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ABSTRACT. Deterministic methods are commonly used to solve the heat balance equation in 

three-dimensional (3D) geometries. This article presents a preliminary study to the use of a 

stochastic method for the computation of the temperature in complex 3D geometries where the 

combined conductive and radiative heat transfers are coupled in the porous solid phase. The Monte 

Carlo algorithm and its results are validated by a comparison with the results obtained with a 

conventional finite-volume method.  

INTRODUCTION 

Solving combined heat transfers usually requires deterministic methods to solve heat balance 

equations computing the temperature fields in each phase of the geometry at hand. The most 

frequently used methods are the finite element and finite volume methods which are widely 

implemented in commercial software. For combined conductive-radiative heat transfer problems, 

several deterministic methods were used: (1) Finite volume [1]; (2) Finite element [2]; (3) Lattice 

Boltzmann [3]. Recently, a stochastic method, based on an Ito-Taylor algorithm (random walk in 

the solid), was developed for the calculation of the effective conductivity (conduction-radiation) in 

a representative elementary volume (VER) considering a detailed 3D geometry (Solid phase 

opaque-vacuum). This method uses the statistics of the positions of the walkers at the stationary 

regime or the distribution of temperature for the calculation of the effective conductivity [4]. 

Another stochastic method was presented [5] that implements an integral formulation of the 

temperature in the case of combined conductive-convective-radiative transient heat transfers. This 

method allows one, under some conditions [5] insuring a linear relationship with the temperature 

(including the radiative term linearization, the independence of properties with the temperature and 

the uniform fluid temperature), to transform the heat balance equation in each media in a Fredholm 

integral equation of the second kind. It is then possible to write an integral formulation of the 

Fredholm equation [6] and to use a stochastic resolution technique with the Monte Carlo method 

with null-collision [7] (it’s a meshless method but still requires the spatial distribution of 

thermophysical and intrinsic radiative properties) enabling efficient numerical tools from computer 

graphics 3D rendering to be implemented to solve the radiative heat transfer in complex 3D 

geometries. The use of a Monte Carlo method (delivering a result with a confidence interval) and 

efficient numerical tools for the computation of a local temperature, while accounting for the 

combined heat transfers (even linearized), allows one to get reference solutions (if linearization 

assumptions are verified) to validate other methods when they are implemented in complex 

geometries. The article follows this approach of inter-comparison between the stochastic method 

and a deterministic method in order to calculate the temperature of the solid in a porous medium 

consisting of a transparent phase (void) and an opaque solid phase possessing a complex 

architectural geometry (3D). Thanks to the integral formulation, the method presented makes it 
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possible to evaluate the temperature at a point, the paths all starting from this point (inverse 

formulation). If necessary, an additional random sampling enables to calculate averages on surfaces 

or volumes. In [4], on the contrary, the formulation is direct and the walkers, initially distributed 

over the whole domain, are used to evaluate mean temperatures or fluxes. Indeed, in these direct 

particle methods, there is an important dependence of computational performances on the 

complexity of the geometry (which disappears completely in a backward formulation of the 

problem, except for the evaluation of the field). On the other hand, the method in [4] benefits from 

the same advantages as those of the backward formulation when walkers are starting from a VER to 

evaluate the effective conductivity. 

The objective of this communication is to present and discuss the comparison between the results 

obtained with the stochastic method and the finite volume method in a 3D complex geometry where 

the stationary conductive and radiative heat transfers are combined. The section 2 presents the 

stochastic method, the section 3 describes the deterministic method and within the section 4, a 

comparison between the two methods is discussed. 

STOCHASTIC METHOD 

The method presented in [5] is here simplified (stationarity, opaque solid, no convection) and the 

resulting algorithm will be comprehensively described. The heat balance equation in a 

homogeneous solid at the stationary regime, without any heat volumetric sources, has the following 

expression in an orthonormal basis:  
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A Monte Carlo method called the “spherical process” or “floating random walk” is used to solve the 

boundary value problem of the Laplace’s equation (1) in the solid. Haji-Sheikh and Sparrow applied 

this method in heat transfer problems [8]. This method starts by drawing a sphere included in the 

solid region and centered at the point the temperature is needed. The radius is usually chosen to 

draw the largest sphere inscribed and with one point tangent to the boundary. This ensures the 

random walk to not cross the boundary but require defining a thickened boundary. However, the 

radius of the sphere is chosen constant in this study with value 𝛿𝑑𝑖𝑓𝑓. The implemented recursive 

algorithm for the random walk inside the solid is depicted in Fig. 1 and detailed in Fig. 2. It consists 

in drawing a sphere of radius 𝛿𝑑𝑖𝑓𝑓, centered at 𝒙𝟎, and in sampling uniformly a point on the sphere 

surface. If this point 𝒙𝟏 is inside the solid, the temperature not known and the spherical sampling 

continues. By repeating this algorithm a 3D diffusion path is established and visits the solid interior 

until reaching the boundary (𝒙𝒃, solid-vacuum interface). The temperature value 𝑇(𝒙) initially 

sought will ultimately be the temperature value at the wall (boundary). If this temperature is known, 

the algorithm stops. If not, the balance of the conductive and radiative fluxes (convection is not 

present, vacuum) at the wall interface is used:  

 −𝒏 ∙ 𝜆𝜵𝑇 = ∫ |𝒗 ∙ 𝒏
2𝜋

| 𝜖(𝒙𝒃, 𝒗)[𝐼𝑏(𝒙𝒃) − 𝐼(𝒙𝒃, −𝒗)]𝑑𝜔(𝒗)   (4) 

For the sake of clarity, total radiative quantities (average on the entire spectrum) are considered in 

this article. Because the temperature is unknown and the dependency of the Blackbody intensity (𝐼𝑏) 

with the temperature is non-linear, to keep on using the standard Monte Carlo algorithm (linear) the 

Blackbody intensity should be linearized around a reference temperature (𝑇𝑟𝑒𝑓) :  

 𝐼𝑏(𝒙) =  
𝜎

𝜋
𝑇4(𝒙) ≈  

𝜎

𝜋
𝑇𝑟𝑒𝑓

4 + 4
𝜎

𝜋
𝑇𝑟𝑒𝑓

3 ( 𝑇(𝒙) − 𝑇𝑟𝑒𝑓)  (5) 

 



 

Figure 1.  Schematic of possible diffusion and ray paths implemented in the Monte Carlo algorithm 

 

Figure 2.  Algorithm to evaluate  T(𝐱𝟎) in the 

solid 

 

Figure 3.  Algorithm to evaluate  T(𝐱𝐛) at the solid-

vacuum interface for total radiative quantities 

In addition, the incident radiative intensity (𝐼(𝒙𝒃, −𝒗)) depends on the temperature field and the 

wall reflectivity of the geometry. This term is thus developed with the introduction of the BRDF 

(Bidirectional Reflectance Distribution Function, product of a density probability over the reflected 

directions, 𝑝𝑃, and the directional-hemispherical reflectivity, 𝜌′) : 

𝐼(𝒙𝒃, −𝒗𝒊𝒏𝒊𝒕) = 𝐼(𝒙𝒊𝒏𝒕, −𝒗𝒊𝒏𝒊𝒕) = 𝜖(𝒙𝒊𝒏𝒕, −𝒗𝒊𝒏𝒊𝒕)𝐼𝑏(𝒙𝒊𝒏𝒕)  

                                                                   + ∫  𝑝𝑃(𝒙𝒊𝒏𝒕)𝜌′ |𝒗 ∙ 𝒏
2𝜋

| 𝐼(𝒙𝒊𝒏𝒕, −𝒗𝒓𝒆𝒇) 𝑑𝜔(𝒗)   (6) 

Equation 6 expresses the incident radiative intensity is equal to the intensity leaving from 𝒙𝒊𝒏𝒕 

because the separating medium is non-participating and transparent (vacuum). This radiative 

intensity contains a directional contribution associated to the emission and the reflection which is 

integrated over the incident directions. In the integral over the incident directions of (6), incident 

radiative intensities are included and they can be expressed also by (6) with some proper changes of 

the position and direction dependencies. Thus, nested integrals appear that are the basis for an 

iterative algorithm given in Fig. 3. To alleviate notations, these nested multiple integrals are 

represented by the notation of (7) highlighting the multiple reflection optical path, noted , which 

belongs to the space of optical paths , started at 𝒙𝒃.  

 𝐼(𝒙𝒃, −𝒗𝒊𝒏𝒊𝒕) =  ∫ 𝑝 𝐼𝑏(𝒙) 𝑑 


  (7) 



By introducing an infinitesimal length, 𝛿𝑏, the temperature gradient at the wall (4) in the solid side, 

may be discretized as:  

 −𝒏 ∙ 𝜆𝜵𝑇 ≈ −
𝜆

𝛿𝑏
[𝑇(𝒙𝒃) − 𝑇(𝒙𝒃 − 𝛿𝑏𝒏)]   (8) 

Moreover, the Blackbody intensity in the second term of (4) leads to rewrite this second term (by 

replacing the directional emissivity by a probability density on the emission direction 𝑝, and the 

hemispherical emissivity, 𝜖ℎ) : 

∫ |𝒗 ∙ 𝒏|
2𝜋

𝑝 𝜖ℎ[𝐼𝑏(𝒙𝒃) − 𝐼(𝒙𝒃, −𝒗)]𝑑𝜔(𝒗) ≈

                                     ℎ𝑟𝑇(𝒙𝒃) − ℎ𝑟 ∫
|𝒗∙𝒏|

𝝅2𝜋
 𝑝  ∫ 𝑝 𝑇(𝒙) 𝑑 


𝑑𝜔(𝒗)   (9) 

with ℎ𝑟 = 4𝜖ℎ𝜎𝑇𝑟𝑒𝑓
3  the linearized radiative exchange coefficient. The nested integrals of the 

second term represents an average temperature, noted 𝑇𝑟𝑎𝑑, seen by radiation at 𝒙𝒃. Indeed, 

(
|𝒗∙𝒏|

𝝅
𝑝) represents a probability density function for the choice of the solid angle, 𝜔(𝒗), and 𝑝 is 

the density probability associated to optical path constituted of multiple reflections.  

 

Figure 4.  Algorithm to evaluate   Trad(𝐱𝐛) at the solid-vacuum interface for total radiative 

quantities 

By combining (8) and (9), an expression of the temperature at 𝒙𝒃 may be obtained:  

 𝑇(𝒙𝒃) =  
𝜆/𝛿𝑏
𝜆

𝛿𝑏
+ℎ𝑟

𝑇(𝒙𝒃 − 𝛿𝑏𝒏) +  
ℎ𝑟

𝜆

𝛿𝑏
+ℎ𝑟

𝑇𝑟𝑎𝑑(𝒙𝒃) (10) 

Equation (10) highlights two weights (or probability) multiplied by temperatures that are 

representatives of the conduction and radiation heat transfers. The more ℎ𝑟 is important compared 

with 
𝜆

𝛿𝑏
, the more the algorithm chooses to compute 𝑇𝑟𝑎𝑑 instead of 𝑇(𝒙𝒃 − 𝛿𝑏𝒏). In addition to the 

representation of the physics brought by (10), the statistics of the generated paths may contain 

information allowing a better understanding of the major heat transfer mechanisms. The algorithm 

requires choosing arbitrarily the values of 𝛿𝑑𝑖𝑓𝑓 and 𝛿𝑏. For the transient regime, the value of 𝛿𝑑𝑖𝑓𝑓 

should be very small compared to the characteristic length of the solid to accurately solve (1). But 

for the stationary regime assumed in this study, because the local temperature at 𝒙𝟎 is equal to the 

average temperature on a sphere centered at 𝒙𝟎 with an arbitrary radius (provided the sphere is 

included in the solid), the value of 𝛿𝑑𝑖𝑓𝑓 may be as high as needed to reduce the computation time. 

However, 𝛿𝑏 should be small enough for (8) to be valid. Moreover, when 𝑇(𝒙𝒃 − 𝛿𝑏𝒏) is evaluated 

the algorithm in Fig. 2 is used and the condition of its validity is thus given by 𝛿𝑏 > 𝛿𝑑𝑖𝑓𝑓 which 

ensures to sample the complete sphere surface having a radius 𝛿𝑑𝑖𝑓𝑓 and included within the solid. 

Many options exist to set those values, but in this study constant values were set smaller than the 

minimum length existing inside the solid.  



This stochastic method allows one to compute the temperature at one position inside the solid 

(𝑇(𝒙)) using a Monte-Carlo algorithm to solve a conductive-radiative heat transfer problem  (solid-

vacuum media) thanks to the linearization assumption of the Blackbody intensity and the 

independence of the solid conductivity and radiative properties with temperature. It is therefore 

possible to compute any linear integral of the temperature such as an integral of the solid 

temperature on a cutting plane (𝑆) which intersects the solid:  

  〈𝑇〉 = ∫  𝑝𝑆 𝑇(𝒙)𝑑𝒙
𝑆

  (11) 

With (𝑝𝑆 =
1

𝑆
) the uniform probability density function leading to uniformly sample the positions 𝒙 

in 𝑆 which belongs to the solid and where the temperature is computed.  

DETERMINISTIC METHOD 

The finite volume method [9] implemented in the commercial software ANSYS Fluent is described 

in details in their documentation [10]. The balance energy equation inside the solid and the radiative 

transfer equation are solved at the stationary regime. However, a fluid zone must be defined with a 

mesh to enable the resolution of the radiative transfer (with the Discrete Ordinates method) 

combined to conduction in the solid. This fluid zone has a zero absolute pressure (vacuum) and the 

fluid dynamics are not solved. The spatial discretization schemes use a least-square-fitting method 

to evaluate the gradients, a second-order Upwind method for the energy balance and a first-order 

Upwind method for the Discrete Ordinates (with 6*6 discretizations per octant, and a pixelation of 

6*6). In addition to the wall temperature boundary conditions where they are defined, the interfaces 

between the fluid and the solid are coupled, allowing the continuity of the radiative flux in the 

vacuum with the conductive flux in the solid. 

RESULTS AND DISCUSSION 

The objective of the simulations is to solve the solid temperature average in the XZ-plane of a 

complex geometry depicted in Fig. 5. The conduction-radiation problem is considered at the 

stationary regime, the solid is opaque and there is no convection. The geometry represents a porous 

medium (stacked Kelvin’s cells) between two walls with their end faces maintained at a fixed 

temperature ensuring a thermal gradient in the medium. A symmetry condition is applied for the 

four lateral faces. The porous medium thickness (along the Y-axis) is 12 mm corresponding to 3 

Kelvin’s cells (dc=4 mm, cell diameter) and the thickness of a plate is 2 mm. The strut diameter is 

about ds=0.5 mm. The contact resistances between the porous medium and the plates are neglected. 

The medium is infinite in the X and Z directions. In a first case, the temperatures are set to 300 and 

310 K, 𝑇𝑟𝑒𝑓 = 305 K, and two thermal conductivity (low and high) values are considered. In a 

second case, higher temperatures are chosen, 1000 and 1500 K, 𝑇𝑟𝑒𝑓 = 1250 K, and two thermal 

conductivity are also considered to lead to a diffusion probability given in (10), 𝑝𝑑𝑖𝑓𝑓 =

(
𝜆

𝛿𝑏
) / (

𝜆

𝛿𝑏
+ ℎ𝑟), of 0.1 and 0.9 (see Table 1). For all the cases, the solid emissivity is assumed 

gray (𝜖ℎ =0.85) and diffuse. For the stochastic method, the arbitrary diffusions steps are chosen: 

𝛿𝑏 = 0.1 mm et 𝛿𝑑𝑖𝑓𝑓 =
𝛿𝑏

2
. Sixty-four parallel planes to the XZ-plane are retained to compute the 

average solid temperature (the step is thus 0.25 mm). For each plane, 10
5
 Monte-Carlo realizations 

are used. The Monte-Carlo results are plot with error bars representing a confidence interval of 

99.7 %. For the deterministic method, forty-one planes are retained to compute the average solid 

temperature (comprising planes with a step of 0.5 mm, and eight more are added around the 

interface between the plate and the porous). The results in terms of average temperatures are 

presented in Figs 6 and 7 (for the two values of thermal conductivity). These results were obtained 

by neglecting or accounting for the radiative transfers to identify their effects on the comparison of 

the two methods.  



 

Table 1:  Cases considered in the comparison 

between the methods (𝛿𝑏 = 0.1 mm) 

Case 𝜆  
(W.m

-1
.K

-1
) 

𝑝𝑑𝑖𝑓𝑓 Tmin -Tmax 

(K) 

1a 40 0.999 300-310 

1b 10
-3

 0.65 300-310 

2a 4.2 10
-3

 0.1 1000-1500 

2b 

3 

3.765 10
-2 

40 

0.9 

0.999 

1000-1500 

1000-1500 

 

 

 

Figure 5.  Schematic of a portion of the studied 

complex 3D geometry (Kelvin cells between 

two infinite plates) and XZ plane used to 

average the solid temperatures 

Fig. 6 shows the simulation results obtained with ANSYS Fluent (Deterministic) are confounded 

when the radiation is neglected (Cond.: pure conduction) and when radiation is accounted for 

(Rad.+Cond.: radiation combined to conduction). Indeed, the role of radiation is negligible 

compared to the conduction because the linearized radiative exchange coefficient is negligible 

compared to the one for conduction: ℎ𝑟 ≅ 5.5 W.m
-2

.K
-1

 and  
𝜆

𝛿𝑏
= 4. 105 W.m

-2
.K

-1
. When 

conduction dominates, the stochastic method gives the same results than the deterministic method. 

The maximum discrepancies between both methods are lower than 0.05K. 

For the results in Fig. 7, the thermal conductivity being much lower, the exchange coefficients are 

of the same order of magnitude: 
𝜆

𝛿𝑏
= 10 W.m

-2
.K

-1
. For pure conduction in Fig. 7, the same results 

as in Fig. 6 were obtained because (1) is solved and it does not depend on the thermal conductivity. 

In the coupled case (Fig. 7), the influence of radiation is highlighted: it increases the flux crossing 

the medium and homogenizes the temperature of the porous medium. Maximum discrepancies are 

found lower than 0.1 K.  

 

Figure 6.  Profiles of the average solid 

temperatures (case 1a, Table 1) with respect to 

the non-dimensional thickness 

 

 

Figure 7.  Profiles of the average solid 

temperatures (case 1b, Table 1) with respect to 

the non-dimensional thickness 

 



Figure 8.  Profiles of the average solid 

temperatures (case 2a, Table 1) inside the 

porous medium with respect to the non-

dimensional thickness 

 

 

Figure 9.  Profiles of the average solid 

temperatures (case 2b, Table 1) inside the porous 

medium with respect to the non-dimensional 

thickness 

Figures 8 and 9 present the profiles of the average temperature along the XZ-plane for the end 

plates at high temperature. When radiation (Fig. 8) or conduction (Fig. 9) dominates in (10) (see 

case 2a and 2b in Table 1), the stochastic method gives similar results compared to the deterministic 

method with a 99.7 % confidence interval of less than +/- 2.5 K.  

To deepen the comparison, the computation time required by each method to produce the 

temperature profiles of case 3 is given in Table 2. Several values of δb were used and temperature 

discrepancies associated to these values are shown in Figure 10. The computation time of the cases 

1 and 2 are not given here but for the deterministic method it was found to drastically increase with 

the influence of radiation while it was found similar for the probabilistic method. 

Table 2:  Computation times required to obtain 

the temperature profiles using the stochastic 

method for case 3 (Table 1) depending on 𝛿𝑏 

values and compared to the deterministic method 

δb 
(m) 

CPU Time for 64 

Monte Carlo 

runs 

(s) 

CPU Time for 

700 iterations of 

FLUENT 

(s) 

10
-4

 616922 

151200 
2 10

-4
 158745 

3 10
-4

 73679 

5 10
-4

 29994 

 

 

 

Figure 10.  Temperature difference along the 

geometry thickness (reference results are 

obtained with 𝛿𝑏=10
-4

 m) 

As the value of δb increases the MC computation time decreases but the error on the temperature 

profile increases (see Figure 10). If the entire temperature field is sought the deterministic method is 

preferable but if the objective of the computation is to found a local temperature and if the space of 

variables is larger (e.g., adding a wavelength integration) the stochastic method becomes 

competitive. 

 



CONCLUSION 

A Monte Carlo algorithm was established to solve the combined conduction and radiation heat 

transfers in complex geometries and at the stationary regime. The originality of the approach is to 

extend the spherical process method for the Dirichlet problem of the Laplace’s equation in a solid 

region to the combined conductive and radiative heat transfer in non-convex geometry with opaque 

solid and vacuum regions. The steps and assumptions of the model were detailed, especially the 

need on the integral linearity toward the solid temperature. An implementation in complex 

geometry was presented and the results were compared to those obtained with the widely used finite 

volume method (ANSYS Fluent software). When conduction or radiation dominates the heat 

transfers, the stochastic method reproduces well the results of the finite volume method and it is 

considered numerically validated. The extension of this probabilistic method to solid materials with 

any angular and spectral dependency is straightforward. Future work could be related to 

heterogeneous materials and non-linear heat transfer (temperature dependence of the conductivity 

and non-linear radiative transfer).   
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