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Gaspard Férey and Jean-Pierre Jouannaud
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Abstract
In a series of papers, we develop techniques based on van Oostrom’s decreasing diagrams that
reduce confluence proofs to the checking of various forms of critical pairs for higher-order rewrite
rules extending β-reduction on pure λ-terms. The present paper concentrates on the case of
left-linear rewrite rules, assuming that critical pairs can be joined without beta-reduction steps.
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1 Introduction

User-defined higher-order rewrite rules are becoming a standard in proof assistants based on
intuitionistic type theory. This is true of Dedukti and Agda, and will be true of Coq next.
This raises the question of proving that these rules preserve consistency of the type theory.

Consistency of a type theory relies on three other properties: confluence, type preserva-
tion and strong normalization. In dependent type theories, confluence is needed to prove
type preservation and strong normalization, making all three properties interdependent if
termination is used in the confluence proof. This circularity can be broken by proving these
properties within a single induction [9], or by proving confluence on untyped terms first, and
then, successively, type preservation, confluence on typed terms, and strong normalization.

We focus here on confluence on untyped terms. The format of the higher-order rules is
classical: left-hand sides must be patterns [16, 15], which are extremely useful for describing
encodings of a type theory in another, a keen application to us. Considering untyped terms
requires simple adaptations of the usual higher-order rewriting definitions.

There are three main tools for analyzing confluence of a rewrite relation: Newman’s
Lemma [17], Hindley-Rosen’s Lemma [11], and van Ostrom’s decreasing diagrams Theorem [20,
22]. Since beta rewrites are non-terminating in pure lambda calculus, Newman’s Lemma
does not apply. And if the rules have non-trivial critical pairs, then Hindley-Rosen’s Lemma
does not apply either. Even its subtle use allowing for development-closed critical pairs [21]
is too restrictive for practical usage. One way out is the use of decreasing diagrams.

Van Oostrom’s theorem is abstract, its application to non-terminating term rewriting
relations conceals many difficulties [2]. Further, neither confluence nor termination are
preserved by adding a confluent and terminating set of rewrite rules to a λ-calculus. A
counter-example to termination in the simply typed λ-calculus is given in [18]. Numerous
counter-examples to confluence in the pure λ-calculus, due to Klop, are given in [14].

Our contribution is the description of the conditions under which sets of left-linear
higher-order rules preserve confluence of the untyped λ-calculus. Left-linear rules that are
terminating (along with β0) preserve confluence on all terms if their critical pairs are joinable.
When they are not, then their parallel critical pairs must be joinable. In both these cases,
β 6=0-steps can’t be used. When β 6=0-steps are needed, then nested critical pairs must be
checked, a result proved in separate papers [1, 8]. The case of left-linear rules is therefore
now fully understood. Examples illustrate our results.

We recall the notion of labeled reduction and decreasing diagram in Section 2, and
describe our higher-order setting in Section 3. Our two results come separately in Sections 4
and 5, along with examples. Confluence of non-left-linear rules are discussed in conclusion.
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XX:2 Confluence in (Un)Typed Higher-Order Theories

2 Labeled reductions

2.1 Reductions
Given a binary relation −→ on terms, called rewriting, we use: ←− for its inverse, =⇒ for its
parallelization, allowing one to rewrite at once several subterms of a given term, when none
is a subterm of another, and ←→, −→−→, and ←→←→, for its closures by, respectively, symmetry;
reflexivity and transitivity; and reflexivity, symmetry and transitivity (called convertibility).

Rewriting terms extends to substitutions as expected.
A term s is in normal form if there is no t such that s−→t. We define a normal form for an

arbitrary term s as a term t in normal form, denoted by s↓, such that s−→−→ t. Termination is
the impossibility of an infinite rewriting sequence t0−→ t1−→ . . .−→ tn−→ . . .. Termination
guarantees the existence of normal forms for every term. A local peak is a triple of terms
(s, u, t) such that s←− u−→ t; u is the source and s, t are its reducts. Two terms s, t
are joinable if s −→−→ v ←−←− t for some v, making the peak s←−u−→t itself joinable. The
property that every two convertible terms are joinable is called confluence (or Church-Rosser).
Confluence guarantees the unicity of normal forms for every term.

When rewriting terminates, it is well-known that the joinability of all local peaks implies
the confluence property, this is the so-called Newman’s lemma. When it does not, it is then
necessary to strengthen joinability, this is the rôle of decreasing diagrams.

2.2 Decreasing diagrams
In the following, we consider rewrite relations whose all elementary steps are equipped with
a label belonging to some well-founded set whose partial order is denoted by B.

I Definition 1 (Decreasing diagram [20]). Given a labeled relation −→ on an abstract set,
we denote by DS(m,n) the set of decreasing rewrite sequences of the form u

α−→−→ s
n−→t δ−→−→ v

such that the labels in α and β are strictly smaller than, respectively, m, and, m or n.
Given a local peak v

m←−u n−→w, a decreasing (rerite) diagram is a pair of decreasing

derivations v α−→−→ n−→ δ−→−→ t w.r.t. (m,n) and w
α′

−→−→ m−→ δ′

−→−→ t w.r.t. (n,m). The steps
labeled by α, α′, by δ, δ′, and by m,n are called the side steps, facing steps and middle steps
of the decreasing diagram, respectively.

Decreasing rewrite diagrams are abbreviated as DDs. Note that a facing step of a
decreasing diagram may be missing, its side steps are then absorbed by the middle ones.
Local peaks whose DDs have no side nor middle steps are called strongly joinable.

I Theorem 2 ([22]). A labeled relation is Church-Rosser if all its local peaks have DDs.

A relation whose all local peaks are strongly joinable is called strongly confluent.
van Oostrom’s theorem generalizes to rewriting modulo an equational theory, for example

=α in the λ-calculus, in which case B must be compatible with the equational theory [13].
Further, equational steps must have a mininal label.

3 Higher-order rewriting

Given now a set R of user-defined rewrite rules, we are interested in rewriting terms of
an untyped lambda calculus generated by three pairwise disjoint sets, a signature F of
function symbols, a set X of variables, and a set Z of meta-variables. We use small letters
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x, y, z, . . . , f, g, h, . . . for variables and function symbols, and reserve capital letters X,Y, Z, . . .
for meta-variables. The arity |a| of a ∈ F∪Z is fixed. We use the same notation |_| to
denote various other quantities, such as the length of a list, the size of an expression or the
cardinality of a set.

Were we to analyze the confluence of R alone, then, the situation would be similar to the
first-order case, at least when left-hand sides of rules are patterns in the sense of Miller [16].
Unfortunately, as is stressed in [2], modularity results do not scale to higher-order reductions,
preventing the possibility to deduce the confluence of R ∪ β from that of R. Our purpose in
the rest of this section is to analyze the calculus λF , made of R-reductions and β-reductions.

3.1 Terms in λF
λF is a mix of the pure lambda-calculus and Klop’s combinatory reduction systems [14].
Terms are those of the pure lambda calculus enriched with F -headed terms of the form f(u)
with f ∈ F , and meta-terms of the form Z(u) with Z ∈ Z, where u is a list of terms whose
length equals the arity of f or Z respectively. Only variables can be abstracted over. Var(M)
and MVar(M) are the sets of free variables and of meta-variables respectively, that occur in
M . A term M is closed if MVar(M)=∅, ground if Var(M)=∅. The grammar of terms is:

u, v := x ∈ X | (u v) | λx.u | f(u) | Z(v) where |u| = |f |, Z ∈ Z and |v| = |Z|

Positions in terms are words over the natural numbers (assuming |λx.| = 1), using · for
concatenation, Λ for the empty word, ≥P for the prefix order on positions (below), ≤P for
its inverse (above), >P for its strict part, and p#q for ¬(>P ∨≤P) (parallel).

Given a termM , we useM(p) for the symbol at positions p inM , and Pos(M), VPos(M),
MPos(M) for the following respective sets of positions of M : all positions, the positions of
free variables, and of meta-variables. A term M is linear if |MPos(M)| = |MVar(M)|.

Substitutions are capture-avoiding homomorphisms written as σ={x1 7→M1, . . . , xn 7→
Mn}, or σ={x 7→M}, where Mi has the form λyi.Ni if xi has arity |yi|. The substitution σ
is F-headed if its values Ni are F-headed. Dom(σ) = {x1, . . . , xn} ⊆ X ∪ Z is the domain
of σ while Ran(σ) =

⋃i=n
i=1 Var(Mi) is its image. Substitutions are extended to sequences of

terms or to substitutions in the natural way. We will use postfix notation for the application
of σ to a term t, writing tσ, or to a vector of terms t, writing tσ, or to a substitution τ ,
writing τσ, and call tσ (resp., tσ, τσ) the instance of t (resp., t, τ) by σ. The notation Pos(σ)
will have the obvious meaning of a sequence of Dom(σ)-indexed sets of positions.

As in λ-calculus, substituting in terms requires renaming bound variables to avoid
capturing free variables: xiσ = ti and yσ = y if y 6∈ Dom(σ); f(t)σ = f(tσ); (u v)σ =
(uσ vσ); and (λx.u)σ = λx.uσ if x 6∈ Dom(σ) ∪ Ran(σ) (otherwise, x must be renamed.)
The additional rule for meta-variables is as follows: if Z 7→ λx.s ∈ σ, then (Z(u))σ = s{x 7→
σ(u)}. Since only variables can be abstracted over, substituting a meta-variable ends up in
substituting (possibly several) variables. These substitutions compose as usual.

Given a term u and a list P ={pi}i=ni=1 of parallel positions in u, we define the term obtained
by splitting u along P as uP = u[Z1(x1)]p1 . . . [Zn(xn)]pn (u is cut below P ) and its associated
substitution by uP = {Zi 7→ λxi.u|pi}i=ni=1 (u is cut above P ), where, for all i ∈ [1, n], xi is
the list of all variables of u|pi bound in u above pi and Zi is a fresh meta-variable of arity |xi|.
Klop’s definition of substitution for meta-variables ensures that uPuP =u, as with first-order
terms, which justifies writing u=u[u|P ]P as a familiar shorthand.

In this paper, meta-variables are used for expressing splitting, which will play a major
rôle, as well as free variables in rewrite rules, and nested critical pairs. Apart from these
three different uses, terms will always be closed.
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3.2 Functional reductions
Two different kinds of reductions coexist in λF , functional and higher-order reductions.

Arrow signs are often decorated by the position p at which rewriting takes place, as in
s

p−→t or by a property that this position satisfies, as in u
≥Pp−→−→ v and in u = v↓≥PP (u is

obtained from v by normalizing its subterms v|p∈P .)
Functional reduction is the relation on terms generated by the rule (λx.u v)−→

βα
u{x 7→ v}.

The usually omitted α-index stresses that renaming bound variables is built-in. We also use
the particular cases β0 and β 6=0, for which v is a variable and is not a variable, respectively.
Note the difficulty that instantiating a β0-steps may yield a β 6=0-step. Note also that β0

defines a confluent and terminating rewrite relation. Let M↓ denote the normal form of M
with respect to β0. A term M is normal if M=M↓. A substitution is normal if its values
are normal. A substitution σ preserves a normal term s if sσ is normal, and is preserving if
it preserves all normal terms. Normal substitutions whose values are not abstractions are
preserving.

3.3 Higher-order reductions
Higher-order reductions result from two kinds of rules, whose left-hand sides are either
higher-order patterns in Miller’s sense [15] or algebraic expressions as in recursor rules [4].
Miller’s patterns require higher-order pattern matching to fire rules, while first-order pattern
matching suffices for algebraic left-hand sides. Our definition of pattern captures both.

I Definition 3 (Pattern). A pattern is a β-normal, F-headed, ground term whose all meta-
variables occur in maximal subterms, called pre-redexes, of the form (Z(x) y), where xy is a
list of pairwise distinct variables.

It is important to assume, as we shall see, that patterns are β-normal, not only normal.
The notion of fringe plays a key rôle:

I Definition 4 (Fringe). The fringe FL of a pattern L is the set of parallel positions of
its pre-redexes. We denote by FPos(L) = {p ∈ Pos(L) : p <P FL} the set of functional
positions of the pattern L, and by MVar(L, o), for o ∈ FL, the meta-variable Z such that
L|o = (Z(x) y). We also define Fβ = {1, 2} for convenience.

The terms (X(x, y) z) and Y (y, z) are the pre-redexes of the pattern L = f(λxyz.g((X(x, y) z),
(Y (y, z) a))), whose fringe is the set FL = {15, 1421}. Note that the set of functional positions
coincides with the usual notion for first-order terms.

Since patterns are ground terms, we have:

I Lemma 5. Given a pattern L, let p ∈ FL and L|p = (Z(x) y) be a pre-redex. Then, all
variables in x, y are bound above in L.

Instantiating the meta-variables in a pattern, as is well-known, produces β0-redexes which
may propagate upwards until they hit the fringe:

I Lemma 6. Let L be a pattern and γ a normal substitution. Then, Lγ ≥PFL−→−→
β0

(Lγ)↓.

Proof. The proof is by induction on the size of v = Lγ. If v is normal, we are done.
Otherwise, by confluence of β0, v = Lγ

p−→
β0
v′−→−→

β0
(Lγ)↓. Since p 6≥P FL would contradict the

fact that v is normal at all positions which are not below FL, p ≥P FL. We then conclude
by induction on v′. J



G. Férey and J.-P. Jouannaud XX:5

We can now define higher-order rules and rewriting:

I Definition 7 (Rule). A (higher-order) rule is a triple i :L→R, whose index i is a natural
number, left-hand side L is a pattern, and right-hand side R is a β-normal term such that
MVar(R) ⊆MVar(L).

I Definition 8 (Higher-order untyped rewriting). Given a term u, a position p∈Pos(u) such
that u|p is normal, and a rule i : L→ R, then u rewrites with i at p, written u

p−→
i
v, iff

u|p=β0 Lγ for some normal substitution γ, and v=u[X(x)]p{X 7→ λx.Rγ} = u[Rγ]p, where
x is the list of variables of u|p which are bound above the position p in u.

Note that we do not assume that u is normal, nor do we assume that v is normal, or even
normal up to position p. The reason is that we need monotonicity and stability properties:

I Lemma 9 (Monotonicity). Let s p−→
L→R

t and u a term such that q∈Pos(u). Then, u[s]q
q·p−→
L→R

u[t]q.

While monotonicity follows directly from the definition, stability is more delicate:

I Lemma 10 (Stability). Let s, t be terms such that s p−→
L→R

t and σ a closed substitution. Then:

If σ is preserving s, then sσ p−→
L→R

tσ; Otherwise, sσ↓≥Pp
p−→

L→R

≥Pp−→−→
β0

tσ↓≥Pp.

Proof. By definition of higher-order rewriting, s|p=β0 Lγ for some normal substitution γ,
and t = s[Rγ]p. By Lemma 6, Lγ ≥PFL−→−→

β0
s|p. Since γ is normal, all β0-redexes in this derivation

originate from the instantiation by γ of a pre-redex of L, hence are of the form (λz.w x)
where x is bound above in L by Lemma 5. It follows that Lγσ ≥PFL−→−→

β0
(s|p)σ = sσ|p−→−→

β0
(sσ|p)↓.

Hence (sσ|p)↓=β0 L((γσ)↓) Λ−→
L→R

R((γσ)↓), and sσ↓≥Pp
p−→

L→R
sσ[R((γσ)↓)]p by monotonicity.

We now conclude. If σ preserves s, then σ must preserve γ, hence γσ is normal. Hence,
R((γσ)↓) = (Rγ)σ, and sσ p−→

L→R
tσ. Otherwise, R((γσ)↓)−→−→

β0
(Rγσ)↓, yielding the result. J

Monotonicity and stability extend to rewriting at a set of parallel positions P .

3.4 Rewrite theories
I Definition 11. We call higher-order (untyped) rewriting system a set R of higher-order
rules and denote by −→R the rewrite relation generated by R.

A λF-rewrite theory is a pair (F ,R) of a user’s signature F and a higher-order rewrite
system R, defining the rewrite relation −→

R∪βα
also denoted by −→

λF
.

The main question addressed in this paper is whether a λF-rewrite theory is Church-
Rosser (or confluent), and how to show confluence by calculating and inspecting critical
pairs of some form. We shall focus on rewrite theories for which the set of rules R satisfies
linearity assumptions. We say that λF is : a left-linear theory if R is a set of left-linear rules;
a right-linear theory if R is a set of right-linear rules; a semi-linear theory if R is made of
rules which are of either kind. We restrict our attention here to left-linear theories (F ,Rll).

3.5 Local ancestor peaks in rewrite theories
Rewrite theories have two kinds of local ancestor peaks, homogeneous ones, between functional
or higher-order reductions, and heterogeneous ones, which mix both kinds of reductions. Our
goal here is to analyze which local ancestor peaks enjoy decreasing diagrams for free.
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A major property of plain first-order rewriting is that there are three possible kinds of
local peaks depending on the respective positions of the rewrites that define the peak. This
property generalizes to higher-order rewrites with our definition of FPos(L) when L is a
pattern:

I Lemma 12. Given terms s, t such that s p←−
i:L→R

u
q−→

j:G→D
t, then, either p#q (disjoint peak

case), or q ≥P p · FL or p ≥P q · FL (ancestor peak case), or p = q · o with o ∈ FPos(L) or
q = p · o with o ∈ FPos(G) (overlapping peak case).

In the case of plain rewriting, two non-overlapping rewrite steps issuing from a same term
commute, a major component of any confluence proof. When the steps occur at disjoint
positions, this property, which holds for any monotonic relation, remains true for rewriting
modulo a theory, hence all disjoint peaks have decreasing diagrams for free. This is not
the case, however, when the steps occur at positions whose one is an ancestor of the other,
because the modulo part of the above rewrite may interact with the rewrite below. Our
definition of higher-order rewriting, however, enjoys a similar property, because the fringe
of a rewrite step protects positions below it. These local peak properties of higher-order
rewriting are shown at Figures 1 and 3. The β0-steps in the lower part of the pictures serve
normalizing terms, in particular before a higher-order rewriting step can be applied.

Figure 3 shows the form of an ancestor peak with a β-step above a higher-order step, a
property called (LAPβa), where “LAP” stands for linear ancestor peak and “a” for above.
There are two cases: if the higher-order rewrite applies to the argument, the ancestor peak is
joinable as in the first-order case; if it applies to the body, some β0-steps are needed since
the instance of a higher-order redex requires being normalized before being fired. The lemma
below adds extra β0-steps so as to capture both cases into a single one:

I Lemma 13 (LAPβa). Let u be a term, p, q∈Pos(u) such that q ≥P p · Fβ and s p←−
β
u

q−→
j∈R

t.

Then −→−→
β0

Q=⇒
j
−→−→
β0
←−←−
β0

p←−
β
t for some set Q of parallel positions of s such that Q ≥P p.

Proof. By assumption, u|p = (λx.M N). The case where q = p · 2 · q′ does not require
β0-steps, but several j-steps at the parallel positions of x in M . Otherwise, q = p · 12 · q′,
that is, M |q′ = u|q−→

j
t|q. Then, v = u[Mσ]p = u[Mσ[u|qσ]q′ ]p, where σ = {x 7→ N} is

in general not a preserving substitution. By Lemma 10, (u|qσ)↓ −→
j
−→−→
β0

(t|qσ)↓, hence

s−→−→
β0

u[Mσ[(u|qσ)↓]q′ ]p−→
j
−→−→
β0

u[Pσ[(t|qσ)↓]q′ ]p.

On the other hand, t = u[(λx.P N)]p, where P = s[t|q]q′ , hence t p−→
β
u[s[t|q]q′σ]p =

u[Pσ[t|qσ]q′ ]p−→−→
β0

u[Pσ[(t|qσ)↓]q′ ]p, and we are done. J

The case of a local peak s p←−
i
u

q−→
j
t, where the higher-order step with i : L→ R applies

above another step with j : G→ D, a situation called (LAPRa), is shown at Figure 1 (left).
Its proof requires an important preliminary result:

I Lemma 14 (Preservation). Let u p−→
i:L→R

v and q∈Pos(u) such that q≥P p·FL and u(q) ∈ F .

Then uq = u[Z(y)]q
p−→
i
w for some w, and v = wuq = w{Z 7→ λy.u|q}.

Proof. By definition of splitting, let t be the term uq = u[Z(y)]q and τ be the substitution
uq = {Z 7→ λy.u|q}, where y is the vector of variables bound in u above the position q. Then,
u = tτ . Further, since u|q is normal and F-headed, τ is preserving.
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Since q ≥P p · FL, then q = p · o · q′, where o ∈ FL. Let then L|o = ((X x)z) for some
meta-variable X and variables x and z bound above in L.

By definition of higher-order rewriting, u|p=β0 Lγ for some normal substitution γ, hence
Lγ
≥PFL−→−→
β0

u|p by Lemma 6. By definition of a substitution, γ(X) = λx.M , and by the previous

property, ((X x)z)γ−→−→
β0

u|p·o. Since u|p·o·q′ is normal and F-headed, these β0-steps must

result in a term of which u|q is a subterm. Therefore, there exists a position q′′ in M such
that M |q′′ = u|q (up to variable renaming).

Let now θ be the substitution identical to γ except for the meta-variable X for which
γ(X) = λx.M and θ(Xi) = λx.M [Z(y)]q′′ , where y is the vector of variables bound above q
in u. It follows that γ = θτ . Since L is linear, Lθ−→−→

β0
u|p[Z(y)]o·q′′ , a normal term, hence

u|p[Z(y)]o·q′′
p−→
i
Rθ. By monotonicity, t = u[Z(y)]q = u[u|p[Z(y)]o·q′′ ]p

p−→
i

w = u[Rθ]p.
Further, v = Rγ = Rθτ = wτ and we are done. J

I Lemma 15 (LAPRa). Let i :L→R∈R, j ∈R ∪ β, u be a term, and p, q∈Pos(u) such
that q≥P p·FL and s p←−

i
u

q−→
j
t. Then, s QR=⇒

j

≥Pp−→−→
β0

r=r↓≥Pp ≥Pp←−←−
β0

p←−
i
←−←−
β0

t for some set QR
of parallel positions of s such that QR ≥P p.

Proof. By assumption, q = p · o · p′, where o ∈ FL, hence L|o = X(x). Let now O ⊆ FL be
the set of positions whose pre-redex is X(x), up to the renaming of variables in x. Let finally
Q = p ·O · p′, and note that Q = q in case L is linear.

Splitting u at q yields u= vσ, where v = uq and σ = uq = {Z 7→ λy.u|q} is preserving
since it must be normal because q ≥P p · FL and u|q is F-headed. By assumption, σ(Z)=
λy.u|q−→

j
λy.t|q. Let τ be σ with the exception τ(Z) = λy.t|q. Then σ−→

j
τ and t = vτ .

By Lemma 14, v p−→
i
w for some w such that s=wσ. By Lemma 9, vσ−→

j
vτ = t. Let QR

be the set of parallel positions of Z(y) in w. Then QR is a set of parallel positions of wσ.
By Lemma 9, wσ QR=⇒

j
wτ . By lemma 10, (vτ)↓≥Pp

p−→
i

≥Pp−→−→
β0

(wτ)↓≥Pp. The result follows. J

Patterns being β-normal, note that the assumptions q ≥P p and q≥P p ·FL are equivalent.
A last, easy property that we shall use is that β0-steps commute with other steps.

3.6 Critical peaks
Critical peaks are obtained by unifying left-hand sides of rules at subterms, resulting in
overlapping peaks which are minimal w.r.t. instantiation. Our definitions and their properties
live in an untyped world, hence need not to coincide with those used in a typed world.

I Definition 16. Let i : L → R and j : G → D be two rules in R and o ∈ FPos(L) such
that the equation L|o =β0 G has a most general solution σ.
Then, the peak Rσ Λ←−

i
Lσ↓ o−→

j
(Lσ)↓ [Dσ]o is called a critical peak of j onto i at position o.

Its associated critical pair is 〈(Rσ)↓, (Lσ[Dσ]o)↓〉.

Note first that this definition makes sense: since o ∈ FPos(L), then o <P FL, and
therefore, o ∈ FPos((Lσ)↓) by Lemma 6. The same lemma shows that σ must actually satisfy
the equation L|o−→−→

β0
←−←−
β0

G. The existence of most general solutions in our context follows

therefore by basic narrowing with β0 [12]. Termination of basic narrowing is straightforward
here, since narrowing steps reduce the total size of the pre-redexes. Further, since left-hand
sides are linear, a deterministic search is complete, hence the result, if any, is unique.
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Using standard techniques, we then get the analog of Nipkow’s critical pair lemma
developed for the case of simply typed higher-order rewrite rules:

I Lemma 17 (Critical pair lemma). Assume s p←−
i
u

q−→
j
t is an overlapping peak of j : G→ D

onto i : L → R at position o ∈ FPos(L) such that p = q · o. Then, there is a critical peak
s′

Λ←−
i
u′

o−→
j
t′ and a normal substitution θ such that s′θ−→−→

β0
s|p and t′θ−→−→

β0
t|p.

Proof. By definition of higher-order rewriting, there exists some normal substitution γ such
that Lγ ≥PFL−→−→

β0
u|p, Gγ

≥PFG−→−→
β0

u|q, s|p = Rγ and t|q = Dγ. Since o ∈ FPos(L), then o <P FL,

and since Lγ ≥PFL−→−→
β0

u|p, then up[ ]o = Lγ[ ]o, hence t|p = u|p[t|q]o = (Lγ[Dγ]o) = L[D]oγ.

Since o ∈ FPos(L), (Lγ)|o = L|oγ, hence L|oγ−→−→
β0
←−←−
β0

Gγ. Therefore, γ is a higher-

order unifier of the equation L|o = G. Let σ be the most general higher-order unifier of the
equation L|o = G. Then, there exist a normal substitution θ such that σθ−→−→

β0
γ, using the

fact that γ is normal. It follows that u[Rσθ]p−→−→
β0

s and u[L[D]oσθ−→−→
β0

t. Since s′ = Rσ

and t′ = L[D]oσ, we get the result. J

3.7 Confluence in λF
We can now address the problem of confluence of a higher-order rewrite theory λF . The
road map will always be the same. Step 1: define the rewrite relation −→ to be proved
confluent; step 2: prove that the confluence of this relation implies the confluence of λF ,
more precisely: −→

λF
⊆ −→−→ (completeness) and −→−→ ⊆ −→−→

λF
(soundness); step 3: define labels

for each rewrite step ; step 4: define what are the critical peaks for that relation and give
the critical pair lemma ; step 5: show that decreasing diagrams remain decreasing under
context application and substitution instance ; and last step 6: show that all local peaks are
decreasing with respect to the labeling (stability). Trivial steps will be omitted. The last
step is the most complex one, and requires specific assumptions that include the existence of
decreasing diagrams for all local peaks of the rewrite relation generated by the rules.

4 Terminating left-linear theories

We assume given a set Rll of left-linear rewrite rules, and will consider the case where the
relation generated by Rll, more precisely by β0 ∪Rll, is terminating.

We now need to recall (a variation of) the notion of orthogonal reductions introduced by
Tait to show the confluence of the λ-calculus (we need it here for the same purpose).

First, we define the product of sets of positions:

I Definition 18. Given a linear term u, a substitution σ, a set of parallel positions P ⊆
FPos(u), and a family Q of sets of positions indexed by Var(u), such that Qx ⊆ FPos(xσ)
for each variable x ∈ Var(u), we define the orthogonal product P ⊗u Q as the set of so-called
orthogonal positions in FPos(uσ) defined as P ⊗u Q = P ∪ {o ·Qx : u|o = x ∈ Var(u|P )}.

Note that Q is a set of sets, rather than a set, and that a position p ∈ FPos(uσ) can
always be seen (in many ways) as a singleton set of orthogonal positions in FPos(uσ).

I Definition 19 (Orthogonal reductions). Let s, t be terms such that u = sσ and v = tτ for
some linear term u, term v and substitutions σ, τ , and O ⊆ FPos(uσ) such that O = P ⊗uQ.
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Orthogonal rewriting is the relation on terms such that u
O
⊗=⇒
β

v provided s P=⇒
β
t and σ

Q
⊗=⇒
β

τ ,

where the extension of ⊗=⇒ to substitutions is as expected: ∀x ∈ Pos(σ)(xσ
Qx
⊗=⇒
β

xτ).

We shall need several properties of orthogonal β-reductions. Firstly, orthogonal reductions
are monotonic and stable. Being monotonic, they satisfy the commutation lemma with any
other monotonic rewrite relation. Further, they also satisfy (LAP), whether above or below.
Unlike the “above case”, the “below case” listed first follows easily from Lemma (LAPRa):

I Lemma 20 (LAPOb). Let s Q←−
Rll

u
P
⊗=⇒
β

t, where P ≥P Q. Then,

s
O
⊗=⇒
β

≥PQ−→−→
β0

r = r↓≥PQ ≥PQ←−←−
β0

Q←−
Rll

≥PQ←−←−
β0

t for some set O of positions in s such that O >P Q.

I Lemma 21 (LAPOa). Let s
P
⇐=⊗
β

u
q−→
Rll

t, where q >P P . Then,

s
≥PQ−→−→
β0

Q=⇒
Rll

≥PQ−→−→
β0

≥PQ←−←−
β0

P
⇐=⊗
β

t for some set Q of parallel positions in s such that Q >P P .

I Proof. By induction on the pair 〈|P |, |U |〉, we prove a more general result for which
u

O=⇒
Rll

t, where O >P P and all redexes in u|O are identical up to the renaming of their
bound variables. If Λ 6∈ P , then u = f(u), we can then apply the induction hypothesis to
u, and conclude by monotonicity and grouping together the appropriate steps. Otherwise,

u = (λx.M N) Λ−→
β
u1

P ′

⊗=⇒
β

s. We then write O=12 ·O1 ∪ 2 ·O2, where O1, O2 are (possibly

empty) sets of parallel positions of M,N respectively, hence M O1=⇒
Rll

M ′ and N
O2=⇒
Rll

N ′ and
t = (λx.M ′ N ′)−→

β
M ′{x 7→ N ′} = t1. There are now two cases:

1. O2 6= ∅. Since all redexes in u|O are identical, we can assume without loss of generality
that x 6∈ Var(M |O1). It follows that these identical Rll-redexes u|O occur now in
M{x 7→ N} at the set of parallel positions O′ = O1 ∪ {o′ · o : M |o′ = x and o ∈ O1}, and
M{x 7→ N} O

′

=⇒
Rll

M ′{x 7→ N ′}.

We have got s
P ′

⇐=⊗
β

u1
O′

=⇒
Rll

t1, a linear ancestor peak satisfying our assumptions. By

induction hypothesis, s ≥PQ−→−→
β0

Q−→
Rll

≥PQ−→−→
β0

≥PQ←−←−
β0

v
P ′

⇐=⊗
β

t for some set Q of parallel positions in

s such that Q >P P
′. By definition of orthogonal reductions, t

P
⊗=⇒
β

v and we are done.

2. O2 = ∅, hence N ′ = N . This case is a bit more complex because the variable x may
now occur below the Rll-redexes in M . Its substitution will therefore give, after β0-
normalization, a set of identical redexes different from the previous ones, but at the set
of positions O1 in M{x 7→ N}. By Lemma (LAPβa), u1

≥PO1−→−→
β0

u′
O1=⇒
Rll

t′
≥PO1−→−→
β0

≥PO1←−←−
β0

t1.

Positions in P ′ are above those in O1. By commutation of ≥PO1−→−→
β0

with
P ′

⊗=⇒
β

, we get

s
≥PQ−→−→
β0

s′
P ′

⇐=⊗
β

v. By induction hypothesis applied to the peak s′
P ′

⇐=⊗
β

u′
O1=⇒
Rll

t′, we get

s′
≥PQ−→−→
β0

Q=⇒
Rll

≥PQ−→−→
β0

≥PQ←−←−
β0

v
P ′

⇐=⊗
β

t′. By commutation with β0, v ≥PQ−→−→
β0

≥PQ←−←−
β0

w
P
⊗=⇒
β

t1, hence

t⊗=⇒
β

w by definition of orthogonal reductions. We conclude by confluence of β0. J
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Rewriting is a relation between two terms generated by a set of rewrite rules. Here, the
terms are split into a term part and a substitution applied to that term. It turns out that
different splittings of u into a term s and a substitution σ, and of the set of position O into
the respective sets P and Q yield the same term v. We will not need this property, but a
few others originating from the residuals’ theory of the λ-calculus [3].

We are now ready to proceed with the first step.
Step 1: let −→ = −→

β0
∪ −→
Rll
∪ ⊗=⇒

β
.

Redundancy does not harm, of course, but does ease the analysis of local peaks.
Step 2: Soundness and completeness are straightforward properties here.
Step 3: labels are pairs: 〈1, u〉 for u−→

β0
v; 〈2, u〉 for u−→

Rll
v; and 〈3,⊥〉 for u⊗=⇒

β
v, ⊥

being a don’t care constant. Labels are compared lexicographically, the first argument in the
order on natural numbers, the second in the order −→−→

β0∪Rll
, ⊥ being chosen minimal.

Step 4: critical pairs are higher-order critical pairs of rules in Rll. An easy property is:

I Lemma 22. Assume that s −→−→
β0∪Rll

t. Then, s↓ −→−→
β0∪Rll

t↓.

Proof. We show that s ↓ −→−→
β0∪Rll

t ↓ by induction on the length of the derivation, using

Lemma 10 and confluence of β0. J

Step 5: this is trivial here since labels are decreasing along reductions with β0 ∪ −→
Rll

.

Step 6: Let (Rll) be the assumption that Rll ∪ β0 is terminating.

I Theorem 23. Assuming (Rll), then λF is confluent if all critical pairs of Rl l are joinable
with rules of β0 ∪Rl l.

I Proof. Let s P←− u Q−→t be an arbitrary local peak, where P,Q are possibly singleton sets
of orthogonal positions.
1. First, rewrite steps of monotonic relations always commute when P#Q, yielding a DD.
We are now left with all peaks for which ¬(P#Q).

2. s
P
⇐=⊗ u

Q
⊗=⇒ t. Orthogonal β-reductions are known to be strongly confluent, hence

s
P ′

⊗=⇒ v
Q′

⇐=⊗ t for some P ′, Q′, v, a DD.

3. s
p←−
β0

u
q−→
β0
t. Then, by confluence of β0, s−→−→

β0
v ←−←−

β0
t for some v, a DD.

4. s
p←−
β0

u
Q
⊗=⇒ t. Then, either s

Q′

⊗=⇒ v
Λ←−
β0
t for some v if the β0-redex is also a β-redex,

or both steps commute otherwise. The obtained diagrams are particular DDs.
5. s

p←−
i
u

q−→
j
t with i : L→ R ∈ Rll, j ∈ Rrl and q ≥P p · FL. Lemma (LAPRa) yields a

decreasing diagram without facing steps because labels decrease along reductions.
6. s

p←−
i
u

q−→
j
t with i : L → R ∈ Rll, j : G → D ∈ Rrl, q ∈ p · o and o ∈ FPos(FL). By

Lemma 17, there is a critical peak obtained by overlapping G onto L at position o. By
assumption, this peak is joinable with rules of β0 ∪Rll, hence the pair s, t is joinable by
the monotonicity lemma 9 and Lemma 22. Note that there are no facing steps here, since
labels decrease strictly along (Rll ∪ β0)-reductions.

7. s
p←−
β0

u
q−→
Rll

t. Since u|q must be normal, q>P p. Then, both steps commute, giving a DD.
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8. s
P
⇐=⊗
β

u
q−→
i
t, where i : L→ R ∈ Rll. Since u(q) ∈ F , then q 6∈P , hence P = P1∪P2∪P3,

where P1 = {o ∈ P : o#q}, P2 = {o ∈ P : o ≥P q} and P3 = {o ∈ P : o <P q}. Note that
P1#(P2 ∪ P3) and P2 = q · P ′2. The proof of this case is shown at Figure 2.
Let v = u[X(x)]q and σ = {X 7→ λx.u|q}, where x is the list of variables bound
above q in u. Then, u = vσ, P1 ∪ P ′2 ⊆ FPos(σ(X)) and P3 ⊆ FPos(v). By linear-
izing the orthogonal rewrite from u to s, we can decompose the local peak as follows:
v2τ

Q·P3
⇐=⊗ v1τ

P2
⇐=⊗ v1σ

P1
⇐=⊗u = vσ

q−→
i
vθ = t, where θ = {X 7→ λx.t|q}. Note that, since

P1#q, then q and P3 denote positions in v1.

By commutation, v1σ
q−→
i
v1θ

P1
⇐=⊗
β

vθ. Hence v1σ
≥Pq−→
β0
v1τ
′ q−→−→

i
v1τ
′′ ≥Pq−→−→

β0

≥Pq←−←−
β0

v1γ
P ′

2
⇐=⊗
β

v1θ

for some P ′2 >P q by (LAPOb). We then get v2τ
≥PQ−→−→
β0

w2
P3
⇐=⊗
β

v1τ
′ by commutation

of β0 with other rewrites. By (LAPOa), w2
Q−→
i
−→−→
β0
←−←−
β0

w1. By commutation again,

w1−→−→
β0
←−←−
β0

v2γ
P3
⇐=⊗
β

v1γ = w. Since P ′2 ≥P q, then P ′ = p1 ∪ p′′2 ∪ P3 is a set of

orthogonal positions, hence t
P ′

⊗=⇒
β

w, and we have got a DD for this last local peak.

By Lemma 12, all cases have been considered, we are therefore done.

Note that the last case in the proof is actually a generalization of (LAPOa) and (LAPOb)
to an arbitrary local peak between β- and Rll-rewrites, which we could have singled out.

I Example 24. We consider Plotkin’s and Power’s theory of global states for a single
location [19]. It is described by two types, V al for values and A for states, a unary operation
lk for looking up a state, a binary operation ud for updating a state, and five higher-order
rules which satisfy our format:

lk : (V al→ A)→ A ud : V al, A→ A

lk(λv.t) looks up the state, binds its value to v, and continues with t while ud(v, t) updates
the state to v, and continues with t. We give their types for a better understanding:

(ll) lk(λw.lk(λv.X[v, w])) → lk(λv.X[v, v]) (ll)
(lu) lk(λv.ud(v,X[v])) → lk(λv.X[v]) | lk(λv.X) → X (l)
(ul) ud(V, lk(λv.X[v])) → ud(V,X[V ]) | ud(V, ud(W,X)) → ud(W,X) (uu)

This typed higher-order theory was studied by Hamana, who was indeed interested in its
confluence investigated with his Haskel-based analysis tool SOL [10]. Our presentation is
a simplification of Hamana’s, whose one rule was actually superfluous. SOL shows the
confluence of the example for simple types with prenex polymorphism. We show below that
it is confluent for any type discipline for which it is terminating. To this end, we need to
show first that it is terminating (in conjunction with β0), and that the critical pairs are
joinable. In the absence of β 6=0, first-order termination techniques can do. We are left with
verifying the joinability of critical pairs, these computations are presented inside individual
boxes. In the upper middle of each box appear two rules whose superposition is inside braces.
The upper rule is in displayed in red, the lower one in blue. Next comes the unifier, then
the colored right-hand sides, then the reduced right-hand sides, and finally the joinability
verification itself. Colored rule names label the arrows. All critical pairs are considered: note
that no rule can overlap l, because its variable X has arity 0.
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lk(λw.
{
lk(λv.X1[v, w])
lk(λv.lk(λz.X2[z, v]))

}
)

ll↙ σ = {X1 7→ λvλw.lk(λz.X2[z, v])} ↘ll
lk(λv.X1[v, v])σ lk(λw.lk(λz.X2[z, z]))σ

|| ||
lk(λv.lk(λz.X2[z, v])) ll−→ lk(λz.X2[z, z]) l←− lk(λw.lk(λz.X2[z, z]))

lk(λw.
{
lk(λv.X1[v, w])
lk(λv.ud(v,X2[v]))

}
)

ll↙ σ = {X1 7→ λvλw.ud(v,X2[v])} ↘lu
lk(λv.X1[v, v])σ lk(λw.lk(λv.X2[v]))σ

|| ||
lk(λv.ud(v,X2[v])) lu−→ lk(λv.X2[v]) l←− lk(λw.lk(λv.X2[v]))

lk(λw.
{
ud(w,X1[w])
ud(V, lk(λv.X2[v]))

}
)

lu↙ σ = {V 7→ w,X1 7→ λw.lk(λv.X2[v])} ↘ul
lk(λw.X1[w])σ lk(λw.ud(V,X2[V ]))σ

|| ||
lk(λw.lk(λv.X2[v])) l−→ lk(λv.X2[v]) =α lk(λw.X2[w]) lu←− lk(λw.ud(w,X2[w]))

lk(λw.
{
ud(w,X[w])
ud(Y, ud(Z, T ))

}
)

lu↙ σ = {Y 7→ w,X 7→ λw.ud(Z, T )} ↘uu
lk(λw.X[w])σ lk(λw.ud(Z, T ))σ

|| ||
lk(λw.lk(λw.ud(Z, T ))) ll−→ lk(λw.ud(Z, T )) = lk(λw.ud(Z, T ))

ud(V,
{
lk(λv.X1[v])
lk(λv.ud(v,X2[v]))

}
)

ul↙ σ = {X1 7→ λv.ud(v,X2[v])} ↘lu
ud(V,X1[V ])σ ud(V, lk(λv.X2[v]))σ

|| ||
ud(V, ud(V,X2[V ])) uu−→ ud(V,X2[V ]) ul←− ud(V, lk(λv.X2[v]))

ud(V,
{
lk(λv.X1[v])
lk(λv.lk(λw.X2[w, v]))

}
)

ul↙ σ = {X1 7→ λv.lk(λw.X2[w, v])} ↘ll
ud(V,X1[V ])σ ud(V, lk(λw.X2[w,w]))σ

|| ||
ud(V, lk(λw.X2[w, V ]))) ul−→ ud(V,X2[V, V ]) ul←− ud(V, lk(λw.X2[w,w]))

ud(V,
{
ud(W,X1)
ud(W, lk(λw.X2[W ]))

}
)

uu↙ σ = {X1 7→ lk(λw.X2[W ])} ↘ul
ud[W,X1]σ ud(V, ud(W,X2[W ]))σ

|| ||
(ud(W, lk(λw.X2[w])) ul−→ ud(W,X2[W ]) uu←− ud(V, ud(W,X2[W ]))

ud(V,
{
ud(Y, Z)
ud(Y, ud(Z ′, T ))

}
)

uu↙ σ = {Z 7→ ud(Z ′, T )} ↘uu
ud(Y,Z)σ ud(V, ud(Z ′, T ))σ
|| ||

ud(Y, ud(Z ′, T )) uu−→ ud(Z ′, T ) uu←− ud(V, ud(Z ′, T ))
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5 Sufficiently complete left-linear theories

In this section, we generalize Felgenhauer’s theorem [6] to higher-order theories, called
sufficiently complete, whose confluence does not depend upon the use of β 6=0-steps to join
Rll-convertible terms. No termination assumption is necessary here, as is the case in [6].

Step 1: We replace rewriting with Rll by rewriting at parallel positions with some rule
in Rll, that is

⋃
i =⇒

i
written =⇒

Rll
for short. Therefore −→ = −→

β0
∪=⇒
Rll
∪ ⊗=⇒

β
.

Step 2: Soundness and completeness are straightforward properties again here.
Step 3: The label of a rewrite step s=⇒

Rll
t becomes 〈2, i〉, where i is the rule’s index.

Other labels remain the same. Labels are compared lexicographically, the order on the second
components (>Nat for Rll and −→−→

β0
for β0-steps) depending upon the first component.

Step 4: Having slightly changed the rewrite relation has an important impact since we
now need parallel critical pairs. Their definition is easily obtained from Definition 16 by
overlapping several copies of a left-hand side of rule inside the left-hand side of another rule
at a set of parallel positions. The critical peak lemma generalizes as well without difficulty.

Step 5: We need to show that decreasing diagrams are stable under context and
substitution instance, which is not as straightforward as it was in the previous case. To this
end, we consider a specific form of decreasing diagram:

I Definition 25. A rewrite sequence issuing from a term s is normal, in short NRS, if it is
of the form s−→−→

β0
s↓ or s ≥Pp−→−→

β0
s↓≥Pp p−→

i∈Rll
t −→−→
Rll∪β0

u, where t −→−→
Rll∪β0

u is an NRS. We denote

by NDS(i, j) the set of normal rewrite sequences which are decreasing w.r.t. (i, j).
A rewrite sequence in NDS(i, j) issuing from s protects the positions in a set Q of parallel

positions of s if it is of the form s −→−→
Ci,j

u (no facing step) or s
(
≥Pp−→−→
β0

p#Q−→
kCi

)∗
P#Q=⇒
j
−→−→
Ci,j

u.

Normal rewrite sequences restrict the use of β0-steps to those which are strictly necessary
to apply every Rll-step in the sequence before to reach some normal term. Note that normal
sequences always end up in a normal term. In case there is a set Q of protected positions,
there must be a final normalization phase at all positions which are either below, or above Q.

I Definition 26. The decreasing diagram of a parallel critical peak s Λ←−
i:L→R

u
O=⇒

j:G→D
t is normal,

in short NDD, if it is a pair of normal decreasing rewrite sequences such that the one
issuing from s (which may contain the lower facing step) protects the positions in Q, where
Q = {q ∈ Pos(R) : R|q = (X[t] y) where X 6∈MVar(L|O) and y ∈ X}.

Protection restricts the set of rewrite positions that precede the facing step of the sequence
to those that cannot interfere with the rewrites below meta-variables of R that are not, as
meta-variables of L, in the scope of O. This adapts to higher-order rewriting the so-called
Toyama’s Variable Condition (TVC) introduced long ago in a first-order setting by Toyama.
In particular, if all meta-variables of L are below O, then Q = ∅ and (TVC) is automatically
satisfied. Example 31 shows that all critical pairs of Example 24, whose decreasing diagrams
have lower facing steps, satisfy this sufficient condition.

Our goal now is to prove the stability of these notions of sequences under substitution:

I Lemma 27. Let s−→−→ p−→
k∈Rll

−→−→ t be an NRS, and γ a normal substitution. Then, there

exists an NRS sγ−→−→ p−→
k
−→−→ tγ↓.

Proof. By induction on the definition of NRSs, using Lemma 10 and confluence of β0. J
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This very strong property, saying that the instance of a normal decreasing sequence is
again a normal decreasing sequence whose higher-order steps are indeed the instances of the
previous ones at the same positions, is crucial, since it implies readily that protection of a
set of positions is preserved under substitution. Therefore,

I Corollary 28. Normal decreasing diagrams are closed under substitution instance.

We can further exploit the preservation property of sequences in NDS:

I Lemma 29 (Permutation). Let w
(
≥Po−→−→
β0

o#Q−→
kCi

)∗
P#Q=⇒
j
w′′′ be a NRS protecting the set of

positions Q and s Q=⇒
j
t
≥Pp−→−→
β0

t↓≥Pp= w for some p ≥P P ∪Q.

Then there exists a rewrite sequence s −→−→
Ci

P∪Q=⇒
j

w′′′

Proof. We write ↓ instead of ↓≥Pp. First, by Lemma 10 and commutation of β0, we

have s↓ Q=⇒
j

≥PQ−→
β0

t↓. Then we can commute the steps s↓ Q=⇒
j

≥PQ−→
β0

t↓
(
≥Po−→−→
β0

o#Q−→
kCi

)∗
into

s↓
(
≥Po−→−→
β0

o#Q−→
kCi

)∗
Q=⇒
j

≥PQ−→
β0

and again commute ≥PQ−→
β0

P#Q=⇒
j

into P#Q=⇒
j

≥PQ−→
β0

since they occur at

uncomparable positions. For the same reason, we can merge Q=⇒
j

P#Q=⇒
j

into P∪Q=⇒
j

.

We therefore get the rewrite sequence: s −→−→
β0

s↓
(
≥Po−→−→
β0

o−→
kCi

)∗
P∪Q=⇒
j

≥PQ−→
β0

w′′′. J

Step 6: We are left with the last step:

I Theorem 30. λF is confluent if all parallel critical peaks of Rl l have NDDs.

I Proof. Let s P←− u Q−→t be an arbitrary local peak, where P,Q are possibly singleton sets
of orthogonal positions. The proof is by induction on the size of u.

1. Assume that Λ 6∈ P ∪Q, and let {uk}k, {sk}k and {tk}k be the immediate subterms of u,
s and t, respectively. Let also P =

⋃
k k · Pk and Q =

⋃
k k ·Qk. Then, sk

Pk←−uk
Qk−→tk.

By induction hypothesis, these local peaks enjoy a DD of the form si−→−→ vi←−←− ti.
We now show that putting these DDs together results in a DD s−→−→ v←−←− t. To this
end, we show that the decreasing reductions from ui to si can be put together and yield a
decreasing reduction from u to s. Let ui−→−→ vi−→wi−→−→ si be the decreasing reduction
from ui to si, where vi−→wi is a possibly missing facing step, in which case vi = si. Then,
the reduction s = F (s1, . . . , sn)−→−→F (v1, . . . , vn)−→F (w1, . . . , wn)−→−→ s is a decreasing
reduction from u to s. The same technique applied to the pair (u, t) yields a decreasing
diagram for the starting local peak.

We are now left with all peaks for which Λ ∈ (P#Q). W.l.o.g, we assume that Λ ∈ P . Cases
whose proof remains the same as in the proof of Theorem 23 are omitted.
5. s

Λ←−
i
u

Q=⇒
j
t with i : L→ R∈Rll and j : G→ D∈Rrl. This case is depicted at Figure 4.

We first split Q into disjoint subsets Q1 ={q∈Q : q ≥P FL} and Q2 ={q∈Q : q <P FL}.
Let O1 and O2 be the subsets of FL such that O1 ={o∈FL : Q1 ≥P o}, and O2 ={o∈
FL : o >P Q2}. Since Q1 and Q2 are disjoint, so are O1 and Q2. Let now P1 be the set
of positions of the corresponding meta-variables in R. Since O1#Q2, positions in P1 are
protected in the critical peak defined by the overlap at Q2.
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By (LAPRa), s
Q′

1=⇒
j

≥PQ
′
1−→−→

β0
w
≥PQ

′
1←−←−

β0
s′

Λ←−
i
u′←−←−

β0
v, where Q′1 ≥P P1 and w is normal below

Q′1. The β0-steps from v to u′ occur at positions which are parallel to those in Q2,
hence, by commutation, u′ Q2=⇒

j
t′←−←−

β0
t. The obtained local peak s′ Λ←−

i
u′

Q2=⇒
j
t′ is critical by

definition of Q2. Therefore, by assumption and Lemma 28, there exist an NDD from s′, t′

such that s′−→−→
Ci
−→
j
s′′′−→−→

Ci,j
s′′ belongs to NDS(i, j) that protects Q′1, hence the rewrites

from s′ to s′′′ occur at positions disjoint from P1, hence disjoint from Q′1 ≥P P1. By
commutation of β0 with other rewrites, w−→−→

Ci

Q4=⇒
j
w′′′−→−→

Ci,j
w′←−←−

β0
s′′. An easy property

of β0 ensures that the derivation w−→−→
Ci

Q4=⇒
j
w′′′ still occurs at positions disjoint from Q′1.

Therefore, by Lemma 29, we can rearrange the derivation from s to w′′′ so that it belongs
to DS(i, j). Since the derivation from t to w belongs to DS(j, i), we are done.

6. s
Λ←−
β0
u

Q=⇒
i
t. Since u|Q must be normal, both steps commute, giving a DD.

7. s
P
⇐=⊗
β

u
Q=⇒
i
t, where i : L→ R ∈ Rll. The proof is then obtained from the corresponding

case in the proof of Theorem 23 by replacing u|q by u|Q.

Example 24 can actually also serve to illustrate this theorem:

I Example 31. We now show the confluence of the theory of global states for a unique
location without using the termination assumption. To this end, we need to show that all
parallel critical peaks have a decreasing diagram, and that it satisfies (TVC). The form of
the left-hand sides of rules ensures that no true parallel overlap is possible, hence we get
the same set of critical peaks as in Example 24. Let us then note that (TVC) is trivial for
the first four, since the meta-variables of all critical peaks always occur below the overlap
position, hence Q = ∅. The next two have no lower facing step, hence all positions are
protected. For the last two critical peaks, Q = ∅ since the only meta-variable V of uu which
is not in the scope of the overlap position does not occur in the right-hand side of uu.

We now need to check that the diagrams obtained at Example 24 are decreasing. Referring
to them by their order in the list given there, we define the order on rules that ensures
decreasingness: diagrams 1,7 and 8 are decreasing because they are reduced to their facing
steps, hence are normal; the diagrams from number 2 to number 6 need to satisfy the
following successive ordering constraints:

l C {ll, lu}; l C {lu, ul}; ll C {lu, uu};uuC {ul, lu};ul C ll};

One order among others that satisfies the above constraints is l C ul C ll C uuC lu.

Our last example highlights the subtleties of confluence criteria in a higher order rewriting
context and exemplifies the interaction between meta-variables arity and protection:

I Example 32. We illustrate here the tension between protected positions and arities of
meta-variables. Let F = {@, v, a, b}, where @ : V → V → T , v : (V → T )→ V , a : V → T

and b : V → T . We consider two sets of rules, depending upon the arity of meta-variable F :

R1 = { (b) @(v(λx.F [x]), v(T )) → F [v(T )] , v(a) → v(b) (v) }
R2 = { (b) @(v(λx.F [ ] x), v(T )) → F [ ] v(T ) , v(a) → v(b) (v) }

In both systems, the term @(v(λx.@(x, x)), v(λx.@(x, x))) reduces to itself. Relying on the
second technique we thus need to check one critical pair for each system:
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@(v(λx.F [x]),
{
v(T )
v(a)

}
)

b↙ σ = {T 7→ a} ↘v
F [v(T )]σ @(v(λx.F [x]),v(b))σ

= =

F [v(a)] v−→F [v(b)] b←−@(v(λx.F [x]), v(b))

@(v(λx.F [ ] x),
{
v(T )
v(a)

}
)

b↙ σ = {T 7→ a} ↘v
(F [ ] v(T ))σ @(v(λx.F [ ] x),v(b))σ

= =

F [ ] v(a) v−→(F [ ] v(b)) b←−@(v(λx.F [ ]x), v(b))

In the left diagram, the reduct F [v(a)] must be protected at Q = {Λ}, since F is not below the
overlap position. The obtained diagram is not an NDD, we cannot conclude confluence. In
the right diagram, Q = {1}, the obtained diagram is an NDD, hence confluence is concluded.

6 Conclusion

Confluence of first-order rewrite rules is well understood, in both the terminating and non-
terminating cases. Confluence of left-linear higher-order rules on simply-typed λ-terms is
well understood too [15]. This is true as well of confluence of first-order rules in presence of
β-reductions for any type discipline for which β is terminating [5]. Finally, positive confluence
results in presence of both dependent types and higher-order rewrite rules are claimed in [1].

In this paper (together with [1]), we have described under which conditions on critical
pairs is confluence in the untyped λ-calculus preserved by a set Rll of left-linear rewrite rules:
1. If Rll preserves termination of β0 and the critical pairs of Rll are joinable in Rll ∪ β0;
2. If the parallel critical pairs of Rll are joinable in Rll∪ β0 by a pair of decreasing rewrites

with respect to rule labeling that satisfies Toyama’s Variable Condition;
3. If the nested critical pairs of Rll are joinable in Rll ∪ β by a pair of decreasing rewrites

with respect to rule labeling [1, 8].
A non-trivial example has been given that shows the usefulness of the first two categories of
theories. One may however wonder whether there are interesting examples of theories that
are not sufficiently complete, that is, that require the use of β 6=0-steps to join their critical
pairs. One such theory is described in [7].

An important question is whether our present results can be combined, so as to use a
divide and conquer approach to analyze a complex left-linear theory. Using van Oostrom
decreasing diagrams technique is crucial in this respect, provided the rewrite relations used
for the confluence proof and their labellings can be combined. This is why we used exactly
the same relations with −→

β0
and ⊗=⇒

β
in the proofs of our theorems –we could have done

otherwise. Combining the results obtained for left-linear systems under different assumptions
is therefore possible, this will require computing new critical pairs and parallel critical pairs
between the two rewrite systems and checking that they are decreasing. Lack of space does
not permit us doing it here.

Further results are on the way that deal with right-linear rules. In particular, we can show
that all Klop’s counter-examples preserve confluence on the set of β-strongly-normalizing
terms. The case of rules which are semi-linear is of uttermost importance to us because
encodings of complex type theories in λΠMod are not purely left-linear. We will therefore
have to combine our results for left-linear systems with those for right-linear ones, but this
other combination raises new technical difficulties since the techniques used for left-linear and
right-linear systems, although both based on van Oostrom’s decreasing diagrams, happen to
be quite different.

Acknowledgments: to Gilles Dowek and Jiaxiang Liu for many useful discussions.
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