Daniele Astolfi 
  
Lorenzo 
  
Lorenzo Marconi 
  
A High-Gain Nonlinear Observer with Limited Gain Power

Keywords: Observability, nonlinear observers, high-gain observers

come    

I. INTRODUCTION

In this note we consider the problem of state observation for nonlinear systems of the form

ż = f (z) + d(t) , y = h(z) + ν(t) (1) 
where z ∈ Z ⊆ R n is the state, y ∈ R is the measured output, f (•) and h(•) are sufficiently smooth functions, d(t) ∈ R n is a bounded disturbance and ν ∈ R is the measurement noise. Among the different techniques for observer design available in literature (see [START_REF] Gauthier | Deterministic observation theory and applications[END_REF], [START_REF] Besanc ¸on | Nonlinear observers and applications[END_REF]) we are particularly interested to the so-called high-gain methods that have been shown to be effective in many control scenarios. In this respect we assume that the pair (f (•), h(•)) fulfils an uniform observability assumption (see Definition 1.2 in [START_REF] Gauthier | Deterministic observation theory and applications[END_REF]), which implies the existence of a diffeomorphism φ : Z → R n such that the dynamic of the new state variable x = φ(z) is described by the canonical observability form (see Theorem 4.1 in [START_REF] Gauthier | Deterministic observation theory and applications[END_REF])

ẋ = A n x + B n ϕ(x) + d(x, t) , y = C n x + ν(t) , (2) 
where ϕ(•) is a locally Lipschitz function,

d(x, t) := dφ(z) dz z=φinv(x) d(t) ,
with φ inv (•) the inverse of φ(•) (namely φ inv • φ(z) = z for all z ∈ Z), and (A n , B n , C n ) is a triplet in "prime form" of dimension n, that is

A n = 0 (n-1)×1 I n-1 0 0 1×(n-1)
, B n = 0 (n-1)×1 1 ,

C n = 1 0 1×(n-1) .

(3) System ( 2) is defined on a set X := φ(Z) ⊆ R n .

For the class of systems [START_REF] Astolfi | Output feedback stabilization for SISO nonlinear systems with an observer in the original coordinates[END_REF], it is a well-known fact ( [START_REF] Bornard | A high gain observer for a class of uniformly observable systems[END_REF]) that the problem of asymptotically, in case d(x, t) ≡ 0 and D. Astolfi is with CASY-DEI, University of Bologna, Italy and with MINES ParisTech, PSL Research University, CAS, Paris, France, (daniele.astolfi@unibo.it).
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ν(t) ≡ 0, estimating the state x can be addressed by means of a high-gain nonlinear observer of the form

ẋ = A n x + B n ϕ s (x) + D n ( ) K n (C n x -y) (4) 
with

D n ( ) = diag , . . . , n , K n = c 1 • • • c n ,
where is a high-gain design parameter taken sufficiently large (i.e. ≥ with ≥ 1), the c i 's are chosen so that the matrix (A + KC) is Hurwitz (i.e. all its eigenvalues are on the lefthalf complex plane), and ϕ s (•) : R n → R is an appropriate "saturated" version of ϕ(•). As a matter of fact, it can be proved that if d(x, t) ≡ 0 and ν(t) ≡ 0, if ϕ(•) is uniformly Lipschitz in X , namely there exists a φ > 0 such that

ϕ(x ) -ϕ(x ) ≤ φ x -x ∀ x , x ∈ X , (5) 
and ϕ s (•) is chosen bounded and to agree with ϕ(•) on X , the observation error e(t) = x(t) -x(t) originating from ( 2) and ( 4) exponentially converges to the origin with an exponential decay rate of the form

x(t) -x(t) ≤ α n-1 exp(-β t) x(0) -x(0) ,
where α and β are positive constants, for all possible initial condition x(0) ∈ R n as long as x(t) ∈ X . In particular, note that the exponential decay rate may be arbitrarily assigned by the value of with a polynomial "peaking" in of order n-1.

It is worth noting that the uniform Lipschitz condition ( 5) is automatically fulfilled if X is a compact set. In case d(x, t) or ν(t) are not identically zero, as long as they are bounded for all t ≥ 0 and for all 1 x ∈ X , the observer (4) guarantees a bound on the estimation error that depends on the bound of d(•, •), of ν(•) and on the value of . In particular, the following asymptotic bounds can be proved

lim t→∞ sup x(t) -x(t) ≤ γ max lim t→∞ sup 1 Γ( ) d(x(t), t) , lim t→∞ sup n-1 ν(t)
where γ is a positive constant and

Γ( ) = diag( n-1 , . . . , , 1) . (6) 
As above the previous asymptotic bound holds for all possible x(0) ∈ R n as long as x(t) ∈ X . Note that a high value of leads to an arbitrarily small asymptotic gain on the n-th component of the disturbance d(•, •). On the other hand, a large value of is, in general, detrimental for the sensitivity of the asymptotic estimate to the sensor noise and to the first n -2 disturbance components.

Observers of the form (4) are routinely used in many observation and control problems. For instance, the feature of having an exponential decay rate and an asymptotic bound on the last component of d that can be arbitrarily imposed by the value of is the main reason why the above observer plays a fundamental role in output feedback stabilisation and in setting up semiglobal nonlinear separation principles ( [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF], [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF]). In that case the set X is an arbitrarily large compact set which is made invariant by the design of the state feedback stabilisation law and of the high-gain observer. We observe that, although the asymptotic gain with respect to ν increase with n-1 , the observer is anyway able to guarantee ISS with respect to the sensor noise ( [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF]).

The main drawback of observers of the form (4), though, is related to the increasing power (up to the order n) of the high-gain parameter , which makes the practical numerical implementation an hard task when n or are very large. Motivated by these considerations, in this note we propose a new observer for the class of systems (2) that preserves the same high-gain features of (4) but which substantially overtakes the implementation problems due to the high-gain powered up to the order n. Specifically, we present a highgain observer structure with a gain which grows only up to power 2 (instead of n), at the price of having the observer state dimension 2n -2 instead of n.

II. MAIN RESULT

We start by presenting a technical lemma instrumental to the proof of the main result presented in Proposition 1. Let

E i ∈ R 2×2 , Q i ∈ R 2×2 , i = 1, . . . , n -1,
and N ∈ R 2×2 be matrices defined as

E i = -k i1 1 -k i2 0 , Q i = 0 k i1 0 k i2 , N = 0 0 0 1
where (k i1 , k i2 ) are positive coefficients, and let M ∈ R (2n-2)×(2n-2) be the block-tridiagonal matrix defined as

M =                E 1 N 0 . . . . . . 0 Q 2 E 2 N . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . Q i E i N . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . Q n-2 E n-2 N 0 . . . . . . . . . 0 Q n-1 E n-1                . ( 7 
) It turns out that the eigenvalues of M can be arbitrarily assigned by appropriately choosing the coefficients (k i1 , k i2 ), i = 1, . . . , n -1, as claimed in the next lemma.

Lemma 1 Let P(λ) = λ 2n-2 + m 1 λ 2n-3 + ... + m 2n-3 λ + m 2n-2 be an arbitrary Hurwitz polynomial. There exists a choice of (k i1 , k i2 ), i = 1, . . . , n -1, such that the characteristic polynomial of M coincides with P(λ).

The proof of this Lemma is deferred to the appendix where a constructive procedure for designing (k i1 , k i2 ) given P(λ) is presented. The structure of the proposed observer has the following form ξi

= A ξ i + N ξ i+1 + D 2 ( ) K i e i i = 1, . . . , n-2 . . . ξn-1 = A ξ n-1 + B ϕ s (x ) + D 2 ( ) K (n-1) e n-1 (8) where (A, B, C) is a triplet in prime form of dimension 2, ξ i ∈ R 2 , K i = (k i1 k i2 ) T , D 2 ( ) = diag( , 2 ), x = L 1 ξ L 1 = blkdiag ( C, . . . , C (n-2) times , I 2 ) ξ = col(ξ 1 , . . . , ξ n-1 ) ∈ R 2n-2 , e 1 = y -Cξ 1 , e i = B T ξ i-1 -Cξ i i = 2, . . . , n -1 ,
and ϕ s (•) is an appropriate saturated version of ϕ(•).

The variable x represents an asymptotic estimate of the state x of (2). It is obtained by "extracting" n components from the state ξ according to the matrix L 1 defined above. As clarified next, the redundancy of the observer can be used to extract from ξ an extra state estimation that is

x = L 2 ξ L 2 = blkdiag (I 2 , B T , . . . , B T (n-2) times
) .

The following proposition shows that the observer (8) recovers the same asymptotic properties for the two estimates x and x of the "standard" high-gain observer (4). In the statement of the proposition we let

x = col(x , x ) , x = col(x, x) .
Proposition 1 Consider system (2) and the observer (8) with the coefficients (k i1 k i2 ) fixed so that the matrix M defined in [START_REF] Bornard | A high gain observer for a class of uniformly observable systems[END_REF] is Hurwitz (see Lemma 1). Let ϕ s (•) be any bounded function that agrees with ϕ(•) on X , and assume that d(x, t) is bounded for all x ∈ X and for all t ≥ 0. Then there exist c i > 0, i = 1, . . . , 4, and ≥ 1 such that for any ≥ and for any ξ(0) ∈ R 2n-2 , the following bound holds

x(t) -x(t) ≤ max{c 1 n-1 exp(-c 2 t) x(0) -x(0) , c 3 1 Γ( ) d(•) ∞ , c 4 n-1 ν(•) ∞ } (9)
where Γ( ) is as in [START_REF] Besanc ¸on | Nonlinear observers and applications[END_REF], for all t ≥ 0 such that x(t) ∈ X .

Proof Consider the change of variables

ξ i → ξi := ξ i -col (x i , x i+1 ) i = 1, . . . , n -1 ,
by which system (8) transforms as

ξ1 = H 1 ξ1 + N ξ2 -d1 (t) + D 2 ( )K 1 ν(t) ξi = H i ξi + N ξi+1 + D 2 ( ) K i B T ξi-1 -di (t) i = 2, . . . , n -2 ξn-1 = H n-1 ξn-1 + D 2 ( ) K n-1 B T ξn-2 + B ∆ϕ( ξ, x) -dn-1 (t)
where

H i = A-D 2 ( ) K i C , di (t) = (d i (x(t), t), d i+1 (x(t), t)) T ,
for i = 1, . . . , n -1, with d i (t) the i-th element of the vector d(t), ξ = col( ξ1 , . . . , ξn-1 ), and

∆ϕ( ξ, x) = ϕ s (L 1 ξ + x) -ϕ(x) .
Rescale now the variables ξi as follows

ξi → ε i := 2-i D 2 ( ) -1 ξi i = 1, . . . , n -1 .
By letting ε = col(ε 1 . . . ε n-1 ), an easy calculation shows that

ε = M ε + -(n-1) (B 2n-2 ∆ϕ (ε, x) + υ (t) + n (t)) , (10) 
where B 2n-2 is the zero column vector of dimension 2n -2 with a 1 in the last position, and

υ (t) = -col n D 2 ( ) -1 d1 , . . . , n-i+1 D 2 ( ) -1 di , . . . , 2 D 2 ( ) -1 dn-1 , n (t) = n K1 ν(t) , K1 = col(K 1 , 0, . . . , 0) , and ∆ϕ (ε, x) = ϕ s (L 1 S( )ε + x) -ϕ(x) ,
where S(

) = diag( 1 , 1 , , . . . , n-3 ) ⊗ D 2 ( ). Being ϕ(•)
uniformly Lipschitz in X and ϕ s (•) bounded, there exists a δ 1 > 0, δ 2 > 0 and δ 3 > 0 such that

-(n-1) ∆ϕ (ε, x) ≤ δ 1 ε , -(n-1) υ (t) ≤ δ 2 D n ( ) -1 d(x(t), t) , -(n-1) n (t) ≤ δ 3 ν(t) ,
for all ε ∈ R 2n-2 , x ∈ X and ≥ 1. The rest of the proof follows standard Lyapunov arguments that, for sake of completeness, are briefly recalled. Let P = P T be such that P M + M T P = -I and consider the Lyapunov function V = ε T P ε. Taking derivative of V along the solutions of (10), using the previous bounds and letting = 4 δ 1 P , one obtains that there exist positive constants a 1 , a 2 , a 3 such that for any ≥

ε ≥ max a 1 D n ( ) -1 d(x(t), t) , a 2 ν(t) ⇒ V ≤ -a 3 ε 2 .
As P is symmetric and definite positive, it turns out that λ ε 2 ≤ V (ε) ≤ λ ε 2 where λ and λ are respectively the smallest and the highest eigenvalue of P . By using these bounds, the previous implication leads to conclude that, as long as

V ≥ λ max a 2 1 D n ( ) -1 d(x(t), t) 2 , a 2 2 ν(t) then V (t) ≤ exp(-a3
λ t)V (0). By using again the bound on V in terms of λ and λ, the following estimate on ε(t) can be easily obtained

ε(t) ≤ max{ a 4 exp(-a 5 t) ε(0) , a 6 D n ( ) -1 d(x(t), t) , a 7 ν(t) }
where a 4 = λ/λ, a 5 = a 3 /2 λ, a 6 = λ/λ a 1 , a 7 = λ/λ a 2 . Now, using the fact that, for all > 1, -(n-1) ξ ≤ ε ≤ ξ , the previous bound leads to the following estimate on ξ(t) ξ(t) ≤ max{ a 4 n-1 exp(-a 5 t) ξ(0) ,

a 6 n-1 D n ( ) -1 d(x(t), t) , a 7 n-1 ν(t) }
by which the claim of the proposition immediately follows by bearing in mind the definition of Γ( ), x, x, and by noting that ξ ≤ xx ≤ 2 ξ .

III. ABOUT THE SENSITIVITY OF THE OBSERVER TO HIGH FREQUENCY NOISE IN THE LINEAR CASE

The trade-off between the speed of the state estimation and the sensitivity to measurement noise is a well-known fact in the observer theory. In this respect, high-gain observers tuned to obtain fast estimation dynamics are necessarily very sensitive to high-frequency noise. Bounds on the estimation error in presence of measurement noise for the standard high-gain observers have been studied, for instance, in [START_REF] Vasiljevic | Differentiation with high-gain observers the presence of measurement noise[END_REF] and [START_REF] Ball | High-gain observer tracking performance in the presence of measurement noise[END_REF], and different techniques have been developed in order to improve rejection, mainly based on gain adaptation (see, among others, [START_REF] Ahrens | High-gain observer in the presence of measurement noise: a switched-gain approach[END_REF], [START_REF] Sanfelice | On the performance of high-gain observers with gain adaptation under measurement noise[END_REF]).

In this section we compare the properties of the standard high-gain observer (4) and the proposed observer ( 8) with respect to high-frequency measurement noise by specialising the analysis to linear systems.

In particular we consider systems of the form (2) with ϕ(•) a linear function of the form ϕ(x) = Φ x where Φ is a row vector of dimension n. Moreover, in this contest, we consider d(t) ≡ 0 and

ν(t) = a N sin(ω N t + f N ) (11) 
where a N > 0, ω N > 0, and f N are constants. It is shown that the ratio between the asymptotic estimation error on the i-th state variable provided by the new observer ( 8) and the one provided by the standard observer ( 4) is a strictly decreasing polynomial function of the noise frequency for i = 2, . . . , n. In this regard the new observer has better asymptotic properties with respect to high-frequency noise as far as the state estimation variables are concerned (except for the first one). This is formalised in the next proposition.

Proposition 2 Let n ≥ 1. Let K n ∈ R n , K i ∈ R 2 , i = 1, .
. . , n -1 and ∈ R be fixed so that the error dynamics of the observers (4) and (8) are Hurwitz. Moreover, with ρ ∈ {1, 2, . . . , n} denoting the position index of the first non zero coefficient of the vector Φ (and ρ = n if Φ is the zero vector), let r i ≥ 1 be the constants defined as

r i = min { i , (n -1) , (ρ + n -i + 1)} i = 1, . .

. , n .

There exist ω N > 0 and ci > 0 such that for all ω N > ω N , a N > 0 and f N we have lim sup

t→+∞ |x i (t) -x i (t)| lim sup t→+∞ |x i (t) -x i (t)| ≤ ci ω -(r i -1) N ∀ i = 1, . . . , n.
Proof Consider system (2) and the standard high-gain observer [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF]. By letting e = D n ( ) -1 (x -x), the e-dynamics read as

ė = A n + K n C n e + B n Φ Θ n ( ) e + K n ν(t) (12) 
where Θ n ( ) = 1 n D n ( ) with D n ( ) defined in [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF]. It is a linear system that is Hurwitz by the choices of K n and . Similarly, consider system (2) and the new observer [START_REF] Deza | High gain estimation for nonlinear systems[END_REF]. With ε defined as in the proof of Proposition 1 we obtain system (10) compactly rewritten as

ε = M ε + B 2n-2 Φ Θ n ( )L 1 ε + K1 ν(t) . ( 13 
)
It is an Hurwitz system by the choices of K i , i = 1, . . . , n-1, and . We consider now the n systems given by the dynamics [START_REF] Gauthier | Deterministic observation theory and applications[END_REF] with input ν and with outputs

xi -x i = i-1 e i , i = 1, . . . n ,
and we denote by F i : R → C, i = 1, . . . , n, the harmonic transfer functions of these systems. A simple computation shows that these systems have relative degree r i = 1, for all i = 1, . . . , n. Similarly, we consider the n systems given by the dynamics ( 13) with input ν and outputs

x i -x i = i-1 ε i,1 i = 1, . . . n -1, x n -x n = n-1 ε n-1,2 ,
and we denote by F i : R → C, i = 1, . . . , n, the harmonic transfer functions of these systems. Simple computations show that these systems have relative degree r i , for all i = 1, . . . , n, with r i defined in the statement of the proposition. By definition of harmonic transfer function and by the fact that systems [START_REF] Gauthier | Deterministic observation theory and applications[END_REF] and ( 13) are Hurwitz, it turns out that

sup t→+∞ |x i (t) -x i (t)| = |F i (ω N )| a N lim sup t→+∞ |x i (t) -x i (t)| = |F i (ω N )| a N
for any ω N ≥ 0 and ∀ i = 1, . . . , n. Furthermore, by the fact that F i (ω) and F i (ω) have, respectively, relative degrees r i = 1 and r i , i = . . . , n, it turns out that there exist positive c i , c i and ω N > 0 such that

|F i (ω)| ≥ c i ω -1 |F i (ω)| ≤ c i ω -r i ∀ ω ≥ ω N ,
by which the result immediately follows.

IV. EXAMPLE: OBSERVER FOR THE UNCERTAIN VAN DER POL OSCILLATOR

Let consider the uncertain Van der Pol oscillator

z = -α 2 z + β(1 -z 2 ) ż , y = z + ν(t) , (14) 
where y ∈ R is the measured output and α, β are uncertain constant parameters. We let µ = (α 2 , β) and we assume that µ ∈ U, with U a compact set of R 2 not containing the origin. The state (z, ż) belongs to a compact invariant set W ⊂ R 2 , which is the limit cycle of the Van Der Pol oscillator. We observe that W depends on µ. Following [START_REF] Astolfi | A note on observability canonical forms for nonlinear Systems[END_REF], system [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] extended with μ = 0 can be immersed into a system in the canonical observability form (2) with n = 5. As a matter of fact, let z [i,j] := col (z (i) , . . . , z (j) ) be the vector of time derivatives of z, with 0 ≤ i < j, and let X be the compact set of R 5 such that z

[0,1] ∈ W ⇒ z [0,4] ∈ X . Simple computations show that z [2,4] = Υ(z [0,3] ) µ , z (5) = ρ(z [0,4] ) µ
where (3) , z (4) (1 -z 2 ) -12 ż2 z -6z z2 -8z żz (3) with (see [START_REF] Forte | Robust design of internal models by nonlinear regression[END_REF])

Υ(z [0,3] ) =   -z (1 -z 2 ) ż -ż z -2y ż2 -z 2 z -z z (3) -2 ż3 -6z ż z -z 2 z (3)   and ρ(z [0,4] ) = z
rankΥ(z [0,3] ) = 2
for all z [0,4] ∈ X .

Hence, by letting

ϕ(z [0,4] ) = ρ(z [0,4] ) μ(z [0,3] ) with μ(z [0,4] ) = Υ † (z [0,4] ) z [2,4] ,
where Υ † (•) is the left-inverse of Υ(•), and letting x = z [0,4] , it is immediately seen that system [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] and μ = 0 restricted to W × U is immersed into the system

ẋ = A 5 x + B 5 ϕ(x) , y = C 5 x + ν(t) , (15) 
where A 5 , B 5 , C 5 is a triplet in prime form of dimension 5.

By following the prescriptions of Section II, we implemented the proposed observer (8) as

ξ1 = A ξ 1 + N ξ 2 + D 2 ( 1 )K 1 (y -Cξ 1 )
. . .

ξ4 = A ξ 4 + B ϕ s (x ) + D 2 ( 1 )K 4 (B ξ 3 -Cξ 4 ) (16) 
where ϕ s (•) is any locally Lipschitz bounded function that agrees with ϕ(•) on X , ξ i = (ξ i1 , ξ i2 ) and the coefficients of K i are k 11 = 0.6, k 12 = 0.3, k 21 = 0.6, k 22 = 0.111, k 31 = 0.6, k 32 = 0.0485, k 41 = 0.6, k 42 = 0.0178, such that the roots of P(λ) are -0.1, -0.2, -0.2, -0.3, -0.3, -0.4, -0.4, -0.5. With the same notation of (8) we have ξ = (ξ 1 , ξ 2 , ξ 3 , ξ 4 ), x = L 1 ξ and x = L 2 ξ.

In the simulations we fixed α = 1, β = 0.5, gain 1 = 100 and initial conditions (z, ż) = (1, 0) for ( 14) and ξ = 0 for [START_REF] Sanfelice | On the performance of high-gain observers with gain adaptation under measurement noise[END_REF]. Figures 1 and2 show the error state estimate |x -x| and |x -x| of the proposed observer [START_REF] Sanfelice | On the performance of high-gain observers with gain adaptation under measurement noise[END_REF] for the first two components (namely the estimation of the state of ( 14)) when there is not sensor noise.

By following Section III we compared the observer ( 16) with a standard high-gain observer in presence of high-frequency sensor noise, numerically taken as ν(t) = 10 -2 sin(10 3 t). The high-gain observer has been implemented as

ẋ = A 5 x + B 5 ϕ s (x) + D( 2 )K 5 (y -C 5 x) (17) 
where K 5 = (1.5, 0.85, 0.225, 0.0274, 0.0012) T so that the eigenvalues of (A 5 + K 5 C 5 ) are -0.1, -0.2, -0.3, -0.4, -0.5, and 2 = 100. Table 1 shows the normalized asymptotic error magnitudes of the proposed observer ( 16) and the standard high-gain observer [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF], where the normalized asymptotic error for the i-th estimate is defined as xi -x i a = lim t→∞ sup xi (t)-x i (t) /a N . Although the result in Section III is given just for linear systems, the numerical results shown in the table show a remarkable improvement of the sensitivity to high-frequency measurement noise of the new observer with respect to the standard high-gain observer.
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V. CONCLUSIONS

We presented a new observer design based on high-gain techniques with a tunable state-estimate convergence speed. With respect to standard high-gain observers the state dimension is larger (2n -2 instead of n) with a clear benefit in the observer implementation due to the power of the highgain which is only 2 and not n. Moreover, when specialised to linear systems, we showed the benefit of the proposed observer with respect to the standard high-gain observer in terms of high-frequency noise rejection. Benefits that are clearly confirmed also for the nonlinear Van-der Pol example numerically simulated in the previous section. A complete characterisation of the sensitivity to sensor noise of the new observer is an interesting research topic are that is now under investigation.

The peaking phenomenon due to wrong initial conditions and fast convergence that is typical of high-gain observers is not prevented by our proposed structure. However, other techniques to deal with peaking (such as saturations, timevarying gains [START_REF] Sanfelice | On the performance of high-gain observers with gain adaptation under measurement noise[END_REF], gradients techniques [START_REF] Astolfi | Output feedback stabilization for SISO nonlinear systems with an observer in the original coordinates[END_REF], and others) are available and can be adopted to improve the proposed observer structure. In this work we didn't consider the multioutput case. For the specific class of multi-output systems which are diffeomorphic to a block triangular form in which each block is associated to each output and it has a triangular dependence on the states of that subsystem (see [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF]), the proposed structure can be simply applied block-wise to obtain a high-gain observer. Apart this case, a complete extension to the multi-output case is not immediate and under investigation.

Fig. 1 :Fig. 2 :

 12 Fig. 1: Error state estimate |x 1 -x 1 |, |x 1 -x 1 |.
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 1 Normalized asymptotic errors in presence of noise.
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boundedness of d(x, t) is automatically guaranteed if X is compact. This, in turn, is the typical case when such observers are used in semiglobal output feedback stabilisation problems,[START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF].
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APPENDIX

A. Procedure to assign the eigenvalues of M Consider the matrices M i ∈ R 2i-2 × R 2i-2 recursively defined as

where Ni = col(0 2(i-2)×2 , N ), Qi = (0 2(i-2)×2 , Q i ) and E i , i = 1, . . . , n -1, Q i , i = 2, . . . , n -1, and N are defined as in the definition of M . Note that M = M n-1 and, by letting

2i-3 λ+m i-1 2i-2 the characteristic polynomials of M i and M i-1 , and we use the notation

The characteristic polynomial of P Mi (λ) is computed as

Hence, simple, although lengthy, computations show that the coefficients m

where v 1 ∈ R 2i-2 is the zero vector with a 1 in the first position, and 2) is the zero matrix with the identity matrix I 2i-3 in the lower left block. Note that (I 2i-2 + k i1 F ) is invertible for all k i1 . Hence, from the first of (18), one obtains

where

, which, embedded in the second and in the third of [START_REF] Vasiljevic | Differentiation with high-gain observers the presence of measurement noise[END_REF], yield the relations

is the zero vector with a 1 in the last position. We observe that σ 1 (•, •) is a polynomial in k i1 of odd order 2i-1. As a consequence, for any m i [1,2i-1] there always exists at least one real

The previous results can be used to set up a "basic asalgorithm" that is then used iteratively to solve the eigenvalues assignment of the matrix M . Basic assignment algorithm. Let Pi (λ) = λ 2i + mi 1 λ 2i-1 + . . . + mi 2i be an arbitrary polynomial. Then, there exist a real Ki = ( ki1 , ki2 ) T and a polynomial Pi-

As a matter of fact, by letting [1,2i-1] the coefficients of Pi (λ), it is possible to take ki1 as a real solution of σ 1 ( mi [1,2i-1] , k i1 ) = 0, ki2 = σ 2 ( mi [1,2i] , ki1 ), and to take the coefficients mi-1 [1,2i-2] of the polynomial Pi-1 (λ) as mi-1

[1,2i-2] = Λ( mi [1,2i-2] , ki1 ) . With the previous algorithm in hand, the design of K 1 , . . . , K n-1 to assign an arbitrary characteristic polynomial to M , can be then immediately done by the following steps:

1) With Pn-1 (λ) the desired characteristic polynomial of M , compute ( Kn-1 , Pn-2 (λ)) by running the basic assignment algorithm with i = n -1. 2) Compute iteratively ( Ki , Pi-1 (λ)) by running the basic assignment algorithm for i = n -2, . . . , 2. 3) Compute K1 = ( ki1 , ki2 ) T so that λ 2 + k i1 λ + k i2 = P1 (λ).