
Thermal Covert Channel in Bluetooth Low Energy Networks
Timothy Claeys

Univ. Grenoble Alpes, CNRS
Grenoble Institute of Technology, LIG

Grenoble, France
timothy.claeys@univ-grenoble-alpes.fr

Franck Rousseau
Univ. Grenoble Alpes, CNRS

Grenoble Institute of Technology, LIG
Grenoble, France

franck.rousseau@univ-grenoble-alpes.fr

Boris Simunovic
National Cybersecurity Agency of France (ANSSI)

Grenoble INP, Esisar
Paris, France

boris.simunovic@etu.esisar.grenoble-inp.fr

Bernard Tourancheau
Univ. Grenoble Alpes, CNRS

Grenoble Institute of Technology, LIG
Grenoble, France

bernard.tourancheau@univ-grenoble-alpes.fr

ABSTRACT
This paper investigates thermal covert channels in the context
of the Internet-of-Things. More, precisely we demonstrate such a
channel on BLE-enabled devices. We explain how the core design
principles of BLE link-layer protocol, combined with well-timed
intensive CPU calculations can be leveraged to mount a thermal
covert channel between two devices.

We implement the attack on three different hardware architec-
tures, a Raspberry Pi 3B, a Motorola X 2014 and an iPhone 5s, and
analyze the performance of the channel. We show that we have a
similar throughput as previous comparable work, but we greatly
improve the range of the channel.

CCS CONCEPTS
• Security and privacy→ Mobile and wireless security.

KEYWORDS
wireless security, covert channels, Internet-of-Things

ACM Reference Format:
TimothyClaeys, Franck Rousseau, Boris Simunovic, and Bernard Tourancheau.
2019. Thermal Covert Channel in Bluetooth Low Energy Networks. In 12th
ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec ’19), May 15–17, 2019, Miami, FL, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3317549.3319730

1 INTRODUCTION
The emergence of the Internet-of-Things (IoT) has surrounded us
with devices equippedwith radio’s for wireless communication. The
power and computational constraints of these ubiquitous devices
have motivated the research community and industry to design
energy-efficient protocols. A prime example of such a low-power
protocol is Bluetooth Low Energy (BLE) [18]. Since its introduction
in the Bluetooth Core specification 4.0 [2], BLE has been imple-
mented on a plethora of devices. Almost all modern smartphones

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
WiSec ’19, May 15–17, 2019, Miami, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6726-4/19/05. . . $15.00
https://doi.org/10.1145/3317549.3319730

support BLE, making it a very attractive protocol for typical IoT
applications such as wireless headphones, smart watches and home
automation. BLE allows constrained devices to maintain long-lived
connections to periodically send updates to associated devices, e.g.
a smartwatch sending heart rate information to a smartphone.

In this paper we investigate the design of a thermal covert chan-
nel on BLE-enabled devices. Covert channels allow two colluding
devices to secretly exchange data. This can be used to leak sensi-
tive information such as passwords or encryption keys without
provoking any security mechanisms. The attack scenario presents
a malicious application that secretly leaks sensitive data from a
compromised device by piggybacking the data on the legitimate
BLE traffic generated by another application. To this end, the attack
leverages the design principles of the BLE link-layer protocol. More
precisely, we exploit the tight synchronization constraints of the
BLE link-layer to build a covert channel between the compromised
victim device and a covert receiver. The covert channel uses the
same principles as the side-channel attack presented in [19]. The
main idea of the attack is to use heat emissions of the victim de-
vice’s CPU, triggered by the malicious application, to influence the
operation of the crystal oscillator and indirectly the relative clock
skew. The heat of the CPU causes a shift in the frequency of the
crystal which translates in a measurable clock skew. In contrast to
the work presented in [19], the attacker does not interact directly
with the victim. Our covert channel leverages the existing traffic of
a legitimate BLE connection to an innocent third device, henceforth
known as the helper device, to hide the communication channel
to the covert receiver. The attacker measures directly the varying
clock skew of the victim by passively sniffing the traffic between
the victim and the helper. As long as the total clock skew stays
within the limits of the link-layer’s synchronization constraints the
covert channel remains hidden and does not disrupt the legitimate
connections.

In Section 2 we provide a background in the design of the BLE
link-layer protocol and the time synchronization mechanism. We
provide an extensive overview on the difficulty of time synchroniza-
tion and how it is tackled in BLE. In Section 3 we discuss related
work on thermal covert channels. Section 4 presents a possible
attack scenario detailing the operation of the covert channel. Sec-
tion 5 explains the communication protocol used to exchange data

https://doi.org/10.1145/3317549.3319730
https://doi.org/10.1145/3317549.3319730

WiSec ’19, May 15–17, 2019, Miami, FL, USA Timothy Claeys, Franck Rousseau, Boris Simunovic, and Bernard Tourancheau

between the victim and the covert receiver. We discuss the require-
ments to establish a covert channel and provide insight on how
we can improve the reliability and throughput of the channel. In
Section 6 we present an implementation of the covert channel on
three different hardware platforms: a Raspberry Pi 3B, a Motorola
X 2014 and an iPhone 5s, respectively running Arch Linux, Lineage
OS 14.1 (equivalent to Android Nougat 7.1.2) and iOS 11.4.1. We
use a simple application that sets up a persistent BLE connection to
a helper device, i.e. a smart light bulb. At the same time a malicious
application schedules threads of cryptographic calculations in the
background to heat up the crystal oscillator and modulate bits un-
der the form of a changing clock skew. The malicious application
does not require any special privileges. As covert receiver we use
an Ubertooth One [10], a simple off-the-shelf Bluetooth sniffer, to
passively measure the varying time intervals between the packets
emitted from the victim to the smart light bulb. On the Raspberry Pi
platform we obtain a throughput of 38 bits per hour and 45 bits per
hour with additional cooling. The throughput on the Motorola is
limited to 8 bits per hour, while on the iPhone we obtain 32 bits per
hour. The differences in throughput can be attributed to the layout
of the hardware and the use of temperature compensated crystals
(TCXO). Finally we compare the performance of our channel to
previous work.

2 BACKGROUND
In this section we provide the necessary background information
on BLE and clock drift in crystal oscillators.

2.1 Bluetooth Low Energy
BLE was first introduced in the Bluetooth Core specification v4.0.
In contrast to classic Bluetooth which can transfer a lot of data,
BLE is optimized for low-power applications that only periodically
need to communicate. BLE allows devices to go into a sleep mode
between data transmissions, effectively lowering the overall power
consumption of the entire protocol. The Bluetooth communication
stack can roughly be divided in three parts [11]. At the bottom we
can find the controller part. The controller contains the lowest two
layers of the Bluetooth stack: the physical layer and link-layer. The
controller is typically implemented in the firmware of the Bluetooth
radio. The host encompasses the higher levels of the Bluetooth
stack, such as the logical link control, attribute protocol, generic
access profile, etc. . . The host is often implemented as a part of the
operating system of the device that uses Bluetooth networking. On
top of the host we can find the Bluetooth applications. These are
traditionally implemented in the user space. In this paper, we are
only interested in the the link-layer or medium access layer (MAC)
of the stack. This layer describes and implements the algorithms
that regulate access to the transmission medium. Similar to other
low energy protocols that target IoT and embedded systems [1], BLE
devices share a global network clock to synchronize the devices. The
BLE devices follow a strict schedule that combined with the global
clock informs the devices when they are allowed to transmit data or
could expect an incoming packet. The rest of the time the devices
can go into sleep mode. Additionally, BLE uses channel hopping. It
can use up to 40 different frequency channels to communicate.

Although in the most recent update of the Bluetooth Core spec-
ification [3], version 5.0, changes were introduced to allow for
multi-hop networking, BLE is most frequently used to establish
a peer-to-peer connection between two devices. The devices can
have one of two distinct roles: the slave or master role. In a typical
use case the slave is a very simple device, e.g. a temperature sensor
or light bulb, that generates some application data. The master is a
more powerful device such as smartphone. To establish a connec-
tion a master device listens for advertisement packets, periodically
emitted by the slave during an advertisement event. When a master
device has captured an advertisement packet it can start a negotia-
tion phase by responding with a connection request packet. During
the connection setup the master and slave negotiate the parameters
for the connection. The connection request packet of the master
device contains among other a connection interval and a pseudo-
random sequence. The connection interval indicates how often the
master and slave are going to wake-up to exchange data, known
as a connection event, and the pseudo-random sequence describes
the order in which the frequency hopping takes place. Values for
the connection interval range from 7.5ms to 4 s and are a multiple
of 1.25ms [3]. The start of a connection event is called the anchor
point. The master device initiates the connection event by sending
a packet to the slave, see Figure 1. This packet can contain appli-
cation data but more often it simply acts as a poll request, asking
the slave to respond with its application data. The slave answers
either with its data or with an empty packet in case it has no data
to transmit. Both devices keep following this schedule until the
master disconnects.

Time [s]

M

S S

M M

S S

M M

S S

M

Connection Interval Connection Interval
Anchor Point Anchor Point Anchor Point

Connection Event

Figure 1: Bluetooth Low Energy in connected mode. During
a connection event multiple packets can be exchanged.

The master and slave can also negotiate a slave latency parame-
ter. This parameter defines the number of consecutive connection
events that the slave device is not required to listen for the master’s
packet at the start of a connection event.

2.2 Challenges of time synchronization
To save energy BLE devices enter in a sleep mode between two con-
nection intervals. The devices use an internal clock system driven
by a low-power crystal oscillator to keep track of time. An interrupt
wakes up the master and the slave when a new anchor point is
reached. It is obvious that the internal clocks of the BLE devices
need stay synchronized in order to wake up at the same moment.
Maintaining this tight time synchronization is not trivial. Due to
impurities in the crystal oscillator, manufacturing imperfections
and environmental changes (e.g. temperature changes) the exact
frequency of the crystal can differ from the target frequency. The
offset between the targeted frequency and the real frequency is

Thermal Covert Channel in Bluetooth Low Energy Networks WiSec ’19, May 15–17, 2019, Miami, FL, USA

called the clock drift, expressed in parts per million (ppm). Different
crystals have different clock drifts. Typical values for the clock drift
range between 20 ppm to 40 ppm. A relative clock drift over time be-
tween two devices leads to a clock skew. The clock skew is defined
as the difference in elapsed time between two devices. Equation 1
describes all the factors that amount to a clock skew over time.
The E(t) factor represents the varying drift from external causes,
i.e. temperature changes. The ∆ϵ factor denotes the difference in
frequency shift between two devices (static clock drift) and ±ef
describes the production spread (caused by imperfections in the
manufacturing process) [7].

∆Cskew = ∆t

(
1

1 − ef
−

1
1 + ef

+ E(t) + ∆ϵ

)
, (1)

The Bluetooth Core specification specifies two different maxi-
mum clock accuracies. During a connection event or advertising
event the devices use the active clock accuracy, with a drift less
than or equal to ±50 ppm. When in sleep mode the devices use
the sleep clock accuracy, which can have a maximum drift of ±500
ppm. Because of the potential high drift and the resulting clock
skew there is an uncertainty in the slave device of the exact tim-
ing of the master’s anchor point. Therefore, the slave is required
to resynchronize to the master’s anchor point at each connection
event to avoid drifting too much. When the slave receives a packet
from the master, the slave updates its anchor point [3] and always
responds with a packet unless the slave latency parameter is not 0.
To ensure that the slave wakes up in time to receive the first packet
of the master during an connection event, it estimates the next an-
chor point, taking into account the possible clock drift. During the
connection setup the master can indicate its sleep clock accuracy.
The slave can use the master sleep clock accuracy and its own sleep
clock accuracy to better estimate the position of the next anchor
point. The slave calculates a window around the expected anchor
point. The slave will start listening for a packet from the master a
full window widening value before the expected anchor point, see
Figure 2.

TimeConnection Interval

Anchor Point Expected
Anchor Point

M
as

te
r

Sl
av

e

Tx

Rx Tx

Rx Tx

clock skewConnection Interval

Window
widening

Figure 2: Clock skew between master and slave. Slave uses
window widening technique to compensate the clock skew.

The formula used to calculate the window widening is shown in
Equation 2.

δwindow = ∆t
[
(Dm + Ds)/1 × 106

]
(2)

The ∆t parameter indicates the elapsed time since the last an-
chor point (and resynchronization of the slave to the master). The
values Dm and Ds are the master’s and slave’s clock inaccuracies,
expressed in parts per million (ppm), respectively.

3 RELATEDWORK
There exists a large variety in covert channel attacks, targeting
different types of hardware. However, in this paper, we focus on
thermal covert channels to exfiltrate sensitive information.

Our approach is based on the work presented in [19]. This work
discusses a side-channel attack to discover hidden Tor services. Mur-
doch shows that changes in clock skew resulting from only modest
changes in temperature, can be remotely detected through network
packet timestamps, even over tens of router hops. The primary
contribution demonstrates an attack whereby CPU load induced
through one communication channel affects clock skew measured
remotely. The attacker uses the TCP timestamp option to measure
the clock skew. This observation is then used to detect hidden Tor
services. Murdoch is able to link a pseudonym to a real identity,
even against a system that ensures perfect non-interference.

Guri et. al. [12] present Bitwhisper, a thermal covert channel
between air-gapped adjacent computers. It exploits the thermal
radiation emitted by one computer, operating within permissible
heat boundaries, to deliver information to a neighboring computer,
equipped with standard heat sensors. Guri et. al. also discuss signal
modulation and communication protocols, showing how BitWhis-
per can be used for the exchange of data between two computers
in close proximity. The range of the covert channel is limited to
40 cm and the throughput of the channel amounts to 1 to 8 bits per
hour, a rate which makes it possible to infiltrate brief commands
and exfiltrate small amount of data (e.g., passwords) over the covert
channel a covert communication channel.

The work presented in [17], demonstrates the feasibility of ther-
mal covert channels on multicore platforms. They show that even
seemingly strong isolation techniques based on dedicated cores can
be circumvented through the use of thermal channels. Specifically,
they show that the temperature of a single processor core, mea-
sured by a neighboring core, can be used both as a side channel
as well as a covert communication channel even when the system
implements strong spatial and temporal partitioning. They test
their hypothesis on an Intel Xeon server platform. The thermal
covert channel achieves a throughput 12.5 bps. Additionally the
authors show that the thermal side-channel can be used to profile
applications running on the neighboring processor cores.

4 ATTACK SCENARIO
In a typical attack scenario, a user gets tricked into installing a
malicious application. The malicious application could be imper-
sonating a legitimate application, or the legitimate application itself
was compromised due to a supply chain attack [20]. The malicious
application has access to sensitive data such as passwords or en-
cryption keys (e.g. a password manager). However, the application
cannot use any networking functionalities, as the user did not grant
the application those privileges. It has no direct way to extract the
sensitive data from the victim device. Instead the malicious applica-
tion modulates the sensitive data on top of the packets exchanged

WiSec ’19, May 15–17, 2019, Miami, FL, USA Timothy Claeys, Franck Rousseau, Boris Simunovic, and Bernard Tourancheau

by long-lived BLE connections of legitimate applications. Examples
of such long-lived connections are: a smart watch being connected
to a smartphone or a smartphone connected to wireless headphones
or smart loudspeakers.

Figure 3 depicts the attack scenario. There are three distinct
entities: the victim device, a neutral helper device and the covert
receiver which is fully controlled by the attacker. By scheduling
well-timed CPU intensive calculations, the malicious application
can control the heat emission of the CPU. These emissions directly
influence the frequency of crystal oscillator. The malicious applica-
tion uses the impact of the E(t) in Equation 1 to cause a varying,
measurable clock skew. Bits can be encoded under the form of these
clock skew variations.

Covert Receiver

Victim (master)

Helper (slave)

t(s)

t(s)

t(s)

C
lo

ck
 s

ke
w

Measured Connection Interval

Manipulated Connection Interval
δwindow

Negotiated Connection Interval

Tx

Tx

Rx Rx

Rx

Tx

TxRx

Rx Rx

Expected vs. Actual
Anchor Point

Measured Connection Interval
Previous Connection Interval

Connection Event Connection Event
C

lo
ck

 s
ke

w

Anchor
Point

Figure 3: Timeline of the attack. The covert receiver infers
the induced clock skew, caused by the CPU heat, by measur-
ing the changing connection interval between the consecu-
tive anchor points (icon source: [25])

The synchronization constraints in the BLE protocol force the
master and slave to exchange packets every connection interval.
This provides the covert receiver with an easy and stealthy way to
track the relative clock skew between the two devices. The covert
receiver does not need to inject any traffic in the network or ask
for explicit timestamps to estimate the clock skew. It suffices to
passively sniff the connection and measure the time between two
anchor points. At the start of each connection interval (at the anchor
point) the master will poll the slave for any application data. If the
clock frequency changed sufficiently since the last connection event,
the connection interval will have changed noticeably. The covert
receiver tracks these changes and decodes them. The covert receiver
does not need to know the contents of the BLE-packets. This means
that the covert channel can also be established when link-layer
security encrypts the content of the packets.

The victim should always have the role of master in the BLE
connection as this forces the helper device to stay synchronized to
the victim even if there is a large clock skew. The covert receiver
can be positioned anywhere in BLE transmission range and acts as
a hidden slave device. There are no physical or logical connections
between the victim and the covert receiver. The covert receiver can

even be placed in an adjacent room. As long as the impact of E(t) in
Equation 1 is sufficiently large with respect to the other terms in the
equation the covert receiver can measure with sufficient precision
the intervals between the consecutive BLE transmissions.

5 COVERT COMMUNICATION PROTOCOL
In this section we describe the communication protocol between the
victim device and the covert receiver. Because the communication
channel is unidirectional we allow a for significant overhead for
error correction codes as there is no way the covert receiver can
ask for the retransmission of data.

5.1 Encoding and Decoding
In our communication protocol we use a simple On-Off Keying
(OOK) technique to transmit data. To encode a ’1’ bit a strong
variation in the clock skew is triggered by heating up the oscillator.
A ’0’ bit is encoded as the absence of a varying clock skew. We used
several threads of cryptographic calculations to generate a high
CPU load. The malicious application must keep the temperature
steady for a period of time. This ensures that the heat can propagate
throughout the device and reach the oscillator. When the CPU load
is released by the malicious application, the device and crystal
oscillator cools down and the clock skew returns to its previous
value. During this process the covert receiver is measuring the
elapsing connection intervals (CIj) by creating a timestamp (Ti)
at the reception of the first packet of the master at the start of an
connection event.

CIj = (Ti −Ti−1) (3)

By subtracting the subsequent connection intervals, the attacker
calculates the clock skew for the connection interval.

∆Cskew = ∆CI = CIj − CIj−1 (4)

The attacker then uses a low-pass filter to extract the trends in
the clock skew behavior, S(t). By calculating the derivative, dSdt , over
the filtered signal the attacker can detect sudden strong variations in
the clock skew.When the absolute value of the clock skew variation
is greater than a predefined threshold valueVth a ‘1’ bit is detected,
otherwise the filtered signal is decoded as a ‘0’ bit.

Bit string(t) =

1 | dSdt | ≥ Vth

0 | dSdt | < Vth
(5)

The threshold valueVth is discovered by calculating the standard
deviation (σ) over dS

dt . A scaling factor α is experimentally derived.

Vth = σ
(dS
dt

)
∗ α (6)

Eachmessage is prependedwith a preamble. The preamblemarks
the start of a data transmission. We use a preamble of a single ‘1’ bit
to denote the start of a transmission. We must choose a preamble
starting with bit ‘1’ because only a change in the clock skew can be
detected by the covert receiver. A ‘0’ bit is encoded as the absence
of a varying clock skew and can therefore not be clearly identified
by the decoder.

Thermal Covert Channel in Bluetooth Low Energy Networks WiSec ’19, May 15–17, 2019, Miami, FL, USA

5.2 Calibration of the channel
Prior to the attack, we calibrate the channel to derive the optimal
parameters for the covert channel. The calibration values improve
the throughput and accuracy of the channel. Without these values
the malicious application needs to guess for how long it has to heat
up the device and, similarly, how much time the device needs to
cool down. Initially, the base temperature of the device, Tb must be
measured. The base temperature corresponds to temperature of the
CPU when it is idle. Secondly, the target temperature, Tt , must be
defined. Thirdly, we must set the time period, ∆th , for which the
malicious application must hold the CPU temperature at Tt when
encoding a binary ‘1’. Finally, the malicious application needs to
know the cool down time, ∆tc . This variable describes the time
needed by the system to return to the base temperature Tb and for
the clock skew to settle on its original value. Calibration happens
offline, once per hardware architecture and once for different base
temperatures.

5.3 Error correction and data whitening
To provide reliable transmission the malicious application uses two
techniques: error correction codes and data whitening. A possible
candidate for the error correction codes are the Bose-Chaudhuri-
Hocquenghem codes (BCH) [4]. BCH codes can correct multiple
errors, depending on construction of the code word. For example
the BCH(63, 31) code addsmaximally 31 check-bits to a data payload
of 32 bits. This would allow the covert receiver to correct up to 5
faults in the received code word.

Data whitening scrambles the data before transmission to pre-
vent long sequences of 1’s or 0’s. Because each binary ‘1’ is encoded
as an increase in CPU temperature there exists a risk that several
consecutive encoded ‘1’ bits could saturate the sensitivity of the
oscillator to temperature changes. As remnant heat builds up in
the system, the device does not have enough time to cool down.
We borrow the data whitening mechanism described in the Blue-
tooth Core specification [3]. A simple LFSR is used to generate a
pseudo-random bit string. This bit string is then xored with the
original data to obtain a pseudo-random bit sequence, ready for
transmission.

6 EXPERIMENTAL EVALUATION
6.1 Experiment setup
In this section, we discuss our implementation of the attack on
three hardware platforms: Raspberry Pi 3B, Motorola X 2014 and
an iPhone 5s. All the experiments followed the scenario described
in Section 4. The experiments were performed in an office at room
temperature. In each experiment the role of the helper device was
fulfilled by a simple BLE-enabled light bulb [24]. The covert receiver
consisted of an Ubertooth One [10] connected to a computer. The
distance between the different devices was approximately 2m.

6.2 Tracking the clock skew
The Ubertooth is capable of sniffing a specific BLE connection when
it can overhear the initial BLE connection setup. This handshake
negotiates all the parameters necessary to calculate the next an-
chor points and to derive the frequency hopping. The Ubertooth

firmware registers timestamps at the reception of every packet. The
timestamps are generated by the Ubertooth’s CPU [21] by reading
the current timer value at the reception of radio direct memory ac-
cess (DMA) interrupt. The timer runs with a period of 50MHz. The
Ubertooth sends the timestamps to the computer. We only keep the
timestamps of the first packet emitted by the victim/master device
at every connection event. The difference between two consecutive
timestamps corresponds to the connection interval of the victim,
see Equation 3. The connection interval remains stable when the
oscillator operates at a fixed temperature (a constant clock skew
between the victim and the helper/covert receiver). In this scenario
all the terms in Equation 1 are stable, resulting in a stable clock
skew. If the oscillator experiences a fluctuating ambient tempera-
ture, the E(t) term causes a varying clock skew and the Ubertooth
measures varying connection intervals.

6.3 Victim configuration
As victim device, containing the malicious application, we used
three different devices: a Raspberry Pi 3B [9] running Arch Linux,
a Motorola X 2014 running Lineage OS 14.1 and an iPhone 5s with
iOS 11.4.1. Before the start of the experiment, during the reconnais-
sance phase, the physical characteristics of the victim device are
investigated. We try to register the base temperature of each device,
the temperature of a device when idle, the amount of heat that was
effectively generated and how fast the heat propagated throughout
the device and finally how quickly this heat dissipated. We also
verified the size of the clock skew variations due to the increasing
or decreasing temperature. Large variations point towards a direct
thermal path between the CPU and the oscillator and/or the use of
an uncompensated crystal oscillator, while small variations might
be caused by the CPU and oscillator being thermally isolated and
the use of a TCXO.

6.4 Raspberry Pi 3B
6.4.1 Reconnaissance phase. The Raspberry Pi 3B board uses a
quad core 1.2GHz BroadcomBCM2835 64-bit CPU and a BCM43438
chipset for WiFi and BLE connectivity [6]. Figure 5 shows the
positions of the CPU and the wireless chipset with crystal oscillator
on the board. The distance between the CPU and the oscillator is
approximately 1.5 cm. Both the CPU and BLE chip are attached to
the same board, allowing for a direct thermal path, see Figure 6.

After inspection of the board and the datasheet of the BCM43438
we suspect that the board uses an uncompensated crystal oscilla-
tor, although verification of this assumption is not possible as the
majority of the Raspberry Pi schematics are not publicly available.
The board also exposes one internal CPU temperature sensor. In
a first instance we analyzed how well the heat of the CPU propa-
gates throughout the board. With a thermocouple [8] we track in
real-time the temperature of the oscillator as we vary the load on
the CPU. We use this information to derive the values to calibrate
the covert channel.

Figure 6 shows the heat spread from the CPU throughout the
board. The article [13] discusses the changes in heat propagation be-
tween the Raspberry Pi 3B and the Raspberry Pi 3B+. Although the

WiSec ’19, May 15–17, 2019, Miami, FL, USA Timothy Claeys, Franck Rousseau, Boris Simunovic, and Bernard Tourancheau

−10

0

10

C
lo

ck
 s

ke
w

 [u
s]

Raw ΔCI

−0.005

0.000

0.005

D
er

iv
at

iv
e Derivative

40

45

50

C
PU

 te
m

p
[°

C
]

CPU temp

0 1000 2000 3000 4000 5000 6000
Time [s]

0.0

0.5

1.0

D
ec

od
ed

 b
its bits

−0.1

0.0

0.1Filtered ΔCI = S(t)

0.000

0.002

0.004

Figure 4: Implementation of the covert channel on the Raspberry PI 3B. From top to bottom: raw and filtered skew, the deriv-
ative of the filtered skew, the CPU temperature and the decoded bits.

Figure 5: The dashed circle indicates the position of the CPU
on the Raspberry Pi’s logic board. The full circle shows the
crystal oscillator.

newer model has a better heat spread, the heat propagation is suffi-
ciently wide to reach the oscillator. Measurements with thermocou-
ple [8] indicate 10 ◦C to 15 ◦C difference between the temperature
measured at the CPU package and the oscillator.

6.4.2 Covert Channel Performance. With the characteristics of the
victim known, the malicious software on the Raspberry Pi can set
up a the covert channel. Figure 4 shows a covert transmission of

Figure 6: Thermal image of the RPi 3B (source: [13]).

approximately 2 h. The raw skew data is directly measured by the
Ubertooth and logged by the computer. By filtering the signal we
extract the clock skew trend from the original noisy signal. The
second graph in Figure 4 shows the derivative of the filtered signal.
We also plot the derivative a second time with the negative values
set to 0. We observe that the peaks in CPU temperature match well
with clock skew variations, shown by the peaks in the derivated
signal. Finally we use Equation 5 and Equation 6 to extract the bits,

Thermal Covert Channel in Bluetooth Low Energy Networks WiSec ’19, May 15–17, 2019, Miami, FL, USA

−10

0

10

C
lo

ck
 s

ke
w

 [u
s]

Raw ΔCI

−0.005

0.000

0.005

D
er

iv
at

iv
e Derivative

40

45

50

C
PU

 te
m

p
[°

C
]

CPU temp

0 500 1000 1500 2000 2500 3000
Time [s]

0.0

0.5

1.0

D
ec

od
ed

 b
its bits

−0.1

0.0

0.1Filtered ΔCI = S(t)

−0.0075

−0.0050

−0.0025

0.0000

Figure 7: Covert Channel on the cooled Raspberry Pi. The cool down phase is quicker then the heat up phase. We search for
strong negative spikes in the filtered clock skew signal instead of positive spikes.

Table 1: Calibration values for the covert channel: RPI-3B

Constant Value Comments

Tb 39 ◦C Temperature for idle CPU
Tt 47 ◦C Tt + 1 for every consecutive ’1’ bit
∆th 10 s
∆tc 65 s Cool down time: Tt → Tb

shown in the lowest graph of the figure. The throughput of the
channel is approximately 38 bits per hour.

To improve the throughput of the channel, we needed to ac-
celerate the cool down phase of the covert channel. In a second
experiment we assumed that the malicious software also controlled
a fan. This fan could be activated to help cooling the CPU and the
oscillator. We used the same base temperature and target tempera-
ture, but the cool down time, ∆Tc , was reduced to 30 s. The results
are shown in Figure 7. The throughput of the new cooled channel
is approximately 45 bits per hour.

6.5 Motorola X 2014
6.5.1 Reconnaissance phase. The Motorola X 2014 uses a Qual-
commSnapdragon 801 8974-ACCPU [22] and aQualcommWCN3680
802.11ac Combo Wi-Fi/Bluetooth/FM chipset [23]. The wireless
chipset of the phone uses, highly probable, a TCXO. A full teardown
of a first generation Motorola X shows the approximate locations

of the CPU and the BLE chip [15]. The CPU and BLE chip seem to
be far apart. A teardown of the second generation Motorola (used
in our experiments) additionally shows metal heatsinks covering
the individual chips. This hardware layout would allow to evacuate
the majority of the generated heat before it reaches the BLE chip.
If the chip additionally uses a TCXO the effects of the CPU heat
on the induced clock skew could be negligible. Because we have
no access to the actual schematics of the phone, we cannot verify
these assumption.

The phone’s hardware has 15 different temperature sensors. Lin-
eage OS makes the sensor values readable in the filesystem un-
der /sys/class/thermal/thermal_zone[1-15]/temp. Although
many of the sensor names are cryptic, some of them can easily be
attributed to hardware components of the phone, e.g. chg_temp
exposes the temperature sensor of the battery. After careful test-
ing the temperature values, returned by the sensors during CPU
intensive calculations, we pick a sensor for our experiment which
corresponds well to the measured clock skew.

6.5.2 Covert Channel Performance. Compared to the experiment
with the Raspberry Pi 3B, the throughput of the covert channel
on the phone is much smaller, see Figure 5. The throughput is
approximately 6 to 8 bits per hour. Several reasons can be found
that explain this performance drop. The heat up time and cool
down time are much larger. The slow increase in temperature is
probably due to the use of metal heat sinks over the different chips,
preventing the heat of the CPU to spread to the other components

WiSec ’19, May 15–17, 2019, Miami, FL, USA Timothy Claeys, Franck Rousseau, Boris Simunovic, and Bernard Tourancheau

−100

0

100

C
lo

ck
 s

ke
w

 [u
s]

Raw ΔCI

−0.002

0.000

0.002

D
er

iv
at

iv
e Derivative

26

28

30

32

C
PU

 te
m

p
[°

C
]

CPU temp

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.0

0.5

1.0

D
ec

od
ed

 b
its bits

−0.1

0.0

0.1
Filtered ΔCI = S(t)

0.000

0.001

0.002

0.003

Figure 8: Covert channel on the Motorola X 2014. Compared to the filter clock skew on the Raspberry Pi platform, the clock
skew variations are much more suppressed.

Table 2: Calibration values for the covert channel: Motorola

Constant Value Comments

Tb 27 ◦C Temperature for idle CPU
Tt 32 ◦C Target temperature
∆th 1 s
∆tc ±400 s Cool down time: Tt → Tb

on the motherboard. Once the oscillator has reached it’s target
temperature we cancel the CPU load. In contrast to the Raspberry
Pi the phone’s hardware is protected by its exterior casing. This
prevents the build up heat from dissipating easily. The usage of the
TCXO also prevents strong clock skew variations which make the
detection of peaks in the filtered signal harder.

6.6 iPhone 5s
6.6.1 Reconnaissance phase. The iPhone 5s uses Apple’s A7 chip, a
customARMv8 1.3GHz dual core processor [16]. TheWiFi/Bluetooth
chipset is based of Broadcom’s BCM4334 [5]. The BCM4334 is sim-
ilarly to the BCM43438 capable of using a TCXO to compensate
temperature variations. The iPhone’s OS does not expose any inter-
nal temperature sensors. A teardown of the iPhone 5s reveals the
positions of the A7 and BLE chip [14]. Compared to the Motorola’s
logic board, the iPhone’s BLE chip seems to be in close proximity
to the A7 processor.

Table 3: Calibration values for the covert channel: iPhone 5s

Constant Value Comments

Tb - No access to temperature sensors
Tt - No access to temperature sensors
∆th ±60 s
∆tc ±70 s Cool down time: Tt → Tb

6.6.2 Covert Channel Performance. The iPhone 5s has a much
higher throughput compared to the Motorola. The throughput is
approximately 32 bits per hour. The influence of the CPU heat on
the oscillator is rapidly noticeable. Additionally, the clock skew
returns fast to its base value when we stop heating up the CPU.
We can not say with certainty why the iPhone’s oscillator is more
susceptible to the temperature changes but our guess is that the
close vicinity of the BLE chip to the A7 application processor allows
for a direct thermal path. The phone’s heat sink also seems to be
more efficient which allows for a fast heat dissipation. The iPhone’s
exterior casing is additionally surrounded by a metal band at the
sides that functions as a large heatsink.

6.7 Performance discussion
The bandwidth of our covert channel depends on several factors.
This includes the time required to heat up or cool down the oscillator
to a specific temperature and the error rate in the transmission. Both
these parameters in turn depend on the hardware architecture of
the victim and the distance between the heat source and the crystal

Thermal Covert Channel in Bluetooth Low Energy Networks WiSec ’19, May 15–17, 2019, Miami, FL, USA

−200

−100

0

100

200

C
lo

ck
 s

ke
w

 [u
s] Raw ΔCI

−0.2

−0.1

0.0

0.1

0.2

D
er

iv
at

iv
e

Derivative

0 500 1000 1500 2000 2500 3000 3500 4000
Time [s]

0.00

0.25

0.50

0.75

1.00

D
ec

od
ed

 b
its

bits

−4

−2

0

2

4

Filtered ΔCI = S(t)

0.00

0.05

0.10

0.15

Figure 9: Covert channel on the iPhone 5s. No temperature information was easily available, so the heat graph is omitted.

oscillator. Another important factor is the sensitivity of the crystal
to sudden temperature changes. On high-end hardware, such as
smartphones, the clock skew variations are suppressed due to the
use of a TCXO which hurts the overall throughput of the channel. It
makes decoding of the signal more difficult and error prone. Table 4
summarizes the performance obtained on the different platforms.

Table 4: Error rate on different hardware architectures

Platform Throughput
(bph)

Bits
sent Errors Error

rate

RPi 3B 38 61 3 5%
RPi 3B (cooled) 45 33 2 6%
Motorola X 8 6 0 < 1%
iPhone 5s 32 27 0 < 1%

The calibration phase prior to the attack, helps to improve the
throughput and accuracy of the channel. Our experiments showed
that the exact calibration values are not always available, e.g. on
the iPhone no base or target temperature could be detected. In this
scenario we experimentally derived and fixed the values for the
heat up time and cool down time. By adding an additional margin
to these values we can try to compensate situations where the base
temperature of the device differs from the situation under which
the experimental values where established.

To improve throughput even further we can try to speed up
the heating up or cooling down phase. We showed that with the
addition of a cooling fan to the control of the malicious application,
we can improve the bitrate. Additionally, throughput could be im-
proved by using multi-level encoding techniques if the CPU heat
emissions can control the clock skew with acceptable precision and
the clock skew variations are sufficiently large.

Compared to the work in [17] our thermal covert channel is
slower. Matsi et. al. directly use the CPU temperature to establish
the covert channel, which makes it more reactive to changes in
CPU load. Our thermal covert channel must indirectly be measured
through the effects on the clock skew. The drawback of the work
in [17] is the range of the channel. Covert communication is limited
to applications running on the same physical machine.

The work presented in Bitwhisper [12] is capable of extending
the range of the thermal covert channel to 40 cm. Because of the
air-gapped constraints they cannot sniff wireless transmission and
therefore the range stays limited.

Our approach has a similar throughput as Bitwhisper but the
range of the covert channel extends to the full transmission range of
BLE. There is no need for a direct line-of-sight which improves on
the attack’s stealthiness. Moreover the covert receiver doesn’t need
to interact with the victim device. It suffices to merely passively
sniff the legitimate traffic.

WiSec ’19, May 15–17, 2019, Miami, FL, USA Timothy Claeys, Franck Rousseau, Boris Simunovic, and Bernard Tourancheau

7 CONCLUSION
In this paper we investigated the design of a thermal covert channel
in BLE-connections. We leverage the sensitivity of the crystal oscil-
lator to temperature changes. By using well-timed CPU intensive
calculations we can encode information under form of a clock skew.
A covert receiver sniffs a legitimate BLE connection to measure
the BLE connection interval changes. We are guaranteed to have
periodic traffic in the legitimate connection due to the need to keep
synchronization between the master and the slave.

We implemented our attack on three different hardware plat-
forms. We obtain similar throughput compared to previous work
on thermal covert channels, but we succeed in increasing the range
of the channel.

In the future we would like to investigate more closely the im-
pact of having multiple CPU intensive applications running at the
same moment while the malicious application is encoding data. Ad-
ditionally we would like to explore the possibility of generalizing
the attack approach to fit other low-power IoT protocols that have
the same design philosophy as BLE, e.g. IEEE802.15.4e.

ACKNOWLEDGMENTS
This work has been partially supported by the LabEx PERSYVAL-
Lab (ANR-11-LABX-0025-01) funded by the French program In-
vestissement d’Avenir, and the FUI IoTize project funded by Région
Auvergne-Rhône-Alpes.

REFERENCES
[1] 2012. IEEE 802.15.4e Low-Rate Wireless Personal Area Networks (Amendment to

IEEE Std 802.15.4-2011). IEEE Standards Office, New York, NY, USA.
[2] Bluetooth SIG 2010. Bluetooth Core specification 4.0. Bluetooth SIG.
[3] Bluetooth SIG 2016. Bluetooth Core specification 5.0. Bluetooth SIG.
[4] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. 1960. On A Class of Error

Correcting Binary Group Codes. Information and control 3, 1 (1960), 68–79.
[5] Cypress Semiconductor Corporation 2016. BCM4334: Single Chip IEEE 802.11

a/b/g/n MAC/Baseband/Radio with Integrated Bluetooth 4.0 + HS and FM Receiver.
Cypress Semiconductor Corporation. http://www.rumjd.com/Attachments/
20160820160827_152216_171.pdf

[6] Cypress Semiconductor Corporation 2018. CYW43438: Single-Chip IEEE 802.11
b/g/n MAC/Baseband/Radio with Integrated Bluetooth 4.2. Cypress Semiconductor
Corporation.

[7] Atis Elsts, Simon Duquennoy, Xenofon Fafoutis, George Oikonomou, Robert
Piechocki, and Ian Craddock. 2016. Microsecond-Accuracy Time Synchronization
Using the IEEE 802.15.4 TSCH Protocol. In IEEE SenseApp 2016-Eleventh IEEE
International Workshop on Practical Issues in Building Sensor Network Applications.

[8] Fluke 2003. 175, 177, 179 True-rms Multimeters: User manual. Fluke. https:
//www.instrumart.com/assets/179-manual.pdf

[9] Raspberry Pi Foundation. 2016. Raspberry Pi 3B. https://www.raspberrypi.org/
products/raspberry-pi-3-model-b/

[10] Great Scott Gadgets. 2018. Project Ubertooth. https://github.com/
greatscottgadgets/ubertooth/

[11] Carles Gomez, Joaquim Oller, and Josep Paradells. 2012. Overview and Evaluation
of Bluetooth Low Energy: An Emerging Low-PowerWireless Technology. Sensors
12, 9 (2012), 11734–11753.

[12] Mordechai Guri, Matan Monitz, Yisroel Mirski, and Yuval Elovici. 2015. BitWhis-
per: Covert Signaling Channel between Air-Gapped Computers using Thermal
Manipulations. In 28th IEEE Computer Security Foundations Symposium (CSF).
276–289.

[13] Gareth Halfacree. [n. d.]. Benchmarking the Raspberry Pi 3 B+. https://medium.
com/@ghalfacree/benchmarking-the-raspberry-pi-3-b-plus-44122cf3d806

[14] IFIXIT. [n. d.]. iPhone 5s Teardown. https://nl.ifixit.com/Teardown/iPhone+5s+
Teardown/17383

[15] IFIXIT. [n. d.]. Motorola Moto X Teardown. https://nl.ifixit.com/Teardown/
Motorola+Moto+X+Teardown/16867

[16] APPLE IFIXIT. 2013. The Teardown: Apple iPhone 5s. 8 (November 2013). Issue
10.

[17] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller,
Lothar Thiele, and Srdjan Capkun. 2015. Thermal Covert Channels on Multi-core

Platforms. In USENIX Security Symposium. 865–880.
[18] Elodie Morin, Mickael Maman, Roberto Guizzetti, and Andrzej Duda. 2017. Com-

parison of the Device Lifetime in Wireless Networks for the Internet of Things.
IEEE Access 5 (2017), 7097–7114.

[19] Steven J. Murdoch. 2006. Hot or Not: Revealing Hidden Services by their Clock
Skew. In 13th ACM conference on Computer and communications security. ACM,
27–36.

[20] Lily Hay Newman. 2018. Inside the Unnerving Supply Chain At-
tack that Corrupted CCleaner. https://www.wired.com/story/
inside-the-unnerving-supply-chain-attack-that-corrupted-ccleaner/

[21] NXP Semiconductors 2015. LPC1759/58/56/54/52/51: 32-bit ARM Cortex-M3 MCU;
up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN.
NXP Semiconductors. https://www.nxp.com/docs/en/data-sheet/LPC1759_58_
56_54_52_51.pdf

[22] Qualcomm Technologies, Inc 2014. Qualcomm Snapdragon 801 Processor. Qual-
comm Technologies, Inc. https://www.qualcomm.com/media/documents/files/
snapdragon-801-processor-product-brief.pdf

[23] Qualcomm Technologies, Inc 2017. WCN3680B/WCN3660B: device specification.
QualcommTechnologies, Inc. https://developer.qualcomm.com/download/sd410/
wcn3680b-wcn3660b-device-spec.pdf

[24] Magic Blue UU. [n. d.]. Bluetooth Bulb. https://www.gearbest.com/
smart-light-bulb/pp_230349.html

[25] Royyan Wijaya, Viktor Vorobyev, and Sandra. 2017. The Noun Project - Icons
for Everything. https://thenounproject.com/

http://www.rumjd.com/Attachments/201608 20160827_152216_171.pdf
http://www.rumjd.com/Attachments/201608 20160827_152216_171.pdf
https://www.instrumart.com/assets/179-manual.pdf
https://www.instrumart.com/assets/179-manual.pdf
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://github.com/greatscottgadgets/ubertooth/
https://github.com/greatscottgadgets/ubertooth/
https://medium.com/@ghalfacree/benchmarking-the-raspberry-pi-3-b-plus-44122cf3d806
https://medium.com/@ghalfacree/benchmarking-the-raspberry-pi-3-b-plus-44122cf3d806
https://nl.ifixit.com/Teardown/iPhone+5s+Teardown/17383
https://nl.ifixit.com/Teardown/iPhone+5s+Teardown/17383
https://nl.ifixit.com/Teardown/Motorola+Moto+X+Teardown/16867
https://nl.ifixit.com/Teardown/Motorola+Moto+X+Teardown/16867
https://www.wired.com/story/inside-the-unnerving-supply-chain-attack-that-corrupted-ccleaner/
https://www.wired.com/story/inside-the-unnerving-supply-chain-attack-that-corrupted-ccleaner/
https://www.nxp.com/docs/en/data-sheet/LPC1759_58_56_54_52_51.pdf
https://www.nxp.com/docs/en/data-sheet/LPC1759_58_56_54_52_51.pdf
https://www.qualcomm.com/media/documents/files/snapdragon-801-processor-product-brief.pdf
https://www.qualcomm.com/media/documents/files/snapdragon-801-processor-product-brief.pdf
https://developer.qualcomm.com/download/sd410/wcn3680b-wcn3660b-device-spec.pdf
https://developer.qualcomm.com/download/sd410/wcn3680b-wcn3660b-device-spec.pdf
https://www.gearbest.com/smart-light-bulb/pp_230349.html
https://www.gearbest.com/smart-light-bulb/pp_230349.html
https://thenounproject.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Bluetooth Low Energy
	2.2 Challenges of time synchronization

	3 Related Work
	4 Attack Scenario
	5 Covert Communication Protocol
	5.1 Encoding and Decoding
	5.2 Calibration of the channel
	5.3 Error correction and data whitening

	6 Experimental Evaluation
	6.1 Experiment setup
	6.2 Tracking the clock skew
	6.3 Victim configuration
	6.4 Raspberry Pi 3B
	6.5 Motorola X 2014
	6.6 iPhone 5s
	6.7 Performance discussion

	7 Conclusion
	Acknowledgments
	References

