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We consider the problem of state observation for systems having a well-defined observability canonical form ([9]) by means of high-gain observers. The main goal is to show that, for this class of systems, observers can be designed with the highgain parameter powered just up to the order 2 regardless the dimension of the state system. In this way we substantially overtake the main limitations of standard design procedures in which the high-gain parameter is powered up to the order of the system. The observer structure, which generalises the ideas presented in [2], can be used in all those contexts where fast state observation is required, such as in the design of output feedback stabilisers by means of the nonlinear separation principle that is also specifically addressed in the paper.

Introduction

The problem of designing asymptotic state observers for nonlinear systems is a central topic in the control literature (see [START_REF] Esfandiari | Observer-based design of uncertain systems: recovering state feed-back robustness under matching conditions[END_REF] and [START_REF] Gauthier | Observability for any u(t) of a Class of Nonlinear Systems[END_REF] for general surveys on the topic). A special role in literature is played by the so-called high-gain observer in which the error trajectory has an exponential decay rate that can be imposed arbitrarily fast by acting on a design parameter, appearing in the observer structure, typically known as "high-gain" parameter (see for instance the surveys [START_REF] Khalil | High-gain Observers in Nonlinear Feedback Control[END_REF][START_REF] Marconi | Output stabilization via nonlinear Luenberger observers[END_REF] and references therein). Such observers are routinely used in all control contexts where fast observation is mandatory, such as contexts of nonlinear output feedback stabilisation by means of the nonlinear separation principle in which fast observation is required in order to prevent finite escape times of the closed-loop system (see [START_REF] Vasiljevic | Differentiation with highgain observers the presence of measurement noise[END_REF]). A very general and elegant framework where high-gain observers have been developed is the one presented in [START_REF] Gauthier | Observability for any u(t) of a Class of Nonlinear Systems[END_REF] where Luenberger style observers are designed for the class of nonlinear systems that can be transformed, by change of variables, in the so-called observability canonical form. The latter is a special triangular form in which the partial derivatives of the functions describing the dynamics of the single state components with respect to the "first variable" never vanish. In the same book the existence of such normal forms is linked to a notion of observability for nonlinear systems (see also [START_REF] Gauthier | A simple observer for nonlinear systems aplication to bioreactors[END_REF]). It is also shown how the proposed Luenberger style high-gain observer can be used, in a nonlinear separation principle context, to systematically design output feedback stabilisers. The application of high-gain observers in the fields of output regulation can be found in [START_REF] Shim | Non-linear output feedback stabilization on a bounded region of attraction[END_REF]. "Dirty derivatives observers" are further fundamental examples of high-gain structures used in several control contexts (see for instance [23]). In this case the goal is to obtain an arbitrarily accurate (i.e. practical) and arbitrarily fast estimate of the output of a nonlinear system and its time derivatives. Such "rough" observers have been shown to play a role in the context of output feedback stabilisation. In this respect it is worth quoting the milestone contribution in [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF], which opened the door to a number of works on the subject (among which it is worth recalling [24,[START_REF] Khalil | High-gain Observers in Nonlinear Feedback Control[END_REF][START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF][START_REF] Isidori | Nonlinear Control Systems[END_REF]) culminated in the fundamental paper [23]. In the latter the use of dirty derivatives observers have been proved to be effective to systematically stabilize, by output feedback, a broad class of nonlinear systems stabilizable by uniformly completely observable (UCO) state feedback control laws. The main drawbacks of observer design techniques that rely on high-gain properties are typically two-fold. The first is known as "peaking phenomenon", whose effect in many control contexts is overtaken by using saturation functions [START_REF] Khalil | High-gain Observers in Nonlinear Feedback Control[END_REF][START_REF] Vasiljevic | Differentiation with highgain observers the presence of measurement noise[END_REF]. The second is related to the fact that the high-gain parameter is typically powered to the order given by the dimension of the observed system. This fact, in turn, makes the practical (i.e. numerical) implementation of such observers very hard whenever the order of the observed system is high. A further consequence of this, is that the sensitivity to high-frequency measurement noise of these observers is typically unacceptable, as already studied in [START_REF] Ahrens | High-gain observer in the presence of measurement noise: a switched-gain approach[END_REF][START_REF] Besançon | Nonlinear observers and applications[END_REF]25]. In the recent contribution [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], a new high-gain observer structure has been proposed for a class of uniformly observable nonlinear systems which are diffeomorphic to the canonical observability form [START_REF] Gauthier | A simple observer for nonlinear systems aplication to bioreactors[END_REF]. The remarkable feature of the new observers is that the high-gain parameter is powered up to the order 2, regardless the dimension of the observed system, at the price of having the observer state dimension 2n -2 with n the dimension of the observed system. The new observer has been shown to substantially overtake the problems related to numerical computation. Moreover it has been shown that, in the linear case, this observer has better asymptotic properties with respect to high-frequency noise. In this paper, we extend the ideas and arguments of [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] to a wider class of observable nonlinear systems. In particular we consider nonlinear systems, possibly not affine in the input, which are Uniformly Observable (according to the definition given in ([9, Section 2, Definition 2.1]) and therefore diffeomorphic to a observability canonical form, [9, Section 3, Theorem 2.1], which is more general than the one considered in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]. As in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], the new observer structure overtakes the problem of numerical implementation of the classical observer for high order systems and substantially improves the observation performances in terms of sensitivity to high-frequency measurement noise. The paper is organized as follows. In Section 2 the framework is introduced by presenting existing results on Luenberger style observers for observability canonical form. The main result is given in Section 3, where the new high-gain observer is proposed and its convergence analysis is derived. Then its application to a nonlinear separation principle is discussed in Section 4. In Section 5 the performances of the new observer are shown in a numerical example. Finally, Section 6 present final remarks.

The Framework

In this paper we deal with single-input single-output nonlinear systems of the form ẋ = ψ(x, u) , y = ρ(x, u)

where x ∈ R n is the state, u ∈ U ⊂ R is the control input, y ∈ R is the measured output, ψ(x, u) are smooth vector fields, and ρ(x, u) is a smooth function. The main goal of the paper is to develop a new observer for the previous class of systems to be used in a context of nonlinear separation principle. The reference framework that is used to present the result is the one of [START_REF] Gauthier | Observability for any u(t) of a Class of Nonlinear Systems[END_REF] in which Luenberger style high-gain observers are proposed. In that framework, in particular, the interest is on systems that are Uniformly Observable, meaning that there exists a global change of variables z = Φ(x) that transforms system (1) into the so-called observability canonical form

żi = f i (z i , z i+1 , u) , 1 ≤ i ≤ n -1 żn = f n (z n , u) y = h(z 1 , u) (2) 
with z = (z 1 , . . . , z n ) T , z i = (z 1 , . . . , z i ) T and with the functions f i (•), i = 1, . . . , n -1 and h(•) that, for any

(z, u) ∈ R n × U , fulfil ∂h ∂z 1 (z 1 , u) = 0 , ∂f i ∂z i+1 (z i , z i+1 , u) = 0 , i = 1, . . . , n-1.
Furthermore, we assume that system (2) satisfies the following two assumptions.

Assumption 1

The maps f i (•), i = 1, . . . , n, are globally Lipschitz with respect to z i , uniformly with respect to u and z i+1 , namely there exists a > 0 such that for all z i ∈ R i , z i ∈ R i , z i+1 ∈ R, and u ∈ U the following holds

|f i (z i , z i+1 , u) -f i (z i , z i+1 , u)| ≤ |z i -z i | , 1 ≤ i ≤ n -1 , |f n (z n , u) -f n (z n , u)| ≤ |z n -z n | .
Assumption 2 There exist two positive real constants α < β, such that for all (z, u) ∈ R n × U the following holds

α ≤ ∂h(z 1 , u) ∂z 1 ≤ β , α ≤ ∂f i (z i , z i+1 , u) ∂z i+1 ≤ β , 1 ≤ i ≤ n -1 . (3) 
The globally Lipschitz condition in Assumption 1 is motivated by the fact that, in the following, we look for a global observer. In case just semiglobal observation is looked for, namely if the initial conditions of the observer and of the system range in a fixed known compact set, the previous condition can be weakened by asking that the functions f i (•) are only locally Lipschitz with respect to z i (see [START_REF] Gauthier | A simple observer for nonlinear systems aplication to bioreactors[END_REF]).

Within this framework the main result proposed in [9, Theorem 2.2, Chapter 6] is a systematic design of a high-gain Luenberger style observer that takes the form

żi = f i (ẑ i , ẑi+1 , u) + κ i k i (y -h(ẑ 1 , u)) 1 ≤ i ≤ n -1 , żn = f n (ẑ n , u) + κ n k n (y -h(ẑ 1 , u)) (4) 
where ẑ = (ẑ 1 , . . . , ẑn ) T , ẑi = (ẑ 1 , . . . , ẑi ) T , k i for i = 1, . . . , n are appropriate coefficients and κ is a positive high-gain parameter. As a matter result the following result holds (see [START_REF] Gauthier | Observability for any u(t) of a Class of Nonlinear Systems[END_REF]).

Theorem 1 Consider the observed system (2) and the observer (4) under Assumptions 1 and 2. There exist a choice of k 1 , . . . , k n and κ ≥ 1 such that for all κ > κ the following bound holds

|z(t) -ẑ(t)| ≤ µ 1 κ n-1 exp(-µ 2 κt)|z(0) -ẑ(0)| for all (z(0), ẑ(0)) ∈ R n × R n ,
for all t ≥ 0, for some positive µ 1 and µ 2 independent of κ.

One of the drawbacks of observers of the form ( 4) is clearly related to the increasing power (up to the order n) of the high-gain parameter κ, which makes the practical numerical implementation an hard task when n is very large. Motivated by these considerations, we propose in the next section a new observer for the class of uniformly observable systems that preserves the same high-gain features of the "classical" observer by substantially overtaking the implementation problems mentioned before. Specifically, we present a high-gain observer structure with a gain which grows only up to power 2 (regardless the dimension n of the system), at the price of having the observer state dimension 2n -2. This is done by extending the ideas and the arguments proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] in which the problem of state observation of systems in the canonical observability form

ż1 = z 2 , • • • żn-1 = z n , żn = ϕ(z) with ϕ(•) a locally Lipschitz function, is presented. That paper, in fact, proposed a (2n -2)-dimensional observer of the form ζi = B T ζ i -κ k i1 e i B T ζ i+1 -κ 2 k i2 e i , 1 ≤ i ≤ n -2 , ζn-1 = B T ζ n-1 -κ k n-1,1 e n-1 ϕ s (ẑ ) -κ 2 k n-1,2 e n-1 , (5) 
in which

ζ i ∈ R 2 , i = 1, . . . , n -1, e 1 := Cζ i -y, e i := Cζ i -B T ζ i-1 , i = 2, . . . , n -1 , (6) 
with C := (1 0) and B T := (0 1),

K i := (k i1 , k i2 ) are design parameters, ẑ := L 1 ξ , L 1 := blkdiag ( C, . . . , C (n-2) times , I 2 ) , (7) 
ζ := col(ζ 1 , . . . , ζ n-1 ) ∈ R 2n-2 , ( 8 

) and ϕ s (•) is an appropriate saturated version of ϕ(•).

In turn, if the design parameters K i , i = 1, . . . , n -1, are designed as shown in Lemma 1 of [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] and κ is taken sufficiently large according to the Lipschitz constant of ϕ(•), the variable ẑ converges asymptotically to z with a convergence rate that can be arbitrarily decreased by increasing κ (see Proposition 1 in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF]).

The new observer design

Instrumental to the main result is the following lemma that refers to the block-tridiagonal matrix M (t) ∈ R (2n-2)×(2n-2) defined as 

M (t) =                E 1 (t) N 2 (t) 0 • • • • • • 0 Q 2 E 2 (t) N 3 (
. . . Q n-2 E n-2 (t) N n-1 (t) 0 • • • • • • 0 Q n-1 E n-1 (t)                (9) 
with

E i (t) ∈ R 2×2 , Q i ∈ R 2×2 , and N i (t) ∈ R 2×2 matri- ces defined as E i (t) = -k i1 b i (t) a i (t) -k i2 b i (t) 0 , Q i = 0 k i1 0 k i2 , N i (t) = 0 0 0 a i (t) , i = 1, . . . , n -1
where a i (t) and b i (t) are positive1 for all 1 ≤ i ≤ n -1 and t ≥ 0, and (k i1 , k i2 ) are positive coefficients. The proof of the forthcoming lemma is given in Appendix-A.

Lemma 1 Consider the matrix M (t) in ( 9) with a i (t) and b i (t) fulfilling α ≤ a i (t) ≤ β, α ≤ b i (t) ≤ β for some positive α and β for all 1 ≤ i ≤ n -1 and t ≥ 0. Then there exist coefficients (k i1 , k i2 ), i = 1, . . . , n -1, a symmetric positive definite matrix P and a positive constant λ, such that P M (t) + M (t) P ≤ -λI [START_REF] Gauthier | A simple observer for nonlinear systems aplication to bioreactors[END_REF] for all t ≥ 0.

It is worth noting that Lemma 1 extends the result in Lemma 2.1 in [9, Chapter 6] in a non-trivial way due to the specific tri-block diagonal structure of M (t) in [START_REF] Gauthier | Observability for any u(t) of a Class of Nonlinear Systems[END_REF]. Furthermore, this result can be seen also as an extension to the time-varying case of the result in [2, Lemma 1], in which a i (t) = b i (t) = 1 for all i = 1, . . . , n -1 and for all t ≥ 0.

The new observer has state ζ ∈ R 2n-1 defined in (8) with the dynamics of

ζ i ∈ R 2 , i = 1, . . . , n -1, given by (compare with (5)) ζi = f i (ẑ i , B T ζ i , u) -κ k i1 e i f i+1 (ẑ i+1 , B T ζ i+1 , u) -κ 2 k i2 e i , 1 ≤ i ≤ n -2 , ζn-1 = f n-1 (ẑ n-1 , B T ζ n-1 , u) -κ k n-1,1 e n-1 f n (ẑ n , u) -κ 2 k n-1,2 e n-1 , (11) 
in which B and C are defined as in the previous section, e 1 := h(Cζ 1 , u) -y, e i , i = 2, . . . , n -1, are defined as in [START_REF] Esfandiari | Observer-based design of uncertain systems: recovering state feed-back robustness under matching conditions[END_REF], K i = (k i1 , k i2 ) are coefficients to be chosen according to the previous Lemma 1, and κ is the highgain parameter. In [START_REF] Isidori | Nonlinear Control Systems[END_REF], the vectors ẑi := (ẑ 1 , . . . , ẑi ) T , i = 1, . . . , n, contain estimates of the first i components of the state z that can be extracted by the observer state ζ. In particular, as in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], the redundancy of the observer can be employed to obtain two different estimates ẑ = (ẑ 1 , . . . , ẑn ) T of the state variable z that can be equally used to define ẑi . The first, denoted by ẑ , is defined as in [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF]. The second, denoted by ẑ , is described by

ẑ := L 2 ζ , L 2 := blkdiag ( I 2 , B , . . . , B (n-2) times
) .

Similarly to the result in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], in the forthcoming theorem we show that the variables ẑ and ẑ asymptotically recover the value of the state of (2) if the coefficients (k i1 , k i2 ), i = 1, . . . , n -1 are properly chosen and κ is large enough. In the statement of the proposition we denote Ẑ = col (ẑ , ẑ ) , Z = col (z, z) .

Theorem 2 Consider the system (2) satisfying Assumptions 1 and 2, and the observer [START_REF] Isidori | Nonlinear Control Systems[END_REF] with the coefficients (k i1 , k i2 ) chosen according to Lemma 1 with α and β given by Assumption 2 for some P = P > 0 and λ > 0. Then, there exist a κ ≥ 1 and positive constants c 1 , c 2 , such that, for all κ > κ the following bound holds

| Ẑ(t) -Z(t)| ≤ c 1 κ n-1 exp(-c 2 κt)| Ẑ(0) -Z(0)| for all (z(0), ζ(0)) ∈ R n × R 2n-2
and for all t ≥ 0.

Proof. Consider the change of variable

ζ i → ζi := ζ i -col (z i , z i+1 ) = col (ζ i1 -z i , ζ i2 -z i+1 ) , (12) 
where the ζ i = col(ζ i1 , ζ i2 ). As far as the ζ1 dynamics are concerned, by using the mean value theorem, it turns out that

ζ11 = f 1 (ẑ 1 , B T ζ 1 , u) -f 1 (z 1 , z 2 , u) -κ k 11 e 1 = f 1 (ẑ 1 , B T ζ 1 , u) -f 1 (z 1 , B T ζ 1 , u) + f 1 (z 1 , B T ζ 1 , u) -f 1 (z 1 , z 2 , u) -κ k 11 (h(Cζ 1 , u) -h(z 1 , u)) = ∂f 1 ∂z 2 (z 1 (t), δ 1 (t), u(t)) ζ12 -κk 11 ∂h ∂z 1 (δ 0 (t), u(t)) ζ11 +f 1 (ẑ 1 , B ζ 1 , u) -f 1 (z 1 , B ζ 1 , u) ζ12 = f 2 (ẑ 2 , B ζ 2 , u) -f 2 (z 2 , z 3 , u) -κ 2 k 12 e 1 = f 2 (ẑ 2 , B ζ 2 , u) -f 2 (z 2 , B ζ 2 , u) + f 2 (z 2 , B ζ 2 , u) -f 2 (z 2 , z 3 , u) -κ 2 k 12 (h(Cζ 1 , u) -h(z 1 , u)) = ∂f 2 ∂z 3 (z 2 (t), δ 2 (t), u(t)) ζ22 -κ 2 k 12 ∂h ∂z 1 (δ 0 (t), u(t)) ζ11 +f 2 (ẑ 2 , B ζ 2 , u) -f 2 (z 2 , B ζ 2 , u)
for some δ 0 (t) and δ 1 (t), namely, by setting

b 1 (t) := ∂h ∂z 1 (δ 0 (t), u(t)) a 1 (t) := ∂f 1 ∂z 2 (z 1 (t), δ 1 (t), u(t)) a 2 (t) := ∂f 2 ∂z 3 (z 2 (t), δ 2 (t), u(t)) we obtain ζ11 = a 1 (t) ζ12 -κk 11 b 1 (t) ζ11 + f1 (t) ζ12 = a 2 (t) ζ22 -κ 2 k 12 b 1 (t) ζ11 + f2 (t) (13) 
where

f1 (t) := f 1 (ẑ 1 , B ζ 1 , u) -f 1 (z 1 , B ζ 1 , u) f2 (t) := f 2 (ẑ 2 , B ζ 2 , u) -f 2 (z 2 , B ζ 2 , u) .
The ζ1 dynamics is thus described by

ζ1 = H 1 (t) ζ1 + N 2 (t) ζ2 + F1 (t)
with

H 1 (t) := -κk 11 b 1 (t) a 1 (t) -κ 2 k 12 b 1 (t) 0 , F1 (t) := f1 (t) f2 (t) ,
and N 2 defined as in [START_REF] Gauthier | Observability for any u(t) of a Class of Nonlinear Systems[END_REF]. Applying the same procedure to the ζi dynamics for 2 ≤ i ≤ n -2, we obtain

ζi1 = a i (t) ζi2 -κk i1 ζi1 + κk i1 ζi-1,2 + fi (t) , ζi2 = a i+1 (t) ζi+1,2 -κ 2 k i2 ζi1 + κ 2 k i2 ζi-1,2 + fi+1 (t) ,
where we have defined

a i+1 (t) := ∂f i+1 ∂z i+2 (z i+1 (t), δ i+1 (t), u(t)) fi (t) := f i (ẑ i (t), B ζ i (t), u(t)) -f i (z i (t), B ζ i (t), u(t)) fi+1 (t) := f i+1 (ẑ i+1 (t), B ζ i+1 (t), u(t))- f i+1 (z i+1 (t), B ζ i+1 (t), u(t))
for some δ i+1 (t). Thus, we get the ζi dynamics

ζi = H i (t) ζi + N i+1 (t) ζi+1 + D 2 (κ)Q i ζi-1 + Fi (t) with H i (t) := -κk i1 a i (t) -κ 2 k i2 0 , Fi (t) := fi (t) fi+1 (t) , D 2 (κ) = diag(κ, κ 2
) and Q i defined as in [START_REF] Gauthier | Observability for any u(t) of a Class of Nonlinear Systems[END_REF]. Similarly the ζn-1 is modelled by

ζn-1,1 = a n-1 (t) ζn-1,2 -κk n-1,1 ζn-1,1 +κk n-1,1 ζn-2,2 + fn-1 (t) , ζn-1,2 = -κ 2 k n-1,2 ζn-1,1 + κ 2 k n-1,2 ζn-2,2 + fn (t) ,
where we have defined

fn-1 (t) := f n-1 (ẑ n-1 , B ζ n-1 , u) -f n-1 (z n-1 , B ζ n-1 , u) fn (t) := f n (ẑ n , u) -f n (z n , u) .
In more compact form the ζn-1 dynamics can be rewritten as

ζn-1 = H n-1 (t) ζn-1 + D 2 (κ)Q n-1 ζn-2 + Fn-1 (t) ,
in which (by dropping the time-dependence for the sake of compactness)

H n-1 := -κk n-1,1 a n-1 (t) -κ 2 k n-1,2 0 
, Fn-1 := fn-1 (t) fn (t) . Now note that, by Assumption 1,

| fi (t)| ≤ |z i | , 1 ≤ i ≤ n -1 , | fn (t)| ≤ |z| ,
where, for convenience, we set zi = col(C ζ1 , . . . , C ζi ) for 1 ≤ i ≤ n -1 and z = col (z n-1 , B ζn-1 ). Rescale now the variables ζi as follows

ε i := κ 2-i D 2 (κ) -1 ζi , i = 1, 2, . . . , n -1 . (14) 
By setting ε = col (ε 1 , . . . , ε n-1 ), an easy calculation shows that ε = κM (t)ε + Fκ (t) (15) in which the matrix M (t) is defined as [START_REF] Gauthier | Observability for any u(t) of a Class of Nonlinear Systems[END_REF], the terms a i (t), with 1 ≤ i ≤ n -1, and b 1 (t) are bounded from below and from above for all t ≥ 0 by Assumption 2, the term b i (t) = 1 for 2 ≤ i ≤ n -1, and the vector Fκ (t) is defined by

Fκ (t) := ∆ κ F (t)
with ∆ κ and F (t) defined by

∆ κ := diag(κ, 1, κ -1 , . . . , κ 3-n ) ⊗ D 2 (κ) -1 F (t) := col ( F1 , F2 (t), . . . , Fn-1 (t)) .
Inspection on the each element of Fκ shows that, for κ > 1,

|κ 1-i fi (t)| ≤ |ε| , i = 1, 2, . . . , n ,
thus yielding that there exists a real number ¯ > 0, independent of κ, such that | Fκ | ≤ ¯ |ε|. Now let the coefficients (k i1 , k i2 ) be chosen following Lemma 1 (see Appendix A) for a given symmetric and positive definite matrix P and positive constant λ, and choose the Lyapunov candidate as W (ε) = ε P ε. The time derivative of W (ε) along the trajectories of system ( 15) is given by

Ẇ (ε) = κε (P M + M P )ε + 2ε P Fκ ≤ -(κλ -2 ¯ P )|ε| 2 .
Choosing κ = 2 ¯ P λ , one can conclude that, for any κ > κ , there exists a positive constant α 1 such that Ẇ ≤ -α 1 κ|ε| 2 . Recalling the fact that there exist positive constants σ and σ such that σ|ε| 2 ≤ W (ε) ≤ σ|ε| 2 , it can be further deduced that

|ε(t)| ≤ c1 exp(-c 2 κt)|ε(0)| ,
for some proper positive constants c1 and c2 , independent of κ. Now using the fact that, for all κ > 1, κ -(n-1) | ζ| ≤ |ε| ≤ | ζ| and | ζ| ≤ | Ẑ -Z| ≤ 2| ζ|, the previous bound leads to the result.

It is worth noting that a key feature of the new observer is that the relative degree between the input y (output of the observed system) and the error variables ζi defined in ( 12) is equal to one for i = 1 and, in the worst case in which the functions f i (•) depends on all the state variables in z i , to two for all i = 2, . . . , n. This is due to the fact that the innovation terms of the ζ i dynamics, for i = 2, . . . , n, are constructed using the "previous" observer variable ζ i-1 rather than the observed output y (see the definition of e i in ( 11)). By contrast, in the classical observer (4), the relative degree between y and the observation errors is always equal to one. Applied to linear systems, standard frequency-domain considerations can be used to conclude that, due to this relative degree property, the new observer behaves better than the classical one in terms of sensitivity of the observation error variables to high-frequency measurement noise. As shown in the numerical analysis presented in Section 5, the improvement in the sensitivity to highfrequency measurement noise is quite evident also in the nonlinear case. A proof of the result goes beyond the scope of the paper and it is not here provided.

Nonlinear Separation Principle

In this section we show that the observer presented in the previous section lends itself to be used in a nonlinear separation principle, in which the existence of a globally stabilizing state feedback control law, in conjunction with the observer [START_REF] Isidori | Nonlinear Control Systems[END_REF], suffice to design an outputfeedback controller able to semi-globally stabilize the system. In this context the starting point is the existence of a state feedback control law that is formalised in the next assumption.

Assumption 3 There exists a C 1 function α : R n → R satisfying α (0) = 0 such that the equilibrium z = 0 of system (2) controlled by

u = α (z) (16) 
is globally asymptotically stable.

For the sake of brevity, let's denote the system (2) and ( 16) in the compact form

ż = f (z, α (z)) , in which f (•) = col (f 1 (•), . . . , f n (•)).
As the state z is not available, the estimates of z should be applied to replace the role of z in the control. To prevent the presence of finite escape times for the closed-loop system, as originally proposed in [START_REF] Gauthier | Deterministic observation theory and applications[END_REF], the actual control to be implemented on the system is

u = σ R (α (ẑ )) (17) 
in which σ R (r) is a saturation function with the saturation level R > 0 and where ẑ is the state estimate provided by the observer [START_REF] Isidori | Nonlinear Control Systems[END_REF] introduced in Section 3.

By considering the change of coordinates ( 12), ( 14) and the resulting observer dynamics in [START_REF] Khalil | High-gain Observers in Nonlinear Feedback Control[END_REF], the closed loop system obtained by applying [START_REF] Marino | Dynamic output feedback linearization and global stabilization[END_REF] reads as

ż = f (z, α (z)) + ∆ 1 (z, ε) , ε = κM (t)ε + Fκ (t) , (18) 
in which we have set

∆ 1 (z, ε) = f (z, σ R (α (z + ∆ κ L 1 ε))) -f (z, α (z)) .
It turns out that there exists a tuning of the saturation level R and of the high-gain parameter κ that make the origin of the closed loop system (18) asymptotically (and locally exponentially) stable with an arbitrary large domain of attraction. This is detailed in the following theorem whose proof, having in mind the claim of Theorem 2, comes off-the-shelf from the arguments in [START_REF] Tornambé | High-gain observers for non-linear systems[END_REF]. Theorem 3 Consider system (1) having observability canonical form (2) in closed-loop with ( 11) and ( 17) and suppose Assumptions 1-3 hold. Let (k i1 , k i2 ), i = 1, . . . , n -1, be chosen according to Lemma 1 in such a way that the matrix M (t) satisfies (10) for some positive definite and symmetric matrix P and some positive λ, for all t ≥ 0. Then, for any compact set K ∈ R 3n-2 , there exists a R > 0 and, for all R ≥ R , there exists a κ ≥ 1 such that, for all κ > κ , the equilibrium (z, ζ) = (0, 0) of the closed-loop system is asymptotically stable with a domain of attraction containing K.

Remark: If the function α : R n → R introduced in Assumption 3 is at least C n , it is possible to combine the results in [START_REF] Gauthier | Observability for any u(t) of a Class of Nonlinear Systems[END_REF], [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] and [START_REF] Vasiljevic | Differentiation with highgain observers the presence of measurement noise[END_REF] to obtain a different design. In particular, by following [9, Definition 3.1, Chapter 2], the system (1) can be immersed, by a suitable change of coordinates (which depends on u, u, . . . , u (n-1) ) into the so-called phase-variable representation ṡ1 = s 2 , . . . , ṡn-1 = s n , ṡn = H(s 1 , . . . , s n , u, u, . . . , u (n-1) ) .

Then, if the change of coordinates is unique and globally defined, the observer proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] can be used to get an estimate of (s 1 , . . . , s n ). For this, we need to consider u, u, . . . , u (n-1) as part of the state, as noted in [START_REF] Isidori | Nonlinear Control Systems II[END_REF]Section 9.6.1]. This can be done by extending the system with a chain of n integrators on the control input u, and by designing a new control law for virtual input u (n) . As showed for instance in [START_REF] Vasiljevic | Differentiation with highgain observers the presence of measurement noise[END_REF][START_REF] Isidori | Nonlinear Control Systems II[END_REF], the design relies on backstepping technique. In this different approach, the design of the observer turns out to be much more simpler, but at the price of asking the existence (not always guaranteed) of a global change of coordinates (which may be very hard to compute for the general class of systems (1)) and the application of n-steps of backstepping (which involves in general a considerable computational effort).

Simulation example

We consider a single-link robot arm system (see [START_REF] Isidori | Nonlinear Control Systems II[END_REF]Section 4.10]) described by

ż1 = z 2 ż2 = K J 2 N z 3 - F 2 J 2 z 2 - K J 2 z 1 - mgd J 2 cos z 1 ż3 = z 4 ż4 = 1 J 1 u + K J 1 N z 1 - K J 2 N z 3 - F 1 J 1 z 4 y = z 1 (19) 
where J 1 and J 2 represent the inertias of the actuator shaft and the link respectively, K denotes the elasticity constant of the joint elastic coupling, N is the transmission gear ration, m is the mass, g is the gravity acceleration, d is the position of the center of the gravity of the link, and F 1 and F 2 are viscous friction coefficients. We are interested in stabilizing by output feedback the equilibrium z = (0, 0, mgdN/ K, 0) of ( 19) by following the result of Theorem 3. It can be verified that system [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF] satisfies Assumptions 1 and 2 and therefore we can design an observer of the form (11) by following Lemma 1 and Theorem 2. Moreover, note that the technique proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] cannot be applied directly in this framework without an appropriate coordinate transformation. Assumption 3 is verified by the following control law

u = mgdJ 1 J 2 N - J 1 J 2 N K L 4 c 1 z 1 + L 3 c 2 z 2 + L 2 c 3 K J 2 N z 3 - mgd J 2 + Lc 4 K J 2 N z 4 , (20) 
where c i , i = 1, . . . , 4 are positive coefficients to be chosen and L > 0 is a constant to be chosen large enough.

The values of the physical parameters of ( 19) have been taken as F 1 = 0.1, F 2 = 0.15, J 1 = 0.15, J 2 = 0. and κ = 250. The initial conditions are set as z = (0.5, 0, 0, 0) for the plant and ζ = 0 for the observer. In the simulation we considered the case when the measured output is given by y = z 1 + ν(t) , ν = sin(ω t) , with = 0.002 and ω = 3000. Figure 1 shows the behaviour of the state z of the closed loop system [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF], [START_REF] Teel | Tools for semiglobal stabilization by partial state and output feedback[END_REF] with the observer [START_REF] Isidori | Nonlinear Control Systems[END_REF] when there is no measurement noise and when the measurement noise is present.

We are also interested in the performances of the proposed observer structure in presence of highfrequency measurement noise to see if there are improvements in the sensitivity with respect to a standard highgain observer (4). As a comparison, the coefficients of (4) are chosen as (k 1 , k 2 , k 3 , k 4 ) = (5, 9.35, 7.75, 2.4024) and the initial condition is set as ẑ(0) = 0. The high-gain parameter is chosen as κ = 202 in order to practically match the convergence rate of the two observers. In this simulations we considered the case in which the system is controlled by state feedback and we are using the two observers only to get an estimate of the state z of the plant. As in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], it can be verified that new observer provides better properties with respect to the standard high-gain construction (4) in terms of sensitivity of the estimation errors to high-frequency measurement noise, despite the gain chosen for the new observer is higher than the one used for the standard high-gain observer with the same convergence rate. This is shown in Table 1 in which the normalized asymptotic magnitude estimate errors are shown for the two observers. 

Conclusion

In this paper we presented a new high-gain observer for nonlinear systems which are uniform observable (ac- 19), (20) when using the observer [START_REF] Isidori | Nonlinear Control Systems[END_REF] with and without measurement noise cording to the definition in [START_REF] Gauthier | Observability for any u(t) of a Class of Nonlinear Systems[END_REF]). The strength of the new observer relies in the fact that the power of the high-gain parameter is always 2 regardless the dimension of the observed system. This feature makes always possible its implementability even when the dimension of the system is very large. We showed that the observer can be also used in output feedback stabilisation within a canonical nonlinear separation principle. The result is inspired by the observer design technique recently proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] for the class of systems that are transformable in the canonical observability form. The new observer does not present any benefit or drawbacks in terms of peaking phenomenon. However, the recent technique introduced in [START_REF] Astolfi | Low-power peakingfree high-gain observers for nonlinear systems[END_REF] could be applied to this framework in order to overcome the peaking phenomenon. Finally, as already noted in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF], we observe that the proposed structure provides better results with respect to the standard highgain observer in terms of sensitivity to high-frequency measurement noise. This is not formally proved but only verified through simulations. A complete characterization of the behaviour of the observer in presence of noise is under study.

  2, K = 0.4 N = 2, m = 0.8, g = 9.81 and d = 0.6. The parameters of the control law (20) are chosen as c 1 = 4, c 2 = 7.91, c 3 = 6.026, c 4 = 1.716, L = 3, and the control law is implemented by following (17) with R = 200. The observer is implemented as (11) where the coefficients are chosen as k 11 = 2.5 , k 12 = 4.6 , k 21 = 2.5 , k 22 = 1.533 , k 31 = 2.5 , k 32 = 0.511

Fig. 1 .

 1 Fig. 1. State z of the closed loop system (19), (20) when using the observer[START_REF] Isidori | Nonlinear Control Systems[END_REF] with and without measurement noise

Table 1 :

 1 Normalized asymptotic errors in presence of noise. |x(t)| a denotes the asymptotic norm normalized with respect to , i.e. |x(t)| a = lim sup

	Standard High Gain	Modified
		Observer	ẑ	Observer ẑ = L1ζ
	|z1 -ẑ1| a	3.3 • 10 -1	|z1 -ẑ 1 | a	2.1 • 10 -1
	|z2 -ẑ2| a	1.3 • 10 2	|z2 -ẑ 2 | a	20
	|z3 -ẑ3| a	2.1 • 10 4	|z3 -ẑ 3 | a	6.2 • 10 2
	|z4 -ẑ4| a	1.3 • 10 6	|z4 -ẑ 4 | a	3.2 • 10 4

t→∞ |x(t)|/ .

All the forthcoming analysis can be easily adapted to deal with the case in which (some of) the ais and bis are negative.

Again, from now on we omit the time-dependence in the variables for the purpose of compactness.

A The proof of Lemma 1

The idea of the proof is to iterate a small-gain theorem by starting from the block of M (t) on the bottom. For convenience, we first recursively set matrices M i (t) ∈ R (2i)×(2i) as

where Nn-i (t) ∈ R 2×2i and Qn-i ∈ R 2i×2 are defined as Nn-1 (t) := N n-1 (t) , Nn-i (t) := N n-i (t) 0 . . . 0 ,

The proof of Lemma 1 immediately comes by the following two lemmas.

Lemma 2 Consider the matrix M 1 (t). There exist coefficients k n-1,1 and k n-1,2 and a positive definite symmetric matrix P 1 such that

for some positive constant λ 1 .

Proof. Consider the system

Let Θ(r) be the matrix having the form

for all r ∈ R, and then consider the following change of variables

with γ 1 > 0 to be chosen. System (A.1) in the new coordinates can be rewritten as

By taking

Now choose the Lyapunov function

whose time derivative is given by

By coming back in the ξ 1 -coordinates and by using Young's inequality, the above equality can be rewritten as

Given any positive γ 1 , and choosing

Namely, given P 1 = Θ(γ 1 ) Θ(γ 1 ), the inequality P 1 M 1 (t) + M 1 (t) P 1 ≤ -λ 1 I holds, which completes the proof of Lemma 2. 2 Lemma 3 Assume there exist a symmetric positive definite matrix P i and a positive constant λ i such that P i M i (t) + M i (t) P i ≤ -λ i I. Then there exist coefficients k n-i-1,1 and k n-i-1,2 and a positive definite symmetric matrix P i+1 such that

for some positive constant λ i+1 .

Proof. Consider the system

2 From now on we omit the time-dependence in the variables for the purpose of compactness.

where ξ i+1 = col (ξ i+1,1 , ξ i+1,2 ) ∈ R 2 and χ i = col (ξ 1 , . . . , ξ i ) ∈ R 2i . Let's make the following linear coordinate change for the state ξ i+1 in (A.3)

where Θ(γ i+1 ) has the form (A.2) and γ i+1 is a positive constant to be chosen. The system (A.3) in the new coordinates can be rewritten as

where

Consider now the positive definite function V i = χ i P i χ i , whose time derivative is given by

for some positive δ 1 , independent of γ i+1 and k n-i-1,1 . Furthermore, consider the positive definite function

whose time derivative is given by

Then consider the Lyapunov function

Now set χ i+1 = col (ξ i+1 , χ i ) and