Hierarchical Approach in RNS Base Extension for Asymmetric Cryptography

Libey Djath ${ }^{1}$, Karim Bigou ${ }^{1}$, Arnaud Tisserand ${ }^{2}$
${ }^{1}$ Université de Bretagne Occidentale / Lab-STICC, UMR CNRS 6285
${ }^{2}$ CNRS / Lab-STICC, UMR 6285
ARITH-26, 10-12 June 2019, Kyoto, Japan

Contents

(1) Context

(2) Hierarchical RNS Base Extension

(3) Hardware Implementation

4. Conclusion

Context

Asymmetric cryptography serves in:

- digital signature
- authentication
- secret key exchange

An example of asymmetric cryptosystem:

- Elliptic Curve Cryptography (ECC) [Mil85, Kob87]

For ECC, computations are performed in $G F(P)$ with P a 200-500 bits prime

1 ECC primitive requires a thousand of additions, subtractions and multiplications modulo P

Residue Number System (RNS)

RNS

- non-positional representation system
- Chinese Remainder Theorem (CRT)
- X is represented by its residues over a base
- representation with internal parallelism

RNS base
An RNS base \mathcal{A} is a tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of coprime integers named moduli
Representing the number X
$\vec{X}=\left(X \bmod a_{1}, \quad X \bmod a_{2}, \quad \ldots, \quad X \bmod a_{n}\right)$
$\vec{X}=\left(\quad x_{a_{1}} \quad, \quad x_{a_{2}}, \ldots, \quad x_{a_{n}}\right)$
Converting back to positional representation Compute the CRT over all the $x_{a i}$ in base \mathcal{A}

RNS

In hardware implementations of asymmetric cryptosystems:

- large integers are splitted in small residues (typically 16-64 bits integers)
- computations on large integers are replaced by parallel computations on small residues

a_{i} are pseudo Mersenne for efficiency purpose

Main advantages of RNS architectures:

- carry free operations among the channels
- fast parallel,,$+- \times$
- random order internal computations

Drawback:

- Comparison, division and mod P reduction are difficult

RNS Montgomery mod P Reduction [PP95]

	Input: X_{A}, X_{B}
	Precomp.: $P_{A}, P_{B}, \quad\left(-P^{-1}\right)_{A}, \quad\left(A^{-1}\right)_{B}$
	Output: S_{A} and S_{B} with $S=\left(X A^{-1}\right) \bmod P+\delta P$
\quad and $\delta \in\{0,1,2\}$	
$\mathbf{1}$	$Q_{A} \leftarrow X_{A} \times\left(-P^{-1}\right)_{A}$
$\mathbf{2}$	$Q_{B} \leftarrow B E\left(Q_{A}, \mathcal{A}, \mathcal{B}\right)$
$\mathbf{3}$	$R_{B} \leftarrow X_{B}+Q_{B} \times P_{B}$
$\mathbf{4}$	$S_{B} \leftarrow R_{B} \times\left(A^{-1}\right)_{B}$
$\mathbf{5}$	$S_{A} \leftarrow B E\left(S_{B}, \mathcal{B}, \mathcal{A}\right)$
$\mathbf{6}$	return $\left(S_{A}, S_{B}\right)$

$\mathcal{A} \quad \mathcal{B}$

$B E$: base extension

Chinese Remainder Theorem (CRT) formula

$$
\begin{gathered}
X=\left|\sum_{i=1}^{n}\right| x_{a_{i}} \times\left(\frac{A}{a_{i}}\right)^{-1}\left|a_{i} \times \frac{A}{a_{i}}\right|_{A}=\left(\sum_{i=1}^{n}\left|x_{a_{i}} \times\left(\frac{A}{a_{i}}\right)^{-1}\right| a_{i} \times \frac{A}{a_{i}}\right)-h A \\
\text { with } A=a_{1} \times \ldots \times a_{n}
\end{gathered}
$$

Base Extension (BE) [KKSS00]

BE converts X in base \mathcal{A} into X in base \mathcal{B}

Base Extension [KKSS00]

BE algorithm from [KKSS00]

```
Input: \(X_{A}, \sigma=0\) or 0.5
Precomp.: \(T_{a_{i}} \forall i \in[1, n]\)
Output: \(X_{B}\)
for \(i\) from 1 to \(n\) parallel do
    \(\widehat{x}_{a_{i}} \leftarrow\left|x_{a_{i}} \times T_{a_{i}}\right|_{a_{i}}\)
for \(i\) from 1 to \(n\) do
        \(\sigma \leftarrow \sigma+\frac{\operatorname{trunc}\left(\widehat{x}_{a_{i}}\right)}{2^{w}}\)
        \(h_{i} \leftarrow\lfloor\sigma\rfloor\)
        \(\sigma \leftarrow \sigma-h_{i}\)
        for \(k\) from 1 to \(n\) parallel do
            \(x_{b_{k}} \leftarrow\left|x_{b_{k}}+\widehat{x}_{a_{i}} \times\left|\frac{A}{a_{i}}\right|_{b_{k}}+\left|-h_{i} A\right|_{b_{k}}\right|_{b_{k}}\)
```

Cox-rower architecture from [Gui10]

State of the art solution is usually called KBE

Contents

(1) Context

(2) Hierarchical RNS Base Extension

(3) Hardware Implementation

(4) Conclusion

Idea of Hierarchical Base Extension (HBE)

Changing the notation

$$
\begin{gathered}
\mathcal{A}=\left(\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right) \quad \mathcal{A}=\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, c} \\
\vdots & \cdots & \vdots \\
a_{r, 1} & \cdots & a_{r, c}
\end{array}\right) \\
\text { with } n=r \times c
\end{gathered}
$$

Main Idea

- gather residues by row (c residues per row) into super-residues in base \mathcal{A} by computing their partial CRTs
- compute the CRT of the super-residues of base \mathcal{A} in base \mathcal{B}

Rewriting the KBE Algorithm

2D KBE

1D KBE

```
Input: \(X_{A}, \sigma=0\) or 0.5
Precomp.: \(T_{a_{i}} \forall i \in[1, n]\)
Output: \(X_{B}\)
for \(i\) from 1 to \(n\) parallel do
    \(\widehat{x}_{a_{i}} \leftarrow\left|x_{a_{i}} \times T_{a_{i}}\right|_{a_{i}}\)
    for \(i\) from 1 to \(n\) do
        \(\sigma \leftarrow \sigma+\frac{\operatorname{trunc}\left(\widehat{x}_{a_{i}}\right)}{2^{w}}\)
        \(h_{i} \leftarrow\lfloor\sigma\rfloor\)
        \(\sigma \leftarrow \sigma-h_{i}\)
        for \(k\) from 1 to \(n\) parallel do
            \(x_{b_{k}} \leftarrow\left|x_{b_{k}}+\widehat{x}_{a_{i}} \times\left|\frac{A}{a_{i}}\right|_{b_{k}}+\left|-h_{i} A\right|_{b_{k}}\right|_{b_{k}}\)
```

```
Input: \(X_{A}, \sigma=0\) or 0.5
Precomp.: \(T_{a_{i, j}} \forall i \in[1, r]\) and \(\forall j \in[1, c]\)
Output: \(X_{B}\)
for \(i\) from 1 to \(r\) parallel do
    for \(j\) from 1 to \(c\) parallel do
            \(\widehat{x}_{a_{i, j}} \leftarrow\left|x_{a_{i, j}} \times T_{a_{i, j}}\right|_{a_{i, j}}\)
for \(i\) from 1 to \(r\) do
        for \(j\) from 1 to \(c\) do
            \(\sigma \leftarrow \sigma+\frac{\operatorname{trunc}\left(\widehat{x}_{a_{i, j}}\right)}{2^{w}}\)
            \(h_{i, j} \leftarrow\lfloor\sigma\rfloor\)
            \(\sigma \leftarrow \sigma-h_{i, j}\)
            for \(k\) from 1 to \(r\) parallel do
                for \(l\) from 1 to \(c\) parallel do
                        \(x_{b_{k, l}} \leftarrow\)
                        \(\left|x_{b_{k, l}}+\widehat{x}_{a_{i, j}} \times\left|\frac{A}{a_{i, j}}\right|_{b_{k, l}}+\left|-h_{i, j} A\right|_{b_{k, l}}\right|_{b_{k, l}}\)
```

Main cost: n^{2} executions of line 8
With $n=r \times c$, main cost: $r^{2} c^{2}$ executions of line 11

$\operatorname{HBE}(c=2)$

Comparison between KBE and HBE

HBE

KBE

```
Input: \(X_{A}, \sigma=0\) or 0.5
Precomp.: \(T_{a_{i, j}} \forall i \in[1, r]\) and \(\forall j \in[1, c]\)
Output: \(X_{B}\)
for \(i\) from 1 to \(r\) parallel do
    for \(j\) from 1 to \(c\) parallel do
        \(\widehat{x}_{a_{i, j}} \leftarrow\left|x_{a_{i, j}} \times T_{a_{i, j}}\right|_{a_{i, j}}\)
for \(i\) from 1 to \(r\) do
        for \(j\) from 1 to \(c\) do
            \(\sigma \leftarrow \sigma+\frac{\operatorname{trunc}\left(\widehat{x}_{a_{i, j}}\right)}{2^{w}}\)
            \(h_{i, j} \leftarrow\lfloor\sigma\rfloor\)
            \(\sigma \leftarrow \sigma-h_{i, j}\)
            for \(k\) from 1 to \(r\) parallel do
                for \(l\) from 1 to \(c\) parallel do
                \(\stackrel{x_{b_{k, l}} \leftarrow}{\left|x_{b_{k, l}}+\widehat{x}_{a_{i, j}} \times\left|\frac{A}{a_{i, j}}\right|_{b_{k, l}}+\left|-h_{i, j} A\right|_{b_{k, l}}\right|_{b_{k},}}\)
```

```
Input: \(X_{A}, \sigma=0\) or 0.5
Precomp.: \(T_{a_{i, j}} \forall i \in[1, r]\) and \(\forall j \in[1, c]\)
Output: \(X_{B}\)
for \(i\) from 1 to \(r\) parallel do
        for \(j\) from 1 to \(c\) parallel do
            \(\widehat{x}_{a_{i, j}} \leftarrow\left|x_{a_{i, j}} \times T_{a_{i, j}}\right|_{a_{i, j}}\)
    for \(i\) from 1 to \(r\) parallel do
    \(\widehat{X}_{A_{i}} \leftarrow 0\)
    for \(j\) from \(l\) to \(c\) do
        \(\mid \widehat{X}_{A_{i}} \leftarrow \widehat{X}_{A_{i}}+\widehat{x}_{a_{i, j}} \times \overline{a_{i, j}} \quad\) (no reduction)
    for \(i\) from 1 to \(r\) do
        \(\sigma \leftarrow \sigma+\frac{\operatorname{trunc}\left(\widehat{X}_{A_{i}}\right)}{2^{w \times c}}\)
        \(h_{i} \leftarrow\lfloor\sigma\rfloor\)
        \(\sigma \leftarrow \sigma-h_{i}\)
        for \(k\) from 1 to \(r\) parallel do
            for \(l\) from 1 to \(c\) parallel do
            \(\widehat{x}_{b_{k, l, i}} \leftarrow\left|\widehat{X}_{A_{i}}\right|_{b_{k, l}}\)
            \(x_{b_{k, t}} \leftarrow\)
                        \(\left|x_{b_{k, l}}+\widehat{x}_{b_{k, l, i}} \times \overline{A_{i}}+\left|-h_{i} A\right|_{b_{k, l}}\right|_{b_{k, l}}\)
```

Main cost: $r^{2} c^{2}$ executions of line 11

Theoretical Cost Comparison for $c=2$

Notation:

- CMM (w, w) for a $(w \times w \bmod w)$-bit modular multiplication
- CMR($\left.w^{\prime}, w\right)$ for a ($\left.w^{\prime} \bmod w\right)$-bit modular reduction

KBE cost: $n^{2} \operatorname{CMM}(w, w)+n \operatorname{CMM}(w, w)$
HBE cost: $\frac{n^{2}}{2} \operatorname{CMM}(w, w)+\frac{n^{2}}{2} \operatorname{CMR}(2 w+1, w)+2 n \operatorname{CMM}(w, w)$
Theoretical cost ratio for one BE for various base sizes (n)

Contents

(1) Context

2 Hierarchical RNS Base Extension

(3) Hardware Implementation

(4) Conclusion

Architecture Descriptions

Cox-rower architecture for KBE [Gui10]

Proposed architecture for HBE

 ($c=2$)

Hardware Implementation

Target FPGA
ZYNQ-7 ZC702 from Xilinx (ZedBoard xc7z020clg484-1)
Tool
Vivado HLS (version 2017.4) from Xilinx
Implementation

- P size $=256,384$ bits
- $w=17,20,24,28$ bits

Optimization
Both algorithms, KBE and $\mathrm{HBE}(\underline{c=2})$ are implemented:

- same manner
- same optimization effort

Hardware Implementation Results

256-bit P :

384-bit P :

- most of the time, we have a faster AND smaller solution
- no impact on BRAMs and periods

Contents

(1) Context

2 Hierarchical RNS Base Extension

(3) Hardware Implementation

4. Conclusion

Conclusion

Conclusion
The proposed hierarchical approach BE:

- improves the main cost of the BE algorithm from $r^{2} c^{2}$ to $r^{2} c$
- preserves quite well the internal parallelism (for $c=2$)
- on a XC7Z020 FPGA, it shows an improvement up to 18% in total time and up to 31% in DSPs

Future Work

- study the architecture for the cases $c=3,4$
- implement a full ECC crypto-processor

References I

[Gui10] N. Guillermin.
A high speed coprocessor for elliptic curve scalar multiplications over \mathbb{F}_{p}.
In Proc. Cryptographic Hardware and Embedded Systems (CHES), volume 6225 of LNCS, pages 48-64. Springer, August 2010.
[KKSS00] S. Kawamura, M. Koike, F. Sano, and A. Shimbo.
Cox-Rower architecture for fast parallel Montgomery multiplication.
In Proc. Internat. Conf. Theory and Application of Cryptographic Techniques (EUROCRYPT), volume 1807 of LNCS, pages 523-538. Springer, May 2000.
[Kob87] N. Koblitz.
Elliptic curve cryptosystems.
volume 48, pages 203-209. American Mathematical Society, 1987.
[Mil85] V .S. Miller.
Use of elliptic curve in cryptography.
In Advances in Cryptology, volume 218, pages 417-426. Springer, 1985.
[PP95] K. C. Posch and R. Posch.
Modulo reduction in residue number systems.
IEEE Transactions on Parallel and Distributed Systems, 6(5):449-454, May 1995.

Hardware Implementation Results

\mathbb{F}_{P} width (bits)	BE algo.	KBE	HBE	KBE	HBE	KBE	HBE	KBE	HBE
	w (bits)	17		20		24		28	
256	nb. slices	445	758	$\begin{gathered} 1073 \\ 45 \end{gathered}$	$\begin{gathered} 784 \\ 39 \end{gathered}$	$\begin{gathered} 785 \\ 52 \end{gathered}$	$\begin{gathered} 769 \\ 42 \end{gathered}$	753	843
	nb. DSP	51	35					76	60
	nb. BRAM	1	1	1	1	1	1	1	1
	period (ns)	9.8	10.3	9.6	8.9	9.6	9.5	9.7	9.6
	nb. cycles	98	91	88	83	89	81	77	71
	time (ns)	960.4	937.3	844.8	738.7	854.4	769.5	746.9	681.6
	nb. slices	587	644	1215	869	1251	1134	1031	1145
	nb. DSP	81	63	63	54	76	60	104	80
384	nb. BRAM	1	1	1	1	1	1	1	1
384	period (ns)	7.6	10.1	9.6	9.0	7.6	7.6	9.9	9.4
	nb. cycles	165	143	140	122	163	132	103	93
	time (ns)	1254.0	1444.3	1344.0	1098.0	1238.8	1003.2	1019.7	874.2

HLS implementation results on a XC7Z020 FPGA for our HBE and the KBE (from [KKSS00]) algorithms for two widths of prime field elements and four RNS channel widths w.

