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Abstract

We consider the problem of state observation for systems having a well-defined observability canonical form ([9]) by means
of high-gain observers. The main goal is to show that, for this class of systems, observers can be designed with the high-
gain parameter powered just up to the order 2 regardless the dimension of the state system. In this way we substantially
overtake the main limitations of standard design procedures in which the high-gain parameter is powered up to the order
of the system. The observer structure, which generalises the ideas presented in [2], can be used in all those contexts where
fast state observation is required, such as in the design of output feedback stabilisers by means of the nonlinear separation
principle that is also specifically addressed in the paper.

Key words: Observability canonical form, high-gain observers, nonlinear separation principle.

1 Introduction

The problem of designing asymptotic state ob-
servers for nonlinear systems is a central topic in the
control literature (see [6] and [9] for general surveys on
the topic). A special role in literature is played by the
so-called high-gain observer in which the error trajec-
tory has an exponential decay rate that can be imposed
arbitrarily fast by acting on a design parameter, ap-
pearing in the observer structure, typically known as
“high-gain” parameter (see for instance the surveys
[15,16] and references therein). Such observers are rou-
tinely used in all control contexts where fast observa-
tion is mandatory, such as contexts of nonlinear output
feedback stabilisation by means of the nonlinear sepa-
ration principle in which fast observation is required in
order to prevent finite escape times of the closed-loop
system (see [22]). A very general and elegant frame-
work where high-gain observers have been developed
is the one presented in [9] where Luenberger style ob-
servers are designed for the class of nonlinear systems
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that can be transformed, by change of variables, in the
so-called observability canonical form. The latter is a
special triangular form in which the partial derivatives
of the functions describing the dynamics of the single
state components with respect to the “first variable”
never vanish. In the same book the existence of such
normal forms is linked to a notion of observability for
nonlinear systems (see also [10]). It is also shown how
the proposed Luenberger style high-gain observer can
be used, in a nonlinear separation principle context, to
systematically design output feedback stabilisers. The
application of high-gain observers in the fields of output
regulation can be found in [18].
“Dirty derivatives observers” are further fundamental
examples of high-gain structures used in several control
contexts (see for instance [23]). In this case the goal
is to obtain an arbitrarily accurate (i.e. practical) and
arbitrarily fast estimate of the output of a nonlinear
system and its time derivatives. Such “rough” observers
have been shown to play a role in the context of out-
put feedback stabilisation. In this respect it is worth
quoting the milestone contribution in [7], which opened
the door to a number of works on the subject (among
which it is worth recalling [24,14,19,11]) culminated in
the fundamental paper [23]. In the latter the use of dirty
derivatives observers have been proved to be effective
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to systematically stabilize, by output feedback, a broad
class of nonlinear systems stabilizable by uniformly com-
pletely observable (UCO) state feedback control laws.
The main drawbacks of observer design techniques that
rely on high-gain properties are typically two-fold. The
first is known as “peaking phenomenon”, whose effect
in many control contexts is overtaken by using satura-
tion functions [14,22]. The second is related to the fact
that the high-gain parameter is typically powered to the
order given by the dimension of the observed system.
This fact, in turn, makes the practical (i.e. numerical)
implementation of such observers very hard whenever
the order of the observed system is high. A further con-
sequence of this, is that the sensitivity to high-frequency
measurement noise of these observers is typically unac-
ceptable, as already studied in [1,5,25].
In the recent contribution [2], a new high-gain observer
structure has been proposed for a class of uniformly
observable nonlinear systems which are diffeomorphic
to the canonical observability form [10]. The remark-
able feature of the new observers is that the high-gain
parameter is powered up to the order 2, regardless the
dimension of the observed system, at the price of having
the observer state dimension 2n − 2 with n the dimen-
sion of the observed system. The new observer has been
shown to substantially overtake the problems related
to numerical computation. Moreover it has been shown
that, in the linear case, this observer has better asymp-
totic properties with respect to high-frequency noise. In
this paper, we extend the ideas and arguments of [2] to a
wider class of observable nonlinear systems. In particu-
lar we consider nonlinear systems, possibly not affine in
the input, which are Uniformly Observable (according
to the definition given in ([9, Section 2, Definition 2.1])
and therefore diffeomorphic to a observability canonical
form, [9, Section 3, Theorem 2.1], which is more gen-
eral than the one considered in [2]. As in [2], the new
observer structure overtakes the problem of numerical
implementation of the classical observer for high or-
der systems and substantially improves the observation
performances in terms of sensitivity to high-frequency
measurement noise.
The paper is organized as follows. In Section 2 the
framework is introduced by presenting existing results
on Luenberger style observers for observability canoni-
cal form. The main result is given in Section 3, where the
new high-gain observer is proposed and its convergence
analysis is derived. Then its application to a nonlinear
separation principle is discussed in Section 4. In Section
5 the performances of the new observer are shown in
a numerical example. Finally, Section 6 present final
remarks.

2 The Framework

In this paper we deal with single-input single-output
nonlinear systems of the form

ẋ = ψ(x, u) , y = ρ(x, u) (1)

where x ∈ Rn is the state, u ∈ U ⊂ R is the control in-
put, y ∈ R is the measured output, ψ(x, u) are smooth
vector fields, and ρ(x, u) is a smooth function. The main
goal of the paper is to develop a new observer for the pre-
vious class of systems to be used in a context of nonlin-
ear separation principle. The reference framework that
is used to present the result is the one of [9] in which Lu-
enberger style high-gain observers are proposed. In that
framework, in particular, the interest is on systems that
are Uniformly Observable, meaning that there exists a
global change of variables z = Φ(x) that transforms sys-
tem (1) into the so-called observability canonical form

żi = fi(zi, zi+1, u) , 1 ≤ i ≤ n− 1

żn = fn(zn, u)

y = h(z1, u)

(2)

with z = (z1, . . . , zn)T , zi = (z1, . . . , zi)
T and with the

functions fi(·), i = 1, . . . , n − 1 and h(·) that, for any
(z, u) ∈ Rn × U , fulfil

∂h

∂z1
(z1, u) 6= 0 ,

∂fi
∂zi+1

(zi, zi+1, u) 6= 0 , i = 1, . . . , n−1.

Furthermore, we assume that system (2) satisfies the
following two assumptions.

Assumption 1 The maps fi(·), i = 1, . . . , n, are glob-
ally Lipschitz with respect to zi, uniformly with respect
to u and zi+1, namely there exists a ` > 0 such that for
all zi ∈ Ri, z′i ∈ Ri, zi+1 ∈ R, and u ∈ U the following
holds

|fi(zi, zi+1, u)− fi(z′i, zi+1, u)| ≤ `|zi − z′i| ,
1 ≤ i ≤ n− 1 ,

|fn(zn, u)− fn(z′n, u)| ≤ `|zn − z′n| .

Assumption 2 There exist two positive real constants
α < β, such that for all (z, u) ∈ Rn × U the following
holds

α ≤
∣∣∣∣∂h(z1, u)

∂z1

∣∣∣∣ ≤ β ,

α ≤
∣∣∣∣∂fi(zi, zi+1, u)

∂zi+1

∣∣∣∣ ≤ β , 1 ≤ i ≤ n− 1 .

(3)

The globally Lipschitz condition in Assumption 1 is mo-
tivated by the fact that, in the following, we look for a
global observer. In case just semiglobal observation is
looked for, namely if the initial conditions of the observer
and of the system range in a fixed known compact set,
the previous condition can be weakened by asking that
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the functions fi(·) are only locally Lipschitz with respect
to zi (see [10]).

Within this framework the main result proposed in
[9, Theorem 2.2, Chapter 6] is a systematic design of a
high-gain Luenberger style observer that takes the form

˙̂zi = fi(ẑi, ẑi+1, u) + κi ki (y − h(ẑ1, u))

1 ≤ i ≤ n− 1 ,

˙̂zn = fn(ẑn, u) + κn kn (y − h(ẑ1, u))

(4)

where ẑ = (ẑ1, . . . , ẑn)T , ẑi = (ẑ1, . . . , ẑi)
T , ki for i =

1, . . . , n are appropriate coefficients and κ is a positive
high-gain parameter. As a matter result the following
result holds (see [9]).

Theorem 1 Consider the observed system (2) and the
observer (4) under Assumptions 1 and 2. There exist a
choice of k1, . . . , kn and κ? ≥ 1 such that for all κ > κ?

the following bound holds

|z(t)− ẑ(t)| ≤ µ1 κ
n−1 exp(−µ2κt)|z(0)− ẑ(0)|

for all (z(0), ẑ(0)) ∈ Rn × Rn, for all t ≥ 0, for some
positive µ1 and µ2 independent of κ.

One of the drawbacks of observers of the form (4) is
clearly related to the increasing power (up to the order n)
of the high-gain parameter κ, which makes the practical
numerical implementation an hard task when n is very
large. Motivated by these considerations, we propose in
the next section a new observer for the class of uniformly
observable systems that preserves the same high-gain
features of the ”classical” observer by substantially over-
taking the implementation problems mentioned before.
Specifically, we present a high-gain observer structure
with a gain which grows only up to power 2 (regardless
the dimension n of the system), at the price of having
the observer state dimension 2n− 2. This is done by ex-
tending the ideas and the arguments proposed in [2] in
which the problem of state observation of systems in the
canonical observability form

ż1 = z2, · · · żn−1 = zn, żn = ϕ(z)

with ϕ(·) a locally Lipschitz function, is presented. That
paper, in fact, proposed a (2n−2)-dimensional observer
of the form

ζ̇i =

(
BT ζi − κ ki1 ei

BT ζi+1 − κ2 ki2 ei

)
, 1 ≤ i ≤ n− 2 ,

ζ̇n−1 =

(
BT ζn−1 − κ kn−1,1en−1
ϕs(ẑ

′)− κ2kn−1,2en−1

)
,

(5)

in which ζi ∈ R2, i = 1, . . . , n− 1, e1 := Cζi − y,

ei := Cζi −BT ζi−1 , i = 2, . . . , n− 1 , (6)

with C := (1 0) and BT := (0 1), Ki := (ki1, ki2)> are
design parameters,

ẑ′ := L1 ξ , L1 := blkdiag (C, . . . , C︸ ︷︷ ︸
(n−2) times

, I2) , (7)

ζ := col(ζ1, . . . , ζn−1) ∈ R2n−2 , (8)

and ϕs(·) is an appropriate saturated version of ϕ(·).
In turn, if the design parameters Ki, i = 1, . . . , n − 1,
are designed as shown in Lemma 1 of [2] and κ is taken
sufficiently large according to the Lipschitz constant of
ϕ(·), the variable ẑ converges asymptotically to z with
a convergence rate that can be arbitrarily decreased by
increasing κ (see Proposition 1 in [2]).

3 The new observer design

Instrumental to the main result is the follow-
ing lemma that refers to the block-tridiagonal matrix
M(t) ∈ R(2n−2)×(2n−2) defined as

M(t) =



E1(t) N2(t) 0 · · · · · · 0

Q2 E2(t) N3(t)
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . Qn−2 En−2(t) Nn−1(t)

0 · · · · · · 0 Qn−1 En−1(t)


(9)

with Ei(t) ∈ R2×2, Qi ∈ R2×2, and Ni(t) ∈ R2×2 matri-
ces defined as

Ei(t) =

(
−ki1bi(t) ai(t)
−ki2bi(t) 0

)
, Qi =

(
0 ki1

0 ki2

)
,

Ni(t) =

(
0 0

0 ai(t)

)
, i = 1, . . . , n− 1

where ai(t) and bi(t) are positive 1 for all 1 ≤ i ≤ n− 1
and t ≥ 0, and (ki1, ki2) are positive coefficients. The
proof of the forthcoming lemma is given in Appendix-A.

Lemma 1 Consider the matrix M(t) in (9) with ai(t)
and bi(t) fulfilling α ≤ ai(t) ≤ β, α ≤ bi(t) ≤ β for

1 All the forthcoming analysis can be easily adapted to deal
with the case in which (some of) the ais and bis are negative.
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some positive α and β for all 1 ≤ i ≤ n− 1 and t ≥ 0.
Then there exist coefficients (ki1, ki2), i = 1, . . . , n− 1,
a symmetric positive definite matrix P and a positive
constant λ, such that

PM(t) +M(t)>P ≤ −λI (10)

for all t ≥ 0.

It is worth noting that Lemma 1 extends the result in
Lemma 2.1 in [9, Chapter 6] in a non-trivial way due to
the specific tri-block diagonal structure of M(t) in (9).
Furthermore, this result can be seen also as an extension
to the time-varying case of the result in [2, Lemma 1],
in which ai(t) = bi(t) = 1 for all i = 1, . . . , n− 1 and for
all t ≥ 0.

The new observer has state ζ ∈ R2n−1 defined in
(8) with the dynamics of ζi ∈ R2, i = 1, . . . , n− 1, given
by (compare with (5))

ζ̇i =

(
fi(ẑi, B

T ζi, u)− κ ki1 ei
fi+1(ẑi+1, B

T ζi+1, u)− κ2 ki2 ei

)
,

1 ≤ i ≤ n− 2 ,

ζ̇n−1 =

(
fn−1(ẑn−1, B

T ζn−1, u)− κ kn−1,1en−1
fn(ẑn, u)− κ2kn−1,2en−1

)
,

(11)
in which B and C are defined as in the previous section,
e1 := h(Cζ1, u) − y, ei, i = 2, . . . , n − 1, are defined
as in (6), Ki = (ki1, ki2)> are coefficients to be chosen
according to the previous Lemma 1, and κ is the high-
gain parameter. In (11), the vectors ẑi := (ẑ1, . . . , ẑi)

T ,
i = 1, . . . , n, contain estimates of the first i components
of the state z that can be extracted by the observer state
ζ. In particular, as in [2], the redundancy of the observer
can be employed to obtain two different estimates ẑ =
(ẑ1, . . . , ẑn)T of the state variable z that can be equally
used to define ẑi. The first, denoted by ẑ′, is defined as
in (7). The second, denoted by ẑ′′, is described by

ẑ′′ := L2ζ , L2 := blkdiag ( I2, B
>, . . . , B>︸ ︷︷ ︸

(n−2) times

) .

Similarly to the result in [2], in the forthcoming theo-
rem we show that the variables ẑ′ and ẑ′′ asymptotically
recover the value of the state of (2) if the coefficients
(ki1, ki2), i = 1, . . . , n − 1 are properly chosen and κ is
large enough. In the statement of the proposition we de-
note

Ẑ = col (ẑ′, ẑ′′) , Z = col (z, z) .

Theorem 2 Consider the system (2) satisfying As-
sumptions 1 and 2, and the observer (11) with the
coefficients (ki1, ki2) chosen according to Lemma 1 with

α and β given by Assumption 2 for some P = P> > 0
and λ > 0. Then, there exist a κ? ≥ 1 and positive
constants c1, c2, such that, for all κ > κ? the following
bound holds

|Ẑ(t)− Z(t)| ≤ c1 κn−1 exp(−c2κt)|Ẑ(0)− Z(0)|

for all (z(0), ζ(0)) ∈ Rn × R2n−2 and for all t ≥ 0.

Proof. Consider the change of variable

ζi 7→ ζ̃i := ζi − col (zi, zi+1) = col (ζi1 − zi , ζi2 − zi+1) ,
(12)

where the ζi = col(ζi1, ζi2). As far as the ζ̃1 dynamics
are concerned, by using the mean value theorem, it turns
out that

˙̃
ζ11 = f1(ẑ1, B

T ζ1, u)− f1(z1, z2, u)− κ k11 e1
= f1(ẑ1, B

T ζ1, u)− f1(z1, B
T ζ1, u) + f1(z1, B

T ζ1, u)

−f1(z1, z2, u)− κ k11 (h(Cζ1, u)− h(z1, u))

=
∂f1
∂z2

(z1(t), δ1(t), u(t))ζ̃12 − κk11
∂h

∂z1
(δ0(t), u(t))ζ̃11

+f1(ẑ1, B
>ζ1, u)− f1(z1, B

>ζ1, u)

˙̃
ζ12 = f2(ẑ2, B

>ζ2, u)− f2(z2, z3, u)− κ2 k12 e1
= f2(ẑ2, B

>ζ2, u)− f2(z2, B
>ζ2, u) + f2(z2, B

>ζ2, u)

−f2(z2, z3, u)− κ2 k12 (h(Cζ1, u)− h(z1, u))

=
∂f2
∂z3

(z2(t), δ2(t), u(t))ζ̃22 − κ2k12
∂h

∂z1
(δ0(t), u(t))ζ̃11

+f2(ẑ2, B
>ζ2, u)− f2(z2, B

>ζ2, u)

for some δ0(t) and δ1(t), namely, by setting

b1(t) :=
∂h

∂z1
(δ0(t), u(t))

a1(t) :=
∂f1
∂z2

(z1(t), δ1(t), u(t))

a2(t) :=
∂f2
∂z3

(z2(t), δ2(t), u(t))

we obtain

˙̃
ζ11 = a1(t)ζ̃12 − κk11b1(t)ζ̃11 + f̄1(t)
˙̃
ζ12 = a2(t)ζ̃22 − κ2k12b1(t)ζ̃11 + f̄2(t)

(13)

where

f̄1(t) := f1(ẑ1, B
>ζ1, u)− f1(z1, B

>ζ1, u)

f̄2(t) := f2(ẑ2, B
>ζ2, u)− f2(z2, B

>ζ2, u) .

The ζ̃1 dynamics is thus described by

˙̃
ζ1 = H1(t)ζ̃1 +N2(t)ζ̃2 + F̄1(t)

4



with

H1(t) :=

(
−κk11b1(t) a1(t)

−κ2k12b1(t) 0

)
, F̄1(t) :=

(
f̄1(t)

f̄2(t)

)
,

and N2 defined as in (9). Applying the same procedure

to the ζ̃i dynamics for 2 ≤ i ≤ n− 2, we obtain

˙̃
ζi1 = ai(t)ζ̃i2 − κki1ζ̃i1 + κki1ζ̃i−1,2 + f̄i(t) ,
˙̃
ζi2 = ai+1(t)ζ̃i+1,2 − κ2ki2ζ̃i1 + κ2ki2ζ̃i−1,2 + f̄i+1(t) ,

where we have defined

ai+1(t) :=
∂fi+1

∂zi+2
(zi+1(t), δi+1(t), u(t))

f̄i(t) := fi(ẑi(t), B
>ζi(t), u(t))

−fi(zi(t), B>ζi(t), u(t))

f̄i+1(t) := fi+1(ẑi+1(t), B>ζi+1(t), u(t))−
fi+1(zi+1(t), B>ζi+1(t), u(t))

for some δi+1(t). Thus, we get the ζ̃i dynamics

˙̃
ζi = Hi(t)ζ̃i +Ni+1(t)ζ̃i+1 +D2(κ)Qiζ̃i−1 + F̄i(t)

with

Hi(t) :=

(
−κki1 ai(t)

−κ2ki2 0

)
, F̄i(t) :=

(
f̄i(t)

f̄i+1(t)

)
,

D2(κ) = diag(κ, κ2) and Qi defined as in (9). Similarly

the ζ̃n−1 is modelled by

˙̃
ζn−1,1 = an−1(t)ζ̃n−1,2 − κkn−1,1ζ̃n−1,1

+κkn−1,1ζ̃n−2,2 + f̄n−1(t) ,
˙̃
ζn−1,2 = −κ2kn−1,2ζ̃n−1,1 + κ2kn−1,2ζ̃n−2,2 + f̄n(t) ,

where we have defined

f̄n−1(t) := fn−1(ẑn−1, B
>ζn−1, u)

−fn−1(zn−1, B
>ζn−1, u)

f̄n(t) := fn(ẑn, u)− fn(zn, u) .

In more compact form the ζ̃n−1 dynamics can be rewrit-
ten as

˙̃
ζn−1 = Hn−1(t)ζ̃n−1 +D2(κ)Qn−1ζ̃n−2 + F̄n−1(t) ,

in which (by dropping the time-dependence for the sake
of compactness)

Hn−1 :=

(
−κkn−1,1 an−1(t)

−κ2kn−1,2 0

)
, F̄n−1 :=

(
f̄n−1(t)

f̄n(t)

)
.

Now note that, by Assumption 1,

|f̄i(t)| ≤ `|z̃i| , 1 ≤ i ≤ n− 1 , |f̄n(t)| ≤ `|z̃| ,

where, for convenience, we set z̃i = col(Cζ̃1, . . . , Cζ̃i) for

1 ≤ i ≤ n− 1 and z̃ = col (z̃n−1, B
>ζ̃n−1). Rescale now

the variables ζ̃i as follows

εi := κ2−iD2(κ)−1ζ̃i , i = 1, 2, . . . , n− 1 . (14)

By setting ε = col (ε1, . . . , εn−1), an easy calculation
shows that

ε̇ = κM(t)ε+ F̄κ(t) (15)

in which the matrix M(t) is defined as (9), the terms
ai(t), with 1 ≤ i ≤ n − 1, and b1(t) are bounded from
below and from above for all t ≥ 0 by Assumption 2, the
term bi(t) = 1 for 2 ≤ i ≤ n− 1, and the vector F̄κ(t) is
defined by

F̄κ(t) := ∆κF̄ (t)

with ∆κ and F̄ (t) defined by

∆κ := diag(κ, 1, κ−1, . . . , κ3−n)⊗D2(κ)−1

F̄ (t) := col (F̄1, F̄2(t), . . . , F̄n−1(t)) .

Inspection on the each element of F̄κ shows that, for
κ > 1,

|κ1−if̄i(t)| ≤ `|ε| , i = 1, 2, . . . , n ,

thus yielding that there exists a real number ¯̀> 0, in-
dependent of κ, such that |F̄κ| ≤ ¯̀|ε|. Now let the coef-
ficients (ki1, ki2) be chosen following Lemma 1 (see Ap-
pendix A) for a given symmetric and positive definite
matrix P and positive constant λ, and choose the Lya-
punov candidate as W (ε) = ε>Pε. The time derivative
of W (ε) along the trajectories of system (15) is given by

Ẇ (ε) = κε>(PM +M>P )ε+ 2ε>PF̄κ

≤ −(κλ− 2¯̀‖P‖)|ε|2 .

Choosing κ? =
2¯̀‖P‖
λ

, one can conclude that, for any

κ > κ?, there exists a positive constant α1 such that
Ẇ ≤ −α1κ|ε|2. Recalling the fact that there exist posi-
tive constants σ̄ and σ such that σ|ε|2 ≤ W (ε) ≤ σ̄|ε|2,
it can be further deduced that

|ε(t)| ≤ c̄1 exp(−c̄2κt)|ε(0)| ,
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for some proper positive constants c̄1 and c̄2, inde-
pendent of κ. Now using the fact that, for all κ > 1,
κ−(n−1)|ζ̃| ≤ |ε| ≤ |ζ̃| and |ζ̃| ≤ |Ẑ − Z| ≤ 2|ζ̃|, the
previous bound leads to the result. �

It is worth noting that a key feature of the new ob-
server is that the relative degree between the input y
(output of the observed system) and the error variables

ζ̃i defined in (12) is equal to one for i = 1 and, in the
worst case in which the functions fi(·) depends on all
the state variables in zi, to two for all i = 2, . . . , n. This
is due to the fact that the innovation terms of the ζi dy-
namics, for i = 2, . . . , n, are constructed using the “pre-
vious” observer variable ζi−1 rather than the observed
output y (see the definition of ei in (11)). By contrast,
in the classical observer (4), the relative degree between
y and the observation errors is always equal to one. Ap-
plied to linear systems, standard frequency-domain con-
siderations can be used to conclude that, due to this rel-
ative degree property, the new observer behaves better
than the classical one in terms of sensitivity of the ob-
servation error variables to high-frequency measurement
noise. As shown in the numerical analysis presented in
Section 5, the improvement in the sensitivity to high-
frequency measurement noise is quite evident also in the
nonlinear case. A proof of the result goes beyond the
scope of the paper and it is not here provided.

4 Nonlinear Separation Principle

In this section we show that the observer presented
in the previous section lends itself to be used in a nonlin-
ear separation principle, in which the existence of a glob-
ally stabilizing state feedback control law, in conjunc-
tion with the observer (11), suffice to design an output-
feedback controller able to semi-globally stabilize the
system. In this context the starting point is the existence
of a state feedback control law that is formalised in the
next assumption.

Assumption 3 There exists a C1 function α? : Rn →
R satisfying α?(0) = 0 such that the equilibrium z = 0
of system (2) controlled by

u = α?(z) (16)

is globally asymptotically stable.

For the sake of brevity, let’s denote the system (2)
and (16) in the compact form

ż = f(z, α?(z)) ,

in which f(·) = col (f1(·), . . . , fn(·)).

As the state z is not available, the estimates of z
should be applied to replace the role of z in the con-
trol. To prevent the presence of finite escape times for

the closed-loop system, as originally proposed in [8], the
actual control to be implemented on the system is

u = σR(α?(ẑ′)) (17)

in which σR(r) is a saturation function with the satu-
ration level R > 0 and where ẑ′ is the state estimate
provided by the observer (11) introduced in Section 3.

By considering the change of coordinates (12), (14)
and the resulting observer dynamics in (15), the closed
loop system obtained by applying (17) reads as

ż = f(z, α?(z)) + ∆1(z, ε) ,

ε̇ = κM(t)ε+ F̄κ(t) ,
(18)

in which we have set

∆1(z, ε) = f(z, σR(α?(z + ∆κL1ε)))− f(z, α?(z)) .

It turns out that there exists a tuning of the saturation
level R and of the high-gain parameter κ that make the
origin of the closed loop system (18) asymptotically (and
locally exponentially) stable with an arbitrary large do-
main of attraction. This is detailed in the following the-
orem whose proof, having in mind the claim of Theorem
2, comes off-the-shelf from the arguments in [21].

Theorem 3 Consider system (1) having observability
canonical form (2) in closed-loop with (11) and (17)
and suppose Assumptions 1-3 hold. Let (ki1, ki2), i =
1, . . . , n− 1, be chosen according to Lemma 1 in such a
way that the matrix M(t) satisfies (10) for some positive
definite and symmetric matrix P and some positive λ,
for all t ≥ 0. Then, for any compact set K ∈ R3n−2,
there exists a R? > 0 and, for all R ≥ R?, there exists
a κ? ≥ 1 such that, for all κ > κ?, the equilibrium
(z, ζ) = (0, 0) of the closed-loop system is asymptotically
stable with a domain of attraction containing K.

Remark: If the function α? : Rn → R introduced
in Assumption 3 is at least Cn, it is possible to combine
the results in [9], [2] and [22] to obtain a different design.
In particular, by following [9, Definition 3.1, Chapter 2],
the system (1) can be immersed, by a suitable change of
coordinates (which depends on u, u̇, . . . , u(n−1)) into the
so-called phase-variable representation

ṡ1 = s2 , . . . , ṡn−1 = sn ,

ṡn = H(s1, . . . , sn, u, u̇, . . . , u
(n−1)) .

Then, if the change of coordinates is unique and globally
defined, the observer proposed in [2] can be used to get
an estimate of (s1, . . . , sn). For this, we need to consider
u, u̇, . . . , u(n−1) as part of the state, as noted in [12, Sec-
tion 9.6.1]. This can be done by extending the system
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with a chain of n integrators on the control input u, and
by designing a new control law for virtual input u(n). As
showed for instance in [22,12], the design relies on back-
stepping technique. In this different approach, the de-
sign of the observer turns out to be much more simpler,
but at the price of asking the existence (not always guar-
anteed) of a global change of coordinates (which may be
very hard to compute for the general class of systems (1))
and the application of n-steps of backstepping (which
involves in general a considerable computational effort).

5 Simulation example

We consider a single-link robot arm system (see [12,
Section 4.10]) described by

ż1 = z2

ż2 =
K̄

J2N
z3 −

F2

J2
z2 −

K̄

J2
z1 −

mgd

J2
cos z1

ż3 = z4

ż4 =
1

J1
u+

K̄

J1N
z1 −

K̄

J2N
z3 −

F1

J1
z4

y = z1

(19)

where J1 and J2 represent the inertias of the actuator
shaft and the link respectively, K̄ denotes the elasticity
constant of the joint elastic coupling, N is the transmis-
sion gear ration, m is the mass, g is the gravity acceler-
ation, d is the position of the center of the gravity of the
link, and F1 and F2 are viscous friction coefficients. We
are interested in stabilizing by output feedback the equi-
librium z = (0, 0,mgdN/K̄, 0) of (19) by following the
result of Theorem 3. It can be verified that system (19)
satisfies Assumptions 1 and 2 and therefore we can de-
sign an observer of the form (11) by following Lemma 1
and Theorem 2. Moreover, note that the technique pro-
posed in [2] cannot be applied directly in this framework
without an appropriate coordinate transformation. As-
sumption 3 is verified by the following control law

u =
mgdJ1
J2N

− J1J2N

K̄

[
L4c1z1 + L3c2z2+

L2c3

(
K̄

J2N
z3 −

mgd

J2

)
+ Lc4

K̄

J2N
z4

]
, (20)

where ci, i = 1, . . . , 4 are positive coefficients to be cho-
sen and L > 0 is a constant to be chosen large enough.

The values of the physical parameters of (19) have
been taken as F1 = 0.1, F2 = 0.15, J1 = 0.15, J2 = 0.2,
K̄ = 0.4 N = 2, m = 0.8, g = 9.81 and d = 0.6. The
parameters of the control law (20) are chosen as c1 = 4,
c2 = 7.91, c3 = 6.026, c4 = 1.716, L = 3, and the control
law is implemented by following (17) with R = 200. The

observer is implemented as (11) where the coefficients
are chosen as

k11 = 2.5 ,

k12 = 4.6 ,

k21 = 2.5 ,

k22 = 1.533 ,

k31 = 2.5 ,

k32 = 0.511

and κ = 250. The initial conditions are set as z =
(0.5, 0, 0, 0) for the plant and ζ = 0 for the observer. In
the simulation we considered the case when the mea-
sured output is given by

y = z1 + ν(t) , ν = % sin(ω t) ,

with % = 0.002 and ω = 3000. Figure 1 shows the be-
haviour of the state z of the closed loop system (19), (20)
with the observer (11) when there is no measurement
noise and when the measurement noise is present.

We are also interested in the performances of
the proposed observer structure in presence of high-
frequency measurement noise to see if there are improve-
ments in the sensitivity with respect to a standard high-
gain observer (4). As a comparison, the coefficients of
(4) are chosen as (k1, k2, k3, k4) = (5, 9.35, 7.75, 2.4024)
and the initial condition is set as ẑ(0) = 0. The high-gain
parameter is chosen as κ = 202 in order to practically
match the convergence rate of the two observers. In this
simulations we considered the case in which the system
is controlled by state feedback and we are using the two
observers only to get an estimate of the state z of the
plant. As in [2], it can be verified that new observer
provides better properties with respect to the standard
high-gain construction (4) in terms of sensitivity of the
estimation errors to high-frequency measurement noise,
despite the gain chosen for the new observer is higher
than the one used for the standard high-gain observer
with the same convergence rate. This is shown in Ta-
ble 1 in which the normalized asymptotic magnitude
estimate errors are shown for the two observers.

Standard High Gain

Observer ẑ

Modified

Observer ẑ′ = L1ζ

|z1 − ẑ1|%a ' 3.3 · 10−1 |z1 − ẑ′1|%a ' 2.1 · 10−1

|z2 − ẑ2|%a ' 1.3 · 102 |z2 − ẑ′2|%a ' 20

|z3 − ẑ3|%a ' 2.1 · 104 |z3 − ẑ′3|%a ' 6.2 · 102

|z4 − ẑ4|%a ' 1.3 · 106 |z4 − ẑ′4|%a ' 3.2 · 104

Table 1: Normalized asymptotic errors in presence of noise.
|x(t)|%a denotes the asymptotic norm normalized with respect
to %, i.e. |x(t)|%a = lim sup

t→∞
|x(t)|/% .

6 Conclusion

In this paper we presented a new high-gain observer
for nonlinear systems which are uniform observable (ac-
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Fig. 1. State z of the closed loop system (19), (20) when using the observer (11) with and without measurement noise

cording to the definition in [9]). The strength of the new
observer relies in the fact that the power of the high-gain
parameter is always 2 regardless the dimension of the
observed system. This feature makes always possible its
implementability even when the dimension of the system
is very large. We showed that the observer can be also
used in output feedback stabilisation within a canoni-
cal nonlinear separation principle. The result is inspired
by the observer design technique recently proposed in
[2] for the class of systems that are transformable in the
canonical observability form. The new observer does not
present any benefit or drawbacks in terms of peaking
phenomenon. However, the recent technique introduced
in [3] could be applied to this framework in order to
overcome the peaking phenomenon. Finally, as already
noted in [2], we observe that the proposed structure pro-
vides better results with respect to the standard high-
gain observer in terms of sensitivity to high-frequency
measurement noise. This is not formally proved but only
verified through simulations. A complete characteriza-
tion of the behaviour of the observer in presence of noise
is under study.

A The proof of Lemma 1

The idea of the proof is to iterate a small-gain the-
orem by starting from the block of M(t) on the bot-
tom. For convenience, we first recursively set matrices
Mi(t) ∈ R(2i)×(2i) as

M1(t) := En−1(t)

Mi+1(t) :=

(
En−i−1(t) N̄n−i(t)

Q̄n−i Mi(t)

)
, i = 1, . . . , n− 2 ,

where N̄n−i(t) ∈ R2×2i and Q̄n−i ∈ R2i×2 are defined as

N̄n−1(t) := Nn−1(t) , N̄n−i(t) :=
(
Nn−i(t) 0 . . . 0

)
,

Q̄n−1 := Qn−1 , Q̄n−i :=
(
Q>n−i 0 . . . 0

)>
.

The proof of Lemma 1 immediately comes by the follow-
ing two lemmas.

Lemma 2 Consider the matrix M1(t). There exist co-
efficients kn−1,1 and kn−1,2 and a positive definite sym-
metric matrix P1 such that

P1M1(t) +M>1 (t)P1 ≤ −λ1I

for some positive constant λ1.

Proof. Consider the system

ξ̇1 = En−1(t)ξ1 (A.1)

in which ξ1 = col (ξ11, ξ12) ∈ R2. Let Θ(r) be the matrix
having the form

Θ(r) =

(
r 0

−r 1

)
(A.2)

for all r ∈ R, and then consider the following change of
variables

η1 = Θ(γ1)ξ1 i.e. η11 = γ1ξ11 , η12 = ξ12 − γ1ξ11 ,
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with γ1 > 0 to be chosen. System (A.1) in the new co-
ordinates can be rewritten as 2

η̇11 = − [kn−1,1bn−1,1 − γ1an−1] η11 + γ1an−1η12

η̇12 = −
[
(γ−11 kn−1,2 − kn−1,1)bn−1,1 + γ1an−1

]
η11

−γ1an−1η12 .

By taking kn−1,2 = γ1kn−1,1, we have the system

η̇11 = −(kn−1,1bn−1,1 − γ1an−1)η11 + γ1an−1η12

η̇12 = −γ1an−1η11 − γ1an−1η12 .

Now choose the Lyapunov function

V1 = |η1|2 = ξ1Θ(γ1)>Θ(γ1)ξ1

whose time derivative is given by

V̇1 = −2(kn−1,1bn−1,1 − γ1an−1)η211 − 2γ1an−1η
2
12 .

By coming back in the ξ1-coordinates and by using
Young’s inequality, the above equality can be rewritten
as

V̇1 ≤ −2γ21(kn−1,1bn−1,1 − 2γ1an−1)ξ211 − γ1an−1ξ212
≤ −2γ21(kn−1,1α− 2γ1β)ξ211 − γ1αξ212 .

Given any positive γ1, and choosing kn−1,1 > 2γ1
β
α ,

we can conclude that V̇1 ≤ −λ1|ξ1|2 with λ1 =
min{2γ21(kn−1,1α − 2γ1β), γ1α}. Namely, given P1 =
Θ(γ1)>Θ(γ1), the inequality P1M1(t) + M1(t)>P1 ≤
−λ1I holds, which completes the proof of Lemma 2.
2

Lemma 3 Assume there exist a symmetric positive
definite matrix Pi and a positive constant λi such that
PiMi(t) + Mi(t)

>Pi ≤ −λiI. Then there exist coef-
ficients kn−i−1,1 and kn−i−1,2 and a positive definite
symmetric matrix Pi+1 such that

Pi+1Mi+1(t) +M>i+1(t)Pi+1 ≤ −λi+1I , 1 ≤ i ≤ n− 2

for some positive constant λi+1.

Proof. Consider the system

ξ̇i+1 = En−i−1(t)ξi+1 + N̄n−i(t)χi

χ̇i = Mi(t)χi + Q̄n−iξi+1

(A.3)

2 From now on we omit the time-dependence in the vari-
ables for the purpose of compactness.

where ξi+1 = col (ξi+1,1, ξi+1,2) ∈ R2 and χi =
col (ξ1, . . . , ξi) ∈ R2i. Let’s make the following linear
coordinate change for the state ξi+1 in (A.3)

ηi+1 := col (ηi+1,1, ηi+1,2) = Θ(γi+1)ξi+1

where Θ(γi+1) has the form (A.2) and γi+1 is a positive
constant to be chosen. The system (A.3) in the new co-
ordinates can be rewritten as 3

η̇i+1,1 = − [kn−i−1,1bn−i−1,1 − γi+1an−i−1] ηi+1,1

+γi+1an−i−1ηi+1,2

η̇i+1,2 = −[(γ−1i+1kn−i−1,2 − kn−i−1,1)bn−i−1,1

+γi+1an−i−1]ηi+1,1 − γi+1an−i−1ηi+1,2

+N̄n−iχi

χ̇i = Miχi + Γi(ηi+1,2 + ηi+1,1)

where Γi = col (kn−i,1, kn−i,2, 0, . . . , 0). By taking
kn−i−1,2 = γi+1kn−i−1,1 , we get

η̇i+1,1 = − [kn−i−1,1bn−i−1,1 − γi+1an−i−1] ηi+1,1

+γi+1an−i−1ηi+1,2

η̇i+1,2 = −γi+1an−i−1ηi+1,1 − γi+1an−i−1ηi+1,2

+N̄n−iχi

χ̇i = Miχi + Γi(ηi+1,2 + ηi+1,1) .

Consider now the positive definite function Vi = χ>i Piχi,
whose time derivative is given by

V̇i = 2χ>i Pi[Mi(t)χi + Γi(ηi+1,2 + ηi+1,1)]

≤ −λi|χi|2 + 2χ>i PiΓiξi+1,2

≤ − 1
2λi|χi|

2 + δ1ξ
2
i+1,2

for some positive δ1, independent of γi+1 and kn−i−1,1.
Furthermore, consider the positive definite function

Wi+1 = |ηi+1|2 = ξi+1Θ(γi+1)>Θ(γi+1)ξi+1 ,

3 Again, from now on we omit the time-dependence in the
variables for the purpose of compactness.
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whose time derivative is given by

Ẇi+1 = −2 [kn−i−1,1bn−i−1,1 − γi+1an−i−1] η2i+1,1

−2γi+1an−i−1η
2
i+1,2 + 2ηi+1,2N̄n−iχi

≤ −2 [kn−i−1,1bn−i−1,1 − γi+1an−i−1] η2i+1,1

−γi+1an−i−1η
2
i+1,2 + β2

αγi+1
|χi|2

≤ −2γ2i+1 [kn−i−1,1bn−i−1,1 − 2γi+1an−i−1] ξ2i+1,1

− 3
4γi+1an−i−1ξ

2
i+1,2 + β2

αγi+1
|χi|2

≤ −2γ2i+1 [kn−i−1,1α− 2γi+1β] ξ2i+1,1

− 3
4γi+1αξ

2
i+1,2 + β2

αγi+1
|χi|2 .

Then consider the Lyapunov function Vi + Wi+1. By

choosing γi+1 such that γi+1 = max

{
2δ1
α
,

4β2

λiα

}
and

kn−i−1,1 satisfying kn−i−1,1 > 2γi+1β/α , we get

V̇i + Ẇi+1 ≤ −
λi
4
|χi|2 −

1

4
γi+1αξ

2
i+1,2

−2γ2i+1 [kn−i−1,1α− 2γi+1β] ξ2i+1,1 .

Now set χi+1 = col (ξi+1, χi) and

Pi+1 = blkdiag(Θ(γi+1)>Θ(γi+1), Pi) ,

and consider the positive definite function Vi+1,1 =
χ>i+1Pi+1χi+1. Its time derivative satisfies

V̇i+1 ≤ −λi+1|χi+1|2

in which

λi+1 = min

{
λi
4
, 2γ2i+1(kn−i−1,1α− 2γi+1β),

1

4
γi+1α

}
.

That is,

Pi+1Mi+1(t) +Mi+1(t)>Pi+1 ≤ −λi+1I ,

which completes the proof of Lemma 3. 2
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