Fractional chromatic number, maximum degree and girth - Archive ouverte HAL Access content directly
Journal Articles SIAM Journal on Discrete Mathematics Year : 2021

Fractional chromatic number, maximum degree and girth

Nombre chromatique fractionnaire, degré maximum et maille


We introduce a new method for computing bounds on the independence number and fractional chromatic number of classes of graphs with local constraints, and apply this method in various scenarios. We prove that if G is a triangle-free graph with maximum degree $Δ ≥ 2$, then its fractional chromatic number is at most 1$+(1+2/ln(Δ)) · Δ/(ln(Δ) - 2ln(ln(Δ)))$. This matches the best asymptotic upper bound known for off-diagonal Ramsey numbers, and is the first explicit bound of this nature. It is obtained as a corollary of a general upper bound on the fractional chromatic number of triangle-free graphs, which matches, for small values of the maximum degree $Δ$, that deduced from the fractional version of Reed's bound for triangle-free graphs, and improves it when $Δ ≥ 17$, transitioning smoothly to the correct asymptotic regime. Focusing on smaller values of ∆, we also demonstrate that every graph of girth at least 7 and maximum degree $∆$ has fractional chromatic number at most min ${(2∆ + 2^{k-3}+k)/k : k ∈ ℕ}$. In particular, the fractional chromatic number of a graph of girth 7 and maximum degree $∆$ is at most $(2∆+9)/5$ when $∆ ∈ [3,8]$, at most $(∆+7)/3$ when $∆ ∈  [8,20]$, at most $(2∆+23)/7$ when $∆ ∈ [20,48]$, and at most $∆/4+5$ when $∆ ∈ [48,112]$.
Fichier principal
Vignette du fichier
pise19.pdf (510.19 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-02096426 , version 1 (11-04-2019)
hal-02096426 , version 2 (21-04-2019)
hal-02096426 , version 3 (22-11-2019)
hal-02096426 , version 4 (23-11-2020)



François Pirot, Jean-Sébastien Sereni. Fractional chromatic number, maximum degree and girth. SIAM Journal on Discrete Mathematics, 2021, 35 (4), pp.2815-2843. ⟨10.1137/20M1382283⟩. ⟨hal-02096426v4⟩
191 View
397 Download



Gmail Mastodon Facebook X LinkedIn More