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Context

Asymmetric cryptography serves in:

digital signature

authentication

secret key exchange

An example of asymmetric cryptosystem:

Elliptic Curve Cryptography (ECC) [Mil85, Kob87]

For ECC, computations are performed in GF (P) with P a
200− 500 bits prime

1 ECC primitive requires a thousand of additions, subtractions
and multiplications modulo P
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Residue Number System (RNS)

RNS

non-positional representation system

Chinese Remainder Theorem (CRT)

X is represented by its residues over a base

representation with internal parallelism

RNS base
An RNS base A is a tuple (a1, a2, ..., an) of coprime integers
named moduli

Representing the number X−→
X = (X mod a1 , X mod a2 , . . . , X mod an )
−→
X = ( xa1 , xa2 , . . . , xan )

Converting back to positional representation
Compute the CRT over all the xai s in base A
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RNS

In hardware implementations of asymmetric cryptosystems:

large integers are splitted in small residues (typically 16-64 bits
integers)

computations on large integers are replaced by parallel
computations on small residues

channel 1

±×
mod a1

w

za1

w

ya1

w

xa1

channel 2

±×
mod a2

w

za2

w

ya2

w

xa2 . . .
. . .

. . .

. . .

channel n

±×
mod an

w

zan

w

yan

w

xan
−→
X

−→
Y

−→
Z

ai are pseudo
Mersenne for
efficiency
purpose

Libey Djath, Karim Bigou, Arnaud Tisserand Hierarchical RNS Base Extension ARITH-26, 10-12 June 2019 5 / 21



RNS

Main advantages of RNS architectures:

carry free operations among the channels

fast parallel +, −, ×
random order internal computations

Drawback:

Comparison, division and mod P reduction are difficult
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RNS Montgomery mod P Reduction [PP95]
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Fig. 1. The cox-rower architecture from [16] inspired by the one from [9]
(control signals are not represented).

C. Hierarchical Approaches in RNS

[18] and [21] propose to recursively use RNS where com-
putations inside channels are performed in a small RNS base.
This does not improve much performances compared to usual
RNS, but it provides other properties such as protection against
some physical attacks. [21] proposes small RNS channels
where all elementary operations are performed using fully
precomputed lookup tables (reducing information leakage).

In [19], [20], RNS bases with 3 or 4 moduli are used for
signal processing applications (on small values) where some
moduli are factorizable into smaller ones. To be efficient,
the moduli and their factorization must support fast MR
algorithms in the corresponding (sub)-channels.

In this paper, we do not use an RNS hierarchical represen-
tation, but we propose a hierarchical approach for the CRT
computation to reduce the cost of cryptographic applications.
There is no need for factorizable moduli, and all MRs are
performed using usual RNS w-bit moduli (see Sec.??).

To improve the CRT computation in a general context,
hierarchical approaches with partial CRT have been proposed
to convert back from a set of residues to the corresponding
value in Z, see for instance [22], [23]. However, as far as we
know, our proposition is the first BE algorithm based on a
hierarchical approach for full RNS computations.

IV. CRYPTOGRAPHIC APPLICATIONS

RSA exponentiation and ECC scalar multiplication require
numerous MRs with a large modulus (200+ bits for ECC
and 2000+ bits for RSA). The standard integer MR algorithm
used with a generic modulus (i.e., no specific form) is the
Montgomery reduction proposed in [25]. It replaces a costly
division by 2 multiplications by a constant, one reduction
modulo 2l and one division by 2l where l is the modulus
width in a radix-2 representation.

An RNS version of this algorithm has been proposed in [26],
see Algo. 2. Instead of 2l, it uses reduction and division by A
at line 4. Because A cannot be inverted in base A, BEs at lines
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Fig. 2. Theoretical costs of one RNS Montgomery MM from [11] for
various base sizes (n) and the two compared BE algorithms for ECC or RSA
applications. Each curve corresponds to cost(MM w. HBE)/cost(MM w.
KBE) for one cost ratio of elementary operations (CMM/CMR).

2/5 in/from base B are required to divide by A. The second
BE must be exact, but the first one can be approximated (the
result, multiplied by P , does not impact the result modulo P ).
KBE and HBE algorithms can be used for both BEs.

The cost of Algo. 2 is dominated by the 2 BEs. One RNS
reduction modulo P from [9] costs 2n2+5n CMM(w,w) where
the 2 BEs cost 2n2 + 2n. By reordering internal operations,
[11] reduces the cost of one RNS reduction modulo P to 2n2+
2n CMMs (actually 2 successive BEs).

One full RNS MM based on KBE costs 2n2 + 4n CMMs
(one MR and 2n CMMs, one multiplication per channel per
RNS base). The same RNS MM algorithm using HBE instead
of KBE only costs 3n2

2 + 6n CMMs when CMM/CMR = 2 or
5n2

4 + 6n when CMM/CMR = 4.
Recently, [24] improves RNS MMs for ECC applications.

By selecting well-suited bases for prime field characteristic
P from standards (e.g., NIST primes), the KBE is reduced
from 2n2 + 4n to 2n2 + 3n CMMs. This method requires to
generate one base per field characteristic. For our applications
with multiple fields this method is less interesting than [11].

Figure 2 depicts the theoretical gain when using HBE
instead of KBE for one RNS MM using Algo. 2 and opti-
mizations from [11]. The gain is given for various cost ratios
CMR/CMM. For instance, 256-bit ECC and 1024-bit RSA-CRT

Algorithm 2: RNS Montgomery reduction modulo P [26].
Input: XA, XB

Precomp.: PA, PB ,
(
−P−1

)
A
,
(
A−1

)
B

Output: SA and SB with S =
(
XA−1

)
mod P + δP

and δ ∈ {0, 1, 2}
1 QA ← XA ×

(
−P−1

)
A

2 QB ← BE (QA,A,B)
3 RB ← XB +QB × PB

4 SB ← RB ×
(
A−1

)
B

5 SA ← BE (SB ,B,A)
6 return (SA, SB)

3

A B

×
BE

×
+

×
BE

1

BE: base extension

Chinese Remainder Theorem (CRT) formula
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Base Extension (BE) [KKSS00]

Base A xa1 xa2 xa3 xa4 xan−1 xan

Base B xb1 xb2 xb3 xb4 xbn−1 xbn

1

BE converts X in base A into X in base B
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Base Extension [KKSS00]

BE algorithm from [KKSS00]

– CMUL(w,w′) for a (w × w′)-bit multiplication
– CMR(w′, w) for a (w′ mod w)-bit MR
– CMM(w,w) for a (w × w mod w)-bit MM (in one
w-bit RNS channel)

RNS base B and the related values Bi, B, Bi, bi,j , XB ,
XBi

and Tbi,j are similarly defined.

III. STATE OF THE ART

A. Residue Number System

In RNS [5], [6], the integer X is represented by its residues,
denoted xai,j

, modulo a set of coprime moduli, denoted
ai,j , for all (i, j) in the RNS base A. To convert X from
a standard positional representation to RNS, one computes
|X|ai,j

, possibly independently, for each moduli in A. The
reverse conversion is performed using the CRT formula:

X =

∣∣∣∣∣∣
r∑

i=1

c∑
j=1

|xai,j
× Tai,j

|ai,j
× A

ai,j

∣∣∣∣∣∣
A

(1)

With X and Y represented in RNS base A, their addition,
subtraction and multiplication, X � Y where � ∈ {±,×}, is
performed independently on each residue by |xi,j � yi,j |ai,j

for all (i, j) in A. Computations related to one modulo are
performed in a channel (i.e. w-bit datapath). Clearly, RNS
offers a high level of parallelism for ± and × operations. But
for other operations, especially comparison, division and MR,
the situation is more complex. Their cost in RNS is more
important than for a positional representation. Multiplication
modulo a large integer M is crucial for asymmetric cryptog-
raphy (M = P is prime for ECC over FP and M = PQ
the product of 2 primes for RSA). In RNS, the cost of this
operation is mainly the cost of 2 successive base extensions
(see Section IV).

B. RNS Base Extension

A BE can be seen as a conversion from one RNS baseA to a
second one B. If B is co-prime with A, then the concatenation
of both bases can be seen as an extension of A.

In the literature, two main strategies are used for BEs:
using an intermediate representation called mixed-radix system
(MRS [5]) or computing equation 1 directly in base B. MRS
requires more operations and introduces strong data dependen-
cies which limit its interest compared to CRT approaches. For
CRT based BEs, the main issue is to compute the reduction
modulo A from Eq. 1 directly in base B, other operations
are just sums and products. Usually, one instead computes the
CRT under the form:

X =

 r∑
i=1

c∑
j=1

|xai,j
× Tai,j

|ai,j
× A

ai,j

− hA (2)

The issue is to compute h (i.e., how many times A should be
subtracted to get the correct MR). Authors of [12] noticed that
in some cryptographic applications, reduction modulo A can
be skipped after the sum, leading to larger values (less than

Algorithm 1: Base Extension from [9] (KBE).
Input: XA, σ = 0 or 0.5
Precomp.: Tai,j

∀i ∈ [1, r] and ∀j ∈ [1, c]
Output: XB

1 for i from 1 to r parallel do
2 for j from 1 to c parallel do
3 x̂ai,j

←
∣∣xai,j

× Tai,j

∣∣
ai,j

4 for i from 1 to r do
5 for j from 1 to c do

6 σ ← σ +
trunc(x̂ai,j

)

2w

7 hi,j ← bσc
8 σ ← σ − hi,j
9 for k from 1 to r parallel do

10 for l from 1 to c parallel do
11 xbk,l

←∣∣∣∣xbk,l
+ x̂ai,j ×

∣∣∣ A
ai,j

∣∣∣
bk,l

+ | − hi,j A|bk,l

∣∣∣∣
bk,l

Algorithm 2: Base Extension from [9] (KBE).
Input: XA, σ = 0 or 0.5
Precomp.: Tai ∀i ∈ [1, n]
Output: XB

1 for i from 1 to n parallel do
2 x̂ai

← |xai
× Tai

|ai

3 for i from 1 to n do
4 σ ← σ +

trunc(x̂ai
)

2w

5 hi ← bσc
6 σ ← σ − hi
7 for k from 1 to n parallel do

8 xbk ←
∣∣∣∣xbk + x̂ai

×
∣∣∣ Aai

∣∣∣
bk

+ | − hiA|bk
∣∣∣∣
bk

rcA instead of A). [13] proposed to use an extra modulo to
retrieve h. This method cannot be used in some situations but
can be combined to [12] to fully implement RSA and ECC
in RNS. A third approach proposed in [14], and improved
in [9], uses an approximation for h in Eq. 2. In this paper,
we focus on [9], which is the most used in state-of-the-art
implementations. Our main idea can be adapted to other CRT
based BE methods.

% cut here
%% cute here
The BE proposed in [9], often denoted Kawamura BE

or KBE in literature, is described in Algo. 2 (with our 2D
notations). One can see that lines 3 and 11 mainly compute the
sum of products from Eq. 2. The lines 6–8 of KBE perform
an accumulation of small t-bit values to compute hi,j , and
finally subtract hi,jA in line 11. The hi,j are 1-bit values
and

∑r
i=1

∑c
j=1 hi,j is h or h − 1. The function trunc(x)

keeps the t MSBs of x̂ai,j
, and sets all the others to 0. For

asymmetric cryptography implementations, t ∈ [4, 8] is very

2

Cox-rower architecture from
[Gui10]
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State of the art solution is usually called KBE
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Idea of Hierarchical Base Extension (HBE)

Changing the notation
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Université de Bretagne Occidentale

Lab-STICC, UMR CNRS 6285
F-29200 Brest, France

libeyokonfu.djath@univ-brest.fr,
karim.bigou@univ-brest.fr

Arnaud Tisserand
CNRS

Lab-STICC, UMR 6285
Centre Recherche UBS, rue St Maudé, Lorient, France
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cal approach for computing the Chinese remainder theorem. For
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cost and still ensures a high level of internal parallelism. We
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We also demonstrate improvements in FPGA implementations of
base extensions on typical elliptic curve cryptography field sizes
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I. INTRODUCTION

Current asymmetric cryptosystems require an efficient sup-
port for arithmetic over large operands. For instance, RSA [?]
requires modular arithmetic over integers larger than 2000 bits
and elliptic curve cryptography (ECC) [?], [?] deals with finite
field elements larger than 200 bits. See [?] for references.

In these cryptographic applications, the residue number
system (RNS) [?], [?] is increasingly suggested to provide
more internal parallelism. RNS uses a set of small co-prime
moduli, called the base, to “split” some arithmetic operations
into independent and much smaller ones over the residues.
This independence leads to faster operations without carry
propagation between the moduli [?]. RNS can also help to
improve the security against some physical attacks [?].

In RNS, addition, subtraction and multiplication of large
integers are parallel operations. The Chinese remainder the-
orem (CRT) is often used for converting the residues into the
standard representation, see for instance [?, Chap. 3].

But operations such as comparison, division and modular
reduction are costly operations since RNS is a non-positional
representation. To avoid the conversion to the standard repre-
sentation for these operations, the use of base extensions (BE)
is often proposed [?].

To reduce the cost of RNS implementations, two main
directions have been explored: reducing the number of BEs
at application level (e.g., specific formulas for point addi-
tion/doubling in ECC [?]), or reducing the cost of a BE
(for instance [?]). This work deals with the second direction

and proposes a new BE algorithm. It uses a hierarchical
decomposition with partial applications of small CRTs. Our
algorithm, called hierarchical BE (HBE), allows to reduce the
cost of modular arithmetic in RNS.

Definitions and notations are presented in Section II. Section
III briefly recalls related elements from the state of the art.
Our HBE algorithm is detailed in Section IV. The interest of
this algorithm is analyzed in Section ?? for a few asymmetric
cryptography applications. Section ?? presents our FPGA
implementations results for ECC over FP using high-level
synthesis (HLS). Finally, Section ?? concludes the paper.

II. DEFINITIONS AND NOTATIONS

We use a 2-dimension notation for RNS bases and elements
instead of the usual 1-dimension one.
• |X|m = X mod m
• A is an RNS base of n = r × c moduli of w bits:
%%% cut here

A = (a1 · · · an)

%%% cut here

A =

a1,1 · · · a1,c
... · · ·

...
ar,1 · · · ar,c


• Ai =

∏c
j=1 ai,j is the product of the i-th row moduli

• A =
∏r

i=1Ai is the product of all moduli of A
• Ai = A/Ai is the product of all rows except the i-th one
• ai,j = Ai/ai,j is the product of all moduli in row i except

the j-th one
• The integer X is represented in RNS base A by:

XA =

xa1,1
· · · xa1,c... · · ·

...
xar,1

· · · xar,c

 with xai,j
= |X|ai,j

• XAi
= |X|Ai

and it can be computed from
(xai,1 , · · · , xai,c) using the CRT

• Tai,j =

∣∣∣∣( A
ai,j

)−1∣∣∣∣
ai,j
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I. INTRODUCTION

Current asymmetric cryptosystems require an efficient sup-
port for arithmetic over large operands. For instance, RSA [?]
requires modular arithmetic over integers larger than 2000 bits
and elliptic curve cryptography (ECC) [?], [?] deals with finite
field elements larger than 200 bits. See [?] for references.

In these cryptographic applications, the residue number
system (RNS) [?], [?] is increasingly suggested to provide
more internal parallelism. RNS uses a set of small co-prime
moduli, called the base, to “split” some arithmetic operations
into independent and much smaller ones over the residues.
This independence leads to faster operations without carry
propagation between the moduli [?]. RNS can also help to
improve the security against some physical attacks [?].

In RNS, addition, subtraction and multiplication of large
integers are parallel operations. The Chinese remainder the-
orem (CRT) is often used for converting the residues into the
standard representation, see for instance [?, Chap. 3].

But operations such as comparison, division and modular
reduction are costly operations since RNS is a non-positional
representation. To avoid the conversion to the standard repre-
sentation for these operations, the use of base extensions (BE)
is often proposed [?].

To reduce the cost of RNS implementations, two main
directions have been explored: reducing the number of BEs
at application level (e.g., specific formulas for point addi-
tion/doubling in ECC [?]), or reducing the cost of a BE
(for instance [?]). This work deals with the second direction

and proposes a new BE algorithm. It uses a hierarchical
decomposition with partial applications of small CRTs. Our
algorithm, called hierarchical BE (HBE), allows to reduce the
cost of modular arithmetic in RNS.

Definitions and notations are presented in Section II. Section
III briefly recalls related elements from the state of the art.
Our HBE algorithm is detailed in Section IV. The interest of
this algorithm is analyzed in Section ?? for a few asymmetric
cryptography applications. Section ?? presents our FPGA
implementations results for ECC over FP using high-level
synthesis (HLS). Finally, Section ?? concludes the paper.

II. DEFINITIONS AND NOTATIONS

We use a 2-dimension notation for RNS bases and elements
instead of the usual 1-dimension one.
• |X|m = X mod m
• A is an RNS base of n = r × c moduli of w bits:
%%% cut here

A = (a1 · · · an)

%%% cut here

A =

a1,1 · · · a1,c
... · · ·

...
ar,1 · · · ar,c


• Ai =

∏c
j=1 ai,j is the product of the i-th row moduli

• A =
∏r

i=1Ai is the product of all moduli of A
• Ai = A/Ai is the product of all rows except the i-th one
• ai,j = Ai/ai,j is the product of all moduli in row i except

the j-th one
• The integer X is represented in RNS base A by:

XA =

xa1,1
· · · xa1,c... · · ·

...
xar,1

· · · xar,c

 with xai,j
= |X|ai,j

• XAi
= |X|Ai

and it can be computed from
(xai,1 , · · · , xai,c) using the CRT

• Tai,j =

∣∣∣∣( A
ai,j

)−1∣∣∣∣
ai,j

with n = r × c

Main Idea

gather residues by row (c residues per row) into super-residues
in base A by computing their partial CRTs

compute the CRT of the super-residues of base A in base B
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Rewriting the KBE Algorithm

1D KBE

– CMUL(w,w′) for a (w × w′)-bit multiplication
– CMR(w′, w) for a (w′ mod w)-bit MR
– CMM(w,w) for a (w × w mod w)-bit MM (in one
w-bit RNS channel)

RNS base B and the related values Bi, B, Bi, bi,j , XB ,
XBi

and Tbi,j are similarly defined.

III. STATE OF THE ART

A. Residue Number System

In RNS [5], [6], the integer X is represented by its residues,
denoted xai,j

, modulo a set of coprime moduli, denoted
ai,j , for all (i, j) in the RNS base A. To convert X from
a standard positional representation to RNS, one computes
|X|ai,j

, possibly independently, for each moduli in A. The
reverse conversion is performed using the CRT formula:

X =

∣∣∣∣∣∣
r∑

i=1

c∑
j=1

|xai,j
× Tai,j

|ai,j
× A

ai,j

∣∣∣∣∣∣
A

(1)

With X and Y represented in RNS base A, their addition,
subtraction and multiplication, X � Y where � ∈ {±,×}, is
performed independently on each residue by |xi,j � yi,j |ai,j

for all (i, j) in A. Computations related to one modulo are
performed in a channel (i.e. w-bit datapath). Clearly, RNS
offers a high level of parallelism for ± and × operations. But
for other operations, especially comparison, division and MR,
the situation is more complex. Their cost in RNS is more
important than for a positional representation. Multiplication
modulo a large integer M is crucial for asymmetric cryptog-
raphy (M = P is prime for ECC over FP and M = PQ
the product of 2 primes for RSA). In RNS, the cost of this
operation is mainly the cost of 2 successive base extensions
(see Section IV).

B. RNS Base Extension

A BE can be seen as a conversion from one RNS baseA to a
second one B. If B is co-prime with A, then the concatenation
of both bases can be seen as an extension of A.

In the literature, two main strategies are used for BEs:
using an intermediate representation called mixed-radix system
(MRS [5]) or computing equation 1 directly in base B. MRS
requires more operations and introduces strong data dependen-
cies which limit its interest compared to CRT approaches. For
CRT based BEs, the main issue is to compute the reduction
modulo A from Eq. 1 directly in base B, other operations
are just sums and products. Usually, one instead computes the
CRT under the form:

X =

 r∑
i=1

c∑
j=1

|xai,j
× Tai,j

|ai,j
× A

ai,j

− hA (2)

The issue is to compute h (i.e., how many times A should be
subtracted to get the correct MR). Authors of [12] noticed that
in some cryptographic applications, reduction modulo A can
be skipped after the sum, leading to larger values (less than

Algorithm 1: Base Extension from [9] (KBE).
Input: XA, σ = 0 or 0.5
Precomp.: Tai,j

∀i ∈ [1, r] and ∀j ∈ [1, c]
Output: XB

1 for i from 1 to r parallel do
2 for j from 1 to c parallel do
3 x̂ai,j

←
∣∣xai,j

× Tai,j

∣∣
ai,j

4 for i from 1 to r do
5 for j from 1 to c do

6 σ ← σ +
trunc(x̂ai,j

)

2w

7 hi,j ← bσc
8 σ ← σ − hi,j
9 for k from 1 to r parallel do

10 for l from 1 to c parallel do
11 xbk,l

←∣∣∣∣xbk,l
+ x̂ai,j ×

∣∣∣ A
ai,j

∣∣∣
bk,l

+ | − hi,j A|bk,l

∣∣∣∣
bk,l

Algorithm 2: Base Extension from [9] (KBE).
Input: XA, σ = 0 or 0.5
Precomp.: Tai ∀i ∈ [1, n]
Output: XB

1 for i from 1 to n parallel do
2 x̂ai

← |xai
× Tai

|ai

3 for i from 1 to n do
4 σ ← σ +

trunc(x̂ai
)

2w

5 hi ← bσc
6 σ ← σ − hi
7 for k from 1 to n parallel do

8 xbk ←
∣∣∣∣xbk + x̂ai

×
∣∣∣ Aai

∣∣∣
bk

+ | − hiA|bk
∣∣∣∣
bk

rcA instead of A). [13] proposed to use an extra modulo to
retrieve h. This method cannot be used in some situations but
can be combined to [12] to fully implement RSA and ECC
in RNS. A third approach proposed in [14], and improved
in [9], uses an approximation for h in Eq. 2. In this paper,
we focus on [9], which is the most used in state-of-the-art
implementations. Our main idea can be adapted to other CRT
based BE methods.

% cut here
%% cute here
The BE proposed in [9], often denoted Kawamura BE

or KBE in literature, is described in Algo. 2 (with our 2D
notations). One can see that lines 3 and 11 mainly compute the
sum of products from Eq. 2. The lines 6–8 of KBE perform
an accumulation of small t-bit values to compute hi,j , and
finally subtract hi,jA in line 11. The hi,j are 1-bit values
and

∑r
i=1

∑c
j=1 hi,j is h or h − 1. The function trunc(x)

keeps the t MSBs of x̂ai,j
, and sets all the others to 0. For

asymmetric cryptography implementations, t ∈ [4, 8] is very

2

Main cost: n2 executions of line 8

2D KBE
– CMUL(w,w′) for a (w × w′)-bit multiplication
– CMR(w′, w) for a (w′ mod w)-bit MR
– CMM(w,w) for a (w × w mod w)-bit MM (in one
w-bit RNS channel)

RNS base B and the related values Bi, B, Bi, bi,j , XB ,
XBi

and Tbi,j are similarly defined.

III. STATE OF THE ART

A. Residue Number System

In RNS [5], [6], the integer X is represented by its residues,
denoted xai,j

, modulo a set of coprime moduli, denoted
ai,j , for all (i, j) in the RNS base A. To convert X from
a standard positional representation to RNS, one computes
|X|ai,j

, possibly independently, for each moduli in A. The
reverse conversion is performed using the CRT formula:

X =

∣∣∣∣∣∣
r∑

i=1

c∑
j=1

|xai,j
× Tai,j

|ai,j
× A

ai,j

∣∣∣∣∣∣
A

(1)

With X and Y represented in RNS base A, their addition,
subtraction and multiplication, X � Y where � ∈ {±,×}, is
performed independently on each residue by |xi,j � yi,j |ai,j

for all (i, j) in A. Computations related to one modulo are
performed in a channel (i.e. w-bit datapath). Clearly, RNS
offers a high level of parallelism for ± and × operations. But
for other operations, especially comparison, division and MR,
the situation is more complex. Their cost in RNS is more
important than for a positional representation. Multiplication
modulo a large integer M is crucial for asymmetric cryptog-
raphy (M = P is prime for ECC over FP and M = PQ
the product of 2 primes for RSA). In RNS, the cost of this
operation is mainly the cost of 2 successive base extensions
(see Section IV).

B. RNS Base Extension

A BE can be seen as a conversion from one RNS baseA to a
second one B. If B is co-prime with A, then the concatenation
of both bases can be seen as an extension of A.

In the literature, two main strategies are used for BEs:
using an intermediate representation called mixed-radix system
(MRS [5]) or computing equation 1 directly in base B. MRS
requires more operations and introduces strong data dependen-
cies which limit its interest compared to CRT approaches. For
CRT based BEs, the main issue is to compute the reduction
modulo A from Eq. 1 directly in base B, other operations
are just sums and products. Usually, one instead computes the
CRT under the form:

X =

 r∑
i=1

c∑
j=1

|xai,j
× Tai,j

|ai,j
× A

ai,j

− hA (2)

The issue is to compute h (i.e., how many times A should be
subtracted to get the correct MR). Authors of [12] noticed that
in some cryptographic applications, reduction modulo A can
be skipped after the sum, leading to larger values (less than

Algorithm 1: Base Extension from [9] (KBE).
Input: XA, σ = 0 or 0.5
Precomp.: Tai,j

∀i ∈ [1, r] and ∀j ∈ [1, c]
Output: XB

1 for i from 1 to r parallel do
2 for j from 1 to c parallel do
3 x̂ai,j

←
∣∣xai,j

× Tai,j

∣∣
ai,j

4 for i from 1 to r do
5 for j from 1 to c do

6 σ ← σ +
trunc(x̂ai,j

)

2w

7 hi,j ← bσc
8 σ ← σ − hi,j
9 for k from 1 to r parallel do

10 for l from 1 to c parallel do
11 xbk,l

←∣∣∣∣xbk,l
+ x̂ai,j ×

∣∣∣ A
ai,j

∣∣∣
bk,l

+ | − hi,j A|bk,l

∣∣∣∣
bk,l

Algorithm 2: Base Extension from [9] (KBE).
Input: XA, σ = 0 or 0.5
Precomp.: Tai ∀i ∈ [1, n]
Output: XB

1 for i from 1 to n parallel do
2 x̂ai

← |xai
× Tai

|ai

3 for i from 1 to n do
4 σ ← σ +

trunc(x̂ai
)

2w

5 hi ← bσc
6 σ ← σ − hi
7 for k from 1 to n parallel do

8 xbk ←
∣∣∣∣xbk + x̂ai

×
∣∣∣ Aai

∣∣∣
bk

+ | − hiA|bk
∣∣∣∣
bk

rcA instead of A). [13] proposed to use an extra modulo to
retrieve h. This method cannot be used in some situations but
can be combined to [12] to fully implement RSA and ECC
in RNS. A third approach proposed in [14], and improved
in [9], uses an approximation for h in Eq. 2. In this paper,
we focus on [9], which is the most used in state-of-the-art
implementations. Our main idea can be adapted to other CRT
based BE methods.

% cut here
%% cute here
The BE proposed in [9], often denoted Kawamura BE

or KBE in literature, is described in Algo. 2 (with our 2D
notations). One can see that lines 3 and 11 mainly compute the
sum of products from Eq. 2. The lines 6–8 of KBE perform
an accumulation of small t-bit values to compute hi,j , and
finally subtract hi,jA in line 11. The hi,j are 1-bit values
and

∑r
i=1

∑c
j=1 hi,j is h or h − 1. The function trunc(x)

keeps the t MSBs of x̂ai,j
, and sets all the others to 0. For

asymmetric cryptography implementations, t ∈ [4, 8] is very

2

With n = r × c , main cost:
r 2c2 executions of line 11
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HBE (c = 2)

Base A

xa1,1 xa1,2 xa2,1 xa2,2 xar,1 xar,2

Base B xb1,1 xb1,2 xb2,1 xb2,2 xbr,1 xbr,2

XA1 XA2 XAr

1
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Comparison between KBE and HBE

KBE
– CMUL(w,w′) for a (w × w′)-bit multiplication
– CMR(w′, w) for a (w′ mod w)-bit MR
– CMM(w,w) for a (w × w mod w)-bit MM (in one
w-bit RNS channel)

RNS base B and the related values Bi, B, Bi, bi,j , XB ,
XBi

and Tbi,j are similarly defined.

III. STATE OF THE ART

A. Residue Number System

In RNS [?], [?], the integer X is represented by its residues,
denoted xai,j

, modulo a set of coprime moduli, denoted
ai,j , for all (i, j) in the RNS base A. To convert X from
a standard positional representation to RNS, one computes
|X|ai,j

, possibly independently, for each moduli in A. The
reverse conversion is performed using the CRT formula:

X =

∣∣∣∣∣∣
r∑

i=1

c∑
j=1

|xai,j
× Tai,j

|ai,j
× A

ai,j

∣∣∣∣∣∣
A

(1)

With X and Y represented in RNS base A, their addition,
subtraction and multiplication, X � Y where � ∈ {±,×}, is
performed independently on each residue by |xi,j � yi,j |ai,j

for all (i, j) in A. Computations related to one modulo are
performed in a channel (i.e. w-bit datapath). Clearly, RNS
offers a high level of parallelism for ± and × operations. But
for other operations, especially comparison, division and MR,
the situation is more complex. Their cost in RNS is more
important than for a positional representation. Multiplication
modulo a large integer M is crucial for asymmetric cryptog-
raphy (M = P is prime for ECC over FP and M = PQ
the product of 2 primes for RSA). In RNS, the cost of this
operation is mainly the cost of 2 successive base extensions
(see Section ??).

B. RNS Base Extension

A BE can be seen as a conversion from one RNS baseA to a
second one B. If B is co-prime with A, then the concatenation
of both bases can be seen as an extension of A.

In the literature, two main strategies are used for BEs:
using an intermediate representation called mixed-radix system
(MRS [?]) or computing equation 1 directly in base B. MRS
requires more operations and introduces strong data dependen-
cies which limit its interest compared to CRT approaches. For
CRT based BEs, the main issue is to compute the reduction
modulo A from Eq. 1 directly in base B, other operations
are just sums and products. Usually, one instead computes the
CRT under the form:

X =

 r∑
i=1

c∑
j=1

|xai,j
× Tai,j

|ai,j
× A

ai,j

− hA (2)

The issue is to compute h (i.e., how many times A should be
subtracted to get the correct MR). Authors of [?] noticed that
in some cryptographic applications, reduction modulo A can
be skipped after the sum, leading to larger values (less than

Algorithm 1: Base Extension from [?] (KBE).
Input: XA, σ = 0 or 0.5
Precomp.: Tai,j

∀i ∈ [1, r] and ∀j ∈ [1, c]
Output: XB

1 for i from 1 to r parallel do
2 for j from 1 to c parallel do
3 x̂ai,j

←
∣∣xai,j

× Tai,j

∣∣
ai,j

4 for i from 1 to r do
5 for j from 1 to c do

6 σ ← σ +
trunc(x̂ai,j

)

2w

7 hi,j ← bσc
8 σ ← σ − hi,j
9 for k from 1 to r parallel do

10 for l from 1 to c parallel do
11 xbk,l

←∣∣∣∣xbk,l
+ x̂ai,j

×
∣∣∣ A
ai,j

∣∣∣
bk,l

+ | − hi,j A|bk,l

∣∣∣∣
bk,l

rcA instead of A). [?] proposed to use an extra modulo to
retrieve h. This method cannot be used in some situations but
can be combined to [?] to fully implement RSA and ECC in
RNS. A third approach proposed in [?], and improved in [?],
uses an approximation for h in Eq. 2. In this paper, we focus on
[?], which is the most used in state-of-the-art implementations.
Our main idea can be adapted to other CRT based BE methods.

The BE proposed in [?], often denoted Kawamura BE
or KBE in literature, is described in Algo. 1 (with our 2D
notations). One can see that lines 3 and 11 mainly compute the
sum of products from Eq. 2. The lines 6–8 of KBE perform
an accumulation of small t-bit values to compute hi,j , and
finally subtract hi,jA in line 11. The hi,j are 1-bit values
and

∑r
i=1

∑c
j=1 hi,j is h or h − 1. The function trunc(x)

keeps the t MSBs of x̂ai,j
, and sets all the others to 0. For

asymmetric cryptography implementations, t ∈ [4, 8] is very
common. KBE can be used into 2 main different modes:

• if input X < A/2, choosing σ = 0.5 leads to∑r
i=1

∑c
j=1 hi,j = h and the output is exactly X in base

B;
• if X is close to A with X < A, choosing σ = 0 leads to∑r

i=1

∑c
j=1 hi,j = h− 1 and the output is X or X +A

in base B.

Thus, KBE can be used to perform all computations in
asymmetric cryptography. KBE is efficiently implemented
using the cox-rower architecture introduced in [?] and
depicted in Fig. 1. A rower unit performs all computations in
one channel. All rowers, one per modulo in the base, operate
in parallel. The single cox unit computes the appropriate
reduction factor hi,j and distributes it to the rowers. KBE
algorithm and cox-rower architecture have been used in
several hardware implementations of asymmetric cryptosys-
tems using RNS: e.g., [?] for RSA; [?] and [?] for ECC.

2

Main cost: r 2c2 executions
of line 11

HBE

rower rower rower rower
cox

CTRL

Memory

w

1

w

w

w
t

Fig. 1. The cox-rower architecture from [?] inspired by the one from [?]
(control signals are not represented).

C. Hierarchical Approaches in RNS

[?] and [?] propose to recursively use RNS where computa-
tions inside channels are performed in a small RNS base. This
does not improve much performances compared to usual RNS,
but it provides other properties such as protection against some
physical attacks. [?] proposes small RNS channels where all
elementary operations are performed using fully precomputed
lookup tables (reducing information leakage).

In [?], [?], RNS bases with 3 or 4 moduli are used for signal
processing applications (on small values) where some moduli
are factorizable into smaller ones. To be efficient, the moduli
and their factorization must support fast MR algorithms in the
corresponding (sub)-channels.

In this paper, we do not use an RNS hierarchical represen-
tation, but we propose a hierarchical approach for the CRT
computation to reduce the cost of cryptographic applications.
There is no need for factorizable moduli, and all MRs are
performed using usual RNS w-bit moduli (see Sec.IV).

To improve the CRT computation in a general context,
hierarchical approaches with partial CRT have been proposed
to convert back from a set of residues to the corresponding
value in Z, see for instance [?], [?]. However, as far as we
know, our proposition is the first BE algorithm based on a
hierarchical approach for full RNS computations.

IV. PROPOSED ALGORITHM

A. New Base Extension Algorithm

Our Hierarchical Base Extension (HBE) is detailed in
algorithm 2. As in the KBE algorithm, HBE mainly computes
the CRT Eq. 2 from the base A and the result is reduced
modulo each element in base B. Lines 1–3 are exactly the same
as in KBE. HBE uses intermediate CRT computations (lines
4–7) independently for each row i ∈ [1, r]: (xai,1

, . . . , xai,c
).

The result at row i is X̂Ai
≡ XAi

×
(
Ai

)−1
mod Ai. No

modular reduction is performed at this step, thus X̂Ai < cAi.

Algorithm 2: Proposed hierarchical base extension HBE.
Input: XA, σ = 0 or 0.5
Precomp.: Tai,j ∀i ∈ [1, r] and ∀j ∈ [1, c]
Output: XB

1 for i from 1 to r parallel do
2 for j from 1 to c parallel do
3 x̂ai,j

←
∣∣xai,j

× Tai,j

∣∣
ai,j

4 for i from 1 to r parallel do
5 X̂Ai

← 0

6 for j from 1 to c do
7 X̂Ai

← X̂Ai
+ x̂ai,j

× ai,j (no reduction)
8 for i from 1 to r do
9 σ ← σ +

trunc(X̂Ai
)

2w×c

10 hi ← bσc
11 σ ← σ − hi
12 for k from 1 to r parallel do
13 for l from 1 to c parallel do
14 x̂bk,l,i

←
∣∣∣X̂Ai

∣∣∣
bk,l

15 xbk,l
←∣∣xbk,l
+ x̂bk,l,i

×Ai + | − hiA|bk,l

∣∣
bk,l

The value X̂Ai
can be seen as a super-residue, corresponding

to the super-modulo Ai.
The nested loops in lines 8–15 replace lines 4–11 of KBE.

Lines 9–11 in HBE are an adaptation of the approximation
method proposed in [?] to compute hi from our super-residues
X̂Ai

(hi is dlog2(c+1)e bits). Similarly to the definition of hi,j
for KBE, we define

∑r
i=1 hi = h or h−1. In practice, it allows

the computation of exact BEs in the same conditions than
KBE. These lines could be removed, leading to a hierarchical
version of the approximated BE proposed in [?].

Finally comes the most inner loop, at lines 14–15, with
cr2 iterations. Line 14 reduces X̂Ai

mod xbk,l
. Then, line 15

in HBE is strictly equivalent to line 11 in KBE. The factor
ai,j at line 11 of KBE is already integrated in X̂Ai

. Then the
multiplication by Ai completes the CRT computation in line
15 of HBE. However, line 11 in KBE is executed c2r2 = n2

times instead of only cr2 for HBE.
To summarize, the c residues in a row are pooled to get

one super-residue (of size cw + dlog2(c)e) using a first CRT
computation. Then a CRT computation converts the super-
residues X̂Ai

into the second base using an approximation
similar to the one from KBE. The number of MM(w,w) (i.e.,
MMs inside channels) is divided by c. But HBE deals with
multiplications of w × (c − 1)w bits (line 7) and reductions
from cw + dlog2(c)e to w bits (see details in Section IV-B).

In the papers [?], [?] and [?], the 3 first lines in KBE
are hidden inside the computations of the RNS Montgomery
reduction to get faster implementations. This could also be
applied with our algorithm (exactly the same way).

For our asymmetric cryptography applications, c ∈ {2, 3, 4}
seems to be a good choice (see also section IV-B). Below, we

3

Main cost: r 2c executions
of line 15
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Theoretical Cost Comparison for c = 2

Notation:
- CMM(w ,w) for a (w × w mod w)-bit modular multiplication
- CMR(w ′,w) for a (w ′ mod w)-bit modular reduction

KBE cost: n2 CMM(w ,w) + n CMM(w ,w)
HBE cost: n2

2
CMM(w ,w) + n2

2
CMR(2w + 1,w) + 2n CMM(w ,w)

Theoretical cost ratio for one BE for various base sizes (n)
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Architecture Descriptions

Cox-rower architecture for KBE
[Gui10]

rower rower rower rower
cox

CTRL

Memory

w

1

w

w

w
t

Proposed architecture for HBE
(c = 2)

rower rower rower rower
cox

CTRL

 Memory 

w+1

2

w

w+1 

w

2wt+1
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Hardware Implementation

Target FPGA
ZYNQ-7 ZC702 from Xilinx (ZedBoard xc7z020clg484-1)

Tool
Vivado HLS (version 2017.4) from Xilinx

Implementation

- P size = 256, 384 bits

- w = 17, 20, 24, 28 bits

Optimization
Both algorithms, KBE and HBE (c = 2) are implemented:

- same manner

- same optimization effort
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Hardware Implementation Results
256-bit P:

w = 17 w = 20 w = 24 w = 28
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- most of the time, we have a faster AND smaller solution

- no impact on BRAMs and periods
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Conclusion

Conclusion
The proposed hierarchical approach BE:

improves the main cost of the BE algorithm from r 2 c2 to r 2 c

preserves quite well the internal parallelism (for c = 2)

on a XC7Z020 FPGA, it shows an improvement up to 18% in
total time and up to 31% in DSPs

Future Work

study the architecture for the cases c = 3, 4

implement a full ECC crypto-processor
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Hardware Implementation Results

FP width (bits)
BE algo. KBE HBE KBE HBE KBE HBE KBE HBE
w (bits) 17 20 24 28

256

nb. slices 445 758 1073 784 785 769 753 843
nb. DSP 51 35 45 39 52 42 76 60

nb. BRAM 1 1 1 1 1 1 1 1
period (ns) 9.8 10.3 9.6 8.9 9.6 9.5 9.7 9.6
nb. cycles 98 91 88 83 89 81 77 71
time (ns) 960.4 937.3 844.8 738.7 854.4 769.5 746.9 681.6

384

nb. slices 587 644 1215 869 1251 1134 1031 1145
nb. DSP 81 63 63 54 76 60 104 80

nb. BRAM 1 1 1 1 1 1 1 1
period (ns) 7.6 10.1 9.6 9.0 7.6 7.6 9.9 9.4
nb. cycles 165 143 140 122 163 132 103 93
time (ns) 1254.0 1444.3 1344.0 1098.0 1238.8 1003.2 1019.7 874.2

HLS implementation results on a XC7Z020 FPGA for our HBE and the KBE (from [KKSS00])

algorithms for two widths of prime field elements and four RNS channel widths w .
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