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ABSTRACT

In the context of ageing societies, assessing risk factors and
detecting falls for the elderly is becoming a crucial issue.
In this paper, we propose an iterative head tracking method
based on particle filtering using the fusion of low cost thermal
and depth sensors for home environments whilst preserving
privacy. The iteration process begins by segmenting the head
in the depth image to calculate the depth coefficients and the
thermal coefficients used for updating the particle weights.
The method was tested on several sequences, with or with-
out depth-thermal fusion: results show its robustness and ac-
curacy, and also demonstrate that fusion improves tracking,
namely when fast motion occurs (in case of a fall for instance)
or when segmentation is erroneous.

Index Terms— head tracking, sensor fusion, particle fil-
ter, thermal sensor, depth sensor, fall detection.

1. INTRODUCTION

Due to the ageing population and the fact that falls are the
second cause of accidental deaths worldwide (according to
WHO1, providing efficient fall detection systems of elderly is
becoming crucial.

In previous work [1], we proposed a visual system solu-
tion based on the collaboration between a depth sensor and
a low resolution thermal sensor to detect elderly falls. In the
first study, we developed a fall detection system based only on
the depth sensor. This system has been tested in 2 senior cit-
izens’ homes during 1 year but has produced too many false
alarms caused mainly by occlusions and lack of shape track-
ing. For these reasons, we chose to add a thermal sensor. In
this paper, we aim to develop a person tracking algorithm in
order to improve the accuracy and the sensitivity of the sys-
tem proposed in [1] and to reduce the number of false alarm.

This tracker will also be used to estimate the people’s tra-
jectories and to analyze their activities in order to prevent
falls. This system is low cost, works day and night, can be
easily installed in a room and moreover preserves privacy.

1World Health Organization (WHO)

In our framework, instead of tracking the whole body, we
chose to solely track the head because it is non-deformable,
the hottest, highest and least hidden part of the body which
can easily be approximate as a ellipse with only few parame-
ters. The motion head is also a significant marker for the fall
detection.

Among tracking methods, particle filtering (PF)-based
ones have proven to be very flexible and to more accurately
model the dynamics of the object motion [2]. PF is often ap-
plied for tracking in color images. In this paper we present an
adaptation of PF to track people using both depth and thermal
information.

In general, when the tracker is based only on a signal fea-
ture, the result can be wrong due to the complexity of the
environment and the process of tracking [3]. In order to im-
prove the tracking algorithm, multi modal data can be used
to increase the performance. The main contributions of our
paper are the using of different observations from the 2 sen-
sors and the form to integrate these measures which increases
significantly the performance of the tracking method.

The rest of the paper is organized as follows. In sec-
tion 2, we define calibration inter sensor and head segmen-
tation steps. In section3, we illustrate particle filter algorithm
on depth and thermal images. In section 4, we report the ex-
perimental results and provide some discussions. Finally, we
summarize our paper and point out some further directions in
section 5.

2. CALIBRATION INTER SENSORS AND HEAD
SEGMENTATION METHOD

2.1. Depth and thermal calibration

Our system is based on a thermal sensor (FLIR lepton 2.5,
Focal length: 5 mm, Thermal Horizontal Field of View
THFOV : 51o, Thermal Vertical Field of View TV FOV :
37.83o, TXres: 80 pixels and TY res: 60 pixels) and a depth
camera (Microsoft Kinect, Focal length: 6.1 mm, Depth Hor-
izontal Field of View DHFOV : 58o, Depth Vertical Field of
View DV FOV : 45o, DXres: 640 and DY res: 480) which are
aligned horizontally (see Figure 1).



Fig. 1. Sensors coordinate systems

In order to match a point from depth image with a point in
thermal image, a calibration step is required to calculate the
transformation parameters (see Figure 2).

Fig. 2. Calibration system

As input we have depth and thermal images. ui, vi are the
pixel coordinates in the images and wd the depth information
(i.e. the distance of the object to the depth optical center).
The estimation of the relationship between these 2 coordinate
systems needs 3 steps (see Figure 2): 1) The estimation of the
transform of the depth image (ud, vd, wd) to the coordinate
system (xd, yd, zd) of the depth sensor. This can be done an-
alytically from the intrinsic parameters of the depth camera:
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2) the transformation between the coordinate system
(xd, yd, zd) of the depth sensor to this (xth, yth, zth), of the

thermal sensor. It can be obtained from the extrinsic parame-
ters, in our case a rotation and a translation matrix: xth
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α, θ and β are the roll, pitch and yaw angles [1]. And 3)
the transformation between the coordinate system (xth, yth, zth)
of the thermal sensor to the thermal image coordinates
(uth, vth). This can be done analytically from the intrin-
sic parameters of the thermal camera:
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In our case, the intrinsic parameters are the values given
by the constructor. So the purpose of the calibration is to
estimate 6 parameters of equation (2) and then to generate
a one to one pixel correspondence of the depth and thermal
images.

2.2. Segmentation

In order to track the head , we need to extract the head position
from the image. After calibration, we extract this position ac-
cording to segmentation stage using the following framework
(Figure 3). The first step is to create a reference depth map by
averaging the N first depth images without any moving ob-
jects. This defines the static background of the scene. From
each frame at time N + t, we subtract the static background
from this frame and detect so the moving objects we called
as foreground. Then, we filter the foreground noise and we
extract the silhouette and model it with an ellipse. Finally, the
head size and pose are estimated from the silhouette ellipse.
The head is modeled as a smaller ellipse with the same orien-
tation as the silhouette ellipse but 3 time smaller. The center
C of the head ellipse is set at 1/3 of the major axis from the
upper partB (see Figure 4): SC = 2/3SB with S the silhou-
ette ellipse center.

We define the depth head position C from this ellipse
as another ellipse located at the 1/3 of the upper part where
~SC = 2

3
~SB is the silhouette center and B is the upper point

of silhouette. The head size and pose are extracted from the
silhouette ellipse. They have the same orientation but the ma-
jor axe of the head ellipse is 1/3 of silhouette major axis (see



Fig. 3. Segmentation framework

Fig. 4. Head position

Figure 4). In thermal image, we apply the matching to get the
thermal head position.

3. PARTICLE FILTER ALGORITHM ON DEPTH
AND THERMAL IMAGES

The PF tracking process is based on a hidden state vector xt
which is defined by the center, orientation and the size of the
ellipse around the head in the depth image. xt is predicted
from xt−1 and the observation vectors Zt = {z1, · · · , zt},
and Ht = {h1, · · · , ht} obtained from depth and thermal
sensors, respectively. PF uses a sample of N particles
St =

{
S1
t , · · · , SN

t

}
to approximate the conditional proba-

bility p(xt/Zt, Ht). Each particle Sn
t can be seen as a hy-

pothesis aboutxt (an ellipse model) and is weighted by πt(n)
which are normalized. Particles are resampled according to
their weights and are updated according to new observations
newobsv [3].

3.1. Tracking method

For each frame (time step t) t, we have xt which represent the
head. We sample this vector on N particles. Each particle Sn

t

is defined by the same parameters of (xt) and has a weight
πt(n). Next, we predict xt+1 according to the propagation of
particles based on:

Sn
t = ASn

t−1 + wt (4)

Where A is the transition model matrix and wt is a Gaus-
sian noise. Finally, we update the particle weight according

to observation vectors where we combine depth and thermal
information in newobsv and resample particles to prevent the
problem of particles degeneration (see figure 5) [4].

Fig. 5. Tracking method flowchart

Thus, the steps of iterative PF tracking algorithm are:

1. Initialization: Generate a sample of N particles S1 ={
S1
1 , · · · , SN

1

}
based on the probability of the state

vector p(x1), and initialize the weight of each particle
by 1/N .

2. Resampling: Re-sample particles to prevent the prob-
lem of particles degeneration, if frame > 1.

3. Prediction: Propagate particles according to prediction
model to predict the state vector xt.

4. Updating: Update the particle weight at frame t

πt(n) =
1√
2πσ

exp(newobsv(n)/2σ
2) (5)

where σ was fixed empirically.



Test α β γ
C1 1/3 1/3 1/3
C2 1/4 1/2 1/4
C3 1/4 1/2 1/2
C4 1/2 1/4 1/4
C5 3/8 1/4 3/8
C6 3/8 3/8 1/4

Table 1. Importance factor IF values

Then normalize the weight:

πt(n) = πt(n)/

N∑
k=1

πt(k) (6)

and return to step 2.

3.2. Depth-thermal fusion

Updating particle weights is a key point of PF and is specific
for each application (see [5] for color information).

In our framework, the weights are computed from the fol-
lowing three coefficients which combine depth and thermal
information: Cd a distance coefficient, Cgd a depth gradient
coefficient and Cgth a thermal gradient coefficient. For each
particle, Cd is the distance between the center of the particle
and the center of the segmented head in depth image. Cgd

and Cgth are based on the gradients along the head ellipse in
the depth image and the thermal image respectively along the
ellipse, as inspired by [6].

In this work, we considered two models to combine co-
efficients and use them in equation (5) for the updating step.
Comparisons between these models are given in subsequent
sections of this paper.

The first weighing model (M1) uses only 2 coefficients
(Cd and Cgth ):

Cfusion(n) = αCd + (1− α)Cgth (7)

α is an Importance Factors (IF) and n is the particle num-
ber.

The second weighing (M2) model combines all the 3 co-
efficients:

Cfusion(n) = αCd + βCgd + γCgth (8)

α and β are the IF of depth information and γ = 1 −
α − β is the IF of thermal information. In order to estimate
the impact of each coefficient in the particle filter, we tested
several combination of static IF at each test (see table 1).

Particle weight is updated according to equation (5) by
replacing newobsv by the weighting model:

πt(n) =
1√
2πσ

exp(Cfusion(n)/2σ
2) (9)

4. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the pro-
posed algorithm. We have performed several sequences of
people moving in a room with co-calibrated static depth and
thermal cameras which were fixed in the ceiling. We have
tested our system with the following objectives: (1) compare
our proposal work with segmentation only and depth tracking
method, (2) evaluate the performance of the fusion algorithm,
(3) evalute each weighing model, and (4) compare IF values.

In all tests, we used the following parameters: N = 1000
particles, σ = 0.25 and transition model matrix A = I4. We
fixed the acquisition frequency to 8 Hz.

The ground truth (GT) was established manually by set-
ting an ellipse on each frame (white ellipse in Figure 6, 7)
and the processing was performed using Matlab on Intel(R)
Core(TM) i7-6700HQ CPU, 2.6 GHz.

We used 2 quantitative measurement to asses the accu-
racy of the specific versions: the localization error which is
defined as the average Euclidean distance between the cen-
ter locations of the tracked targets and the manually labeled
ground truths, and the overlap score which is the overlap of
the ground truth area and the tracking area [7].

Figure 6 illustrates the results of a) The head segmenta-
tion only, b) The depth version, c) The M1 model. Comparing
these results, we can see that the head segmentation is totally
wrong, the depth version estimates an area bigger than the
head and the fusion model is able to track the head more ac-
curately. These results shows that segmentation is erroneous
in critical situations and depth sensor is usless on its own.

Figure 7 indicates the results of a) The M1 model and b)
The M2 model. Visually M2 provide the closest pose to GT.
In (Figure 8), the evaluation results show that the fusion of
3 coefficients provide the most accurate results. As expect,
considering 3 coefficients together gives better results than
using only two coefficients.

As illustrated on Figure 9, a comparator between the 6
tests performed with the second model (M2) that shows the
impact of the coefficient IF to estimate the new head position.

When we evaluate these results using the 2 quantitative
measurement, we observe in (Figure 10) a clear difference
between the performance of the C4 test that assign more im-
portance to distance coefficient and C2 that assigns more im-
portance to depth gradient coefficient. For instance, when the
person is walking in front of something, the depth gradient
coefficient decreases the results and the distance coefficient
gets the results better.

5. CONCLUSIONS

In this paper, we have presented a head algorithm based on
particle filters that fuse the information of depth and thermal
of a person in an indoor environment using the position, the
orientation and the size of the ellipse around the head. The



Fig. 6. Tracking results on one frame of a sequence: a) Segmentation only; b) Depth version; c) M1 model. Tracking results
are in green, silhouette ellipse is red and GT ellipse is white.

Fig. 7. Tracking comparison results between a) M1 model
and b) M2 model. Tracking results are in green, silhouette
ellipse is red and GT ellipse is white.

scene was acquired by two co-calibrated depth and thermal
cameras. We have presented calibration system that can be
implemented on any depth thermal system.

We have evaluted our proposal work in several situations
with different models and compared it with other methods.
Moreover, results have shown that our system gave the most
accurate tracking results even in critical situations with very
low resolution images. The combination of information pro-

Fig. 8. Quantitative measurements over a sequence. Localiza-
tion error (a) and the overlap score (b) using the segmentation
(red), the depth version (green) the M1 model (cyan) and the
M2 model (blue).



Fig. 9. Tracking results of 6 IF tests a) C1 test; b) C2 test; c) C3 test; d) C4 test; e) C5 test and f) C6 test. Tracking results are
in green, silhouette ellipse is red and GT ellipse is white.

Fig. 10. Quantitative IF measurements over a sequence. Lo-
calization error of C1 test (blue), C2 test (yellow), C3 test
(black), C4 test (red), C5 test (cyan) and C6 test (green).

vided by both cameras improve the tracking. For future work
we plan: 1) to modify the constant importance factors α, β
and γ to dynamic values according to the influence of each
coefficient, 2) to make an automatic GT with Vicon Systems
in living labs, 3) to compare the method with other robust
methods like Deep Learning based methods and 4) to add the
velocity in the state vector.
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