
HAL Id: hal-02096540
https://hal.science/hal-02096540v3

Preprint submitted on 21 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Confluence in (Un)Typed Higher-Order Theories by
means of Critical Pairs

Gaspard Ferey, Jean-Pierre Jouannaud

To cite this version:
Gaspard Ferey, Jean-Pierre Jouannaud. Confluence in (Un)Typed Higher-Order Theories by means
of Critical Pairs. 2019. �hal-02096540v3�

https://hal.science/hal-02096540v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Confluence in UnTyped Higher-Order Theories by means of
Critical Pairs

GASPARD FÉREY AND JEAN-PIERRE JOUANNAUD

User-defined higher-order rewrite rules are becoming a standard in proof assistants based on intuitionistic
type theory. This raises the question of proving that they preserve the properties of beta-reductions for the
corresponding type systems. In a series of papers, we develop techniques based on van Oostrom’s decreasing
diagrams that reduce confluence proofs to the checking of various forms of critical pairs for higher-order
rewrite rules extending beta-reduction on pure lambda-terms. The present paper concentrates on the case
where rewrite rules are left-linear and critical pairs can be joined without using beta-rewrite steps.

Additional Key Words and Phrases: Lambda calculus, Church-Rosser property, Confluence, Decreasing dia-
grams, Critical pairs

ACM Reference format:
Gaspard Férey and Jean-Pierre Jouannaud. 2017. Confluence in UnTyped Higher-Order Theories by means of
Critical Pairs. Proc. ACM Program. Lang. 1, 1, Article 1 (January 2017), 29 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The two essential properties of a type theory, consistency and decidability of type checking, follow
from three simpler ones: type preservation, strong normalization and confluence. In dependent type
theories however, confluence is often needed to prove type preservation and strong normalization,
making all three properties interdependent if termination is used in the confluence proof. This
circularity can be broken in two ways: by proving all properties together within a single induc-
tion [7]; or by proving confluence on untyped terms first, and then successively type preservation,
confluence on typed terms, and strong normalization. We develop the latter way here, focusing on
untyped confluence.

In Coq and Agda, rewrite rules introduced by the user originate from the definition of inductive
types of some form. They satisfy a precise format which has been well studied, for which confluence
is always satisfied. But Agda and Coq developers have recently announced the development of new
versions that would allow user-defined rewrite rules [3], as is alreay the case in Dedukti [5], and
several on-going developments in Agda are already using this facility. Investigating the preservation
of confluence by user-defined rewrite rules in λ-calculus appears therefore to be very timely.

Dedukti has been mostly used so far as a logical framework, user-defined rewrite rules originat-
ing then from complex higher-order encodings for which inductive types do not provide enough
flexibility. Let R be the set of user-defined rewrite rules, which come in addition to the β-rule. The
rewrite relation underlying the type theory is then generated by both R and the β-rule. Studying
the meta-theory of such a type theory implies investigating the confluence property of β ∪ R.

There are three main tools for analyzing confluence of a rewrite relation: Newman’s Lemma [14],
Hindley-Rosen’s Lemma [9], and van Ostrom’s Theorem which generalizes both previous ones [19].
Since beta rewrites are non-terminating in pure lambda calculus, Newman’s Lemma does not
apply. And if the rules have non-trivial critical pairs, then Hindley-Rosen’s Lemma does not apply
either. Even the subtle use of Hindley-Rosen’s Lemma allowing for development-closed critical

2017. 2475-1421/2017/1-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Gaspard Férey and Jean-Pierre Jouannaud

pairs [18] is too restrictive for practical usage. The way out is the use of van Oostrom’s decreasing
diagrams [17]. The fact that beta reductions do not terminate for pure lambda terms is no obstacle
since we do not rely on termination for showing confluence when using decreasing diagrams. A
further reason for considering pure lambda terms is that it is then easy to deduce confluence for
any type system, including dependent type systems, for which the rules enjoy type preservation.
Van Oostrom’s theorem is abstract, its application to term rewriting relations conceals many

difficulties. Further, neither confluence nor termination are preserved by adding a confluent and
terminating set of rewrite rules to a λ-calculus. A counter-example to termination in the simply
typed λ-calculus is given in [15]. Numerous counter-examples to confluence in the pure λ-calculus
are given in [11]. The problem we address is by no means simple.
Our untyped λ-calculus is intended to fit with the implementation of Dedukti. The format of

rules is classical: left-hand sides must be patterns [12, 13], which are extremely useful for describing
encodings of a type theory in another, a keen application to us. Considering untyped terms requires
simple adaptations of the usual higher-order rewriting definitions. In particular, we shall consider
that the meta-variables used in rules have an arity which is not fixed, but bound, hence allowing for
implicit arguments. These adaptations impact unification: we shall precisely analyze unification of
linear untyped patterns and show the existence of most general unifiers computable in linear time.
Our contribution is that a set Rll of rules which is terminating on the set of pure λ-terms and

whose left-hand sides are linear patterns, preserves confluence of the λ-calculus if its critical pairs
are joinable by using rules in Rll.

This result is then demonstrated with the example of a theory of global states due to Plotkin and
Power [16], whose rules have overlapping linear higher-order patterns as left-hand sides. As we
shall see, its critical pairs are not development closed. The confluence of this example had indeed
been shown already in [8]. Hamana shows first that the (simply) typed rules are terminating, then
that the higher-order critical pairs are joinable, using Newman’s Lemma to deduce its confluence.
Our methods apply independently of the typing system, hence we can deduce that the same example
remains confluent when using a dependently typed discipline.

We recall the notion of labeled reduction and decreasing diagram in Section 2, and describe our
higher-order setting in Section 3. Matching and unification of untyped patterns and basic properties
of untyped higher-order rewriting is considered in Section 4. Local rewriting peaks are analyzed in
Section 5. Our confluence result is stated and proved in Section 6. Significance of the framework,
and of our result, is discussed in Conclusion.

2 LABELED REDUCTIONS
2.1 Reductions
Given a binary relation −→ on terms, called rewriting, we use: ←− for its inverse, =⇒ for its
parallelization, allowing one to rewrite at once several subterms of a given term, when none is a
subterm of another, and←→, −→−→, and←→←→, for its closures by, respectively, symmetry; reflexivity
and transitivity (called derivation); and reflexivity, symmetry and transitivity (called convertibility).

A term s is in normal form if there is no t such that s−→t . We define a normal form for an arbitrary
term s as a term t in normal form, denoted by s↓, such that s −→−→ t . Termination is the impossibility of
an infinite rewriting sequence t0 −→ t1 −→ . . .−→ tn −→ Termination guarantees the existence
of normal forms for every term. A local peak is a triple of terms (s,u, t) such that s←− u −→ t ; u is
the source and s, t are its reducts. Two terms s, t are joinable if s −→−→v←−←− t for some v , making
the peak s←−u−→t joinable. The property that every two convertible terms are joinable is called
confluence (or Church-Rosser). Confluence guarantees the unicity of normal forms for every term.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:3

When rewriting terminates, it is well-known that the joinability of all local peaks implies the
confluence property, this is the so-called Newman’s lemma. When it does not, it is then necessary
to strengthen joinability, this is the rôle of decreasing diagrams.

2.2 Decreasing diagrams
In the following, we consider rewrite relations all of whose elementary steps are equipped with a
label belonging to some well-founded set whose strict partial order is denoted by ▷.

Definition 2.1 (Decreasing diagram [17]). Given a labeled relation −→ on an abstract set, we
denote by DS(m,n) the set of decreasing rewrite sequences of the form u

δ
−→−→v or u

γ
−→−→ s

n
−→t

δ
−→−→v

such that the labels in γ and δ are strictly smaller than, respectively,m, and,m or n. The steps
labeled by γ ,n and δ , are called the side steps, facing step and middle steps of the decreasing
sequence, respectively.

Given a local peak v
m
←−u

n
−→w , a decreasing (rewrite) diagram is a pair of derivations from v and

w to some common term t , belonging to DS(m,n) and DS(n,m), respectively.

Decreasing rewrite diagrams are represented at Figure 2 and abbreviated as DDs. Note that a
facing step of a decreasing diagram may be missing, its side steps are then absorbed by the middle
ones. A more general notion of decreasing diagram appears is [19], we won’t need it here.

Theorem 2.2 ([17]). A labeled relation is Church-Rosser if all its local peaks have DDs.

van Oostrom’s theorem generalizes to rewriting modulo an equational theory, for example =α
in the λ-calculus, in which case ▷ must be compatible with the equational theory [10]. This is of
course true of =α which must be built-in any definition of reduction over lambda terms. Further,
equational steps with =α must have a minimal label, which is easy to achieve.

3 HIGHER-ORDER REWRITING
Given an untyped lambda calculus generated by a vocabulary made of three pairwise disjoint
sets, a signature F of function symbols, a set X of variables, and a set Z of meta-variables, we
are interested in the calculus λF , whose reduction relation extends the β-rule of the underlying
λ-calculus by a set R of user-defined rewrite rules built over that vocabulary. Were we to analyze
the confluence of R alone, then, the situation would be similar to the first-order case, at least when
left-hand sides of rules are patterns [12]. Unfortunately, confluence of R ∪ β cannot, in general, be
deduced from the confluence of its two components.

3.1 Terms in λF

λF is a mix of the pure lambda-calculus and Klop’s combinatory reduction systems [11], that fits
with Dedukti [5]. Terms are those of the pure lambda calculus enriched with F -headed terms of
the form f (u) with f ∈ F and meta-terms of the form Z |v] with Z ∈ Z. Only variables can be
abstracted over. Elements of the vocabulary have arities, denoted by vertical bars as in |a |. Variables
have arity zero. The grammar of terms is the following:

u,v := x ∈ X | (u v) | λx .u | f (u) | Z [v] where f ∈ F , |u | = | f |, Z ∈ Z and |v | ≤ |Z |
Following usage, we don’t duplicate parentheses, writing f (x y) for f ((x y)), and use brackets
instead of parentheses for meta-variables. It is sometimes convenient to name the head symbol
of the expression (s t): we use the symbol @ for that purpose throughout the paper. We use the
small letters f ,д,h, . . . for function symbols and x ,y, z, . . . for variables, and reserve capital letters
X ,Y ,Z , . . . for meta-variables. When convenient, a small letter like x may denote any variable in

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Gaspard Férey and Jean-Pierre Jouannaud

X∪Z. We use the notation |_| to denote various quantities besides arities, such as the length of a
list, the size of an expression or the cardinality of a set. Given a list u, u[m..n] denotes the finite
sublist um , . . .un . The list u is omitted in case it is the list of natural numbers.

Unlike function symbols and Klop’s meta-variables, meta-variables here have an arity which is
not fixed, but bounded, a handy feature used in Dedukti that allows meta-variables to take implicit
arguments. This peculiarity has several objectives. First-of-all, the number of dependent arrows in
a dependent type T is not fixed, it may depend upon, say, the value of a natural number this type
depends upon. However, any occurrence of a meta-variable of type T used in a rewrite rule must
have a finite number of arguments, the maximum of these numbers can then be taken as the arity of
that meta-variable. Another use of this facility in Dedukti is to speed up computations by avoiding
type-checking terms along rewriting derivations. The pattern matching algorithm, as we shall see
in Section 4, requires using the arity of meta-variables instead of their type. Finally, verifying in
Dedukti that rewrite rules preserve types is based, as expected, on solving type equality constraints,
which in turn requires inferring the arities of the meta-variables that occur in those rules.

Positions in terms are words over the natural numbers (assuming |λx .| = 1), using · for con-
catenation, Λ for the empty word, P/p for {q : p ·q ∈ P}, ≤P for the prefix order (above), ≥P for
its inverse (below), >P for the strict part of ≥P , and p#q for ¬(>P ∨≤P) (parallel). An order > on
positions is extended to sets of positions as follows: P > Q iff ∀p ∈ P ∃q ∈ Q such that p > q.
Given a term M , we use Pos(M), VPos(M), MPos(M) for the following respective sets of

positions ofM : all positions, the positions of free variables, and of meta-variables, andVar (M) and
MVar (M) for its sets of free variables and of meta-variables respectively. A termM is ground if
Var (M)=�, closed ifMVar (M)=�, and linear if |MPos(M)| = |MVar (M)|. Given now a term
M and a position p ∈ Pos(M), we useM(p) for its symbol at positions p,M |p for the subterm ofM
at position p,M[N]p for the term obtained by replacing inM the subtermM |p by the term N . The
latter notations extends to sets P of parallel positions inM[N]P orM[N]P in case all terms in N are
identical to the term N . This use of brackets in the meta-language of terms is reminiscent of its use
in the term language, namely in Z [v]. Both kinds of brackets may occur in a same expression, as
long as the replacement bracket is indexed by a position or set of positions. We sometimes use the
notation u[v]p to stipulate that the subterm of u at position p is the termv . The context is supposed
to help discriminating between these different uses of the bracket notation.
A substitution is a capture-avoiding homomorphism written as σ = {x1 7→M1, . . . ,xn 7→Mn},

or σ = {x 7→ M}, where Mi = λyi .Ni with |yi | ≥ |xi |. Note that xi denotes here an element of
X ∪Z, hence its arity may be non-null.Dom(σ) = {x1, . . . ,xn} ⊆ X ∪Z is the domain of σ while
Ran(σ) =

⋃i=n
i=1 Var (Mi) is its image. The substitution σ is ground (resp., closed) when so are all

Mi ’s. A substitution σ can be restricted to or deprived from (meta-)variables in some set V , written
σ |V and σ\V respectively. As in λ-calculus, substituting in terms requires renaming bound variables
to avoid capturing free ones. Using post-fixed notation, xiσ = ti and yσ = y if y < Dom(σ);
f (t)σ = f (tσ); (u v)σ = (uσ vσ); and (λx .u)σ = λx .uσ if x < Dom(σ) ∪ Ran(σ) (otherwise, as
announced, x must be renamed away from Dom(σ) ∪ Ran(σ) in λx .u.) The additional rule for
meta-variables is as follows: if Z 7→ λx .s ∈ σ , then Z [u]σ = λx[m+1..n].s{x[1..m] 7→ uσ }, where
|u | =m ≤ n = |Z |, hence delaying the replacement of those arguments of Z that are missing. The
result tσ of substituting the term t is called an instance (of t) and the operation itself an instantiation.
Arities extend naturally to terms, writing ar (t) for the arity of a term t , by induction on their

structure: ar (λx .t) = 1 + ar (t), ar (X [t]) = |X | − |t | and ar ((u v)) = ar (x) = ar (f (u)) = 0.
Substitution of meta-variables was introduced by Klop in the case of a fixed arity [11]. Our

definition ensures the straightforward properties that arities are non-decreasing under substitution,

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:5

hence provide enough abstractions for all meta-terms of the formX [u] encountered in a computation.
(So does of course Klop’s definition for the case of fixed arities.)

Example 3.1. Let X be a ternary meta-variable, s = λx .(X [x , f (x ,y)] д(y)) and σ = {X 7→
λxzz ′.h(z ′, z),y 7→ h(a,a)}. Then, sσ = λx .(λz ′.h(z ′, f (x ,h(a,a))) д(h(a,a))). Then, ar (s) = 1+ (3−
2) = 2 = ar (sσ).

Rewriting terms extends to substitutions as expected, while substitutions are extended to se-
quences of terms and to substitutions in the natural way, keeping the same post-fixed notation.

Lemma 3.2. Given u,σ ,τ , (uσ)τ = u(στ) (we write uστ).

Given a term u and a list P = {pi }i=ni=1 of parallel positions in u, we define the term obtained
by splitting u along P as uP = u[Z1[x1]]p1 . . . [Zn[xn]]pn (u is cut below P) and its associated
substitution by uP = {Zi 7→ λxi .u |pi }

i=n
i=1 (u is cut above P), where, for all i ∈ [1,n], xi is the list

of all variables of u |pi bound in u above pi and Zi is a fresh meta-variable of arity (exactly) |xi |.
The definition of substitution for meta-variables ensures that uPu

P =u, which justifies writing
u=u[u |P]P as a familiar shorthand. Note the two kinds of brackets in uP .

Our use of splitting in this paper will be systematic unless it alters readability for no good reason.
This invention permitted by Klop’s notion of meta-variable, is the only technique we know of
which allows to manipulate terms with binders safely, in case renaming of variables needs to take
place independently in a term and in its context, as will often be the case here.

3.2 Functional reductions
Arrow signs used for rewriting will often be decorated, below by a name, and above by a position p
or set of positions P , as in s

p
−→
R
t or by a property that this position or set of positions satisfies, as

in u
≥Pp
−→−→
R

v and in u = v↓≥PPR (u is obtained from v by normalizing its subterms v |p∈P with R.)
Two different kinds of reductions coexist in λF , functional and higher-order reductions. Both

are meant to operate on closed terms. However, rewriting open terms will sometimes be needed, in
which case rewriting is intended to rewrite all their closed instances at once.

Functional reduction is the relation on terms generated by the rule (λx .u v)−→
βα

u{x 7→ v}. The

usually omitted α-index stresses that renaming bound variables, called α-conversion, is built-in.
As is customary [13], the particular case for whichv is a variable is denoted by β0. Note that instan-

tiating a β0-step may yield a full β-step. For example, s = (λx .(λy.д(y) x) a)
1·1
−→
β 0
(λx .д(x) a)

Λ
−→
β
д(a)

while s
Λ
−→
β
(λy.д(y) a)

Λ
−→
β
д(a). This is our main motivation for using Klop’s notion of substitution

for meta-variables, whose benefits will appear in the next subsection.
We will also use a particular case of extensionality, for meta-variables only: λz.X [u, z] =Mη X [u]

if |X | > |u |, z fresh. When oriented from left to right,Mη is terminating and confluent. It has an
even more important property: assume σ is a substitution replacingX by λxz.v . Then λz.X [u, z]σ =
λz.v{x 7→ u} = X [u]σ . So,Mη-steps disappear when taking instantiations, a key property for us.

3.3 Higher-order reductions
Higher-order reductions result from rules whose left-hand sides are higher-order patterns in Miller’s
or Nipkow’s sense [12], although they need not be typed:

Definition 3.3 (Pattern). A pre-redex of arity n in a term L is an unapplied meta-term Z [x] whose
arguments x are n pairwise distinct variables. A pre-pattern is a ground β-normal term all of whose

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Gaspard Férey and Jean-Pierre Jouannaud

meta-variables occur in pre-redexes. A pattern is a pre-pattern which is neither an abstraction nor
a pre-redex.

It is important to assume, as does Nipkow, that pre-patterns are β-normal. Note that erasing
types from a Nipkow’s pattern yields a pattern in our sense, since his pre-redexes being of base type,
they cannot be applied. This restriction isn’t important until later, when we address the question of
matching and unification of patterns.

The properties investigated below are true of pre-patterns, not only of patterns.
Observe that pre-redexes in pre-patterns can only occur at parallel positions, whose set plays a

key rôle:

Definition 3.4 (Fringe). The fringe FL of a pre-pattern L is the set of parallel positions of its pre-
redexes. We denote by FPos(L)= {p ∈Pos(L) : p<P FL} the (non-empty) set of functional positions
of the pre-pattern L, and byMVar (L,o), for o ∈ FL , the meta-variable Z such that L|o = Z [x]. We
also define Fβ = {1, 2} for convenience.

Example 3.5. The term L = f (λxyz.д(X [x ,y, z],X [x ,y])) is a pattern. Its pre-redexes are the terms
X [x ,y, z] and X [x ,y]. Its fringe is the set FL = {15, 14 ·2}. The term (f (λxyz.д(X [x ,y, z]) (a X)) is
also a pattern, its fringe is the set {16, 22}. Terms f (λx .X [x ,x]), f (X [a]), f (X [Y]), and f (X Y), are
no patterns.

Note that the set of functional positions coincides with the usual notion for first-order terms.
Since patterns are ground terms, we have:

Lemma 3.6. Given a pre-pattern L, let p ∈ FL and L|p = Z [x] be a pre-redex. Then, all variables in
x are bound above p in L.

We can now define higher-order rules and rewriting:

Definition 3.7 (Rule). A (higher-order) rule is a triple i :L→R, whose (possibly omitted) index i is
a natural number, left-hand side L is a pattern, and right-hand side R is a ground β-normal term
such thatMVar (R) ⊆ MVar (L). The rule is left-linear if L is linear and right-linear if R is linear.

So, rules are pairs of (specific) ground terms. They may have meta-variables, but don’t admit
free variables. This allows to clearly separate the object language (which has no meta-variables),
from the meta-language (which has meta-variables). Rules, critical pairs and and splittings belong
to the meta-language, which serves analyzing the properties of the language. The role taken by
free variables in first-order rules is therefore taken here by meta-variables of arity zero.

Definition 3.8 (Higher-order untyped rewriting). Given an open term u, a position p ∈Pos(u), and
a rule i :L→R, then u rewrites with i at p, written u

p
−→
i
v , iff u |p =Lγ for some substitution γ , and

v=u[X [x]]p {X 7→ λx .Rγ } = u[Rγ]p , where x is the list of variables of u |p which are bound above
the position p in u. We write u

p
−→
R
v for ∃i ∈ R.u p

−→
i
v .

Let’s now make our splitting notations fully explicit. Whenever u
p
−→
i
v , we have by definition:

• up = u[X [x]]p and up = {X 7→ λx .u |p } with x variables bound above p in u
• u = upu

p = up {X 7→ λx .u |p } = up {X 7→ λx .Lγ }

• v = up {X 7→ λx .Rγ }, hence vp = up , v
p = {X 7→ λx .Rγ } and v |p = Rγ .

Example 3.9. Let L=der (λx .sin(F [x]) → R=λx .cos(F [x]), and take for σ the identity substitution
{F 7→ λx .x}. Then, Lσ = der (sin(x)) and Rσ = cos(x), hence der (sin(x))−→cos(x).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:7

In sharp contrast with Nipkow [12], we observe that we do not need matching modulo β0,
since the corresponding β0-steps are now hidden in the Klop’s definition of substitution for meta-
variables. We will however show that our main confluence result applies to Nipkow’s definition:
the use of Klop’s definition of substitution for meta variable can be seen as a technical choice.

Besides, we do not assume thatu, orv , is β-normal, or even β-normal up to position p. We cannot
for two reasons: β-normal forms may not exists, and we need monotonicity and stability properties:

Lemma 3.10 (Splitting Above). Let s
q
−→
L→R

t . Then, sq−→
L→R

σ and t = sqσ .

Lemma 3.11 (Monotonicity). Let s
p
−→
L→R

t andu a term such that q ∈Pos(u). Then,u[s]q
q ·p
−→
L→R

u[t]q .

Monotonicity follows directly from definition and Lemma 3.10. Stability is just as easy.

Lemma 3.12 (Stability). Let s
p
−→
L→R

t and σ a substitution. Then sσ
p
−→
L→R

tσ .

Proof. By definition of higher-order rewriting, s |p =Lγ for some substitution γ , and t = s[Rγ]p .
We have sσ |p = s |pσ = Lγσ and tσ = s[Rγ]pσ = sσ [Rγσ]p yielding the result. □

Lemma 3.13 (Substitution Lemma). Let u
p
−→
Rll

v and σ−→
Rll

τ . Then, uσ −→−→
Rll

vτ .

Proof. We first prove uσ −→−→
Rll

uτ by induction on u:

• u = f (u) with f ∈ V ∪ {@, λ} By induction hypothesis, uσ −→−→uτ . By monotonicity,
f (uσ) −→−→ f (uτ). Conclusion follows.
• u = x . This case is straightforward.
• u = X [u] with X < Dom(σ). Similar to the first case.
• u = X [u]withXσ = λx .w , hencew−→

Rll
w ′ andXτ = λx .w ′. By induction hypothesis,uσ = uτ .

Hence uσ =w{x 7→ uσ } −→−→w{x 7→ uτ } (by monotonicity) −→−→w ′{x 7→ uτ } (by stability)
= uτ .

Since uτ −→−→
Rll

vτ by stability, we conclude that uσ −→−→vτ . □

3.4 Rewrite theories
Definition 3.14. A λF -rewrite theory is a pair (F ,R) made of a user’s signature F and a set R of

higher-order rewrite rules on that signature, defining the rewrite relation −→
λF

of λF as −→
R∪βα

.

Rewrite theories are used in Dedukti [1] to define the conversion rule of the calculus, which
is, as is customary, untyped. The rewrite relation implemented in Dedukti is indeed the one we
just described, Klop’s notion of substitution for meta-variables being implemented via a priority
mechanism.

The main question addressed in this paper is whether a λF -rewrite theory is confluent (Church-
Rosser), and how to show its confluence by calculating and inspecting critical pairs of some form.
We shall focus on rewrite theories for which the set of rules R satisfies linearity assumptions. We
say that λF is : a left-linear theory if R is a set of left-linear rules; a right-linear theory if R is a set
of right-linear rules; a semi-linear theory if R is made of rules which are of either kind.

In this paper, we restrict our attention to left-linear rewrite theories (F ,Rll).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Gaspard Férey and Jean-Pierre Jouannaud

3.5 The rewrite theory of global states
Our running example here will be Plotkin’s and Power’s theory of global states for a single
location [16]. It is described by two types, Val for values and A for states, a unary operation lk
for looking up a state, a binary operation ud for updating a state, and five higher-order rules
which satisfy our format, the meta-variables having arities (unlike in the original article). First, the
signature:

lk : (Val → A) → A ud : Val ,A→ A

lk(λv .t) looks up the state, binds its value to v , and continues with t while ud(v, t) updates the
state to v , and continues with t . Types are given for a better understanding, they do not play any
role here. Let us now give the rules, using X (resp. Y) (resp. U , V ,W) for meta variables of arity
1 (resp. 2) (resp. 0). We also use Z , whose arity will have to be given. These meta-variables may
appear primed when too many of a given arity are needed, as it will be the case when computing
critical pairs.
(ll) lk(λw .lk(λv .Y [w,v])) → lk(λv .Y [v,v]) (ll)
(lu) lk(λv .ud(v,X [v])) → lk(λv .X [v]) | lk(λv .U) → U (l)
(ul) ud(V , lk(λv .X [v])) → ud(V ,X [V]) | ud(U ,ud(V ,W)) → ud(V ,W) (uu)

This typed higher-order theory was studied by Hamana, who was interested in its confluence
investigated with his Haskell-based analysis tool SOL [8]. Our presentation is a simplification of
Hamana’s, whose one rule was actually superfluous. Note that all rules are left-linear.
In this example, all meta-variables take a constant number of arguments, equal to their arity.

Using our meta-variables with a bounded arity, we can reformulate this system by eliminating its
η-expansions:

(ll) lk(λw .lk(Y [w])) → lk(λv .Y [v,v]) (ll)
(lu) lk(λv .ud(v,X [v])) → lk(X) | lk(λv .U) → U (l)
(ul) ud(V , lk(X)) → ud(V ,X [V]) | ud(U ,ud(V ,W)) → ud(V ,W) (uu)

We could of course, eliminate the η-expansions from the left-hand sides, and keep them in the
right-hand sides. We will see that the precise formulation of the rules, when there are many possible
variations, impacts their confluence properties.

4 PATTERN MATCHING AND UNIFICATION OF LINEAR PATTERNS
Firing rules requires pattern matching an arbitrary term against a pattern, while computing critical
pairs, which play a key role in the analysis of overlapping peaks, requires unifying two patterns.
Both algorithms are described by rewrite rules operating on equational problems.

Definition 4.1. A (matching or unification) equational problems P is a conjunction of elementary
equations. An elementary equation is either the constant ⊥ or is of the form u = v in which u is a
pre-pattern, v is either a pre-pattern (unification case), or an arbitrary term (matching case).

We now define solutions and unifiers of an equational problem, the unifiers being representations
of their solutions. It is important to note here that patterns have no free variables. This implies
that solutions and unifiers of unification problems can be restricted to be ground, since additional
variables are not needed for expressing unifiers, we can use meta-variables of arity zero instead.

Definition 4.2. A solution of a matching problem P different from ⊥ is a substitution γ such that
Dom(γ) ⊆ Z and for all equations u = v ∈P, uγ =α v .
A solution of a unification problem P different from ⊥ is a closed, ground substitution γ such

that Dom(γ) ⊆ Z, and for all equations u = v ∈P, then uγ =α vγ .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:9

A unifier of a unification problem P different from ⊥ is a ground substitution γ such that
Dom(γ) ⊆ Z, and for all equations u = v ∈P, then u ′γ =α,Mηv

′γ .
The constant ⊥ has no (matching or unification) solution nor unifier.
Unifiers equate terms of an equation modulo renaming, but also modulo extensionality for meta-

variables. As we have seen, the latter steps will disappear by instantiation of the meta-variables:
unifiers are not solutions but representations of solutions via their closed instances.

Definition 4.3. A unification problem P is linear is no meta-variable occurs more than once in P.
A matching problem P is linear is no meta-variable occurs more than once in the left-hand sides of
the elementary equations of P.

In the sequel, we will usually omit =α , and also restrict ourselves to linear equational problems.
Before to give the rules, we need the following preliminary definition:
Definition 4.4. A variable x ∈ X is protected in a pre-pattern u if all its occurrences in u belong

to a pre-redex of u, that is, take place below Fu .
For an example, x is protected in f (д(X [x]),X). It is not protected in f (д(X [x]),x) because

of its second occurrence. Protected variables can be eliminated from a term by appropriately
instantiating its meta-variables, while unprotected variables cannot be eliminated. An important
known observation to be justified later is that elementary unification problems for which a free
variable occurs unprotected on one side, and does not occur at all on the other side have no solution.

Pattern matching and unification are described by the rewrite rules given at Figure 1. Rules
written in black apply to both matching and unification problems. Rules written in green apply
to matching problems only, while rules in blue apply to unification problems only. Note that the
constant ⊥ is absorbing, a black rule that will remain implicit.

The initial problem to be matched or unified is denoted by P0. Rule Fail-Protect refers to P0.
Apart from Meta-Var, the set of common black rules treats equations between expressions which

are not pre-redexes. Those equations can be decomposed or fail, depending on the respective root
symbol of the left-hand and right-hand sides. These rules are just the same as those for first-order
unification. The role of Meta-Var is to ensure that the arity condition for meta-variables is met by
the substitution that will be obtained if the algorithm succeeds.
The two green rules for matching are failure rules. Fail-Arity applies when the arity condition

for meta-variables cannot be met, while Fail-Protect applies as soon as there is an equation whose
right-hand side contains a free variable that does not occur in the left-hand side or in the initial
problem. The two failure rules for unification require different conditions, in particular because
unification is symmetric while matching is not. Fail-Arity treats equations which falsify the arity
condition for meta-variables, while Fail-Protect deals with equations which cannot be unified
because the right-hand side has an unprotected variable. Note that u cannot be a pre-redex in that
case.

There are three remaining blue rules for unification. When the right-hand side of an equation is
a pre-redex, it is moved to the left by Swap if the left-hand side is not a pre-redex, or else by Flip if
the left-hand side is lacking more (implicit) arguments than the right-hand side. Drop applies to
equations with a pre-redex on the left, in case there is some protected variable in the right-hand
side that must be eliminated, as stipulated by the first condition. The other three conditions, in the
order they are listed, postpone the application of Drop until Fail-Arity, Fail-Protect and Flip, in this
order, can no longer apply.

In the particular case where q = Λ, |X |− |x | = |Y |− |y | and x ⊊ y thenDrop applies toX [x] = Y [y]
and produces X [x] = Z [x] ∧ Y [y] = Z [x] which could be improved in an implementation with a
special instance of Drop to produce Y [y] = X [x] only, as does Flip.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Gaspard Férey and Jean-Pierre Jouannaud

Dec-Fun f (u) = f (v) −→ ∧
i= |f |
i=1 ui = vi if f ∈ F ∪X

Dec-App (u s) = (v t) −→ u = v ∧ s = t if (u s) and (v t) are not pre-redexes
Dec-Abs λx .u = λy.v −→ u{x 7→ z} = v{y 7→ z} with z fresh
Conflict f (u) = д(v) −→ ⊥ if f ,д ∈ F ∪X∪{@, λ}, f , д
Meta-Abs X [x] = λy.v −→ X [xy] = v if X ∈ Z, |X | > |x |

Fail-Arity X [x] = u −→ ⊥ if |X | − |x | > ar (u)
Fail-Protect X [x] = u −→ ⊥ if ∃z ∈Var (u), z < x ∪Var (P0)
Fail-Arity X [x] = f (u) −→ ⊥ if |X | > |x | ∧ f ∈ {@} ∪ F ∪ x
Fail-Protect X [x] = u −→ ⊥ if ∃z ∈Var (u), z < x , z unprotected

Swap u = Y [y] −→ Y [y] = u if u is not a pre-redex
Flip X [x] = Y [y] −→ Y [y] = X [x] if |X | − |x | > |Y | − |y |

Drop
X [x] = u[Y [y]]q −→
X [x] = u[Z [z]]q ∧ Y [y] = Z [z]

if

y ⊈ x ∪ BVar (u)
u(Λ) < F ∪ {@, λ} ∨ |X | = |x |
unprotected variables of u are in x
q , Λ ∨ |Y | − |y | ≥ |X | − |x |

with
{
z = y ∩ (x ∪ BVar (u))
Z fresh s.t. |Z | = |Y | − |y | + |z |

Fig. 1. Matching and unification rules for linear equational problems

Note that the set of rules can be easily transformed into a deterministic algorithm as no two
rules apply to the same equation, except Meta-Abs and each of the failure rules but Fail-Arity.

Before to prove properties of these matching and unification rules, we show below examples of
use of the unification rules that are useful for the reader’s understanding:

Example 4.5. Let’s illustrate some rules, using |X | = 1, |Y | = 0, |X ′ | = 3, |Y ′ | = 2 and |Z | = 2.

f (λy. f (Y)) = f (X) −→
Dec−Fun

λy. f (Y) = X −→
Swap

X = λy. f (Y) −→
Meta−Var

X [y] = f (Y)

f (Y ′) = f (λy. f (Y)) −→
Dec−Fun

Y ′ = λy. f (Y) −→
Meta−Var

Y ′[y] = f (Y) −→
Fail-Arity

⊥

X ′ = λy.Y ′[y] −→
Meta−Var

X ′[y] = Y ′[y] −→
Flip

Y ′[y] = X ′[y]

Y ′[z] = λx .X ′[y, z] −→
Dec−var

Y ′[z,x] = X ′[y, z]−→
Drop

Y ′[z,x] = Z [z] ∧ X ′[y, z] = Z [z]

Drop applies here to an elementary equation in which there are extra-variables on both sides,
eliminating, perhaps surprisingly, both problems at once: the two generated equations have a
pre-redex on the left-hand side which contains all free variables occurring on the other side.

We now show examples of matching and unification problems that will be useful later when
computing the critical pairs of the theory of global states. We won’t do all computations needed
later on, only a few interesting ones originating from the first or second versions of that theory:

Example 4.6. We start with two matching problems, matching first the term lk(λw .ud(w,X ′[w]))
with the left-hand side lk(λw .ud(w,X [w])) of rule (lu) of the second set:

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:11

lk(λw .ud(w,X [w])) = lk(λw .ud(w,X ′[w])) −→
Dec−Fun

λw .ud(w,X [w])) = λw .ud(w,X ′[w])

−→
Dec−Abs

ud(w,X [w]) = ud(w,X ′[w]) −→
Dec−Fun

w = w ∧ X [w] = X ′[w] −→
Dec−Fun

X [w] = X ′[w]

Now, the second, matching the term lk(λv .lk(Y ′[v])) against the left-hand side lk(λv .lk(Y ′[v]))
of rule (ll) of the second set:

lk(λv .lk(Y [v])) = lk(λv .lk(Y ′[v])) −→
Dec−Fun

λv .lk(Y [v]) = λv .lk(Y ′[v]) −→
Dec−Abs

lk(Y [v]) = lk(Y ′[v]) −→
Dec-Fun

Y [v] = Y ′[v]

It then follows that lk(λv .lk(Y ′[v]))−→
l l

lk(λv .Y ′[v,v]).
We go onwith unification problems, first of the left-hand sides of rules (ll) and (l) from the first set:

lk(λw .lk(λv .Y [w,v])) = lk(λw .U) −→
Dec−Fun

λw .lk(λv .Y [w,v]) = λw .U −→
Dec−Abs

lk(λv .Y [w,v]) = U −→
Swap

U = lk(λv .Y [w,v])−→
Drop

U = lk(λv .Z [v]) ∧ Y [w,v] = Z [v]

(with Z fresh of arity 1)
Now, we consider the unification of the left-hand sides of rules (lu) and (l) from the same set:

lk(λv .ud(v,X [v])) = lk(λv .U) −→
Dec−Fun

λv .ud(v,X [v])) = λv .U −→
Dec−Abs

ud(v,X [v]) = U −→
Swap

U = ud(v,X [v]) −→
Fail-Protect

⊥

since v occurs unprotected as first argument of ud in ud(v,X [v]), making unification fail.
Finally comes unification of the left-hand sides of rule (l) with a subterm of the left-hand side of

rule (ul) (still from the same set):

lk(λv .U) = lk(λv .X [v]) −→
Dec−Fun

λv .U = λv .X [v] −→
Dec-Abs

U = X [v] −→
Swap

X [v] = U

We can now carry out the same computations using the second set of rules. We get first:

lk(λw .lk(Y [w])) = lk(λw .U) −→
Dec−Fun

λw .lk(Y [w]) = λw .U −→
Dec−Abs

lk(Y [w]) = U−→
Swap

U = lk(Y [w])

−→
Drop

U = lk(Z) ∧ Y [w] = Z (with Z fresh of arity 1)

The second computation is exactly the same. We move to the third:

lk(λv .U) = lk(X) −→
Dec−Fun

λv .U = X −→
Swap

X = λv .U −→
Meta−Var

X [v] = U

We observe that the computations from the second set of rules are identical in the first two cases,
but slightly different in the third case. On the contrary, the obtained solved form is the same in the
third case, but slightly different in the first case for which the second one can be deduced from the
first by anMη-step.

We now go on studying the matching/unification rules. First, we verify that the rules operate on
equational problems (linearity will be considered later):

Lemma 4.7. Assume that en equational problem P rewrites to P ′ by using one of the match-
ing/unification rules. Then, P ′ is an equational problem.

Proof. All rules preserve the property that pre-redexes are never applied. □

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Gaspard Férey and Jean-Pierre Jouannaud

The following sequence of properties shows that all rules are sound, that is preserve the solutions
of equational problems.

We start with the three rules checking arities. We have seen that arities are non-decreasing under
substitutions, and are even sometimes preserved. This is the basis for the soundness of the rules:

Lemma 4.8. Assume that |X | > |x |. Then the elementary unification problems X [x] = λy.v and
X [xy] = v have the same set of solutions.

Proof. Without loss of generality, we assume that y < x and restrict our attention to solutions
σ such that y < Dom(σ). Since |X | > |x |, a substitution for X must be of the form {X 7→ λxz.u}.
Such a substitution σ is a solution of X [x] = λy.v iff (λz.u){x 7→ x} = λz.u = (λy.v)σ = λy.vσ ,
which holds true iff u{z 7→ y} = vσ , which in turn holds true iff σ is a solution of X [xy] = v . □

Lemma 4.9. The elementary matching problem X [x] = u has no solution if ar (X [x]) > ar (u).

Proof. By non-decreasingness, ar (X [x]σ) ≥ ar (X [x]) > ar (u). □

Lemma 4.10. Assume that |X | > |x | and f ∈ F ∪ {@} ∪ X. Then, the elementary unification
problem X [x] = f (u) has no solution.

Proof. Again, ar (X [x]σ)≥ar (X [x])>0=ar (f (uσ))=ar (f (u)σ), since xσ =x when f ∈ X. □

We now move to the case where extra-variables occur in right-hand sides, whether protected or
not, starting with the cases of unprotected variables:

Lemma 4.11. Let u be a term containing a variable z < x ∪Var (P). Then, the elementary matching
problem X [x] = u has no solution in common with P.

Proof. Assume γ is a common solution for X [x] = u and P. By definition of a solution of P,
γ (X) = λx .v withVar (v) ⊆ x ∪Var (P). By assumption on z, X [x]γ and u have different sets of
free variables, hence X [x]γ ,α u, hence contradicting our assumptions. □

Lemma 4.12. Let u be a term containing an unprotected variable z < x . Then, the elementary
unification problem X [x] = u has no solution.

Proof. Assume γ is a solution for X [x] = u. By definition of a solution, γ (X) = λx .v with
Var (v) ⊆ x , hence z < Var (X [x]γ). By definition again, z < Dom(γ), hence zγ = z, and therefore
z ∈ Var (uγ). Since X [x]γ and uγ have different sets of free variables, no α-renaming can make
them equal, hence contradicting our assumption. □

Lemma 4.13. Let E be the elementary unification problem X [x] = u[Y [y]]q and P the unification
problem X [x] = u[Z [z]]q ∧ Y [y] = Z [z], where z = y ∩ (x ∪ BVar (u)) and Z is a fresh variable of
arity |Y | − |y | + |z |. Then, γ is a solution of P iff γ\Z is a solution of E.

Proof. Let x ′ (resp., y ′, z ′) be a vector of pairwise distinct fresh variables of length |X | − |x |
(resp., |Y | − |y |, |Z | − |z |)), and γ = {X 7→ λxx ′.w,Y 7→ λyy ′.w ′,Z 7→ λzy ′.w ′′} be a solution of the
generated problem. Remark that y ′ and z ′ have the same length so that we could actually identify
them. By definition of a substitution, we get λx ′w = uγ [λz ′.w ′′]q and λy ′.w ′ = λz ′.w ′′, hence
λx ′.w = uγ [λy ′.w ′]q , showing that γ\Z is a solution to the original problem.
Conversely, let γ = {X 7→ λxx ′.w,Y 7→ λyy ′.w ′} be a solution of the original problem. Using

the previous remark, we can tentatively extend γ as γ ′ by letting γ ′(Z) = λzy ′.w ′. By definition of
substitutions, λx ′.w = uγ [λy ′.w ′]q . It follows that both sides of the equations have the same set of
free variables, henceVar (w ′) ⊆ y ′ ∪ BVar (u) ∪ (Var (w) \ x ′) ⊆ y ′ ∪ BVar (u) ∪ x ∪Var (E) ⊆

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:13

y ′ ∪ z ∪ Var (E). HenceVar (λzy ′.w ′) ⊆ Var (E) = Var (P), and γ ′ satisfies the requirements to
be a candidate solution of P . Showing that it satisfies P is routine. □

We can now conclude:

Lemma 4.14. The matching/unification rules are terminating and preserve solutions of matching
and unification problems.

Proof. Termination of the matching rules is clear. For unification, we interpret an equational
problem by the multiset of interpretations of its elementary equations, so that it is enough to show
that the interpretation of each elementary equation generated by a unification rule is strictly less
than the interpretation of its left-hand side. An elementary equation u = v is interpreted by the
quadruple ⟨m,n,p,q⟩, wherem is the size of the equation from which all pre-redexes have been
removed, n = 1 if u is not a pre-redex otherwise 0, and p = 1 if ar (u) > ar (v) otherwise 0, and q is
the number of variables occurrences in v . It is easy to see that all rules but the last three generate
elementary equations whose interpretation’s first component has decreased strictly. Now, Swap,
Flip, Drop decrease respectively their second, third, fourth component without changing their
previous ones. In the case of Drop, this follows from the easy property that z ⊊ y.

Preservation of solutions follows from: for the first four rules, the fact that they apply above the
fringe since they can’t apply to an equation resulting from any other rule application; Lemma 4.8
for Meta-Var; Lemma 4.9 for Fail-Arity; Lemma 4.11 for Fail-Protect; Lemma 4.10 for Fail-Arity;
Lemma 4.12 for Fail-Protect; commutativity of equality for Swap and Flip; and Lemma 4.13 for Drop
(preservation is relative here to the variables of the initial problem). □

We now give the characterization of equational problems in normal form for those rules:

Definition 4.15 (Solved forms).
(1) An equation u = v is in arity solved form if u is a pre-redex such that ar (u) ≤ ar (v);
(2) An equational problem is in solved form if it is either the constant ⊥, or a conjunction∧

Xi [xi] = vi of equations in arity solved form such that for all i ,Var (vi) ⊆ xi and for all
i, j, Xi <MVar (vj) and for all i , j, Xi , X j .

Lemma 4.16.
(1) An equation is in arity solved form iff it is irreducible by all rules but Fail-Protect, Fail-Protect,

Drop and Meta-Abs;
(2) Drop and Meta-Abs preserve arity-solved forms.

Proof. (1) The only if case being clear, let us assume that no rule other than Fail-Protect, Fail-
Protect, Drop and Meta-Abs can apply u = v . Necessarily u = X [x] otherwise one of the Dec rules,
Conflict or Swap rules would apply. Assuming |x | < |X |, then v must be some pre-redex Y [y]
otherwiseMeta-Abs, Fail-Arity or Fail-Arity would apply. Because Flip doesn’t apply by assumption,
we conclude that |X | − |x | ≤ |Y | − |y |, hence u = v is in arity solved form.

(2) The application conditions of Drop imply that the Dec rules, Conflict, Meta-Var, Swap and Flip
don’t apply. From (1), it follows that Drop applies only on equations in arity solved form.

(3) The case of Meta-Abs follows from the definition of arity. Consider now Drop. If q = Λ, then
|X | − |x | ≤ |Y | − |y | = |Z | − |z | and the first generated equation is in arity solved form. Otherwise
|X | = |x |. The first generated equation is in arity solved form, as was the input equation. The
second generated equation is in arity solved form because |Z | − |z | = |Y | − |y |. □

Lemma 4.17. All rules preserve the following two properties of an unification problem P :

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Gaspard Férey and Jean-Pierre Jouannaud

(1) For all equation not in arity solved form u = v ∈ P , meta-variables inMVar (u) ∪MVar (v)
are linear in P .

(2) For all equation in arity solved form X [x] = v ∈ P , X is linear in P and all occurrences of a
non-linear meta-variable Z in v are exclusively applied to variables inVar (v) ∪ x .

Proof. All rules but Meta-Abs, Fail-protect and Drop preserve linearity of elementary equations,
hence both properties (1) and (2) are preserved in that case. The case of Meta-Abs and Fail-Protect
is clear. We are left with Drop which operates on equations in arity solved form. From (2), non-
linear meta-variables in right-hand sides are applied to locally bound or left-hand side variables,
which prevents the application of Drop in that case. On the other, any application of Drop to linear
meta-variable produces equations that satisfy the property since z ⊆ y and z ⊆ x ∪ BVar (u). □

Lemma 4.18. Let P be a linear (matching or unification) equational problem: its normal form is in
solved form.

Proof. Let Q be the normal form of P . By Lemma 4.16 (1), all equations in Q are in arity-solved
form. By Lemma 4.17 (2), left-hand sides pre-redexes are linear in Q . We are left proving that for
all X [x] = v ∈ Q ,Var (v) ⊆ x . Assume it is not the case, and let y ∈ Var (v) \ x . Either y occurs
protected and Drop applies, or else Fail-Protect applies. □

Lemma 4.19. Solved forms of equational problems are computed in linear time.

Proof. First, note that the matching and unification rules check a fixed number of symbols
belonging to the head of the left-hand and right-hand side of each equation belonging to a given
equational problem in turn. It is therefore enough to show that the total number of matching or
unification steps is linear in the size of the problem. Finally, because meta-variables appear linearly
in a given equational problem, it is enough to consider every elementary equation separately.

The set of rules common to unification and matching applies to an elementary equation u = v a
number of times bound by |F Pos(u)|, and yields a number of elementary equations whose whole
size is bound by |u | + |v |. Failure rules may apply only once. This concludes the case of matching,
we continue with the remaining unification rules. Swap and Flip may apply only once to a given
equation, and leave the size of the problem invariant. Finally, the conditions for applying Drop
ensure that no other rule will ever apply after any sequence of Drops. Further the total number
of applications of Drop to a given equation is bound by the number of protected variables to be
eliminated, hence by its size. This shows that the whole unification process is linear. □

We are left extracting most-general unifiers from equational problems in solved form:

Lemma 4.20. A solved form P = ∧iXi [xi] = vi has a unique (up to renaming of bound variables)
most general unifiermдs(P) = {Xi 7→ λxiλz.(vi z)}i , that is, every ground solution of P is a ground
instance of σ .

Proof. First, Xi [xi]σ = λz.(vi z). On the other hand, by definition of a solved form, viσ = vi .
Hence Xi [xi]σ =α∪Mη viσ , hence σ is a unifier of the solved form.
Instantiating the equation vi =Mη Xi [xi]σ with an arbitrary solution γ of P , we get viγ =

Xi [xi]σγ (Mη-steps disappear, as stressed in subsection 3.2). Using now the fact that γ is a solution
yieldsXi [xi]γ = Xi [xi]σγ , showing that γ is an instance of σ by itself (as in the first-order case). □

Example 4.21. Consider the two solved forms obtained at example 4.6: U = lk(λv .Z [v]) ∧
Y [w,v] = Z [v] andU = lk(Z) ∧Y [w] = Z , where |Z | = 1 for both cases. The most general solution
is {U 7→ lk(λv .Z [v]),Y 7→ λwv .Z [v]} for the first, and {U 7→ lk(Z),Y 7→ λw .Z } for the second.
Consider now the matching solved form obtained at example 4.6: X [w] = X ′[w]. The matching

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:15

substitution obtained is {X 7→ λw .X ′[w]}. It would of course be possible to extract the better mgs
{X 7→ X ′} to the price of some more technicalities.

Pattern matching and unification of linear patterns is therefore quite easy: first, reduce the initial
pattern matching problem L = u, or unification problem L|p = L′ |p′ , to a solved form. Then extract
the matching substitution or the most general unifier from the solved form. Therefore:

Theorem 4.22. The matching problem results in a single matching substitution when it succeeds,
computable in linear time. The unification problem results in a single (up to α) most general solution
when it succeeds, computable in linear time.

Note that there is no mention of types in this algorithm. A natural question is whether the most
general solution is typed when two linear patterns get unified, and whether it coincides with the
one obtained when unifying dependently typed linear patterns. This question will be addressed in
a forthcoming paper, in which the linearity restriction on patterns is removed.

5 LOCAL PEAKS IN REWRITE THEORIES
Rewrite theories have two kinds of local ancestor peaks, homogeneous ones, between functional or
higher-order reductions, and heterogeneous ones, which mix both kinds of reductions. We analyze
here which local ancestor peaks enjoy decreasing diagrams for free, and which do not. Some results
in this section will be reused in forthcoming papers, those that do not rely on the left-linearity
assumption for the rewrite rules, nor on orthogonal functional reductions.

5.1 Decreasing diagrams for free
A key property of plain first-order rewriting is that there are three possible kinds of local peaks
depending on the respective positions of the rewrites that define them. This property generalizes
trivially to higher-order rewrites with our definition of set of positions for patterns:

Lemma 5.1. Given terms s, t such that s
p
←−
i :L→R

u
q
−→

j :G→D
t , then, there are three possibilities: (i) p#q

(disjoint peak case); (ii) q ≥P p · FL or p ≥P q · FL (ancestor peak case); and (iii) p = q · o with
o ∈ FPos(L) or q = p · o with o ∈ FPos(G) (overlapping peak case).

In the case of plain rewriting, two non-overlapping rewrite steps issuing from a same term
commute, a major component of any confluence proof. When the steps occur at disjoint positions,
this property, which holds for any monotonic relation, remains true for rewriting modulo a theory,
hence all disjoint peaks have decreasing diagrams for free. This is not the case, however, when the
steps occur at positions whose one is an ancestor of the other, because the modulo part of the above
rewrite may interact with the rewrite below. Our definition of higher-order rewriting, however,
enjoys a similar property, because the fringe of a rewrite step protects positions below it.

In the coming lemma, “LAP” stands for linear ancestor peak, and “a” for above, the β-step being
above a higher-order step. It applies to any higher-order rule, left-linear or not.

Lemma 5.2 (LAPβa). Let u be a term, p,q ∈ Pos(u) such that q ≥P p · Fβ and s
p
←−
β
u

q
−→
j ∈R

t . Then

s
Q
=⇒
j

p
←−
β
t for some set Q of parallel positions of s such that Q ≥P p.

Proof. By assumption,up = sp = tp ,u |p = (λx .M N), and s |p = Mσ , where σ = {x 7→ N }. There
are two cases:

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Gaspard Férey and Jean-Pierre Jouannaud

The case where q = p · 2 · q′ and t |p = (λx .M P) with N
q′
−→
j
P . This requires several j-steps at the

parallel positions of x inM . Then s = u[Mσ]p
p ·Q ′
=⇒
j
u[M{x 7→ P}]p

p
←−
β
u[(λx .M P)]p = t .

Otherwise, q = p · 12 · q′, that is, M |q′ = u |q−→
j
t |q . Then, s = u[Mσ [u |qσ]q′]p . By Lemma 3.12,

u |qσ−→
j
t |qσ , hence, by Lemma 3.11, s−→

j
u[Mσ [t |qσ]q′]p . On the other hand, t |p = (λx .P N), where

P =M[t |q]q′ , therefore t = u[(λx .P N)]p
p
−→
β
u[Pσ]p = u[Mσ [t |qσ]q′]p . We are done. □

The case of a local peak s
p
←−
i
u

q
−→
j
t , where the higher-order step with i : L→ R applies above

another step belonging to R ∪ β , a situation called (LAPRa), is shown at Figure 3 (left). (LAPRa)
does not apply to non-left-linear rules. Its proof requires an important preliminary result:

Lemma 5.3 (Preservation). Let u
p
−→
i :L→R

v with L linear and q ∈Pos(u) such that q≥P p ·FL . Then

uq = u[Z [z]]q
p
−→
i

w for somew , where z is the list of variables bound above q in u, Z fresh, |Z | = |z |,

and v = wuq = w{Z 7→ λz.u |q}.

Proof. By definition of splitting, u = tτ , where t = uq = u[Z [z]]q and τ = uq = {Z 7→ λz.u |q}.
Since q ≥P p · FL , then q = p · o · q′, where o ∈ FL is the position of a pre-redex in L. Hence

L|o = X [x] for some meta-variable X and variables x bound above o in L.
By definition of higher-order rewriting, u |p = Lγ for some substitution γ . By definition of a

substitution, γ (X) = λx .M , and by the previous property, X [x]γ = M = u |p ·o , henceM |q′ = u |q . As
a consequence, u |p ·o[Z [z]]q′ = M[Z [z]]q′ .
Let now θ be the substitution identical to γ except for the meta-variable X for which θ (X) =

λx .M[Z [z]]q′ . We have θ (X)τ =λx .M[u |q]q′ = λx .M[M |q′]q′ =λx .M =γ (X), hence γ =θτ .
Since L is linear, there is a single pre-redex containing the meta-variable X . As a consequence,

Lθ = u |p [X [x]θ]o = u |p [(M[Z [z]]q′]ou |p [u |p ·o[Z [z]]q′]o = u |p [Z [z]]o ·q′ , and therefore uq = u[Lθ]p .

By definition of higher-order rewriting, Lθ
Λ
−→
i
Rθ , and by monotonicity, uq

p
−→
i
u[Rθ]p = w .

By definition of higher-order rewriting again, v = u[Rγ]p = u[Rθτ]p = (u[Rθ]p)τ = wuq . □

As already said, (LAPRa) requires the linearity assumption.

Lemma 5.4 (LAPRa). Let R be a left-linear rewrite system, i :L→R ∈R, j ∈R ∪ β , u be a term, and

p,q ∈Pos(u) such that q≥P p ·FL and s
p
←−
i
u

q
−→
j
t . Then, s

≥Pp
−→−→
j

p
←−
i
t .

Proof. Splitting u at q yields u =vσ , where v =uq = u[Z [z]]q and σ =uq = {Z 7→ λz.u |q} is
preserving since u |q cannot be an abstraction by definition of a pattern and is normal as a subterm
of u |p . By assumption, u |q−→

j
t |q , and by monotonicity, σ (Z)=λz.u |q−→

j
λz.t |q . Let τ be σ with the

exception τ (Z) = λz.t |q . Then σ−→
j
τ and by Lemma 3.11, u = vσ−→

j
vτ = t . By Lemma 5.3, v

p
−→
i
w

for somew such that s=wσ . By Lemma 3.13, u = vσ −→−→
j

wτ . The result follows. □

This ancestor peak property is more complex than for first-order computations since we need
the assumption that the rewrite rules are left-linear, which is of course true of all first-order rewrite
rules, and is true as well of all rules of the theory of global states.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:17

Note that whenever X occurs self-nested in a right-hand-side, R[X [u]]p , such that ui q = λz.X [t]

for some i , this right-hand-side can be replaced with R[(λx .X [v] λz.X [t])]p with vj = uj for i , j
andvi = ui [(x z)]q . For instance, instead of using the rule f (λx .X [x])−→X [д(λz.X [h(z)])] one may
use f (λx .X [x])−→(λx .X [д(λz.(x z))] λz.X [h(z)]). In case the rule has critical pairs, they will most
presumably require to be joined with β-steps which make this transformation of little interest.

5.2 Critical peaks
We can now define critical peaks:

Definition 5.5. Let i : L → R and j : G → D be two rules in R and o ∈ FPos(L) such that the
equation L|o = G has a most general solution σ . Then, the peak Rσ

Λ
←−
i
Lσ

o
−→
j
Lσ [Dσ]o is called a

critical peak of j onto i at position o. Its associated critical pair is ⟨Rσ ,Lσ [Dσ]o⟩.
This definition makes sense: since o ∈ FPos(L), then o <P FL , and therefore, o ∈ FPos(Lσ).

Using standard techniques, we then get the analog of Nipkow’s critical pair lemma developed for
the case of simply typed higher-order rewrite rules:

Lemma 5.6 (Critical pair lemma). Assume s
p
←−
i

u
q
−→
j
t is an overlapping peak of j : G → D onto

i : L → R at position o ∈ FPos(L) such that p = q · o. Then, there is a critical peak s ′
Λ
←−
i

u ′
o
−→
j
t ′

and a substitution θ such that u ′θ = u |p , s ′θ = s |p and t ′θ = t |p .

Thanks to our definition of higher-order rewriting, the proof is similar to the first-order case:

Proof. By definition of higher-order rewriting, there exists some substitution γ such that Lγ =
u |p , Gγ = u |q , s |p = Rγ and t |q = Dγ . Since o ∈ FPos(L), then o <P FL , and since Lγ = u |p , then
u |p []o = Lγ []o , hence t |p = u |p [t |q]o = (Lγ [Dγ]o) = L[D]oγ .

Since o ∈ FPos(L), (Lγ)|o = L|oγ , hence L|oγ = Gγ . Therefore, γ is a solution of the equation
L|o = G . Let σ be its most general unifier. Then, there exist a substitution θ such that σθ = γ . Hence
u[Rσθ]p = s and u[L[D]oσθ] = t . Since s ′ = Rσ and t ′ = Lσ [Dσ]o , we get the result. □

5.3 Orthogonal functional reductions
The confluence proof will not be based on using β-rewrites, nor parallel β-rewrites, but, as in Tait’s
confluence proof of the lambda-calculus, orthogonal β-rewrites (called parallel reductions in [2]).
Our definition is essentially Tait’s, but makes the rewriting positions explicit.

To this end, we first define the product of sets of positions:
Definition 5.7. Given a set of parallel positions P and a familyQ of sets of positions strictly below

Λ indexed by P , we define the orthogonal product P ⊗ Q as the set P ⊎
⊎

p∈P p ·Qp .
Lemma 5.8. Given a set of positionsO there exist a unique set of parallel positions P ⊆ O and family

Q < Λ of sets of positions such that O = P ⊗ Q .

Proof. P = {p ∈ S | ∀q ∈ S,p ≯ q} and Qp = {q > Λ | p · q ∈ S} □

P is called the parallel part of O , written O , while
⋃

p∈P p · Qp is called the residual part of O ,
written O . Note that O = O ⊎O , O >P O and that whenever O , �, O , � and O ⊂ O .

Definition 5.9 (Orthogonal reductions). Orthogonal rewriting, written u
O
⊗=⇒
β

v , is the smallest

reflexive relation on terms such that u
O
⊗=⇒
β

s and s
O
=⇒
β
v imply u

O
⊗=⇒
β

v .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Gaspard Férey and Jean-Pierre Jouannaud

The alternative choice of rewriting first at positions in O , instead of first in O , would yield a
more complex calculation for O , explaining our definition.
Note that orthogonal rewriting contains parallel rewriting. Furthermore it is easy to show that

our definition of orthogonal reduction coincides with Tait’s parallel rewriting. This follows from

the property: t
P
⊗=⇒
β

u
Q
⊗=⇒
β

v implies t
P∪Q
⊗=⇒
β

v if Q ̸≥P P , which is easily proved by induction on P .

We shall need several well-known properties of (Tait’s) orthogonal β-reductions: monotonicity,
stability, commutation with any other monotonic rewrite relation, and strong confluence. Besides
the following properties will be needed for the coming analysis of orthogonal ancestor peaks.

Lemma 5.10. Assume q ∈ Pos(u) and O = P ⊎Q ⊎ R ⊆ Pos(u) with P#q, Q ≥P q and R<P q.

Then u
O
⊗=⇒
β

v iff u
P
⊗=⇒
β

Q
⊗=⇒
β

R
⊗=⇒
β

v .

Proof. It suffices to notice that
P
⊗=⇒
β

preserves Q and R and
Q
⊗=⇒
β

preserves R. □

Lemma 5.11. (λx .M N)
O
⊗=⇒
β

t with Λ ∈ O if and only if O = {Λ} ⊎ 11 ·P ⊎ 2 ·Q , M
P
⊗=⇒
β

M ′,

N
Q
⊗=⇒
β

N ′ and t = M ′{x 7→ N ′}.

5.4 Orthogonal decreasing diagrams for free
We investigate here the linear ancestor peak properties of orthogonal β-reductions. Unlike the
“above case”, the “below case” listed first follows easily from Lemma 5.2 (LAPβa).

Lemma 5.12 (LAPOb). Let s
q
←−
Rll

u
O
⊗=⇒
β

t for some set O >P q. Then, s
≥Pq
⊗=⇒
β

r
q
←−
Rll

t .

Besides u |q = Lγ and s = u[Rγ]q such that γ ⊗=⇒
β

σ , t = u[Lσ]q and r = u[Rσ].

Proof. Since patterns are β-normal, O ≥P q · FL and from Lemma 5.3 (extended to the set O
of parallel positions below the fringe), uO

q
−→
Rll

s ′ for some s ′ such that s = s ′uO . By definition of

orthogonal rewriting, uO ⊗=⇒
β

γ for some γ such that t = uOγ .

We conclude that both s = s ′uO ⊗=⇒
β

s ′γ and, by stability, t = uOγ
q
−→
Rll

s ′γ . □

Definition 5.13. A non-empty set of position O ⊆ Pos(u) is said to be rigid in u if there exists
q ≤P O such thatVar (u |O) ⊆ Var (u |q).

If Q is rigid in u, we can always choose q = дlb(O), the greatest lower bound of O w.r.t. ≤P .
Note also that a position o ∈Pos(u) is a singleton set of rigid positions in u.

Lemma 5.14 (LAPOa). Let s
P
⇐=⊗
β

u
q
−→
Rll

t , where P ̸≥P q. Then s
Q ′
=⇒
Rll

v
P
⇐=⊗
β

t where Q ′≥P (P ∪ {q}).

This implies that s = u ′uq , v = u ′σ and t = uqσ such that uq
P
⊗=⇒
β

u ′, uq −→
Rll

σ .

Note that (P ∪ {q}) are positions in s , hence the condition onQ ′ makes sense. We could of course
conclude P ̸≥PQ ′, since it is implied by Q ′≥P (P ∪ {q}), which is therefore more precise.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:19

Proof. We prove a more general result for which u
Q
=⇒
Rll

t , with P ̸≥P Q and Q is a set of rigid

positions of u. We then conclude that s
Q ′
=⇒
Rll

v for some set Q ′ of positions of s such that Q ′≥P (P ∪Q).

We prove the result by induction on the set of positions P using the well-founded multiset extension
≻mul of the size ordering on positions (a set is of course a multiset).
If P or Q is empty, the result is trivial. Otherwise, there are two cases depending whether Λ∈P .

If Λ < P , then u = f (u) and f (s)
P
⇐=⊗
β

f (u)
Q
−→
Rll

f (t) with si
Pi
⇐=⊗
β

ui
Qi
=⇒
Rll

ti . Since Q is rigid in u,

then Qi is obviously rigid in ui . Note further that in case two different subsets Qi and Q j are non-
empty, дlb(Q) = Λ andVar (ui |Qi) ⊆ Var (u), the latter property being preserved by rewriting. Since

Pi ≺mul P , by induction hypothesis, si
Q ′i
=⇒
Rll

vi
Pi
⇐=⊗
β

ti , whereQ ′i ≥P Pi ∪Qi . The orthogonal β-steps can

be grouped together into v
P
⇐=⊗
β

t . For the Rll-steps, let Q ′ =
⋃

i i · Q
′
i , hence s = f (s)

Q ′
=⇒
Rll

f (v) = v .

From Q ′i ≥P Pi ∪Qi we deduce Q ′ ≥P P ∪Q , which concludes this case.
If Λ ∈ P , then u = (λx .M N), P = {Λ} ⊎ P ′, P ′ = 12 ·P1 ⊎ 2 ·P2 and Q = 12 ·Q1 ⊎ 2 ·Q2, where

P1,Q1 ∈ Pos(M) and P2,Q2 ∈ Pos(N) such that Mw
P1
⇐=⊗
β

M
Q1
=⇒
Rll

Mt and Nw
P2
⇐=⊗
β

N
Q2
=⇒
Rll

Nt . Since

P ∪Q = {Λ}, we only need to show that s
Q ′
=⇒
Rll

v
P
⇐=⊗
β

t for some Q ′ and v yet to be defined.

There are two cases, depending whether Q2 = �, the first one being itself split into two:

(1) Q2 , �, a case depicted at Figure 5. Let w = (λx .Mw Nw)
P ′
⇐=⊗
β

u
Q
=⇒
Rll

t . Since P ′ ̸≥P Q and

P ′≺mul P , by induction hypothesis,w
Q ′′
=⇒
Rll
(λx .Mv Nv)

P ′
⇐=⊗
β

t . HenceMw
Q ′′1
=⇒
Rll

Mv and Nw
Q ′′2
=⇒
Rll

Nv .

(a) Q1,�, henceдlb(Q)=Λ. SinceQ is a set of rigid positions inu, no variable bound aboveQ1 inu
can occur inM |Q1 . It follows that x <Var (M |Q1) and furthermore that β-reductions at P1 do not
instantiate terms atQ1, and therefore x <Var (Mw |Q ′1). By repeated applications of Lemma 3.11,

it follows that s = Mw {x 7→ Nw }
Q ′
=⇒
Rll

Mv {x 7→ Nv }, where Q ′ := Q ′′1 ⊎ {o ·Q
′′
2 : Mw |o = x}

is a set of parallel positions.

(b) Q1 =�. Then Mv =Mw and s
Q ′
=⇒
Rll

Mv {x 7→Nv }, where Q ′= {o · Q ′′2 : Mw |o =x} is a set of

parallel positions.

Since t
P ′⊎{Λ}
⊗=⇒
β

v = Mv {x 7→ Nv }, we are done in both cases.

(2) Q2 = �, hence Nt = N , a case depicted at Figure 6. This time, the variable x may occur below
the Rll-redexes inM , but there are no redexes in N . We split the orthogonal step into three parts:

u = (λx .M N)
2·P2
⊗=⇒
β
(λx .M Nw)=w

Λ
−→
β
M{x 7→ Nw } =

P1
⊗=⇒
β

Ms {x 7→ Nw } = s

rewrites at 12 · Q1 # 2 · P2, (λx .M Nw)
12 ·Q1
=⇒
Rll
(λx .Mt Nw)

2·P2
⇐=⊗
β
(λx .Mt N) = t . By stability

Lemma 3.12 used at all positions in Q1,M{x 7→ Nw }
Q1
=⇒
Rll

Mt {x 7→ Nw }
Λ
←−
β
(λx .Mt Nw). Since

P ̸≥P Q , then P1 ̸≥P Q1. Besides, since Q is rigid in u and Q2 = �, then Q1 must be rigid inM
and since substitutions don’t capture variables, Q1 is rigid inM{x 7→ Nw }. We can therefore

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Gaspard Férey and Jean-Pierre Jouannaud

apply the induction hypothesis to Ms {x 7→ Nw }
P1
⇐=⊗
β

M{x 7→ Nw }
Q1
=⇒
Rll

Mt {x 7→ Nw }, which

gives s = Ms {x 7→ Nw }
Q ′
=⇒
Rll

M ′{x 7→ Nw }
P1
⇐=⊗
β

Mt {x 7→ Nw } = v , where P ∪Q ≥P Q ′. Now

t = (λx .Nt N)
2·P2⊎Λ⊎12 ·P1=P
⊗=⇒
β

v ′′ and we are done. □

6 CONFLUENCE IN λF

We can now address the problem of confluence of a higher-order rewrite theory λF .
We assume given a set Rll of left-linear rewrite rules, and will consider the case where the

relation generated by Rll is terminating. The other rewrite relations to be considered are =α and β .
For β , we shall need orthogonal reductions, as previously defined, introduced by Tait under the
name of parallel reductions for showing confluence of the λ-calculus.

Theorem 6.1. Let (Rll) be a terminating, left-linear rewrite system whose all critical pairs are
joinable with Rll. Then λF is confluent.

Proof. Let −→ = −→
Rll
∪ ⊗=⇒

β
. The relations −→ and −→

λF
verify the assumptions of the following

well-known property: assume
1
←→←→ ⊆

2
←→←→ and

2
−→−→ ⊆

1
−→−→, then Church-Rosser of

2
−→ implies

Church-Rosser of
1
−→. We will therefore apply van Oostrom’s decreasing diagram method to the

relation −→ and conclude that −→
λF

is confluent. To this end, we use for labels ordered pairs defined as

follows: ⟨0,u⟩ for u−→
Rll

v ; and ⟨1,⊥⟩ for u ⊗=⇒
β

v , ⊥ being a don’t care constant. Labels are compared

lexicographically, the first argument in the order on natural numbers, the second in the order −→−→
Rll

, ⊥

being chosen minimal.
We now show that all local peaks have decreasing diagrams.

Let s
P
←− u

Q
−→t be an arbitrary local peak, where P ,Q are either a set of orthogonal positions (for

β) or a single position (for Rll).

(1) First, rewrite steps of monotonic relations always commute when P#Q , yielding a DD.

We are now left with all peaks for which ¬(P#Q), which we consider in turn:

(2) s
P
⇐=⊗ u

Q
⊗=⇒ t . Orthogonal β-reductions are known to be joinable in at most one step from

each side, hence s
P ′
⊗=⇒ v

Q ′
⇐=⊗ t for some P ′,Q ′,v , a DD.

(3) s
p
←−
i

u
q
−→
j
t with i : L → R ∈ Rll, j ∈ Rll and q ≥P p · FL . Lemma 5.4 (LAPRa) yields a

decreasing diagram without facing steps because labels decrease along reductions.

(4) s
p
←−
i

u
q
−→
j
t with i : L→ R ∈ Rll, j : G → D ∈ Rll, q ∈ p ·o and o ∈ FPos(FL). By Lemma 5.6,

there is a critical peak obtained by overlapping G onto L at position o. By assumption, this peak
is joinable with rules of Rll, hence the pair s, t is joinable by the monotonicity lemma 3.11 and
the stability Lemma 3.12. Note that there are no facing steps here, since labels decrease strictly
along Rll-reductions.

(5) s
O
⇐=⊗ u

q
−→
i
t , where i : L→ R ∈ Rll. The proof of this case is shown at Figure 4.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:21

From Lemma 5.10 we have s
R
⇐=⊗v

Q
⇐=⊗u ′

P
⇐=⊗u with O = P ⊎Q ⊎ R such that P#q, Q ≥P q

and R <P q. Besides, since u(q) ∈ F , then q < O and Q >P q. By commutation we eas-

ily get u ′
q
−→
i
t ′

P
⇐=⊗
β

t . By Lemma 5.12 we have v
q
−→
i
r
≥Pq
⇐=⊗
β

t ′ and by Lemma 5.14 we have

s=⇒
i
w

R
⇐=⊗
β

r . From Lemma 5.10 again, all three β-steps can be merged into a single orthogonal

facing stepw⇐=⊗
β

t . The step =⇒
i
w can then be linearized, hence we get a DD.

By Lemma 5.1, all cases have been considered, we are therefore done.

Note that the last case in the proof is actually a generalization of (LAPOa) and (LAPOb) to an
arbitrary local peak between β- and Rll-rewrites, which we could have singled out.

Example 6.2. SOL shows the confluence of the theory of global states for the case of simple types
with prenex polymorphism. We show below that it is confluent for any type discipline. To this end,
we need to show first that it’s untyped version is terminating, and then, that the critical pairs are
joinable. In the absence of β,0, first-order termination techniques can do. We are left with verifying
the joinability of critical pairs, these computations are presented inside individual boxes. In the
upper middle of each box appear two left-hand sides of rules whose superposition is inside braces.
The upper left-hand side is displayed in red, the lower one in blue. Next comes the unifier, then the
colored right-hand sides, then the reduced right-hand sides, and finally the joinability verification
itself, sometimes just an equality test. Colored rule names label the arrows.

Since the most general unifiers are identical for both choices of rules, we choose the second set.
The computations are not identical for both sets, since they will actually depend upon the number
of arguments of the meta-variables in the right-hand sides of the rules. Actually, all right-hand
sides are the same except for (lu), this will impact four critical pairs exactly.

ud(V ,

{
lk(X)
lk(λv .U)

}
)

ul↙ σ = {X 7→ λv .U } ↘l

ud(V ,X [V])σ ud(V ,U)σ
| | | |

ud(V ,U) = ud(V ,U){
lk(λw .lk(Y [w]))
lk(λw .U)

}
l l↙ σ = {U 7→ lk(Z),Y 7→ λwv .Z [v])} ↘l

lk(λv .Y [v,v])σ Uσ
| | | |

lk(λv .(Z [v])) =Mη lk(Z)

lk(λw .

{
lk(Y [w])
lk(λv .U)

}
)

l l↙ σ = {Y 7→ λwv .U } ↘l

lk(λw .Y [w,w])σ lk(λw .U)σ
| | | |

lk(λw .U) = lk(λw .U)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Gaspard Férey and Jean-Pierre Jouannaud

lk(λw .

{
lk(Y [w])
lk(λv .lk(Y ′[v]))

}
)

l l↙ σ = {Y 7→ λwv .lk(Y ′[v])} ↘l l

lk(λv .Y [v,v])σ lk(λw .lk(λv .Y ′[v,v]))σ
| | | |

lk(λv .lk(Y ′[v]))
l l
−→ lk(λv .Y ′[v,v])

l
←− lk(λw .lk(λv .Y ′[v,v]))

lk(λw .

{
lk(Y [w])
lk(λv .ud(v,X [v]))

}
)

l l↙ σ = {Y 7→ λwv .ud(v,X [v])} ↘lu

lk(λv .Y [v,v])σ lk(λw .lk(X))σ
| | | |

lk(λv .ud(v,X [v]))
lu
−→ lk(λv .X [v]) =Mη lk(X)

l
←− lk(λw .lk(X))

lk(λw .

{
ud(w,X [w])
ud(V , lk(X ′))

}
)

lu↙ σ = {V 7→ w,X 7→ λw .lk(λv .X ′[v])} ↘ul

lk(X)σ lk(λw .ud(V ,X ′[V]))σ
| | | |

lk(λw .lk(X ′))
l
−→ lk(λv .X ′[v]) =α lk(λw .X ′[w])

lu
←− lk(λw .ud(w,X ′[w]))

lk(λw .

{
ud(w,X [w])
ud(U ,ud(V ,W))

}
)

lu↙ σ = {U 7→ w,X 7→ λw .ud(V ,W)} ↘uu

lk(λw .X [w])σ lk(λw .ud(V ,W))σ
| | | |

lk(λw .lk(λw .ud(V ,W)))
l l
−→ lk(λw .ud(V ,W))

ud(V ,

{
lk(λv .X1[v])
lk(λv .ud(v,X2[v]))

}
)

ul↙ σ = {X1 7→ λv .ud(v,X2[v])} ↘lu

ud(V ,X1[V])σ ud(V , lk(λv .X2[v]))σ
| | | |

ud(V ,ud(V ,X2[V]))
uu
−→ ud(V ,X2[V])

ul
←− ud(V , lk(λv .X2[v]))

ud(V ,

{
lk(λv .X1[v])
lk(λv .lk(λw .X2[w,v]))

}
)

ul↙ σ = {X1 7→ λv .lk(λw .X2[w,v])} ↘l l

ud(V ,X1[V])σ ud(V , lk(λw .X2[w,w]))σ
| | | |

ud(V , lk(λw .X2[w,V])))
ul
−→ ud(V ,X2[V ,V])

ul
←− ud(V , lk(λw .X2[w,w]))

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:23

ud(V ,

{
ud(W ,U)
ud(W , lk(λw .X2[W]))

}
)

uu↙ σ = {U 7→ lk(λw .X2[W])} ↘ul

ud[W ,U]σ ud(V , ud(W ,X2[W]))σ
| | | |

(ud(W , lk(λw .X2[w]))
ul
−→ ud(W ,X2[W])

uu
←− ud(V ,ud(W ,X2[W]))

ud(V ,

{
ud(W ,U)
ud(W ,ud(V ′,U ′))

}
)

uu↙ σ = {U 7→ ud(V ′,U ′)} ↘uu

ud(W ,U)σ ud(V , ud(V ′,U ′))σ
| | | |

ud(W ,ud(V ′,U ′))
uu
−→ ud(V ′,U ′)

uu
←− ud(V ,ud(V ′,U ′))

Hence, all critical pairs are joinable, or joinable moduloMη for two of them. It follows that the
theory of global states for a single location preserves confluence of the β-rule in the pure λ-calculus.
Note finally that most of these critical pairs are not development closed, since they need be

joined from both sides.

6.1 Ralationship to Nipkow’s higher-order rewriting
Nipkow’s rewriting assumes terms to be simply typed, but it can be easily extended to other typing
disciplines. The major requirement is indeed that β-reduction is strongly normalizing as well as
η-expansion. The latter is obtained by restricting its application to functionally typed terms (which
can be obtained in our case by controlling the arity of expressions).

Assuming a subset T of the set of terms that satisfies these assumptions, we denote by u↓β , u↑η

and u↕ηβ , the β-normal form, the η-expanded form and the β-normal η-expanded form, respectively,
possibly omitting indices and exponents when convenient.
A rule “à la Nipkow” assumes η-expanded left-hand side patterns and η-expanded right-hand

sides as well as fully applied meta-variables of arity zero. To have both Nipkow’s rewriting relation
and ours defined in our setting, the pre-redex (X x) in a Nipkow’s pattern will correspond in our
syntax to the pre-redex X [x] in which ar (X) = |x |. It follows that a rule will have two different
writings dubbed Klop and Nipkow, respectively. We will denote by Rkp the set of higher-order Klop
rules, corresponding to a set Rnw of Nipkow rules, which must therefore be in η-expanded form.
In the Nipkow case, because meta-variables have arity zero, Klop’s notion of substitution is

nothing but the usual higher-order substitution. The meaning of the same expression Lσ for some
left-hand side of rule L will therefore depend whether the rule L→ R belongs to Rnw or Rkp : the
equality u = Lσ when L is a Klop left-hand side of rule becomes u =β 0 L′σ ′ for the corresponding
Nipkow left-hand side of rule L′. The same applies to unification of left-hand sides.
We now make these remarks formal:

Definition 6.3. u
p
−⇀
L→R

v for L→ R ∈ Rnw iff u = u↕, u |p =β 0 Lσ for some β-normal η-expanded
substitution σ and v = u[Rσ]p↕.

We write u
p
−⇀
Rnw

v when u
p
−⇀
L→R

v for some L→ R ∈ Rnw . As it is known that η-expanded forms

are closed under β-reduction and substitution, we have:

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Gaspard Férey and Jean-Pierre Jouannaud

Lemma 6.4. If u
p
−⇀
Rnw

v then u = u↕ and u
p
−→
Rkp
−→−→
β

v = v↕.

Lemma 6.5. For all u ∈ T such that u
p
−→
Rkp

v and v ∈ T then u↕ −⇀⇀
Rnw

v↕.

Proof. Wehaveu = u[Lσ]p = up {Z 7→ λz.Lσ } = upγ andv = u[Rσ]p = up {Z 7→ λz.Rσ } = upθ
with γ−→

R
θ . Since L is a pattern (Lσ)↓= L(σ ↓) and since it cannot be an abstraction we have,

u↕=
(
(upγ)↓

)
↑=

(
up↓ (γ↓)

)
↑ −⇀⇀
Rnw

(
up↓ {Z 7→ λz.R(σ↓)}

)
↕=

((
up {Z 7→ λz.Rσ }

)
↓
)
↑= v↕ □

Corollary 6.6. If u −→−→
βηRkp

v then u↕ −⇀⇀
Rnw

v↕.

Lemma 6.7. Assume a rewrite system R such that −→
β
∪−→
Rkp

is Church-Rosser. Then −⇀
Rnw

is Church-

Rosser on β-normal η-expanded terms of T .

Proof. Assume u ↼↼⇀⇀
Rnw

v . Then by Lemma 6.5, u = u↕, v = v↕ and u←→←→
βηRkp

v . By assumption,

u (−→
Rkp
∪ −→

β
)∗(←−
Rkp
∪←−

β
)∗ v and by Corollary 6.6, u −⇀⇀

Rnw
Rnw
↼↼−v . □

Theorem 6.8. Assume R is a left-linear system such that all critical pairs are joinable using −→
Rkp

and R is strongly normalizing. Then −⇀
Rnw

is Church-Rosser on β-normal η-expanded terms of T .

Proof. −→
R

satisfies the hypotheses of Theorem 6.1. We conclude that−→
β
∪−→
R

is Church-Rosser

and by Lemma 6.7, −⇀
Rnw

is too on β-normal η-expanded terms of T . □

This result is of course not really surpising, since it is known to hold for various type systems
for which β-reductions terminate, in which case T is the set of typable terms. What’s new here is
only that we abstract from a particular typing discipline.

7 CONCLUSION
Confluence of first-order rewrite rules is well understood, in both the terminating and non-
terminating cases. Confluence of left-linear higher-order rules on simply-typed λ-terms is well
understood too [12]. This is true as well of confluence of first-order rules in presence of β-reductions
for any type discipline for which β is terminating [4].
In this paper, we have described a condition on critical pairs which ensures preservation of

confluence in the untyped λ-calculus by a set Rll of rewrite rules whose left-hand sides are left-
linear patterns: if Rll is terminating and the critical pairs of Rll are joinable by rules of Rll. The
β-rule itself, on the other hand, cannot be used to join the critical pairs. In that case, confluence
can be obtained by joining nested critical pairs, as will be shown in the second paper of this series.
This other result does not subsume the present one, since nested critical pairs may be infinitely
many, as is the case with the theory of global states for a unique location [6], which is shown here
to preserve confluence of β-reductions by computing its finitely many critical pairs.

In order to define critical pairs, we had to unify left-linear patterns, where patterns are specific
untyped λ-terms whose definition ensures that erasing types from a simply-typed pattern in Miller’s
sense yields a pattern in our sense. Untyped patterns enjoy most general unifiers, in the same way
as Miller’s patterns do. Note that unification here looks purely syntactic, thanks to a definition
of substitution which incorporates β-reductions. The linearity restriction should not be essential:

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:25

having multiple occurrences of meta-variables requires using a merge rule in the unification case,
and checking terms for equality in the matching case.
One may wonder why we did not consider a well-known setting, like Klop’s combinatory

reduction systems [11] or Nipkow’s higher-order rewriting, or vanOostrom’s higher-order rewriting
systems [20], and then encode our notion of higher-order rewriting within their’s. One main reason
is that we always insist, in Dedukti, in using shallow encodings, hence do not want to encode the
λ-calculus itself as a higher-order calculus in such a setting. Further, our notion of meta-variable
has a fixed arity but may have missing arguments, which is unsual. Although one could fear that
the present setting becomes too specific for a wide application, we believe that this is not the
case, and that it can be used to show confluence of rewrite rules in other dependent type theories
without difficulty, as well as for other, related rewrite relations, as we have shown with Nipkow’s
higher-order rewriting.

One may also wonder whether considering parallel higher-order critical pairs could improve our
results. The difficulty here is that one of the decreasing diagrams for free, Lemma 5.4, breaks down.
It can of course be repaired, to the price of imposing that meta-variables do not occur embedded
in one another in the right-hand sides of the rules. This restriction looks of course very strong.
However, any expression such as X [Y] can be transformed into (X Y), hence eliminating this
embedding. There is of course a general transformation that will eliminate all embeddings, making
the use of parallel rewriting (and therefore parallel critical pairs) look attractive. The problem
however, is that right-hand sides such as (X Y) may result in the use of β-steps to join the critical
pairs, hence the joinability diagrams would not be decreasing. This may or may not happen, of
course. It is certainly possible to exhibit examples for which this transformation would work. We
have not encountered such a natural example so far. A forthcoming paper will therefore adress
directly an even more general left-linear case, by using orthogonal higher-order rewriting.

The case of non-left-linear rules is not touched at all here, it is indeed much more difficult since
adding such rules to the untyped λ-calculus results, in general, in loosing confluence, as shown by
Klop [11]. We however show in another forthcoming paper that for all Klop’s counter-examples,
confluence is preserved on appropriate subsets of λ-terms, hence showing a way to get around this
difficulty. Finally, mixing left-linear rules with right-linear ones, is a problem which is important to
us, because encodings of complex type theories in Dedukti are not purely left-linear, and of course
not purely right-linear either. We do not know yet whether we can obtain meaningful results for
this combination.

Acknowledgments: to Gilles Dowek for many discussions, Jiaxiang Liu for a chary reading,
and Vincent van Oostrom for his many suggestions and corrections to an earlier draft.

REFERENCES
[1] Ali Assaf, Guillaume Burel, RaphaÃńl Cauderlier, Gilles Dowek, Catherine Dubois, FrÃľdÃľric Gilbert, Pierre Halma-

grand, Olivier Hermant, and Ronan Saillard. Dedukti: a Logical Framework based on the lambda-pi-Calculus Modulo
Theory. draft, INRIA, 2019.

[2] Hendrik Pieter Barendregt. The lambda calculus : its syntax and semantics. Studies in logic and the foundations of
mathematics. North-Holland, Amsterdam, New-York, Oxford, 1981.

[3] Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. How to tame your rewrite rules, 2018. Draft.
[4] Daniel J. Dougherty. Adding algebraic rewriting to the untyped lambda calculus. Inf. Comput., 101(2):251–267, 1992.
[5] Gilles Dowek at all. The Dedukti system, 2016. Available from http://dedukti.gforge.inria.fr/.
[6] Gilles Dowek, Jean-Pierre Jouannaud and Jiaxiang Liu. Confluence in untyped higher-order theories. draft hal-, INRIA,

january 2019. Full version of a work presented at HOR 2016.
[7] Healfdene Goguen. The metatheory of UTT. In Peter Dybjer, Bengt Nordström, and Jan M. Smith, editors, Types for

Proofs and Programs, International Workshop TYPES’94, Båstad, Sweden, June 6-10, 1994, Selected Papers, volume 996 of
Lecture Notes in Computer Science, pages 60–82. Springer, 1994.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Gaspard Férey and Jean-Pierre Jouannaud

[8] Makoto Hamana. How to prove your calculus is decidable: practical applications of second-order algebraic theories
and computation. PACMPL, 1(ICFP):22:1–22:28, 2017.

[9] J. R. Hindley. An abstract form of the Church-Rosser theorem. i. J. Symb. Log., 34(4):545–560, 1969.
[10] Jean-Pierre Jouannaud and Jiaxiang Liu. From diagrammatic confluence to modularity. Theor. Comput. Sci., 464:20–34,

2012.
[11] Jan Willem Klop. Combinatory reduction systems. PhD thesis, CWI tracts, 1980.
[12] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theoretical Computer Science,

192:3–29, 1998.
[13] Dale Miller. A logic programming language with lambda-abstraction, function variables, and simple unification.

Journal of Logic and Computation, 1(4):497–536, 1991.
[14] Maxwell H. A. Newman. On theories with a combinatorial definition of ‘equivalence’. Ann. Math., 43(2):223–243, 1942.
[15] Mitsuhiro Okada. Strong normalizability for the combined system of the typed lambda calculus and an arbitrary

convergent term rewrite system. In Gaston H. Gonnet, editor, Proceedings of the ACM-SIGSAM 1989 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’89, Portland, Oregon, USA, July 17-19, 1989, pages 357–363.
ACM, 1989.

[16] Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Applied Categorical Structures, 11(1):69–94,
2003.

[17] Vincent van Oostrom. Confluence by decreasing diagrams. Theor. Comput. Sci., 126(2):259–280, 1994.
[18] Vincent van Oostrom. Developing developments. Theor. Comput. Sci., 175(1):159–181, 1997.
[19] Vincent van Oostrom. Confluence by decreasing diagrams converted. In Voronkov A., editor, RTA, volume 5117 of

Lecture Notes in Computer Science, pages 306–320. Springer, 2008.
[20] Vincent van Oostrom and Femke van Raamsdonk. Comparing combinatory reduction systems and higher-order

rewrite systems. In Jan Heering, Karl Meinke, Bernhard Möller, and Tobias Nipkow, editors, Higher-Order Algebra,
Logic, and Term Rewriting, First International Workshop, HOA ’93, Amsterdam, The Netherlands, September 23-24, 1993,
Selected Papers, volume 816 of Lecture Notes in Computer Science, pages 276–304. Springer, 1993.

u

s t

v w

v ′ w ′

l m

L ◁ l m ▷M

m

=

l

=
K ◁ l ,m

This is a
decreasing
diagram

Fig. 2. Decreasing diagram

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:27

L

G

R

GGG

L

D

R

DDD

q

i

q

i

≥P q ·FL

j

jjj

Fig. 3. Ancestor peaks in rewrite theories. L,G stand for terms rewriting to R,D, using a red rule in Rll and a
blue rule in Rll ∪β .

u t

u ′ t ′

v r

s w

Rll
q

Rll
q

Rll
q

Rll

β P#q

⊗

β P#q

⊗

β Q >P q

⊗

β ≥P q

⊗

β R<P q

⊗

β R<P q

⊗

⊗ ⊗

Le
m
m
a
5.
10

Le
m
m
a
5.
10

Commut.

Lemma 5.12

Lemma 5.14

Fig. 4. Construction of a decreasing diagram for heterogeneous local peaks.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Gaspard Férey and Jean-Pierre Jouannaud

Q

λx

@

P

M

M

x

Q

λx

@

P

N

N

x

R

λx

S

@

M

M

x

R

λx

S

@

N

N

x

R

S

M

M

R

S

N

N

Split Paste

Ind. Hyp.

Monotonicity (3.11)

>P Λ

Rll

>P Λ

Rll

Rll

>P Λβ

⊗

>P Λβ

⊗

Λβ Λβ

⊗ ⊗

Fig. 5. Construction of a decreasing diagram for peak: Lemma 5.14

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Confluence in (Un)Typed Higher-Order Theories by means of Critical Pairs 1:29

λx

@

M

xx

λx

@

N

xx

λx

@

M

xx

λx

@

N

xx

M N

M ′ N ′

Split PasteStability (3.12)

Ind. Hyp.

Commutation

Rll
≥P 11

Rll
≥P 11

Rll

Rll

β ≥P 2

⊗

β ≥P 2

⊗

β Λ β Λ

⊗

β

⊗

β

⊗ ⊗

Fig. 6. Construction of a decreasing diagram for peak: Lemma 5.14

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

	Abstract
	1 Introduction
	2 Labeled reductions
	2.1 Reductions
	2.2 Decreasing diagrams

	3 Higher-order rewriting
	3.1 Terms in F
	3.2 Functional reductions
	3.3 Higher-order reductions
	3.4 Rewrite theories
	3.5 The rewrite theory of global states

	4 Pattern matching and unification of linear patterns
	5 Local peaks in rewrite theories
	5.1 Decreasing diagrams for free
	5.2 Critical peaks
	5.3 Orthogonal functional reductions
	5.4 Orthogonal decreasing diagrams for free

	6 Confluence in F
	6.1 Ralationship to Nipkow's higher-order rewriting

	7 Conclusion
	References

