣∣∣∣∣∣g(i)
k

∣∣∣∣∣∣
∞
<∞.

Then we have for each g ∈ C3
b (R), x ∈ R and t ∈ R+:(

P̄t − PNt
)
g(x) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x)ds. (16)

Remark 6.4. Notice that the conditions of Proposition 6.3 are not all symmetric with respect
to the processes Ȳ and Y N . Indeed, the regularity hypothesis of the semigroup with respect to the
initial condition only concerns P̄ (see hypothesis (v) and (vi)). Moreover, hypothesis (iii) provides
a stronger control on Y N than what is needed for Ȳ .

Proof. We fix t ≥ 0, N ∈ N∗, g ∈ C3
b (R), x ∈ R in the proof. We note u(s) = PNt−sP̄sg(x). Firstly

we show that s 7→ P̄sg(x) and s 7→ PNs h(x) are differentiable for all h ∈ C3
b (R), by showing that

P̄ and PN satisfy the hypothesis of Lemma 6.2. The condition of the point (1) of the lemma is
a straightforward consequence of hypothesis (i) and (vii), and the conditions of the point (2) are
satisfied forM(x) =

√
1 + x4 using hypothesis (i), (ii), (iv) and (ix). As a consequence, and thanks

to hypothesis (v), u is differentiable and

u′(s) =− d

du

(
PNu P̄sg(x)

)∣∣
u=t−s +

d

du

(
PNt−sP̄ug(x)

)∣∣
u=s

=− PNt−sAN P̄sg(x) + PNt−sP̄sĀg(x)

=PNt−s
(
Ā−AN

)
P̄sg(x).

The second equality comes from the fact that P̄ satisfy the additional assumption of the point (1)
of Lemma 6.2 (see hypothesis (v) and (vii)).

Now we show that u′ is continuous. Indeed if it is the case, then we will have

u(t)− u(0) =

∫ t

0

u′(s)ds,

which is exactly the assertion. In order to prove the continuity of u′, we consider a sequence (sk)k
that converges to some s ∈ [0, t], and we write∣∣PNt−s (Ā−AN) P̄sg(x)− PNt−sk

(
Ā−AN

)
P̄skg(x)

∣∣ ≤ ∣∣(PNt−s − PNt−sk) (Ā−AN) gs(x)
∣∣ (17)

+
∣∣PNt−sk (Ā−AN) (P̄s − P̄sk) g(x)

∣∣ , (18)

where gs = P̄sg ∈ C3
b (R).

To show that the term (17) vanishes when k goes to infinity, we introduce, for all M > 0 the
function ϕM (gs)(y) = gs(y) · ξM (y) where ξM : R → [0, 1] is C∞, and ∀|y| ≤ M, ξM (y) = 1 and
∀|y| ≥M + 1, ξM (y) = 0. We note that the term (17) is bounded by∣∣(PNt−s − PNt−sk) (Ā−AN)ϕM (gs)(x)

∣∣+
∣∣(PNt−s − PNt−sk) (Ā−AN) (gs − ϕM (gs)) (x)

∣∣ =: A1 +A2.
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If we consider the function hM,s =
(
Ā−AN

)
ϕM (gs), using hypothesis (iv), (v) and (viii), we have

A1 ≤ENx
[∣∣hM,s

(
Y Nt−s

)
− hM,s

(
Y Nt−sk

)∣∣]
≤||h′M,s||∞ENx

[∣∣Y Nt−s − Y Nt−sk ∣∣]
≤Γ
(
1 +M2

)
||g||3,∞ε(|s− sk|)1/2.

Choosing M = Mk = ε(|s− sk|)−1/5, it follows that lim
k→∞

A1 = 0. To see that the term A2 vanishes,
it is sufficient to notice that A2 is bounded by

ENx
[∣∣(Ā−AN) (gs − ϕMk

(gs))
(
Y Nt−s

)∣∣]+ ENx
[∣∣(Ā−AN) (gs − ϕMk

(gs))
(
Y Nt−sk

)∣∣] .
We know that the expressions in the expectations vanish almost surely (using hypothesis (x)), and
then we can apply dominated convergence (using hypothesis (iii) and (vii)).

We just proved that the term (17) vanishes. To finish the proof, we need to show that the
term (18) vanishes. We note that the term (18) is bounded by:

ENx
[∣∣Āgk (Y Nt−sk)∣∣]+ ENx

[∣∣ANgk (Y Nt−sk)∣∣] ,
where gk =

(
P̄s − P̄sk

)
g ∈ C3

b (R).
We have to show that the terms in the sum above vanish as k goes to infinity. Firstly we know

that Āgk
(
Y Nt−sk

)
and ANgk

(
Y Nt−s

)
vanish almost surely when k goes to infinity (see hypothe-

sis (iii), (v), (vi) and (x)). Dominated convergence, using the hypothesis (i), (iii), (v) and (vii),
then implies the result.

6.2. Grönwall’s lemma

The version of Grönwall’s lemma we use in the paper is a particular case of Grönwall’s inequality
(2019). We state it below.

Lemma 6.5. Let γ and u be non-negative measurable functions defined on R+, and let α be a
non-negative constant. Assume that u ∈ L1

loc(dt), and that for all t ≥ 0,

u(t) ≤ γ(t) + α

∫ t

0

u(s)ds, (19)

then for all t ≥ 0, we have

u(t) ≤ γ(t) + α

∫ t

0

γ(s)eα(t−s)ds.

Moreover, if γ is nondecreasing then, for all t ≥ 0, we have:

u(t) ≤ γ(t)eαt.

An interesting point of Lemma 6.5 is that it does not require any continuity hypothesis on u,
contrarily to more common versions of Grönwall’s lemma. We reproduce the proof of Grönwall’s
inequality (2019) for self-containedness.
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Proof. We note µ the measure µ(dt) = αdt. Firstly we prove by induction on n that for all n ∈ N

u(t) ≤ γ(t) +

∫ t

0

γ(s)

n−1∑
k=0

µ⊗k(Ak(s, t))µ(ds) +Rn(t), (20)

whereRn(t) =

∫ t

0

u(s)µ⊗n(An(s, t))µ(ds) andAn(s, t) = {(s1, . . . , sn) ∈]s, t[n : s < s1 < . . . < sn < t)} .
The case n = 0 is inequality (19). To show the induction step, we replace the assumed inequality

in the expression of Rn(t) and obtain

Rn(t) ≤
∫ t

0

γ(s)µ⊗n(An(s, t))µ(ds) + R̃n(t),

with R̃n(t) =
∫ t

0

(∫ r
0
u(s)µ(ds)

)
µ⊗n(An(r, t))µ(dr).

Using Fubini-Tonelli’s theorem, we have R̃N (t) = Rn+1(t). As a consequence, equality (20) is
proved for all n ∈ N.

A straightforward induction gives

µ⊗n(An(s, t)) =
αn

n!
(t− s)n,

implying that, for all n ∈ N,

u(t) ≤ γ(t) +

∫ t

0

γ(s)

n−1∑
k=0

αk

k!
(t− s)kµ(ds) +Rn(t). (21)

As Rn(t) = αn

n!

∫ t
0
u(s)(t − s)nds ≤ αn

n! t
n
∫ t

0
u(s)ds, we know that Rn(t) vanishes when n goes

to infinity, since u is locally integrable. Letting n go to infinity in equation (21), we obtain the
assertion.

6.3. Existence and uniqueness of the process
(
XN

t

)
t

Proposition 6.6. If assumptions 1 and 2 hold, the equation (6) admits a unique non-exploding
strong solution.

Proof. It is well known that if f is bounded, there is a unique strong solution of (6) (see Theo-
rem IV.9.1 of Ikeda and Watanabe (1989)). In the general case we reason in a similar way as in the
proof of Proposition 2 in Fournier and Löcherbach (2016). Consider the solution

(
XN,K
t

)
t∈R+

of

the equation (6) where f is replaced by fK : x ∈ R 7→ f(x)∧ sup
|y|≤K

f(y) for some K ∈ N∗. Introduce

moreover the stopping time

τNK = inf
{
t ≥ 0 :

∣∣∣XN,K
t

∣∣∣ ≥ K} .
Since for all t ∈

[
0, τNK ∧ τNK+1

]
, XN,K

t = XN,K+1
t , we know that τNK (ω) ≤ τNK+1(ω) for all ω.

Then we can define τN as the non-decreasing limit of τNK . Since we can bound E
[(
XN,K

t∧τNK

)2
]
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uniformly in K (see inequality (22) in the proof of Lemma 3.1), we know that τN equals infinity
almost surely. So we can simply define XN

t as the limit of XN,K
t , as K goes to infinity. Now

we show that the trajectories of XN satisfy equation (6). Consider some ω ∈ Ω and t > 0, and
choose K such that τNK (ω) > t. Then we know that for all s ∈ [0, t], XN

s (ω) = XN,K
s (ω) and

f
(
XN
s−(ω)

)
= fK

(
XN,K
s− (ω)

)
. Moreover, as XN,K(ω) satisfies the equation (6) with f replaced

by fK , we know that XN (ω) verifies the equation (6) on [0, t]. This holds for all t > 0. As a
consequence, we know that XN satisfies the equation (6). This proves the existence of strong
solution. The uniqueness is a consequence of the uniqueness of strong solutions of (6), if we replace
f by fK in (6), and of the fact that any strong solution

(
Y Nt
)
t
equals necessarily

(
XN,K
t

)
t
on[

0, τNK
]
.

6.4. Proof of Lemma 3.1

We just prove the points (i) and (iii) because (ii), (iv), (v) and (vi) are similar. We begin with (i). In
a first time we prove the result for the process

(
XN,K

t∧τNK

)
t
introduced in the proof of Proposition 6.6.

Applying Ito’s formula to
(
XN,K
t

)
t
with the function x 7→ x2, we obtain

(
XN,K
t

)2

=
(
XN,K

0

)2

− 2α

∫ t

0

(
XN,K
s

)2
ds

+

N∑
j=1

∫
]0,t]×R+×R

[
u2

N
+ 2XN,K

s−
u√
N

]
1{z≤fK(XN,Ks− )}dπj(s, z, u).

Let mN,K
t = E

[(
XN,K

t∧τNK

)2
]
. As µ is centered, we have

mN,K
t =mN

0 − 2α

∫ t∧τNK

0

mN,K
s ds+

N∑
j=1

E

[∫ t∧τNK

0

∫
R
fK

(
XN,K
s−

)[u2

N
+ 2XN,K

s−
u√
N

]
dµ(u)ds

]

=mN
0 − 2α

∫ t∧τNK

0

mN,K
s ds+ σ2

∫ t∧τNK

0

E
[
fK

(
XN,K
s−

)]
ds

≤mN
0 − 2α

∫ t

0

mN,K
s ds+ σ2Bt+ σ2A

∫ t

0

mN,K
s ds

=mN
0 + σ2Bt+ (σ2A− 2α)

∫ t

0

mN,K
s ds.

Then by Grönwall’s lemma (see Lemma 6.5),

sup
0≤t≤T

mN,K
t ≤

(
mN

0 + σ2BT
)
eT max(σ2A−2α,0). (22)

Letting K →∞ implies the result, because lim
K→∞

τNK = +∞, which is a consequence of (22).
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Now we prove the point (iii). We note MN
t the local martingale

MN
t =

1√
N

N∑
j=1

∫
]0,t]×R+×R

u1{z≤f(XNs−)}dπj(s, z, u).

Obviously, |XN
t | ≤ |XN

0 |+ |MN
t |+α

∫ t

0

|XN
s |ds. Applying directly Lemma 6.5 (Grönwall’s lemma)

to the previous inequality, we obtain for all t ≤ T,

|XN
t | ≤|XN

0 |+ |MN
t |+ α

∫ t

0

(|XN
0 |+ |MN

s |)eα(t−s)ds

≤
(
|XN

0 |+ sup
0≤t≤T

|MN
t |
)(

1 + αeαT
∫ T

0

e−αsds

)

≤
(
|XN

0 |+ sup
0≤t≤T

|MN
t |
)(

1 + eαT
)
.

Thus,

E

[(
sup

0≤t≤T
|XN

t |
)2
]
≤ 2

(
1 + eαT

)2(
sup
N

E
[(
XN

0

)2]
+ E

[(
sup

0≤t≤T
|MN

t |
)2
])

.

As (MN
t )t is a local martingale, we can apply Burkholder-Davis-Gundy inequality. So we know

that there exists a constant C2 such that

E

[(
sup

0≤t≤T
|XN

t |
)2
]
≤ 2(1 + eαT )2

(
sup
N

E
[(
XN

0

)2]
+ C2E

[[
MN

]
T

])
, (23)

where

E
[[
MN

]
T

]
= E

[∫
]0,T ]×R+×R

u21{z≤f(XNs−)}dπ1(s, z, u)

]
= σ2

∫ t

0

E
[
f(XN

s )
]
ds ≤ σ2T (AΓT +B),

with ΓT = CT

(
sup
N

E
[(
XN

0

)2])
+DT using the point (i) of Lemma 3.1. Using the last inequality

above in (23), we have:

E

[(
sup

0≤t≤T
|XN

t |
)2
]
≤ 2(1 + eαT )2

(
sup
N

E
[(
XN

0

)2]
+ C2σ

2T (AΓT +B)

)
.

6.5. Proof of Proposition 3.6

To begin with, we use Theorem 1.4.1 of Kunita (1986) to prove that the flow associated to the
SDE (7) admits a modification which is C3 with respect to the initial condition x (see also Theo-
rem 4.6.5 of Kunita (1990)). Indeed the local characteristics of the flow are given by

b(x, t) = −αx and a(x, y, t) = σ2
√
f(x)f(y),

and, under Assumptions 1 and 3, they satisfy the conditions of Theorem 1.4.1 of Kunita (1986):



X. Erny et al./Hawkes with random jumps 27

• ∃Γ,∀x, y, t, |b(x, t)| ≤ Γ(1 + |x|) and |a(x, y, t)| ≤ Γ(1 + |x|)(1 + |y|).
• ∃Γ,∀x, y, t, |b(x, t)− b(y, t)| ≤ Γ|x− y| and |a(x, x, t) + a(y, y, t)− 2a(x, y, t)| ≤ Γ|x− y|2.
• ∀1 ≤ k, l ≤ 4, ∂

k

∂xk
b(x, t) and ∂k+l

∂xk∂yl
a(x, y, t) are bounded.

In the following, we consider the process
(
X̄

(x)
t

)
t
that is a solution of the SDE (7) that satisfies

X̄
(x)
0 = x. Then we can consider a modification of the flow X̄

(x)
t which is C3 with the respect to

the initial condition x = X̄
(x)
0 . It is then sufficient to control the moment of the derivatives of X̄(x)

t

with respect to x, since with those controls we will have

P̄tg(x) =E
[
g
(
X̄

(x)
t

)]
, (24)

(
P̄tg
)′

(x) =E

[
∂X̄

(x)
t

∂x
g′
(
X̄

(x)
t

)]
, (25)

(
P̄tg
)′′

(x) =E

∂2X̄
(x)
t

∂x2
g′
(
X̄

(x)
t

)
+

(
∂X̄

(x)
t

∂x

)2

g′′
(
X̄

(x)
t

) , (26)

(
P̄tg
)′′′

(x) =E

∂3X̄
(x)
t

∂x3
g′
(
X̄

(x)
t

)
+ 3

∂2X̄
(x)
t

∂x2
· ∂X̄

(x)
t

∂x
g′′
(
X̄

(x)
t

)
+

(
∂X̄

(x)
t

∂x

)3

g′′′
(
X̄

(x)
t

) . (27)

We start with the representation

X̄
(x)
t = xe−αt + σ

∫ t

0

e−α(t−s)
√
f
(
X̄

(x)
s

)
dBs.

This implies
∂X̄

(x)
t

∂x
= e−αt + σ

∫ t

0

e−α(t−s) ∂X̄
(x)
s

∂x

(√
f
)′ (

X̄(x)
s

)
dBs. (28)

Writing Ut = eαt
∂X̄

(x)
t

∂x , we obtain

Ut = 1 + σ

∫ t

0

Us

(√
f
)′ (

X̄(x)
s

)
dBs,

and then, by Ito’s formula

(Ut)
8

= 1 + 8

∫ t

0

(Us)
7
dUs + 28

∫ t

0

(Ut)
6
d 〈U〉t .

Truncating at level K as in the proof of Lemma 3.1 and then letting K → ∞, we deduce from
this

E
[
(Ut)

8
]
≤ 1 + 28σ2m2

1

∫ t

0

E
[
(Us)

8
]
ds,

where m1 is the bound of
(√
f
)′ introduced in Assumption 3.



X. Erny et al./Hawkes with random jumps 28

By Grönwall’s lemma, we obtain

E
[
(Ut)

8
]
≤ e28σ2m2

1t, (29)

whence

E

(∂X̄(x)
t

∂x

)8
 ≤ et(28σ2m2

1−8α). (30)

Using Hölder’s inequality, this implies

E

[∣∣∣∣∣∂X̄(x)
t

∂x

∣∣∣∣∣
]
≤ et( 7

2σ
2m2

1−α).

With the notations of the lemma, using (25) we have shown that

β(1) =
7

2
σ2m2

1 − α.

Differentiating (28) with respect to x, we obtain

∂2X̄
(x)
t

∂x2
= σ

∫ t

0

e−α(t−s)

∂2X̄
(x)
s

∂x2

(√
f
)′ (

X̄(x)
s

)
+

(
∂X̄

(x)
s

∂x

)2 (√
f
)(2) (

X̄(x)
s

) dBs. (31)

We introduce Vt =
∂2X̄

(x)
t

∂x2 eαt, and deduce from this that

Vt =σ

∫ t

0

[
Vs

(√
f
)′ (

X̄(x)
s

)
+ e−αsUs

(√
f
)(2) (

X̄(x)
s

)]
dBs,

implying

(Vt)
4

= 4

∫ t

0

(Vs)
3
dVs + 6

∫ t

0

(Vs)
2
d 〈V 〉s ,

and thus

E
[
(Vt)

4
]
≤12σ2E

[∫ t

0

[
(Vs)

4

((√
f
)′ (

X̄(x)
s

))2

+ (Vs)
2

(Us)
2

((√
f
)(2) (

X̄(x)
s

))2
]
ds

]

≤12σ2

(
m2

1 +
m2

2

2

)∫ t

0

E
[
(Vs)

4
]
ds+ 6σ2m2

2

∫ t

0

E
[
(Us)

4
]
ds

≤12σ2

(
m2

1 +
m2

2

2

)∫ t

0

E
[
(Vs)

4
]
ds+ 6σ2m2

2e
14σ2m2

1t.

In the last inequality above, we have used (29).
By Grönwall’s lemma,

E
[
(Vt)

4
]
≤ 6σ2m2

2e
14σ2m2

1te
12σ2

(
m2

1+
m2

2
2

)
t
, (32)
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and thus

E

(∂2X̄
(x)
t

∂x2

)4
 ≤ 6σ2m2

2e
(26σ2m2

1+6σ2m2
2−4α)t. (33)

In particular, using Hölder’s inequality in (30) and (33) to bound respectively E

[(
∂X̄

(x)
t

∂x

)2
]
and

E
[∣∣∣∣∂2X̄

(x)
t

∂x2

∣∣∣∣], and inserting these bounds in (26), we know that

β(2) = max

(
7σ2m2

1 − 2α,
13

2
σ2m2

1 +
3

2
σ2m2

2 − α
)

≤7σ2m2
1 +

3

2
σ2m2

2 − α.

Finally, differentiating (31),

∂3X̄
(x)
t

∂x3
= σ

∫ t

0

e−α(t−s)

[
∂3X̄

(x)
s

∂x3

(√
f
)′ (

X̄(x)
s

)
+ 3

∂2X̄
(x)
s

∂x2

∂X̄
(x)
s

∂x

(√
f
)(2) (

X̄(x)
s

)

+

(
∂X̄

(x)
s

∂x

)3 (√
f
)(3) (

X̄(x)
s

) dBs.
With Wt = eαt

∂3X̄
(x)
t

∂x3 , we obtain

Wt = σ

∫ t

0

[
Ws

(√
f
)′ (

X̄(x)
s

)
+ 3e−αsUsVs

(√
f
)(2) (

X̄(x)
s

)
+ e−2αsU3

s

(√
f
)(3) (

X̄(x)
s

)]
dBs.

Thus

E
[
(Wt)

2
]

= 2

∫ t

0

WsdWs +

∫ t

0

d 〈W 〉s

and

E
[
(Wt)

2
]
≤3σ2m2

1

∫ t

0

E
[
(Ws)

2
]
ds+

9

2
σ2m2

2

∫ t

0

E
[
(Us)

4
]
ds

+
9

2
σ2m2

2

∫ t

0

E
[
(Vs)

4
]
ds+ 3σ2m2

3

∫ t

0

E
[
(Us)

6
]
ds.

Grönwall’s lemma, (29), (32) and Hölder’s inequality imply

E
[
(Wt)

2
]
≤ Γe(24σ2m2

1+6σ2m2
2)t.

As a consequence,

E

(∂3X̄
(x)
t

∂x3

)2
 ≤ Γe(24σ2m2

1+6σ2m2
2−2α)t. (34)
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To find β(3), we use (27). We bound E
[∣∣∣∣∂3X̄

(x)
t

∂x3

∣∣∣∣] using Cauchy-Schwarz’s inequality and (34),

we also bound E

[∣∣∣∣∂X̄(x)
t

∂x

∣∣∣∣3
]
using Hölder’s inequality and (30), and we bound E

[∣∣∣∣∂X̄(x)
t

∂x · ∂
2X̄

(x)
t

∂x2

∣∣∣∣]

by E

[(
∂X̄

(x)
t

∂x

)2
]1/2

E

[(
∂2X̄

(x)
t

∂x2

)2
]1/2

, and then apply Hölder’s inequality to both terms of the

product and use (30) and (33). So we know that β(3) has to be bigger than the maximum of the
three terms:

• 12σ2m2
1 + 3σ2m2

2 − α
• 10σ2m2

1 + 3
2σ

2m2
2 − α

• 21
2 σ

2m2
1 − 3α

Since the second term and the third one are smaller that the first one, we have

β(3) = 12σ2m2
1 + 3σ2m2

2 − α.

6.6. Proof of Proposition 3.9

In a first time we prove the result only for functions g1, . . . , gn ∈ C3
b (R) by induction on n. For

n = 1 we use Theorem 2.2, Proposition 4.1 and the Kantorovich-Rubinstein duality (see Remark 6.5
of Villani (2008)) to obtain

∣∣E [g (XN
t

)]
− E

[
g
(
X̄t

)]∣∣ =
∣∣νN0 Pt(g)− ν̄0P̄t(g)

∣∣
≤
∣∣νN0 Pt(g)− νN0 P̄t(g)

∣∣+
∣∣νN0 P̄t(g)− ν̄0P̄t(g)

∣∣
≤
∫
R

∣∣PNt g(x)− P̄tg(x)
∣∣ dνN0 (x) + ||g′||∞W1

(
νN0 P̄t, ν̄0P̄t

)
≤||g||3,∞

1√
N
Kt

(
1 + E

[(
XN

0

)2])
+ ||g′||∞e(

1
2σ

2L2−α)tW2

(
νN0 , ν̄0

)
.

We now show the inductive step. We know that E
[
g1(XN

t1 ) . . . gn(XN
tn)
]
equals∫

dνN0 (x)

∫
PNt1 (x, dx1)g1(x1)

∫
PNt2−t1(x1, dx2)g2(x2) . . .

∫
PNtn−tn−1

(xn−1, dxn)gn(xn)

=

∫
dνN0 (x)

∫
PNt1 (x, dx1)g1(x1)

∫
PNt2−t1(x1, dx2)g2(x2) . . .∫

PNtn−1−tn−2
(xn−2, dxn−1)

(
gn−1 · PNtn−tn−1

gn

)
(xn−1)

= E
[
g1(XN

t1 ) . . . gn−2(XN
tn−2

)
(
gn−1 · PNtn−tn−1

gn

)
(XN

tn−1
)
]
.

Analogously

E
[
g1(X̄t1) . . . gn(X̄tn)

]
= E

[
g1(X̄t1) . . . gn−2(X̄tn−2

)
(
gn−1 · P̄tn−tn−1

gn
)

(X̄tn−1
)
]
.

Then, by triangle inequality,



X. Erny et al./Hawkes with random jumps 31

∣∣E [g1(XN
t1 ) . . . gn(XN

tn)
]
− E

[
g1(X̄t1) . . . gn(X̄tn)

]∣∣ ≤∣∣∣E [g1(XN
t1 ) . . . gn−2(XN

tn−2
)
((
gn−1 · PNtn−tn−1

gn

)
(XN

tn−1
)−

(
gn−1 · P̄tn−tn−1

gn
)

(XN
tn−1

)
)]∣∣∣ (35)

+
∣∣∣E [g1(XN

t1 ) . . . gn−2(XN
tn−2

)
(
gn−1 · P̄tn−tn−1

gn
)

(XN
tn−1

)
]

−E
[
g1(X̄t1) . . . gn−2(X̄tn−2

)
(
gn−1 · P̄tn−tn−1

gn
)

(X̄tn−1
)
]∣∣∣ . (36)

As gn−1 · P̄tn−tn−1gn is in C3
b (R) (see Proposition 3.6), we know that (36) goes to 0 when N goes

to infinity (by induction hypothesis).
Moreover, we can bound (35) by

||g1||∞ . . . ||gn−1||∞E
[∣∣∣(P̄Ntn−tn−1

− Ptn−tn−1

)
gn(XN

tn−1
)
∣∣∣] ≤

||g1||∞ . . . ||gn−1||∞
(

1 + E
[
(XN

tn−1
)2
])
KT ||gn||3,∞

1√
N
,

which goes to 0 when N goes to infinity (using Lemma 3.1).
Since C3

b (R) is dense in Cb(R), standard arguments allow to conclude that ∀n ∈ N∗,∀g1, . . . , gn ∈
Cb(R),∀0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T,

E
[
g1(XN

t1 ) . . . gn(XN
tn)
]
−→

N→+∞
E
[
g1(X̄t1) . . . gn(X̄tn)

]
.

6.7. Proof of Proposition 5.2

We just prove the proposition for k = 1 to simplify the proof, but the general case is almost the
same.

Recall thatD(R+,R) is separable and complete (see Theorem 16.3 of Billingsley (1999)), andM#

is also separable and complete (Theorem A2.6.III.(i) of Daley and Vere-Jones (2003)). Hence the
product of the metric spaces (D(R+,R)×M#) is also separable and complete. Since the sequence
(XN )N is tight on D(R+,R) and π1 is tight on M#, (see Theorem 1.3 of Billingsley (1999)), the
couple (XN , π

1) is tight on (D(R+,R)×M#).
Thus it suffices to show that any weakly convergent subsequence of D

(
XN , π1

)
converges to

D(X̄) ⊗ D(π1) (see Corollary of Theorem 5.1 of Billingsley (1999)). To simplify the notations we
assume that D(XN , π1) is already a weakly-converging subsequence, converging to some limit P .

Let (Y, π) ∈ (D(R+,R)×M#) such that (Y, π) ∼ P . It is easy to see that

Y ∼ X̄ and π ∼ π1,

but we do not know yet if both are independent.
In the sequel we suppose that (Y, π) is defined on a filtered probability space (Ω′,A′, (Ft)′t≥0, P

′),
where

Ft′ =
⋂
T>t

F0
T ,Ft0 = σ(Ys, π([0, s]×A), A ∈ B(R+ × R), s ≤ t).

Step 1. We show that π is a (P ′, (Ft0)t≥0)−Poisson random measure on [0,+∞[×R+×R , with
non-random compensator measure dt× ν where ν = dz × µ(du).
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For that sake, it is sufficient to show that for all s < t, disjoint sets U1, . . . , Uk ∈ B(R+×R), and
λ1, . . . , λk ≥ 0,

E

(
exp [−

k∑
i=1

λiπ(]s, t]× Ui)]|F0
s

)
= exp

[
(t− s)

k∑
i=1

(e−λi − 1)ν(Ui)

]
. (37)

To prove (37), it suffices to show that for all s1 < . . . < sn < s, all bounded ϕ1, . . . ϕn, disjoint
sets U1, . . . , Uk ∈ B(R+ × R), and sets V1, . . . , Vn ∈ B(R+ × R),

E

(
exp [−

k∑
i=1

λiπ(]s, t]× Ui)]ϕ1(Zs1)× . . .× ϕn(Zsn)

)
= (38)

exp

[
(t− s)

k∑
i=1

(e−λi − 1)ν(Ui)

]
E (ϕ1(Zs1)× . . .× ϕn(Zsn)) ,

where Zsi = (Ysi , π([0, si[×Vi)
The previous equality holds if we replace Y by XN and π by π1, because π1(]s, t] × Ui) and

ZNs1 , . . . , Z
N
sn are independent, where ZNsi =

(
XN
si , π1([0, si[×Vi

)
.

This implies that π is a
(
P ′, (F0

t )t
)
−Poisson random measure. By right continuity of s 7→

exp
[
(t− s)∑m

i=1(e−λi − 1)ν(Ui)
]
, this implies that π is also a Poisson random measure with respect

to (P ′, (F ′t)t).
Step 2. Fix a test function ϕ ∈ C3

b . Now we show that

ϕ(Yt)− ϕ(Y0) + α

∫ t

0

ϕ′(Yv)Yvdv −
σ2

2

∫ t

0

ϕ′′(Yv)f(Yv)dv (39)

is a
(
F0
t

)
t
−martingale. Fix s1 < s2 < . . . < sn ≤ s < t together with continuous and bounded test

functions ψi and disjoint sets U1, . . . , Un ∈ B(R+,×R). Denote Zsi = (Ysi , π([0, si[×Ui). It suffices
to show that

E

[(
ϕ(Yt)− ϕ(Ys) + α

∫ t

s

ϕ′(Yv)Yvdv −
σ2

2

∫ t

s

ϕ′′(Yv)f(Yv)dv

) n∏
i=1

ψi(Zsi)

]
= 0. (40)

To prove (40), we shall use that

WN
t = ϕ

(
XN
t

)
+ α

∫ t

0

ϕ′
(
XN
v

)
XN
v dv −N

∫ t

0

dv

∫
R
dµ(u)

[
ϕ

(
XN
v +

u√
N

)
− ϕ

(
XN
v

)]
f
(
XN
v

)
is a

(
F0
t

)
t
− martingale. As a consequence, for all N ≥ 1,

E

[(
WN
t −WN

s

) n∏
k=1

ψk
(
ZNsk
)]

= 0.

Using the integral form of the remainder in Taylor’s formula applied in the jump term of WN
t ,

we can write WN
t −WN

s as

ϕ
(
XN
t

)
− ϕ

(
XN
s

)
+ α

∫ t

s

ϕ′
(
XN
v

)
XN
v dv −

σ2

2

∫ t

s

ϕ′′
(
XN
v

)
f
(
XN
v

)
dv +

1√
N

Φ,
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where Φ is a random variable whose expectation is bounded uniformly in N . Thus,

E

[(
WN
t −WN

s

) n∏
k=1

ψk
(
ZNsk
)]

= E
[
Fs,t

(
XN , π1

)]
+

1√
N

E

[
Φ

n∏
k=1

ψk
(
ZNsk
)]
,

where

Fs,t(x,m) =

(
ϕ(xt)− ϕ(xs) + α

∫ t

s

ϕ′(xv)xvdv −
σ2

2

∫ t

s

ϕ′′(xv)f(xv)dv

)
n∏
k=1

ψk (xsk ,m([0, sk[×Uk))

is a continuous function on D(R+,R)×M#. If Fs,t was bounded we could make N go to infinity in
the previous expression (since

(
XN , π1

)
converge in distribution to (Y, π)). So we have to truncate

and consider FMs,t (x,m) := Fs,t(x,m) · ξM
(

sup
0≤r≤t

|xr|
)
, where ξM : R → [0, 1] is C∞ and verifies

1{|x|≤M} ≤ ξM (x) ≤ 1{|x|≤M+1}.
Recall that we want to show (40), that is, E [Fs,t (Y, π)] = 0. We start from

|E [Fs,t (Y, π)]| =
∣∣∣∣∣E [Fs,t (Y, π)]− E

[(
WN
t −WN

s

) N∏
k=1

ψk
(
ZNsk
)]∣∣∣∣∣

≤
∣∣∣∣E [Fs,t (Y, π)

(
1− ξM

(
sup

0≤r≤t
|Yr|
))]∣∣∣∣ (41)

+

∣∣∣∣E [Fs,t (Y, π) ξM

(
sup

0≤r≤t
|Yr|
)]
− E

[
Fs,t

(
XN , π1

)
ξM

(
sup

0≤r≤t

∣∣XN
r

∣∣)]∣∣∣∣ (42)

+

∣∣∣∣E [Fs,t (XN , π1

)(
1− ξM

(
sup

0≤r≤t

∣∣XN
r

∣∣))]∣∣∣∣ . (43)

Using the fact that 1−ξM (x) ≤ 1{|x|>M}, Cauchy-Schwarz’s inequality, Markov’s inequality and
Lemma 3.1, we can bound (41) and (43) by Γ/

√
M for some Γ > 0 that is independent of N .

Now, fix some ε > 0 and consider a constantMε > 0 such that (41) and (43) are smaller than ε. In
a next step, we choose an integer Nε big enough such that (42) is smaller than ε. As a consequence,
|E [Fs,t(Y, π)] | ≤ 3ε for all ε > 0, whence E [Fs,t(Y, π)] = 0 which means that for all ϕ ∈ C3

b (R), the
expression (39) is a (F0

t )t−martingale.
In the following we need to prove that for all ϕ ∈ C3 (not necessarily bounded), the expres-

sion (39) is a (F0
t )t−local martingale. So we introduce the stopping times τK = inf{t > 0 : |Yt| >

K}, and for ϕ ∈ C3(R), we define ϕK ∈ C3
c (R) by ϕK(x) = ϕ(x)ξK(x). Now if Fϕs,t denotes the func-

tion Fs,t we used previously, by definition of F, τK and ϕK , we know that E
[
Fϕs∧τK ,t∧τK (Y, π)

]
=

E
[
FϕKs∧τK ,t∧τK (Y, π)

]
which equals 0, since the expression (39) with ϕK ∈ C3

b (R) is a martingale.
Hence we have shown that the expression in (39) is a (F0

t )t−martingale if ϕ ∈ C3
b (R), and that

it is a (F0
t )t−local martingale if ϕ ∈ C3(R). By right-continuity of s 7→ Ys, this implies that the

expression in (39) is martingale (resp. local martingale) with respect to (F ′t)t for ϕ ∈ C3
b (R) (resp.

ϕ ∈ C3(R)).
Step 3 . Now we show that Y and π are independent. By Theorem II.2.42 of Jacod and

Shiryaev (2003), step 2 implies that Y is a (P ′, (Ft′)t≥0)−semi-martingale with characteristics
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Bt = −α
∫ t

0
Ysds, ν(ds, dx) = 0, Ct =

∫ t
0
σ2f(Ys)ds. Moreover, Theorem III.2.26 of Jacod and

Shiryaev (2003) implies that there exists a Brownian motion B′ defined on (Ω′,A′, (Gt)t≥0, P
′),

such that Y is solution of

Yt = Y0 − α
∫ t

0

Ysds+ σ

∫ t

0

√
f(Ys)dB

′
s.

So B′ is defined on the same space, but for the moment we do not know that this Brownian
motion is indeed a Brownian with respect to the filtration we are interested in, that is, with respect
to (Ft′)t≥0. To understand this last point we use the Lamperti transform. To do so, we need to
introduce

h(x) :=

∫ x

0

1√
f(t)

dt.

Using Ito’s formula, one gets that Ỹt := h(Yt) solves

dỸt = −αh′(Yt)Ytdt+ σh′(Yt)
√
f(Yt)dB

′
t +

σ2

2
h′′(Yt)f(Yt)dt.

In other words,

σB′t = h(Yt)− h(Y0) + α

∫ t

0

h′(Ys)Ysds−
σ2

2

∫ t

0

h′′(Ys)f(Ys)ds

is exactly of the form as in (39), for the test-function ϕ = h that is C3. Thus we know that (B′t)t
is a (P ′, (Ft′)t≥0)−local martingale.

By Theorem II.6.3 of Ikeda and Watanabe (1989) we can then conclude that B′ and the Poisson
random measure π - which are defined with respect to the same filtration, living on the same space
- are independent, and thus also Y and π.

6.8. Lemmas on Skorohod space

Lemma 6.7. Let (xN )N be a sequence of D(R+,R) that converges to some x ∈ D(R+,R), and a
sequence (tN )N that converges to t > 0. If x is continuous on t, then xN (tN−)→ x(t).

Lemma 6.8. Let T > 0, k ∈ N∗, increasing sequences 0 = ti,0 < ti,1 < . . . < ti,ni−1 < ti,ni = T
(1 ≤ i ≤ k), 0 = tNi,0 < tNi,1 < . . . < tN

i,nNi −1
< tN

i,nNi
= T (1 ≤ i ≤ k), and we define the functions

g, gN ∈ D([0, T ],Rk) by{
g(t) =

(∑ni−1
j=0 1[ti,j ,ti,j+1[(t)j

)
1≤i≤k

t ∈ [0, T [,

g(T ) = (ni − 1)1≤i≤k , gN (t) =
(∑nNi −1

j=0 1[tNi,j ,t
N
i,j+1[(t)j

)
1≤i≤k

t ∈ [0, T [,

gN (T ) =
(
nNi − 1

)
1≤i≤k .

We assume that there exists a dense subset A ⊆ [0, T ] that contains T such that, for all t ∈ A, gN (t)
converges to g(t), and we assume that for all i1 6= i2 for all j1 ∈ J1, ni1−1K and j2 ∈ J1, ni2−1K,
ti1,j1 6= ti2,j2 . Then gN converges to g in D

(
[0, T ],Rk

)
.
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