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FRACTIONAL CHROMATIC NUMBER, MAXIMUM DEGREE AND GIRTH

FRANÇOIS PIROT AND JEAN-SÉBASTIEN SERENI

Abstract. We prove new lower bounds on the independence ratio of graphs of maximum de-
gree ∆ ∈ {3, 4, 5} and girth g ∈ {6, . . . , 12}, establishing notably that i(4, 10) ≥ 1/3 and i(5, 8) ≥
2/7. We also demonstrate that every graph G of girth at least 7 and maximum degree ∆ has
fractional chromatic number at most mink∈N 2∆+2k−3+k

k
. In particular, the fractional chromatic

number of a graph of girth 7 and maximum degree ∆ is at most 2∆+9
5 when ∆ ∈ [3, 8], at most ∆+7

3
when ∆ ∈ [8, 20], at most 2∆+23

7 when ∆ ∈ [20, 48], and at most ∆
4 + 5 when ∆ ∈ [48, 112].

1. Introduction

Independent sets in graphs are fundamental objects, at the heart of several problems and notions
such as graph colouring. Of particular interest is the order α(G) of a largest independent set in a
graph G, which often is divided by the number of vertices of G: this is the independence ratio of G,

ir(G) := α(G)
|V (G)| .

Since a k-colouring of a graph is a partition of the vertex set into k independent sets, it follows that
the independence ratio of a graph is a lower bound on its chromatic number. For instance, the 4-
colour theorem thus implies that every planar graph has independent ratio at least 1

4 . Interestingly
enough, no one seems to know how to prove this last statement, sometimes called the “Erdős-Vizing
conjecture”, without using the 4-colour theorem — or a proof of a similar nature and length.

The independence ratio of a graph has often been studied in relation with the girth, which is the
length of a smallest cycle in the graph. A first result in this direction is the celebrated introduction of
the so-called “deletion method” in graph theory by Erdős, who used it to demonstrate the existence
of graphs with arbitrarily large girth and chromatic number. The latter is actually established by
proving that the independence ratio of the graph is arbitrarily large. As a large girth is not strong
enough a requirement to imply a constant upper bound on the chromatic number, a way to pursue
this line of research is to express the upper bound in terms of the maximum degree ∆(G) of the
graph G considered. This also applies to the independence ratio. Letting g(G) stand for the girth
of the graph G, that is, the length of a shortest cycle in G if G is not a forest and +∞ otherwise, we
define i(∆, g) to be the infimum of the independence ratios among all graphs of maximum degree ∆
and girth at least g.

i(∆, g) := inf
{
α(G)
|V (G)|

∣∣∣∣ G graph with ∆(G) ≤ ∆ and g(G) ≥ g
}
.

We moreover define i∞(∆) to be the limit of the values taken by i(∆, g) as g tends to infinity (which
exists as (i(∆, g))g∈N is a non-increasing sequence of positive rational numbers).

In 1979, Staton [17] established that i(∆, 4) ≥ 5
5∆−1 , in particular implying that i(3, 4) ≥ 5

14 .
The two graphs depicted in Figure 1, called the graphs of Fajtlowicz and of Locke, have fourteen
vertices each, girth 5, and no independent set of order 6. It follows that i(3, 4) = 5

14 = i(3, 5). It is
known that the graphs of Fajtlowicz and of Locke are the only two cubic triangle-free and connected
graphs with independence ratio 5

14 . This follows from a result of Fraughnaugh and Locke [9] for
1



Figure 1. The two cubic triangle-free connected graphs with independence ratio 5
14 .

graphs with more than 14 vertices completed by an exhaustive computer check on graphs with at
most 14 vertices performed by Bajnok and Brinkmann [1].

Figure 2. The only known 4-regular triangle-free connected graph of independence ratio 4
13 .

In 1983, Jones [10] reached the next step by establishing that i(4, 4) = 4
13 . Only one connected

graph is known to attain this value: it has 13 vertices and is represented in Figure 2. The value
of i(∆, 4) when ∆ ≥ 5 is still unknown; the best general lower bound is due to Shearer [16]. He also
provides a lower bound for i(∆, 6) as a consequence of a stronger result on graphs with no cycle of
length 3 or 5.

Theorem 1 (Shearer [16]). For every non-negative integer d, set

f(d) :=
{

1 if d = 0,
1+(d2−d)f(d−1)

d2+1 if d ≥ 1.

If G is a triangle-free graph on n vertices with degree sequence d1, . . . , dn, then

α(G) ≥
n∑
i=1

f(di).
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∆ upper bound of i(∆, 4)−1 upper bound on i(∆, 6)−1

2 5/2 = 2.5 7/3 ≈ 2.33333
3 50/17 ≈ 2.94118 14/5 = 2.8
4 425/127 ≈ 3.34646 119/37 ≈ 3.21622
5 2210/593 ≈ 3.72681 3094/859 ≈ 3.60186
6 8177/2000 ≈ 4.0885 57239/14432 ≈ 3.96612
7 408850/92177 ≈ 4.43549 408850/94769 ≈ 4.31417
8 13287625/2785381 ≈ 4.77049 13287625/2857957 ≈ 4.64934
9 1089585250/213835057 ≈ 5.09545 1089585250/219060529 ≈ 4.9739
10 11004811025/2033474038 ≈ 5.41183 11004811025/2080503286 ≈ 5.28949

Table 1. Upper bounds on i(∆, 4) and on i(∆, 6) for ∆ ∈ {2, . . . , 10} deduced from
Theorems 1 and 2.

Theorem 2 (Shearer [16]). For every non-negative integer d, set

f(d) :=


0 if d = 0,
4
7 if d = 1,
1+(d2−d)f(d−1)

d2+1 if d ≥ 2.

If G is a graph on n vertices with degree sequence d1, . . . , dn and with no 3-cycle and no 5-cycle,
then

α(G) ≥
n∑
i=1

f(di)−
n11
7 ,

where n11 is the number of pairs of adjacent vertices of degree 1 in G.

From now on, we rather consider i(∆, g)−1 = 1/i(∆, g), because this quantity is a lower bound
on the fractional chromatic number (defined later on) of the graphs considered. Theorems 1 and 2
allow us to compute upper bounds on i(∆, 4)−1 and on i(∆, 6)−1 for small values of ∆, as indicated
in Table 1. When ∆ ≥ 5, these bounds are the best known ones.

We are not aware of any non trivial lower bounds on i(5, 4)−1 and i(6, 4)−1. Figures 3 and Figure 4
show graphs illustrating that i(5, 4)−1 ≥ 10

3 ≈ 3.33333 and i(6, 4)−1 ≥ 29
8 = 3.625. These two graphs

are circulant graphs, which are Cayley graphs over Zn.
The value of i(3, g)−1 has also been studied when g goes to infinity. Kardoš, Král’ and Volec [11]

proved the existence of an integer g0 such that i(3, g0)−1 ≤ 2.2978. More strongly, their upper
bound holds for the fractional chromatic number of every (sub)cubic graph of girth at least g0. In
the other direction, Bollobás [4] proved a general upper bound on i(∆, g)−1.

Theorem 3 (Bollobás, 1981). Let ∆ ≥ 3. Let α be a real number in (0, 1) such that

α(∆ ln 2− ln(α)) + (2− α)(∆− 1) ln(2− α) + (α− 1)∆ ln(1− α) < 2(∆− 1) ln 2.

For every positive integer g, there exists a ∆-regular graph with girth at least g and independence
ratio less than α/2.

Theorem 3 allows us to compute lower bounds on i∞(∆)−1 for small values of ∆, and also
provides a general lower bound [4, Corollary 3], which are all presented in Table 2.

The fractional chromatic number χf (G) of a graph G is a refinement of the chromatic number. It
is the fractional solution to a linear program the integer solution of which is the chromatic number.
Let G be a given graph; we define Smax(G) to be the set of all maximal independent sets of G
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Figure 3. A 5-regular triangle-free (vertex-transitive) graph with independence
ratio 3

10 . It is the Cayley graph over Z20 with generating set {±1,±6,±10}. There
is no independent set of order 7, and the white vertices form an independent set of
order 6.

Figure 4. A 6-regular triangle-free (vertex-transitive) graph with independence
ratio 8

29 . It is the Cayley graph over Z29 with generating set {±1,±5,±13}. There
is no independent set of order 9, and the white vertices form an independent set of
order 8.

and Sα(G) to be the set of all maximum independent sets of G. Then χf (G) is the solution of the
4



∆ lower bound on i∞(∆)−1

2 2
3 2.17835
4 2.3775
5 2.57278
6 2.76222
7 2.94606
8 3.1249
9 3.29931
10 3.46981
11 3.63684
12 3.80074

∆ ∆
2 ln ∆

Table 2. Lower bounds on i∞(∆)−1 implied by Theorem 3.

following linear program.

min
∑

S∈Smax(G)
wS

such that


wS ∈ [0, 1] for each S ∈ Smax∑
S∈Smax
v∈S

wS ≥ 1 for each v ∈ V (G).

A fractional colouring of weight w of G is any instance within the domain of the above linear
program such that

∑
wS = w. You can note that a k-colouring of G is a special case of a fractional

colouring of weight k of G, where wS = 1 if S is a monochromatic class of the k-colouring, and wS =
0 otherwise. Note also that if G is a clique, then any fractional colouring of G is of weight at least
|V (G)|. This allows us to write the following inequalities

ω(G) ≤ χf (G) ≤ χ(G) ≤ ∆(G) + 1,

where ω(G) is the maximum order of a clique in G, and ∆(G) is the maximum degree of G.
Equality holds between ω(G) and χ(G), and so in particular between ω(G) and χf (G), when G
is a perfect graph. Those are the graphs that contain no odd hole nor odd antihole, as was
conjectured by Berge [2] in 1961, and proved by Chudnovsky et al. [6] in 2006. On the other side, the
characterisation of the graphsG for which equality holds between χ(G) and ∆(G)+1 was established
by Brooks [5] in 1941, and those graphs are cliques and odd cycles. Since χf (C2k+1) = k

2k+1 , the only
graphs G such that χf (G) = ∆(G) + 1 are cliques. Moreover, a relation between the independence
ratio of G and its fractional chromatic number is obtained by observing that

ir(G)−1 = |V (G)|
α(G) ≤ χf (G),

where equality holds in particular when G is vertex-transitive.
Very recently, Molloy [14] proved the best known extremal upper bounds for the chromatic

number of graphs of given clique number and maximum degree.
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Theorem 4 (Molloy, 2019).
• If G is a triangle-free graph, then

∀ε,∃∆ε, ∆(G) ≥ ∆ε ⇒ χ(G) ≤ (1 + ε) ∆(G)
ln ∆(G) .

• If G is a graph with ω(G) > 2, then

χ(G) ≤ 200ω(G)∆(G) ln ln ∆(G)
ln ∆(G) .

The first bound is sharp up to a multiplicative factor in a strong sense, since as shown by
Bollobás [4, Corollaries 3 and 4] for all integers g and ∆ ≥ 3 there exists a graph with maximum
degree ∆, girth at least g and chromatic number at least ∆

2 ln ∆ .
There remains however a substantial range of degrees not concerned by the bound for triangle-

free graphs given by Theorem 4, namely when ∆(G) is smaller than ∆ε, which is greater than 202/ε.
To this date, the best known general upper bound in terms of clique number and maximum degree
for the fractional chromatic number1 is due to Molloy and Reed [15, Theorem 21.7, p. 244].

Theorem 5 (Molloy and Reed, 2002). For every graph G,

χf (G) ≤ ω(G) + ∆(G) + 1
2 .

If one considers a convex combination of the clique number and the maximum degree plus one
for an upper bound on the (fractional) chromatic number of a graph, then because the chromatic
number of a graph never exceeds its maximum degree plus one, the aim is to maximise the coefficient
in front of the clique number. The convex combination provided by Theorem 5 (which is conjectured
to hold, after taking the ceiling, also for the chromatic number), is best possible. Indeed, for every
positive integer k the graph Gk := C5 �Kk is such that ω(Gk) = 2k,∆(Gk) = 3k − 1, χf (Gk) =
5k
2 = ω(Gk)+∆(Gk)+1

2 .
A local form of Theorem 5 exists: it was first devised by McDiarmid (unpublished) and appearing

as an exercise in Molloy and Reed’s book [15]. A published version is found in the thesis of Andrew
King [12, Theorem 2.10, p. 12].

Theorem 6 (McDiarmid, unpublished). Let G be a graph, and set fG(v) := ωG(v)+degG(v)+1
2 for

every v ∈ V (G), where ωG(v) is the order of a largest clique in G containing v. Then
χf (G) ≤ max {fG(v) : v ∈ V (G)} .

In Subsection 3.1, we slightly strengthen the local property of Theorem 6 as a way to illustrate the
arguments used later on.

Our first contribution is to establish an upper bound on the fractional chromatic number of
graphs of girth at least 7.

Theorem 7. Let f(x) := min
k∈N

2x+2k−3+k
k . If G is a graph of girth at least 7, then G admits a

fractional colouring such that for every induced subgraph H of G, the restriction of c to H has
weight at most f (max {degG(v) : v ∈ V (H)}). In particular,

χf (G) ≤ f(∆(G)).
1For the chromatic number, the reader is referred to a nice theorem of Kostochka [13], which for instance implies that
every graph with maximum degree at most 5 and girth at least 35 has chromatic number at most 4 (Corollary 2 in
loc. cit.). The general upper bound on the chromatic number guaranteed by Kostochka’s theorem is never less than
the floor of half the maximum degree plus two.
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Remark 1. In Theorem 7, if x ≥ 3 then the minimum of the function k → 2x+2k−3+k
k (over N) is

attained for k = [4 + log2 x − log2 log2 x]. So if x ≥ 3, then f(x) = (2 ln 2 + o(1))x/ ln x, which
is off by a multiplicative factor 2 ln 2 from the best known extremal value for triangle-free graphs.
However, up to x of the order of 107, this is smaller than the best known explicit upper bound for
fractional colouring [7], namely

min
λ>0

λ+ 1
λ

eW (x ln(1+λ)),

where W is the Lambert function, defined as the reciprocal of z 7→ zez. We also note that for
every non-negative integer x, the minimum of the function k → 2x+2k−3+k

k (over N) is attained in
an integer greater than 3.

We also provide improved upper bounds on the inverse independence ratio of graphs of maximum
degree in {3, 4, 5} and girth in {6, . . . , 12}. In particular, these are upper bounds on the fractional
chromatic number of vertex-transitive graphs in these classes. These upper bounds are obtained
via a systematic computer-assisted method.

Theorem 8. The values presented in Table 3 are upper bounds on i(∆, g)−1 for ∆ ∈ {3, 4, 5}
and g ∈ {6, . . . , 12}.

∆
g 6 7 8 9 10 11 12

3 30/11 ≈ 2.727272 30/11 2.625224 2.604167 2.557176 2.539132 2.510378
4 41/13 ≈ 3.153846 41/13 3.038497 3.017382 3
5 69/19 ≈ 3.631579 3.6 3.5

Table 3. Upper bounds on i(∆, g)−1 for ∆ ∈ {3, 4, 5} and g ∈ {6, . . . , 12}.

The bounds provided by Theorem 8 when ∆ ∈ {3, 4} and g = 7 are the same as those for g = 6.
It seems that this could be a general phenomenon. A computation is currently running to determine
an upper bound on i(3, 13)−1, which we expect to be 2.5. We therefore offer the following conjecture.

Conjecture 1. The values presented in Table 4 are upper bounds on i(∆, g)−1 for ∆ ∈ {3, 4, 5}
and g ∈ {6, 8, 10, 12}.

∆
g 6 8 10 12

3 2.604167 2.539132 2.5
4 3.017382 3
5 3.6 3.5

Table 4. Conjectured upper bounds on i(∆, g)−1 for ∆ ∈ {3, 4, 5} and g ∈ {6, . . . , 12}.

Notation. We introduce some notation before establishing a few technical lemmas, from which we
will prove Theorems 7 and 8. If v is a vertex of a graph G and r a non-negative integer, then N r

G(v)
is the set of all vertices of G at distance exactly r from v in G, while N r

G[v] :=
⋃r
j=0N

j
G(v). Recall

7



that Smax(G) is the set of all maximal independent sets of G and Sα(G) the set of all maximum
independent sets of G. If w is a mapping from Smax(G) to R then for every vertex v ∈ V (G) we set

w[v] :=
∑

S∈Smax(G)
v∈S

w(S).

Further, if X is a collection of maximal independent sets of G, then w(X) :=
∑
S∈X w(S). If S in

an independent set of a graph G, a vertex v is covered by S if v belongs to S or has a neighbour
in S. A vertex that is not covered by S is uncovered (by S). If G is a graph rooted at a vertex v,
then for every positive integer d, the set of all vertices at distance d from v in G is a layer of G.

2. Technical lemmas

In this section we present the tools needed for the proofs of the main theorems.

2.1. Greedy fractional colouring algorithm. Our results on fractional colouring are obtained
using a greedy algorithm analysed in a recent work involving the first author [7]. This algorithm is
a generalisation of an algorithm first described in the book of Molloy and Reed [15, p. 245] for the
uniform distribution over maximum independent sets. The setting here is, for each induced sub-
graph H of the graph we wish to fractionally colour, a probability distribution over the independent
sets of H. We shall use only distributions over maximal independent sets.

Lemma 1 (de Joannis de Verclos et al., 2018). Fix a positive integer r. Let G be a graph and
suppose that every vertex v ∈ V (G) is assigned a list (αj(v))rj=0 of r + 1 real numbers. Suppose
that for each induced subgraphs H of G, there is a probability distribution on Smax(H) such that,
writing SH for the random independent set from this distribution,

∀v ∈ V (H),
r∑
j=0

αj(v)E
[∣∣N j

H(v) ∩ SH
∣∣] ≥ 1.

The greedy fractional algorithm defined by Algorithm 1 produces a fractional colouring w of G
such that the restriction of w to any subgraph H of G is a fractional colouring of H of weight
at most max {γα(v) : v ∈ V (H)}, where γα(v) :=

∑r
j=0 αj(v)

∣∣∣N j
G(v)

∣∣∣. In particular, χf (G) ≤
max {γα(v) : v ∈ V (G)}.

Algorithm 1 The greedy fractional algorithm
for I ∈ Smax(G) do

w(I)← 0
end for
H ← G
while |V (H)| > 0 do

ι← min
{

min
v∈V (H)

1− w[v]
P [v ∈ SH ] , min

v∈V (H)
γα(v)− w(Smax(G))

}
for S ∈ Smax(H) do

w(S)← w(S) + P [SH = S] ι
end for

end while

8



2.2. Independence ratio. We state two lemmas which can be proved in similar ways. We only
present the proof of the second one, the argument for the first lemma being very close but a little
simpler.

Lemma 2. Let r be a positive integer and G be a d-regular graph on n vertices. Assume that there
exists a probability distribution p on Smax(G) such that

(1) ∀v ∈ V (G),
r∑
i=0

αiE [Xi(v)] ≥ 1,

where Xi(v) is the random variable counting the number of paths of length i between v and a vertex
belonging to a random independent set S chosen following p. Then

(2) n

α(G) ≤ α0 +
r∑
i=1

αid(d− 1)i−1.

Lemma 3. Let r be a positive integer and G be a d-regular graph on n vertices. Assume that there
exists a probability distribution p on Smax(G) such that

(3) ∀e ∈ E(G),
r∑
i=0

αiE [Xi(e)] ≥ 1,

where Xi(e) is the random variable counting the number of paths of length i+ 1 starting with e and
ending at a vertex belonging to a random independent set S chosen following p. Then

(4) n

α(G) ≤
r∑
i=0

2αi(d− 1)i.

Proof. Given an edge e of G, the contribution of an arbitrary vertex v ∈ S to Xi(e) is the number
of paths of length i + 1 starting at v and ending with e. It follows that the total contribution of
any vertex v ∈ S to

∑
e∈E(G) Xi(e) is the number of paths of G with length i + 1 that start at v,

which is d(d− 1)i since G is a d-regular graph. Consequently,∑
e∈E(G)

Xi(e) =
∑

v∈V (G)
P [v ∈ S] d(d− 1)i.

We now sum (3) over all edges of G.∑
e∈E(G)

r∑
i=0

αiE [Xi(e)] ≥ |E(G)| = nd

2
r∑
i=0

αi
∑

e∈E(G)
E [Xi(e)] ≥

nd

2
r∑
i=0

αi
∑

v∈V (G)
P [v ∈ S] d(d− 1)i ≥ nd

2
r∑
i=0

2αiE [|S|] (d− 1)i ≥ n

r∑
i=0

2αi(d− 1)i ≥ n

α(G)
�

9



The next lemma allows us to generalise Lemmas 2 and 3 to non-regular graphs. To this end,
we use a standard argument coupled with the existence of specific vertex-transitive type-1 regular
graphs with any given degree and girth. These are provided by a construction of Exoo and Jajcay [8]
in the proof of their Theorem 19, which is a direct generalisation of a construction for cubic graphs
designed by Biggs [3, Theorem 6.2]. We can formulate their theorem as follows, the mentioned edge-
colouring following simply from the fact that the graph constructed is a Cayley graph obtained from
a generating set consisting only of involutions.

Theorem 9 (Exoo & Jajcay, 2013). For every integers d and g both at least 3, there exists a vertex
transitive d-regular graph with girth at least g and chromatic index d.

Lemma 4. From any graph G of maximum degree d and girth g, we can construct a d-regular
graph ϕ(G) of girth g whose vertex set can be partitioned into induced copies of G, and such that
any vertex v ∈ G can be sent to any of its copies through an automorphism.

Proof. Set k :=
∑
v∈G(d − deg(v)). Let G′ be the supergraph of G obtained by adding k ver-

tices v′1, . . . , v′k each of degree 1, such that all other vertices have degree d. We let e′i be the edge
of G′ incident to v′i, for each i ∈ {1, . . . , k}. By Theorem 9, there exists a vertex-transitive k-regular
graph H of girth at least g together with a proper edge-colouring c using k colours. Let n(H) be
the number of vertices of H and write V (H) = {1, . . . , n(H)}.

We construct ϕ(G) by starting from the disjoint union of n(H) copies G1, . . . , Gn(H) of G. For
each edge e = {i, j} ∈ E(H), letting ue be the vertex of G incident to the edge e′c(e) in G′, we add
an edge between the copy of ue in Gi and that in Gj .

Any cycle in ϕ(G) either is a cycle in G, and hence has length at least g, or contains all the edges
of a cycle in H, and hence has length at least g. It follows that ϕ(G) has girth g.

The last statement follows readily from the fact that H is vertex transitive. �

Corollary 1. Let d and g be integers greater than two. If there exists a constant B = B(d, g) such
that every d-regular graph H with girth g has independence ratio at least B, then every graph G with
maximum degree d and girth g also has independence ratio at least B. In particular, if Lemma 2 or
Lemma 3 can be applied to the class of d-regular graphs of girth g, then the conclusion also holds
for the class of graphs with maximum degree d and girth g, that is, for i(d, g).

Proof. Let G be a graph with maximum degree d and girth g on n vertices. Let ϕ(G) be the graph
provided by Lemma 4. In particular, |V (ϕ(G))| = kn where k is the number of induced copies of G
partitioning V (ϕ(G)). By assumptions, ϕ(G) contains an independent set I of order at least B ·kn.
Letting Ii be the set of vertices of the i-th copy of G contained in I, by the pigeon-hole principle
there exists i ∈ {1, . . . , k} such that |Ii| ≥ B ·n, and hence G has independence ratio at least B. �

3. Local fractional colourings

3.1. A local Reed’s bound. For the sake of illustration, we begin by showing how Lemma 1
can be used to prove Theorem 5. We actually establish a slight strengthening of Theorem 6, the
local form of Theorem 5. The argument relies on the relation (5) below [12, Lemma 2.11], which
is a local version of the relation (21.10) appearing in Molloy and Reed’s book [15]. The short
argument, however, stays the same and we provide it here only for explanatory purposes, since it
is the inspiration for the argument used in the proof of Theorem 7.

Proposition 1. Let G be a graph, and set fG(v) := ωG(v)+degG(v)+1
2 for every v ∈ V (G), where ωG(v)

is the order of a largest clique in G containing v. Then G admits a fractional colouring c such that
the restriction of c to any induced subgraph H of G has weight at most max

v∈V (H)
fG(v). In particular,

χf (G) ≤ max {fG(v) : v ∈ V (G)} .
10



Proof. We demonstrate the statement by applying Lemma 1. To this end, we use the uniform
distribution on maximum independent sets. Specifically, for every induced subgraph H of G we
let SH be a maximum independent set of H, drawn uniformly at random. Let v ∈ V (H) be any
vertex. We shall prove that

(5) ω(v) + 1
2 P [v ∈ SH ] + 1

2E [|N(v) ∩ SH |] ≥ 1.

The conclusion then follows by applying Lemma 1, with r = 1, α0(v) = 1
2 · (ω(v)+1) and α1(v) = 1

2
for every vertex v ∈ V (G).

It remains to establish (5). We let R := SH\N [v], and we condition on the following random
events.

(i) Let Xk be the random event that W := N [v]\N(R) is a clique of size k ∈ {1, . . . , ω(v)}. It
follows that exactly one vertex from W belongs to SH , and every vertex in W has equal
probability 1/k to be in SH . It follows that

ω(v) + 1
2 P [v ∈ SH | Xk] + 1

2E [|N(v) ∩ SH | | Xk] = ω(v) + 1
2k + k − 1

2k ≥ 1.

(ii) Let Y be the random event that W is not a clique. Note that Y is the complementary
event to the union of the events Xk. In this case, |W\{v}∩SH | ≥ 2, and v /∈ SH , since SH
is a maximum independent set. It follows that

ω(v) + 1
2 P [v ∈ SH | Y ] + 1

2E [|N(v) ∩ SH | | Y ] ≥ 1
2 × 2 = 1

The validity of (5) follows by summing over all possible sets R for which there exists a maximum
independent set S of H such that R = S \N [v]. �

We finish by noting that the bound provided by Theorem 6 is best possible over the class of
unicyclic triangle-free graphs if one uses the fractional greedy colouring of Lemma 1 together with
any probability distribution on the maximum independent sets of the graph.

Lemma 5. If the probability distribution used in Lemma 1 gives positive probability only to maxi-
mum independent sets, then the greedy fractional colouring algorithm can return a fractional colour-
ing of weight up to d+3

2 in general for graphs of degree d, should they be acyclic when d is odd, or
have a unique cycle (of length 5) when d is even.

Proof. We prove the statement by induction on the positive integer d.
• If d = 1, then let G1 consist only of an edge. The algorithm returns a fractional colouring
of G1 of weight 2.
• If d = 2, then let G2 be the cycle of length 5. The algorithm returns a fractional colouring
of G2 of weight 5

2 .
• If d > 2, then let Gd be obtained from Gd−2 by adding two neighbours of degree 1 to every
vertex. This creates no new cycles, so Gd is acyclic when d is odd, and contains a unique
cycle, which is of length 5, when d is even.

For every d ≥ 3, the graph Gd contains a unique maximum independent set, namely S0 :=
V (Gd)\V (Gd−2). After the first step of the algorithm applied to Gd, all the vertices in S0
have weight 1, and we are left with the graph Gd−2 where every vertex has weight 0. By the
induction hypothesis, the total weight of the fractional colouring returned by the algorithm
is therefore 1 + (d−2)+3

2 = d+3
2 .

�
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3.2. A stronger bound for graphs of girth 7. Lemma 5 implies that if we are to prove a
better bound than that given by Theorem 6, we need to use a probability distribution that gives
a non-zero probability to non-maximum independent sets. Moreover, we need to be able to make
a local analysis of the possible outcomes for the random independent set, independently from its
exterior shape. Only few probability distributions have this property. One of them is the hard-core
distribution, which we use together with Lemma 1 in order to prove Theorem 7.

For any induced graph H of a graph G, we let SH be a random independent set of H, drawn
from Smax(H) according to the hard-core distribution with fugacity λ > 0. This means that

∀S0 ∈ Smax(H), P [SH = S0] = λ|S0|∑
S∈Smax(H)

λ|S|
.

From now on, let G be a graph of girth (at least) 7 and H an induced subgraph of G. If v ∈ V (H)
then

RH,v :=
{
I \N2

H [v] : I ∈ Smax(H)
}
.

Set Rv := SH\N2
H [v], and Xi(v) := SH ∩N i

H(v). We establish the following assertion.

(A). Using the hard-core distribution on Smax(H) with fugacity λ = 4, it holds that for every
vertex v ∈ V (H), every set R0 ∈ RH,v and every integer k ≥ 4,

2k−3 + k

k
E [X0(v) | Rv = R0] + 2

k
E [X1(v) | Rv = R0] ≥ 1.

Proof. The subset SH \Rv consists of an independent set of G contained in W0 := N2
H [v]\N(Rv).

It could hold that some vertices in W0 are forced to belong to this independent set, namely when
one of their neighbours in V (H) \W0 is not covered by Rv. Let Wf be the set of those vertices,
and W be obtained by removing those vertices and their neighbours:

Wf := {v ∈W0 : (N(v)\W0) * N(Rv)} ,
W := W0\N [Wf ].

Note that the subgraph of H induced by W is a forest of maximum degree d, and the tree contain-
ing v has depth at most 2. It is enough to establish (A) when this subgraph is a tree.

Let R0 ∈ RH,v be any fixed realisation of Rv, and let us condition on the random event that Rv =
R0. Let W , Wf and W0 be the respective (deterministic) values of W, Wf and W0 in this setting.
It turns out that SH ∩W is an independent set drawn according to the hard-core distribution with
fugacity λ from Smax(H[W ]).

To see this, let S ∈ Smax(H) be any realisation of SH such that S\N2
H [v] = R0. Let Sv := S∩W ;

we show that Sv ∈ Smax(H[W ]). First, we show that Wf ⊆ S. Indeed, if u ∈ Wf , then u has at
least one neighbour u′ ∈ V (H)\W0 that is uncovered by R0. Because H is of girth 7, the vertex u
is the only neighbour of u′ in W0. The maximality of S implies that u′ must be covered by W0,
and hence u ∈ S. Second, if there is a vertex u ∈W that is uncovered by Sv, then the maximality
of S implies that u must be covered by S\W , and hence either by R0 or by Wf . None is possible
since N(R0) and N(Wf ) are both disjoint from W by construction, so we have a contradiction.

On the other hand, given any set Sv ∈ Smax(H[W ]), the set R0 ∪Wf ∪ Sv is a valid realisation
of SH . Indeed, any vertex in W is covered by Sv, and any vertex in V (H) \W is covered either
by R0 or by Wf , so R0 ∪Wf ∪ Sv is a maximal stable set of H.

In conclusion, the set of realisations of SH ∩W is exactly Smax(H[W ]), and each such realisa-
tion Sv has a probability proportional to λ|Sv |+|Wf |+|R0|, and hence proportional to λ|Sv | since R0
and Wf are fixed. This finishes to establish that SH ∩W follows that hard-core distribution with
fugacity λ on Smax(H[W ]).
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We let Wi be the set of vertices of W at distance i from v in W , for i ∈ {0, 1, 2}, and W1,j be
the subset of vertices of W1 with j neighbours in W2. We set xj := |W1,j |. Thus |W1| =

∑d−1
j=0 xj

and |W2| =
∑d−1
j=1 jxj .

Note that W1 ∈ Smax(H[W ]) and that P [SH ∩W = W1] is proportional to λ
∑d−1

j=0 xj . In order to
ease the following computations and verifications, we compute a weight w(S) for each independent
set S ∈ Smax(H[W ]) that is proportional to P [SH ∩W = S], such that w(W1) = 1.

There is exactly one maximal independent set S0 that contains v, namely S0 := {v} ∪W2, of
normalised weight w0 := λ

1+
∑

j≥0(j−1)xj . Every other maximal independent set S ∈ Smax(H[W ]) \
{S0,W1} contains W1,0. In addition, for every vertex u ∈W1 \W1,0, the set S either contains u or
it contains all the neighbours of u in W2. Therefore, it follows that if x0 > 0, then the sum of the
weights of these other independent sets is

T :=
∑

i1≤x1,...,id−1≤xd−1

d−1∏
j=1

(
xj
ij

)(
λj−1

)ij =
d−1∏
j=1

(
1 + λj−1

)xj
.

If x0 = 0, then the sum of their weights is T − w0
λ , since there is no independent set containing W2

in whole and not v in this case.
We let D := w0 + T if x0 > 0, and D := T + w0

(
1− 1

λ

)
otherwise. It follows that

E [X0] = w0
D

and

E [X1] = T

D

x0 +
d−1∑
j=1

xj
1 + λj−1

 .
There remains to check that, up to a good choice of λ, it holds that

2k−3 + k

k
E [X0] + 2

k
E [X1] ≥ 1.

This translates to

2k−3w0 + kw0
λ
≥ T

k − 2
d−1∑
j=1

xj
1 + λj−1

 if x0 = 0, and to

2k−3w0 ≥ T

k − 2x0 − 2
d−1∑
j=1

xj
1 + λj−1

 if x0 6= 0.

We use the two following facts.

Fact 1: For every positive integer j, the function λ 7→
(
1 + 1

λj−1

)1+λj−1

is non increasing on (0,+∞),
and in particular always bounded from above by 3125

1024 when λ ≥ 4 and j ≥ 2, and

by
(
1 + 1

λj0−1

)1+λj0−1

when λ ≥ 1 and j ≥ j0.
Fact 2: For all real numbers y0, A and B with A > 1 and B > 0, the maximum of the func-

tion f : y 7→ Ay(B−2y) on the domain [y0,+∞) is f(y0) when B/2−1/ lnA ≤ y0, and 2AB/2
e lnA

otherwise.
Let us discriminate on the possible values for x0, noting that w0 ≥ λ1−x0 .
(i) When x0 = 0, it suffices to show that

(6) 2k−3λ+ k ≥
d−1∏
j=1

(
1 + 1

λj−1

)xj k − 2
d−1∑
j=1

xj
1 + λj−1

 .
13



(ii) When 1 ≤ x0 ≤ k/2, it suffices to show that

(7) 2k−3λ1−x0 ≥
d−1∏
j=1

(
1 + 1

λj−1

)xj k − 2x0 − 2
d−1∑
j=1

xj
1 + λj−1

 .
Recall that, according to the definition, each value xj is an integer. Note that the right side of

inequality (6) and that of inequality (7) are both at most 0 if x1 ≥ k − 2x0; so we may assume
that x1 ∈ {0, . . . , k − 2x0 − 1}. Let us fix λ = 4, and prove the stronger statement that the right
side of inequality (7), which we call R7, is always at most 2k−2x0−1. This implies both (6) and (7).
We define yj := xj

1 + λj−1 , for every j ∈ {1, . . . , d− 1}.

• If x1 = k − 2x0 − 1, then

R7 = 2k−2x0−1 ·
d−1∏
j=2

(
1 + 1

λj−1

)xj 1− 2
d−1∑
j=2

xj
1 + λj−1


= 2k−2x0−1 ·

d−1∏
j=2

(
1 + 1

λj−1

)(1+λj−1)yj
1− 2

d−1∑
j=2

yj


≤ 2k−2x0−1 ·

d−1∏
j=2

(3125
1024

)yj 1− 2
d−1∑
j=2

yj

 by Fact 1

≤ 2k−2x0−1 ·
(3125

1024

)y
(1− 2y) where y :=

d−1∑
j=2

yj

≤ 2k−2x0−1 · max
y∈R+

(3125
1024

)y
(1− 2y)

≤ 2k−2x0−1 by Fact 2.
• If x1 = k − 2x0 − 2, then

R7 = 2k−2x0−2 ·
d−1∏
j=2

(
1 + 1

λj−1

)xj 2− 2
d−1∑
j=2

xj
1 + λj−1


If xj = 0 for every j ∈ {2, . . . , d − 1}, then R7 ≤ 2k−2x0−1. Let us now assume otherwise,
and set j0 := min {j : xj > 0}. In particular xj0 ≥ 1 and yj0 ≥ 1

1+λj0−1 . Then
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R7 = 2k−2x0−2 ·
d−1∏
j=j0

(
1 + 1

λj−1

)xj 2− 2
d−1∑
j=j0

xj
1 + λj−1


= 2k−2x0−2 ·

d−1∏
j=j0

(
1 + 1

λj−1

)(1+λj−1)yj
2− 2

d−1∑
j=j0

yj


≤ 2k−2x0−2 ·

d−1∏
j=j0

(
1 + 1

λj0−1

)(1+λj0−1)yj
2− 2

d−1∑
j=j0

yj

 by Fact 1

≤ 2k−2x0−2 ·
(

1 + 1
λj0−1

)(1+λj0−1)y
(2− 2y) where y :=

d−1∑
j=j0

yj ≥
1

1 + λj0−1

≤ 2k−2x0−2 · max
y≥ 1

1+λj0−1

(
1 + 1

λj0−1

)(1+λj0−1)y
(2− 2y)

≤ 2k−2x0−1 by Fact 2.
• If x1 ≤ k − 2x0 − 3, then

R7 = 2x1 ·
d−1∏
j=2

(
1 + 1

λj−1

)xj k − 2x0 − x1 − 2
d−1∑
j=2

xj
1 + λj−1


= 2x1 ·

d−1∏
j=2

(
1 + 1

λj−1

)(1+λj−1)yj
k − 2x0 − x1 − 2

d−1∑
j=2

yj


≤ 2x1 ·

d−1∏
j=2

(3125
1024

)yj k − 2x0 − x1 − 2
d−1∑
j=2

yj

 by Fact 1

≤ 2x1 ·
(3125

1024

)y
(k − 2x0 − x1 − 2y) where y :=

d−1∑
j=2

yj

≤ 2x1 ·max
y∈R

(3125
1024

)y
(k − 2x0 − x1 − 2y)

≤ 2x1
2
(

3125
1024

) k−2x0−x1
2

e ln
(

3125
1024

) by Fact 2

≤ 2k−2x0−1 as (k − 2x0 − 1)/2 > 1.
We have shown that when λ = 4,

2k−3 + k

k
E [X0] + 2

k
E [X1] ≥ 1.

�

We set λ := 4, and apply Lemma 1 with
(
α0(v), α1(v), α2(v)

)
=
(

2k(v)−3+k(v)
k(v) , 2

k(v) , 0
)
for every

vertex v ∈ V (G), where k(v) is chosen such that 2 deg(v)+2k−3+k
k is minimised in k = k(v), and is

always at least 4 since deg(v) is a non-negative integer. This ends the proof of Theorem 7.
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4. Bounds on the inverse independence ratio

We focus on establishing upper bounds on the inverse independence ratios of graphs with bounded
maximum degree and girth. These bounds are obtained by using the uniform distribution on Sα(G),
for G in the considered class of graphs, in Lemma 2 or Lemma 3.

4.1. Structural analysis of a neighbourhood. We start by introducing some terminology.

Definition 1.
(1) A pattern of depth r is any graph G given with a root vertex v such that

∀u ∈ V (G), distG(u, v) ≤ r.
(2) A pattern P of depth r and root v is d-regular if it has maximum degree d and every vertex

at distance at most r − 2 from v in P has degree d.

Definition 2. For a given pattern P with root v, we let Wi := {u ∈ V (P ) | distP (u, v) = i}. Let S
be a maximum independent set chosen uniformly at random. We set Xi := S ∩Wi and ei(P ) :=
E [|Xi|] for each i ∈ {0, . . . , r}.

(1) The constraint associated to the pattern P of depth r is the vector

e(P ) := (e0(P ), . . . , er(P )) ∈
(
Q+
)r+1

.

The cardinality ne(P ) of the constraint e(P ) is the number of maximum independent sets
of P .

(2) Given two constraints e, e′ ∈
(
Q+)r+1, we say that e is weaker than e′ if, for any vector α ∈(

Q+)r+1 it holds that
α>e′ ≥ 1 ⇒ α>e ≥ 1.

If the above condition holds only for all vectors α ∈
(
Q+)r+1 with non-increasing coordi-

nates, then we say that e is relatively weaker than e′.

Note that e is weaker than e′ if and only if
∀i ∈ {0, . . . , r}, ei ≥ e′i,

and e is relatively weaker than e′ if and only if

∀i ∈ {0, . . . , r},
i∑

j=0
ej ≥

i∑
j=0

e′j .

Remark 2. Let P be a pattern such that one of its vertices u is adjacent with some leaves u1, . . . , uk
where k ≥ 2. Then every maximum independent set of P contains {u1, . . . uk} and not u. Conse-
quently, e(P ) is weaker than e(P \ {u3, . . . , uk}) since, letting i be the distance of u1 to the root
of P , one has

ej(P ) =
{
ej(P \ {u3, . . . , uk}) if j 6= i, and
ei(P ) = ei(P\{u3, . . . , uk}) + (k − 2) if j = i.

4.2. Tree-like patterns.
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4.2.1. Rooting at a vertex. Fix a depth r ≥ 2. Let G be a d-regular graph of girth at least 2r + 2,
and let S ∈ Sα(G) be a maximum independent set drawn uniformly at random. For any fixed
vertex v, we set R := S \ N r[v], and Xi(v) := S ∩ N i(v), for each i ∈ {0, . . . , r}. Finally, we set
W := N r[v] \ N(R). So R is the set of vertices in S at distance at least r + 1 from v, and W
is the set of vertices at distance at most r from v uncovered by R. In particular, we know that
S ∩N r[v] ⊆W.

Because S is a maximum independent set of G, it holds that S∩N r[v] is a maximum independent
set of G[W]. Conversely, if SW is a maximum independent set of G[W], then R∪SW is a maximum
independent set of S. Thus, for any independent set R of G−N r[v], if one conditions on the fact
that R = R, then S∩N r[v] is a uniform random independent set of G[W]. The subgraph G[W] is
a d-regular pattern of depth r with root vertex v, and since G has girth at least 2r + 2, it follows
that G[W] is a tree. Let Tr(d) be the set of acyclic d-regular patterns of depth r.

We seek parameters (αi)i≤r such that the inequality
∑r
i=0 αiE [|Xi(v)|] ≥ 1 is satisfied regardless

of the choice of v. To this end, it is enough to pick the rational numbers αis in such a way that the
inequality is satisfied in any tree T ∈ Tr(d), when v is the root vertex. In a more formal way, given
any T ∈ Tr(d), the vector α = (α0, . . . , αr) must be compatible with the constraint e(T ), that is,
α>e(T ) ≥ 1 for each T ∈ Tr(d).

An application of Lemma 2 then lets us conclude that the desired bound is the solution to the
following linear program.

|G|
α(G) ≤ min α0 +

r∑
i=1

αid(d− 1)i−1(8)

such that

∀T ∈ Tr(d),
r∑
i=0

αiei(T ) ≥ 1,

∀i ≤ r, αi ≥ 0.
The end of the proof is made by computer generation of Tr(d), in order to generate the desired

linear program, which is then solved again by computer computation. For the sake of illustration,
we give a complete human proof of the case where r = 2 and d = 3. There are 10 trees in T2(3).
One can easily compute the constraint (e0(T ), e1(T ), e2(T )) for each T ∈ T2(3); they are depicted in
Figure 5. Note that constraints e8, e9 and e10 are weaker than constraint e7, so we may disregard
these constraints in the linear program to solve. Note also that constraint e0 is relatively weaker
than constraint e1, and so may be disregarded as well, provided that the solution of the linear
program is attained by a vector α with non-increasing coordinates, which will have to be checked.
The linear program to solve is therefore the following.

17



e1 = (0, 3, 0) e2 =
(
0, 5

2 ,
1
2

)
e3 = (0, 2, 2) e4 =

(
1
5 ,

8
5 ,

6
5

)
e5 =

(
1
3 , 1,

8
3

)

e6 =
(

1
2 ,

1
2 , 4
)

e7 = (1, 0, 3) e8 = (1, 0, 4) e9 = (1, 0, 5) e10 = (1, 0, 6)

Figure 5. An enumeration of e(T ) for all trees T ∈ T2(3)

minimise α0 + 3α1 + 6α2

such that



5
2α1 + 1

2α2 ≥ 1,

2α1 + 2α2 ≥ 1,
1
5α0 + 8

5α1 + 6
5α2 ≥ 1,

1
3α0 + α1 + 8

3α2 ≥ 1,
1
2α0 + 1

2α1 + 4α2 ≥ 1,

α0 + 3α2 ≥ 1,
∀i ∈ {0, 1, 2}, αi ≥ 0.

The solution of this linear program is 85
31 ≈ 2.741935, attained by α =

(
19
31 ,

14
31 ,

4
31

)
, which indeed

has non-increasing coordinates. This is an upper bound on i(3, 6)−1, though we prove a stronger
one through a more involved computation in Section 4.2.3.

4.2.2. Inductive computation of the vectors e(T ). To compute e(T ) for each T ∈ Tr(d), one can
enumerate all the maximum independent sets of T and average the size of their intersection with
each layer of T . For general graphs, there might be no better way of doing so, however the case
of Tr(d) can be treated inductively by a standard approach: we distinguish between the maximum
independent sets that contain the root and those that do not. We introduce the following notation.
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Definition 3. Let e and e′ be two vectors in
(
Q+)r+1 where r is a positive integer. The wedge

of e and e′ is the vector e ∨ e′ ∈
(
Q+)r+1 given by

e ∨ e :=


ne

ne + ne′
e + ne′

ne + ne′
e′ if ‖e‖1 = ‖e′‖1,

e if ‖e‖1 > ‖e′‖1,
e′ if ‖e‖1 < ‖e′‖1.

The cardinality ne∨e′ of the wedge of e and e′ is defined to be

ne∨e′ :=


ne + ne′ if ‖e‖1 = ‖e′‖1,
ne if ‖e‖1 > ‖e′‖1,
ne′ if ‖e‖1 < ‖e′‖1.

For a given tree T ∈ Tr(d) with root v, let e0(T ), (respectively e1(T )), be the vectors with
values (E [|ST ∩Wi|])i≤r where ST is a uniform random maximum independent set of T given that
v /∈ ST , (respectively v ∈ ST ). It readily follows from Definition 3 that

e(T ) = e0(T ) ∨ e1(T ).
Furthermore, the cardinality of e(T ), that is the number of maximum independent sets in T , is
exactly the cardinality of ne0∨e1 .
We also need the following concept.

Definition 4. Let e and e′ be two elements of
(
Q+)r+1 where r is a positive integer. The sum

of e and e′ is the vector e⊕ e′ ∈
(
Q+)r+1 given by

e⊕ e′ :=
(
e0 + e′0, . . . , er + e′r

)
.

The cardinality ne⊕e′ of the sum of e and e′ is defined to be
ne⊕e′ := nene′ .

If T1, . . . , Td are the subtrees of T rooted at the children of the root v (some of which might be
empty), then it holds that

e0(T ) =
(

0,
d⊕
i=1

e(Ti)
)

and e1(T ) =
(

1,
d⊕
i=1

e0(Ti)
)
.

Furthermore, the cardinality of e0(T ) is indeed the product of the cardinalities ne(Ti) for i ∈
{1, . . . , d}, and the cardinality of e1(T ) is the product of the cardinalities ne0(Ti) for i ∈ {1, . . . , d}.

We thus obtain an inductive way of computing e(T ) by using the following initial values.

e0(∅) := (0),
e1(∅) := (0),

e0({v}) := (0),
e1({v}) := (1),

ne0(∅) := 1
ne1(∅) := 0
ne0({v}) := 1
ne1({v}) := 1.

Following the enumeration of the vectors e(T ) for T ∈ Tr(d) described in Section 4.2.2, the
following statement is obtained by computer calculus.
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Lemma 6. The solution to the linear program (8) is

T3(3) : 5849
2228 ≈ 2.625224 with α =

( 953
2228 ,

162
557 ,

81
557 ,

21
557

)
,

T4(3) : 2098873192
820777797 ≈ 2.557176 with α =

(225822361
820777797 ,

18575757
91197533 ,

10597368
91197533 ,

5054976
91197533 ,

1172732
91197533

)
,

T5(3) : 29727802051155412
11841961450578397 ≈ 2.510378 with α =

( 3027359065168972
11841961450578397 ,

2216425114872980
11841961450578397 ,

2224040336719575
23683922901156794 ,

2026654050681425
47367845802313588 ,

403660478424775
23683922901156794 ,

51149140376400
11841961450578397

)
,

T3(4) : 7083927
2331392 ≈ 3.038497 with α =

(123345
333056 ,

68295
291424 ,

12283
145712 ,

2911
145712

)
,

T4(4) : 3 with α =
( 7

43 ,
6
43 ,

19
258 ,

7
258 ,

1
258

)
,

T2(5) : 69
19 ≈ 3.631579 with α =

(37
57 ,

6
19 ,

4
57

)
,

T3(5) : 7
2 = 3.5 with α =

( 77
282 ,

25
141 ,

17
282 ,

2
141

)
.

4.2.3. Rooting in an edge. Definition 1 can be extended to a pattern with a root-edge instead
of a root-vertex. The distance in a pattern P between a vertex w and an edge uv is defined
to be min{distP (w, u), distP (w, v)}. The depth of a pattern P rooted in an edge e is then the
largest distance between e and a vertex in P . It is then possible to follow the same analysis as in
Section 4.2.1 with edge-rooted patterns: in order for the edge-rooted pattern of depth r to always
be a tree, the graph G must have girth at least 2r + 3. Let T ′r (d) be the set of acyclic edge-rooted
d-regular patterns of depth r. By Lemma 3, the linear program to solve is now the following.

|G|
α(G) ≤ min 2

r∑
i=0

αi(d− 1)i(9)

such that

∀T ∈ T
′
r (d),

r∑
i=0

αiei(T ) ≥ 1,

∀i ≤ r, αi ≥ 0.
For a given tree T ∈ T ′r (d) rooted in e = uv, it is possible to compute e(T ) using the constraints

associated to vertex-rooted trees. If Tu and Tv are the subtrees of T respectively rooted at u and
at v, then it readily follows from Definitions 3 and 4 that

(10) e(T ) =
(
e0(Tu)⊕ e0(Tv)

)
∨
(
e0(Tu)⊕ e1(Tv)

)
∨
(
e1(Tu)⊕ e0(Tv)

)
.

Moreover, the cardinality of the constraint e(T ), that is, the number of maximum independent sets
of T , is precisely the cardinality of the vector obtained in the right side of (10).

Following the enumeration of the vectors e(T ) for T ∈ T ′r (d) described earlier, the next statement
is obtained by computer calculus.

20



Lemma 7. The solution to the linear program (9) is

T ′2 (3) : 30
11 ≈ 2.72727

T ′3 (3) : 125
48 ≈ 2.604167

T ′4 (3) : 14147193
5571665 ≈ 2.539132

T ′2 (4) : 41
13 ≈ 3.153846

T ′3 (4) : 127937
42400 ≈ 3.017382

T ′2 (5) : 18
5 = 3.6

with α =
(1

2 ,
13
44 ,

3
44

)
;

with α =
(11

32 ,
5
24 ,

3
32 ,

1
48

)
;

with α =
( 98057

506515 ,
159348
1114333 ,

3688469
44573320 ,

1752117
44573320 ,

402569
44573320

)
;

with α =
(11

26 ,
3
13 ,

2
39

)
;

with α =
( 5539

16960 ,
1737
10600 ,

257
5300 ,

399
42400

)
;

with α =
(17

45 ,
8
45 ,

2
45

)
.

The bounds obtained in Lemma 7 are valid for graphs of girth at least 2r + 3. It turns out
that the same bounds, with the same α, remain valid for graphs of girth 2r + 2 = 6, when r = 2
and d ∈ {3, 4}. We were not able to check this for higher values of r or d, but we propose the
following conjecture which would explain and generalise this phenomenon.

Conjecture 2. Let P be a d-regular edge-rooted pattern of depth r and of girth 2r + 2. Then the
constraint e(P ) is weaker than some convex combination of constraints e(T ) with T ∈ T ′r (d). More
formally, there exist T1, . . . , Tm ∈ T ′r (d) and λ1, . . . , λm ∈ [0, 1] with

∑m
i=1 λi = 1 such that for any

α ∈
(
Q+)r+1,

α>
(

m∑
i=1

λie(Ti)
)
≥ 1 ⇒ α>e(P ) ≥ 1.

4.3. More complicated patterns.

4.3.1. Rooting at a vertex. Let us fix a depth r ≥ 2. Let G be a d-regular graph of girth g ≤ 2r+1.
We repeat the same analysis as in Section 4.2.1: we end up having to find a vector α ∈ Qr+1

compatible with all the constraints generated by vertex-rooted d-regular patterns of depth r and
girth g. Letting Pr(d, g) be the set of such patterns, we thus want that

∀P ∈ Pr(d, g), α>e(P ) ≥ 1.
In this setting, we could do no better than performing an exhaustive enumeration of every

possible pattern P ∈ Pr(d, g), and computing the associated constraint e(P ) through an exhaustive
enumeration of Sα(P ). The complexity of such a process grows fast, and we considered only
depth r ≤ 2 and degree d ≤ 4. Since the largest value of the inverse independence ratio over the
class of 3-regular graphs of girth 4 or 5 is known to be 14

5 = 2.8, and the one of 4-regular graphs of
girth 4 is known to be 13

4 = 3.25, the only open value in these settings is for the class of 4-regular
graphs of girth 5. Unfortunately, this method is not powerful enough to prove an upper bound
lower than 13

4 , the obtained bound for P2(4, 5) being 82
25 = 3.28. It is more interesting to root the

patterns in an edge.

4.3.2. Rooting in an edge. Similarly, we define P ′r(d, g) to be the set of edge-rooted d-regular pat-
terns of girth g. For fixed r and g, we seek for the solution of the following linear program.
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|G|
α(G) ≤ min 2

r∑
i=0

αi(d− 1)i(11)

such that

∀P ∈ P
′
r(d, g),

r∑
i=0

αiei(P ) ≥ 1,

∀i ≤ r, αi ≥ 0.
Again, our computations were limited to the cases where r ≤ 2 and d ≤ 4. However, we managed

to prove improved bounds for girth 6 when d ∈ {3, 4}, which seems to support Conjecture 2.

Lemma 8. The solution to the linear program (11) is

P ′2(3, 6) : 30
11 ≈ 2.72727

P ′2(4, 6) : 41
13 ≈ 3.153846

with α =
(1

2 ,
13
44 ,

3
44

)
,

with α =
(11

26 ,
3
13 ,

2
39

)
.

References
[1] B. Bajnok and G. Brinkmann, On the independence number of triangle free graphs with maximum degree

three, J. Combin. Math. Combin. Comput., 26 (1998), pp. 237–254.
[2] C. Berge, Färbung von graphen, deren sämtliche bzw. deren ungerade kreise starr sind (zusammenfassung),

Wiss. Z. Martin-Luther Univ. Halle-Wittenberg, Math.-Natur. Reihe, 10 (1961), pp. 114–115.
[3] N. Biggs, Constructions for cubic graphs with large girth, Electron. J. Combin., 5 (1998). #A1.
[4] B. Bollobás, The independence ratio of regular graphs, Proc. Amer. Math. Soc., 83 (1981), pp. 433–436.
[5] R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc., 37 (1941), pp. 194–197.
[6] M. Chudnovsky, N. Robertson, P. D. Seymour, and R. Thomas, The strong perfect graph theorem, Ann.

of Math. (2), 164 (2006), pp. 51–229.
[7] E. Davies, R. de Joannis de Verclos, R. J. Kang, and F. Pirot, Colouring triangle-free graphs with local

list sizes, arXiv e-prints, (2018).
[8] G. Exoo and R. Jajcay, Dynamic cage survey, Elec. J. Combin., Dynamic Surveys (2008). #DS16.
[9] K. Fraughnaugh and S. C. Locke, 11/30 (finding large independent sets in connected triangle-free 3-regular

graphs), J. Combin. Theory Ser. B, 65 (1995), pp. 51–72.
[10] K. F. Jones, Independence in graphs with maximum degree four, J. Combin. Theory Ser. B, 37 (1984), pp. 254–

269.
[11] F. Kardoš, D. Král’, and J. Volec, Fractional colorings of cubic graphs with large girth, SIAM J. Discrete

Math., 25 (2011), pp. 1454–1476.
[12] A. D. King, Claw-free graphs and two conjectures on ω, ∆, and χ, ph.d. thesis, McGill University, 2009.
[13] A. V. Kostochka, Degree, girth and chromatic number, in Combinatorics (Proc. Fifth Hungarian Colloq.,

Keszthely, 1976), Vol. II, vol. 18 of Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam-New York,
1978, pp. 679–696.

[14] M. Molloy, The list chromatic number of graphs with small clique number, J. Combin. Theory Ser. B, 134
(2019), pp. 264–284.

[15] M. Molloy and B. A. Reed, Graph colouring and the probabilistic method, vol. 23 of Algorithms and Combi-
natorics, Springer-Verlag, Berlin, 2002.

[16] J. B. Shearer, A note on the independence number of triangle-free graphs, ii, Journal of Combinatorial Theory,
Series B, 53 (1991), pp. 300–307.

[17] W. Staton, Some Ramsey-type numbers and the independence ratio, Trans. Amer. Math. Soc., 256 (1979),
pp. 353–370.

Équipe Orpailleur, LORIA (Université de Lorraine, C.N.R.S., INRIA), Vandœuvre-lès-Nancy, France
and Department of Mathematics, Radboud University Nijmegen, Netherlands.

E-mail address: francois.pirot@loria.fr

Centre National de la Recherche Scientifique (ICube, CSTB), Strasbourg, France.
E-mail address: sereni@kam.mff.cuni.cz

22


	1. Introduction
	2. Technical lemmas
	2.1. Greedy fractional colouring algorithm
	2.2. Independence ratio

	3. Local fractional colourings
	3.1. A local Reed's bound
	3.2. A stronger bound for graphs of girth 7

	4. Bounds on the inverse independence ratio
	4.1. Structural analysis of a neighbourhood
	4.2. Tree-like patterns
	4.3. More complicated patterns

	References

